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Chapter 1

Introduction

1.1 Motivation and lecture overview

See slides: (click here for slides: https://tinyurl.com/yb8xskhn)

1.2 Energy content of the wind

How much power is in the wind?

Consider a cylindrical volume of air flowing through a “window” of area, A[m2], with
length, L[m] and air velocity, V [m s−1]. The mass of the air in this volume, m, can be
found by m = ρ · L · A with density of air, ρ, taken to be 1.2 kg/m3.

Kinetic energy in the volume of air is found by E = 1
2
mv2 = 1

2
· ρLA · v2. Power,

P [W], is given by P = E
t

with t[s] being the time it takes to move the volume through
the window (as shown in Figure 1.1), given by t = L

V
. Thus:

P =
1
2
ρLAV 2

L/V
=

1

2
ρAV 3 (1.1)

Note: P has a cubic relationship with wind velocity, V .

Figure 1.1 Power flowing through the window

4

https://www.syscop.de/files/2018ss/WES/lectures/20180417WES-Introduction.key.pdf


Power density is “power per cross-sectional area” and given by

P

A
=

1

2
ρV 3 (1.2)

SI-Unit of this expression is

kg

s3
= (kg · m

s2
)︸ ︷︷ ︸

N

·( 1

m · s
) = (N ·m)︸ ︷︷ ︸

J

·( 1

m2 · s
) = (

J

s
)︸︷︷︸

W

·( 1

m2
) =

W

m2

For V = 10 m/s we get:

P

A
=

1

2
· 1.2 · 103 W

m2
= 600

W

m2
(1.3)

At V = 20 m/s, a good strong wind, we have P
A

= 4.8 kW m−2.

Compare this with the average European’s power need of 5 kW:

2 m2 of cross-sectional area in very strong wind, or 16 m2 of area in good wind (of

V = 10 m s−1) or 128 m2 of area in weak wind (of V = 5 m s−1), contain about 5 kW.
(Not all of this can be harvested, due to the so called“Betz-Limit”, which we will derive
& discuss in chapter 3).

Strong winds constitute a fairly concentrated form of sustainable energy of a similar
power density as solar power. Note that the cross-sectional area, A (shown in Figure 1.2),
of wind turbines is given by the whole disc over which the rotor blades sweep.

Figure 1.2 Rotor Blades

Thus, wind turbines can harvest from the entire area with relatively little blade area;
this is one explanation of why wind power is comparably cheap and competitive.

For example: V = 20 m/s, Power density = 4.8 kW/m2, R = 35 m, A = πR2 =
3850 m2, P = 4.8× 103 · 3850W = 18.5 MW, a large amount of power is accessible to the
wind turbine.

1.3 Power density and blade area

Let us try to estimate how much power can be captured by a given blade area, AB [m2].
We regard only the outer part of a rotor blade (close to the wing-tips) which moves with
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a speed, VB, in cross-wind direction.

Figure 1.3

Note that the inner part of the blade
moves slower, but they are not our
focus for now.

We simplify further by assuming that the blade-tip moves straight (not a circular
path), the motion of the blade tip can now be compared to a sailing boat moving “half-
wind” or “cross-wind.” And it can be depicted from the top view as shown by Figure 1.4:

Figure 1.4

The apparent wind
−→
VA is given by

−→
VA =

−→
V −

−→
VB and therefore:

−→
VA =

[
V
0

]
−
[

0
VB

]
=

[
V
−VB

]
(1.4)

The magnitude of the apparent wind is given by:

|
−→
VA| =

√
V 2

B + V 2 := VA (1.5)

To determine the forces on the “wing” (we use this word now for the blade-tip of
area AB), we need one basic fact from aerodynamics: the force on a body in a moving
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fluid is proportional to the dynamic pressure 1
2
ρ · V 2

A and the area AB. The force can be

decomposed into “lift” and “drag”, where lift force is perpendicular to
−→
VA and drag force

is aligned with it.

Lift and Drag

With lift-coefficient CL and drag-coefficient CD we have:

FL =
1

2
CL · ρABV

2
A (1.6)

FD =
1

2
CD · ρABV

2
A (1.7)

CL & CD depend upon:

• Angle of attack (orientation)

• Reynolds number (ratio of inertial forces to viscous forces)

Good wings have small drag and high lift, e.g. CL = 1.5 and CD = 0.05.

The lift-over-drag ratio CL

CD
has a nice interpretation for sailplanes: it determines how

far a sailplane can go, depending on the initial altitude (see Figure 1.5). CL

CD
is therefore

also called “gliding number”.

Figure 1.5 For a sailplane, distance travelled = CL

CD
· altitude

For our rotor-blade we get the following picture (Figure 1.6):
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Figure 1.6

For rotation of the wind turbine, we are first only interested in the force component
in the direction of motion of the wing, F ‖, as its product with VB gives the mechanical
power production:

PB = F ‖ · (−VB) (1.8)

With F ‖ = F
‖
L+F

‖
D = FL · VVA −FD ·

VB
VA

, where F
‖
L and F

‖
D are components of lift and drag

which are parallel to the blade movement direction, bringing them all together gives:

PB =
1

2
ρAB · V 2

A · VB ·
1

VA

(CL · V − CD · VB) (1.9)

To simplify further, we introduce the tip speed ratio λ = VB(R)
V

, such that VB = λV

and VA =
√

1 + λ2 · V =
√

1 + 1
λ2
· λV. So the expression further simplifies to:

PB =
1

2
ρAB · V 3 λ2

√
1 +

1

λ2
(CL − CD · λ)︸ ︷︷ ︸
:= ζ (Power Harvesting Factor)

(1.10)

Note that at λ = CL

CD
, no power is generated. (CL

CD
is the maximum possible tip speed

ration. It is realized if the generator is switched off, which means there is no torque.)

A typical value for λ is λ = 7 . And if CL = 1.5 and CD = 0.05, we can calculate the
power harvesting factor:

ζ = λ2

√
1 +

1

λ2
(CL − CDλ) ≈ 49 · 1 · (1.5− 0.05× 7) ≈ 57 (1.11)

(For λ = 20 we would even get ζ ≈ 400 · 0.5 = 200.)

This is a remarkably high number. ζ shows how many times more power a blade area
can harvest compared to the energy in the wind which would pass through the “window”
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of the same size as the blade area. Compared to the energy in the air for ζ = 50 and
V = 10 m/s, we thus get a power density of P

AB
= 50 · 600 W

m2 = 30 kW
m2 .

For the inner parts of the blade we can calculate local speed ratio λr = VB(r)
V

. As the

inner parts of the blade move slower, their λr is smaller and therefore also their harvesting
factors. This is one major reason why blades become thicker toward the center, as shown
by Figure 1.7:

Figure 1.7

1.4 Components of a modern wind turbine

With its five joints (yaw, rotor, 3×pitch), a wind turbine can be regarded as a gigantic
robot-arm, comparable to the six-joint robot arms in car manufacturing. However, it is
an“energy-harvesting robot.”

For an illustration of the components of a modern wind turbine, refer to figures 1.8,
1.9 and 1.10.
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1.5 Blade & airfoil nomenclature

Figure 1.11 Airfoil

Note: Chordwise direction is along the chord line. Spanwise direction is orthogonal, along
the radial direction of the turbine.

Surface area of a blade element, dA, by definition, is chord (c(r)) × span (dr) (see
Figure. 1.12), therefore the whole blade area, A can be found by:

A =

R∫
0

c(r) dr (1.12)

Figure 1.8 Wind turbine components Figure 1.9 Rotor details
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Figure 1.10 Rotor inner details

Figure 1.12 Surface Blade
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Chapter 2

The Wind Resource

2.1 Origins

• Air heated up (by the sun, direct or indirect).

• Air density drops.

• Air rises and creates low pressure region.

• Other air fills the gap: “wind”.

Heat capacity 1 of land is not as high as water. During the a sunny day, air over land
is heated up as the temperature of the ground rises quickly and rises up. The temperature
of water rises slowly and warm air is cooled by the ocean and sinks back down. Refer to
Figure 2.1

During the night, the opposite happens, where air over land is cooled down and air
over water is heated. Refer to Figure 2.2.

1heat capacity: the amount of energy it takes to increase the temperature of 1 kg of a substance by 1
degree Kelvin

Figure 2.1 Sunny day at coast Figure 2.2 Clear night at coast
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2.2 Global patterns

Figure 2.3 Air moves within troposphere (5-15 km altitude). Three big “cells” per hemi-
sphere.

Note 1: The Ferrel cell is indirectly driven by the Hadley cell and the Polar cell.
Note 2: The distance along the surface of the Earth between the North Pole and the

equator is about 10 000 km. The thickness of troposphere is only 5-15 km.

Figure 2.4 Due to the Coriolis force, winds get diverted to the right hand side on the
northern hemisphere (relative to the direction of travel).
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Figure 2.5 Strong wind shear in the Atmospheric Boundary Layer (ABL), magnitude and
direction change with altitude. Ground friction is significant.

2.3 Mechanics of wind

Four main influences:

a) Pressure difference

b) Coriolis force

c) Centrifugal force

d) Friction

a) Pressure gradient

Regard a cylinder with length L and area A:

Figure 2.6

 Volume : L · A

Mass : ρ · L · A = m

14



Figure 2.7

Pressure varies in space and time:
P (x, t)

P (x, t) unit: Pascal [Pa] = 1 N/m2

(1 millibar = 1 hectopascal
= 100 Pa)

Standard atmosphere pressure (sea

level): 101.325 kPa

Hence, the pressure gradient causes a net force on the air mass, F = (Force on the
left side)−(Force on the right side):

F = A · P (x0)− A · P (x0 + L) (2.1a)

≈ A · P (x0)− A · P (x0)− A · ∂P
∂x
· L (2.1b)

= −A∂P
∂x

(x0) · L (2.1c)

Acceleration a due to pressure gradient:

a =
F

m
=
−A∂P

∂x
(x0) · L

ρ · L · A
=
−∂P

dx
(x0)

ρ
(m/s2) (2.2)

b) Coriolis force (Due to rotation of Earth)

Consider a point on the surface of Earth, in Freiburg. This point is moving towards
the east. Consider another point near the North Pole, it is also moving to the east, but
because it is closer to the rotational axis of the Earth, it is moving slower to the east
compared to Freiburg.

Now imagine wind moving from the North Pole towards the south. As it moves fur-
ther south, the ground is moving faster and faster towards the east, causing the ground to
“slide” away from wind. When viewed from the perspective of the ground, it appears that
the wind is bending or accelerating to the right, see Figure 2.8. This is called the Coriolis
Effect. This right-ward acceleration applies to wind blowing in all horizontal directions.
However, in the Southern Hemisphere, the wind would accelerate to the left instead.

The Coriolis effect can be regarded as either a virtual force or an acceleration. On the
north pole it is given by:
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F = 2 ·m · ω0 · VGEO (2.3)

a = 2 · ω0 · VGEO (2.4)

where VGEO is the geostrophic wind velocity, ω0 is the rotation velocity of the earth.

The Coriolis effect depends on the latitude φ, which means there is no Coriolis force
on the equator. So we have:

a = 2 · ω0 · sinφ · VGEO =
−∂P

∂x

ρ
(2.5)

VGEO = 1
2ρ·ω0 sinφ

(−∂P
∂x

) (2.6)

Figure 2.8 As viewed from above the North Pole, with the Earth rotation, ω0, an air
current traveling to the south would curve to the right.

Effect of pressure gradient and Coriolis force:

Geostrophic wind is a balance of pressure gradient and the Coriolis effect. In a simple
case of straight isobars, e.g. in east-west direction, as shown in Figure 2.9, while the pres-
sure gradient pushes the wind northwards, the Coriolis force pushes the wind southwards.
The result is that the wind travels in parallel to the isobars, where the accelerations due
to pressure gradient and the Coriolis effect are balanced:

pressure gradient︷ ︸︸ ︷
−∂P

∂x

ρ
= 2 sinφ · ω0 · VGEO︸ ︷︷ ︸

Coriolis effect

(2.7)
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Figure 2.9 Geostrophic wind flows parallel to isobars.

Note: “Geostrophic Wind”, VGEO, is proportional to pressure gradient but parallel to
isobars!

Weather Maps:

Figure 2.10

c) Centrifugal acceleration

Geostrophic wind considers the pressure gradient and Coriolis force, however when the
isobars are curved, which is almost always the case, there is a third force which affects the
wind, the centrifugal force, which we all know arises from travelling in a circular path.

A refinement of Geostrophic wind, VGEO, is the Gradient wind, VG.

Figure 2.11 shows a situation where there is a circular isobar and the wind is travelling
along the isobar.

17



Figure 2.11

a = VG
2

R
= ω2R = ω2R2

R

R = Radius of curvature of isobar

VG = Gradient wind
(speed of wind along isobar)

Note: VG 6= VGEO

but still parallel to isobars.

Hence, around a low pressure region in the northern hemisphere, an extra centrifugal
term is added that acts in the same direction as the Coriolis force:

a =
−∂P

∂x

ρ
=

Coriolis︷ ︸︸ ︷
2 sinφ · ω0 · VG +

Centrifugal︷︸︸︷
V 2
G

R
(2.8a)

V 2
G + (2R ω0 sinφ) · VG +

−∂P
∂x
·R

ρ
= 0 (2.8b)

VG = −Rω0 sinφ±

√
R2ω2

0 sin2 φ−
∂P
∂x
·R
ρ

(2.8c)

Note: VG < VGEO

To assess the relevance of the centrifugal force, compare Coriolis 2 sinφ · ω0VG with

centrifugal
V 2
G

R
, we can compute the ratio between the two:

Coriolis

Centrifugal
=

2ω0 sinφ ·R
VG

(2.9)

Therefore, if: 
φ = 50→ sinφ ≈ 0.75

VG ≈ 50 km/h

R ≈ 500 km


Coriolis

Centrifugal
≈ 2·0.75·2π·500km

24·50km

≈ 4
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The centrifugal term adds about 1/4 to the Coriolis force in these strong wind condi-
tions, and can therefore not be neglected for strong circular winds.

d) Friction

Friction is complex and depends on surface properties, but it generally slows down the
air (only in the ABL2). This also decreases Coriolis & centrifugal forces. Therefore, very
low altitude winds tend more towards the direction of negative pressure gradients. At the
earth’s surface, the wind speed is zero.

Figure 2.12

The change in wind speed over a change in altitude is called wind shear. A common
description of the long-term time-averaged wind shear is the logarithmic profile.

Figure 2.13

2ABL - Atmospheric Boundary Region - the thin part of the atmosphere closest to the ground, where
friction effects are considered to be ”significant”.

19



V (z) =
V0 · log( Z

Zr
)

log(Z0

Zr
)

(2.10)

V0 = speed at altitude Z = Z0,
Zr = “Roughness length” (a few millimeters for flat ground).

2.4 Stable and unstable atmospheric stratification

Figure 2.14

A hot piece of air becomes relatively lighter so it rises, but rising air expands and therefore
gets cooler. The “dry adiabatic lapse rate” is about 1 ◦C/100 m, i.e. rising air cools down
1 ◦C per 100 m rise in altitude due to its own expanse. If the ambient air gets cooler
slower than 1 ◦C/100 m, it means that the atmosphere is stable. If it gets cooler faster, it
is unstable.

The standard atmospheric lapse rate is 0.66 ◦C/100 m. This corresponds to a stable

stratification. Even more stable is an “inversion” (if air becomes hotter with height).
Generally, the wind shear is stronger (”strong” meaning a larger change in wind-speed

over a change in altitude, and possibly a thinner ABL) for stable conditions, because less
mixing between layers occur. Thus, for a given high-altitude wind speed, there will be
less momentum transfered within the flow under stable conditions than under neutral (i.e.
atmospheric lapse rate equals adiabatic lapse rate) conditions.

2.5 Statistics of wind

At a given site, wind speed and direction vary with time. If only speed is regarded, one
can plot time series data similar to the following Figure 2.15. One can compute e.g. mean
U and variance σ2

u with the hourly average wind speed over a year:
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Figure 2.15 Hourly averages over one year

Figure 2.16 Histogram

Different distributions can be used to describe P (U), the probability density function
of wind speeds (PDF). Strongly related is its integral F (U), which is called the cumulative
distribution function (CDF).

∞∫
0

P (U) dU = 1 (2.11)

F (U) =

U∫
0

P (U) dU (2.12)

P (U) = F (U)′ (2.13)

The mean U and variance σ2
u of the probability density function P (U) are defined as
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follows:

U :=

∞∫
0

UP (U) dU (2.14a)

σ2
u :=

∞∫
0

(U − U)2 P (U) dU (2.14b)

=

∞∫
0

U2P (U) dU − U2
(2.14c)

Examples of different distributions:

• Gaussian (Normal) Distribution

Figure 2.17

P (U) =
1√

2πσ2
u

exp

(
−
(
U − U

)2

2σ2
u

)
(2.15)

• Weibull Distribution

Wind velocity probabilities are described by a Weibull distribution, with
“scale parameter” c and “shape parameter” k,

F (U) = 1− exp

(
−
(
U

c

)k)
(2.16)

P (U) = F (U)′ =

(
k

c

)(
U

c

)k−1

exp

(
−
(
U

c

)k)
(2.17)

22



One can show that U and σ2
u can be computed from c & k using the “Gamma

Function” as follows:

Γ(x) :=

∞∫
0

e−t tx−1dt (2.18)

(Γ(n) = (n− 1)!, Γ(1) = 1, Γ(2) = 1, . . . )

U = c · Γ
(

1 +
1

k

)
(2.19)

σ2
u = c2 Γ

(
1 +

2

k

)
− c2

(
Γ

(
1 +

1

k

))2

(2.20a)

=

∞∫
0

U2P (U)dU − U2

 (2.20b)

Figure 2.18 Gamma Function

• Rayleigh Distribution

A special case of Weibull distribution is the Rayleigh distribution with k = 2. Here,
Γ(1 + 1

2
) =

√
π
4
, i.e. c = U√

π
4

.

F (U) = 1− exp

(
−
(
U

c

)2
)

(2.21)

P (U) =
2

c2
U · exp

(
−
(
U

c

)2
)

(2.22)
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Note: The Rayleigh distribution corresponds to the PDF of the vector magnitude
of a 2-dimensional Gaussian distribution.

Question: What is the average power per year?

Given power curve and wind speed distribution:

Figure 2.19

Answer:
Therefore the average power per year:

Paverage =
∞∫
0

P (U)PPC(U) dU
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2.6 Spectral Properties of Wind

Autocorrelation & Power Spectral Density

Figure 2.20

If a Fourier series is taken, the power spectral density S(f) is obtained. It often looks
as follows:

Figure 2.21 Density S(f) (Fourier Transform)

Turbulence is most relevant at time scales below 10 minutes sampling time. The
turbulence intensity in a time window of length 10 minutes is defined as σu

U
, where U

is the mean over 10 minutes and σu is the standard deviation of e.g. 1 second samples.

U =
1

N

N∑
i=1

Ui (2.23)

σ2
u =

1

(N − 1)

N∑
i=1

(Ui − U)2 (2.24)

Another interesting quantity is autocorrelation:

It helps to characterize repeating patterns, such as periodic wind patterns. The au-
tocorrelation function, r(t), can be computed for the discrete values t = k∆t from a
time series as follows:

25



r(k∆t) :=
1

σ2
u(N − k)

N−k∑
i=1

(Ui − U)(Ui+k − U), (2.25)

where ∆t is the sampling time, k is the lag number and k∆t is the lag time. Between
the discrete time values, it can be interpolated, so that the function r(t) is defined for all
t > 0.

Figure 2.22

Figure 2.22 shows a typical autocorrelation function where the wind is strongly au-
tocorrelated at very short lag times and not so strongly at longer lag times. This is as
expected because we expect wind one second ago to have a big influence on the current
wind, while not so much for the wind from a day ago. An interesting number is the
integral time scale T that is defined as the following integral:

T :=
∫∞

0
r(t) dt

Related to it is the integral length scale L that is L = U · T ≈ size of turbulent
interruption

Note: The Fourier transform of the autocorrelation function equals (up to factors) the
power spectral density (PSD).
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Chapter 3

Aerodynamics of Wind Turbines

3.1 Wakes

Like a boat passing through water, and disturbing the water, leaving a wake, a wind
turbine disturbs the flow of wind blowing across it.

Figure 3.1 Photo of the wakes behind turbines in a wind park. Foto: Vattenfall
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3.2 Actuator Disc Model and Betz’ Limit (Momen-

tum Theory)

The wind is slower approaching, at and after the wind turbine. Figure 3.2 is a side view
of a wind turbine.A stream tube is defined as a tube whose boundaries are parallel to the
local fluid velocity:

Figure 3.2 Position 0 is assumed to be infinitely far upstream of position 1; position 3 is
assumed to be infinitely far downstream of position 2

First guess (not achievable): Pair = 1
2
ρAu3

0, Pair is the power in the air that would flow
through the actuator disc if the actuator disc weren’t actually there.

Figure 3.3 Axial wind velocity slows down as it approaches the turbine and is slowed down
further as it passed through.

We define four positions in the direction x of the wind flow and the corresponding
wind velocities u(x): x0 far upwind of the turbine, x1 just before the turbine, x2 just after
the turbine, and x3 very far after the turbine. The velocities are given by u(x0) = u0,
u(x1) = u1 = u2 = u(x2), u(x3) = u3. We know that the velocity must be continuous as
inflow into the turbine’s ”actuator disk” must equal the outflow, and the cross sectional
area for both equals the area of the disk.

Note: We assume there is no interaction of the stream tube with the outside.
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Figure 3.4 Pressure is built up as the wind approaches the wind turbine, and drops after
passing the turbine.

• Mass flow through turbine:

ṁ = ρ · A · u1

[
kg

s
=

kg

m3
·m2 · m

s

]
(3.1)

(Assume incompressible air → ρ is constant)

• Thrust of turbine (force against wind):

Change of the pressure times area gives the trust force:

T = A(P1 − P2) (3.2)

This force equals the change of momentum:

T = ṁ(u0 − u3) (3.3)

• Power extraction:

P = T · u1 (3.4)

Or equivalently, by the change of kinetic energy:

P = ṁ

(
1

2
u0

2 − 1

2
u3

2

)
(3.5)

Given that u1 = u2, P3 = P0, u0 and P0, the remaining unknowns are u1, u2, P1

and P2? They are derived by the following equations:

First we have the thrust equation:

T = A(P1 − P2) = ṁ(u0 − u3) (3.6)
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And then from Bernoulli equation (which is only valid when no energy is extracted,
among other assumptions) we get: P + 1

2
ρu2 = constant. Therefore, in the wind flowing

before passing the disc we have that:

P0 + 1
2
ρu0

2 = P1 + 1
2
ρu1

2 (3.7)

After passing the disc (note, energy is lost at the disc):

P2 + 1
2
ρu1

2 = P0 + 1
2
ρu3

2 (3.8)

Eliminating P1 & P2 from Eq.(3.6) via Eq.(3.7) & Eq.(3.8):

P1 = P0 +
1

2
ρ(u0

2 − u1
2) (3.9)

P2 = P0 +
1

2
ρ(u3

2 − u1
2) (3.10)

P1 − P2 =
1

2
ρ(u0

2 − u3
2) (3.11)

With Eq.(3.6):

T = A(P1 − P2) (3.12a)

@@A
1

2 Sρ
XXXXX(u0 − u3) (u0 + u3) = Z

ZρA u1 ·
XXXXX(u0 − u3) (3.12b)

⇒ 1
2
(u0 + u3) = u1 (3.12c)

Induction Factor: a ∈ [0, 1
2
]

u1 = (1− a)u0

With Eq.(3.12c):

u3 = (1− 2a)u0

Figure 3.5
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Now we can compute power & thrust as a function of a:

P = ρ · u1 · A · (
1

2
u2

0 −
1

2
u2

3) (3.13a)

=
1

2
· ρ · u3

0 · A · (1− a)(1− (1− 2a)2) (3.13b)

=
1

2
ρ A u3

0 · 4a (1− a)2︸ ︷︷ ︸
CP(a) Power Coefficient

(3.13c)

T = ṁ(u0 − u3) = ρ · u1 · A (u0 − u3) (3.14a)

=
1

2
· ρ · A · u2

0 · 2 · (1− a)(1− (1− 2a)) (3.14b)

=
1

2
ρ A u2

0 · 4a (1− a)︸ ︷︷ ︸
CT(a) Thrust Coefficient

(3.14c)

Note that we have CP(a) = (1− a)CT(a) in agreement with Eq. (3.4).

Maximize power extraction:

Figure 3.6

Since dCP

da
= 2(1 − a) · 4a + (1 − a)2 · 4 = 0 ⇔ 2a = 1 − a ⇔ a∗ = 1

3
, where a∗ is the

optimal induction factor, we get:

CP(a∗) = (2
3
)2 · 4 · 1

3
= 16

27
≈ 0.59 (Betz’ limit)
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Figure 3.7

Because CT(a) = 4a(1− a), CT(a∗∗) = 4 · 1
2
· (1− 1

2
) = 1.
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3.3 Wake Rotation & Rotor Disc Theory

Figure 3.8

Tip speed: R · Ω

Speed at r < R: r · Ω

Ω = 2π
T

(T : period of rotation)

Air is deflected in the tangential direction by the blade. Tangential induction

depends on r. V1,the tangential induced velocity is found using: V1 = r · Ω · a′ , where a′

is the tangential induction factor. Figure 3.9 shows that with an initial tangential velocity
of zero, the tangential velocity downwind will be in the opposite direction of the blade’s

rotation. Then, the tangential velocity downwind is V3 = r · Ω · (2a′) , where the change

of the tangential momentum equals ṁ · (V3 − 0).

Figure 3.9
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To compute V3(r) with given a, Ω, R and U∞, regard an infinitesimal annulus of area
dA:

dA = 2π · r · dr (3.15)

R∫
0

2π · r · dr = πR2 (3.16)

The infinitesimal power extracted:

dP =
1

2
ρ · U3

∞ · dA · CP(a) (3.17)

To harvest this power via rotary motion with the angular velocity Ω, we need a tan-
gential force dF. Thus:

dP = dF · r · Ω (3.18)

Because F = ṁ∆V due to the momentum change (ṁ = ρ · A · U∞(1− a)),

dF = ρ · dA · U∞ · (1− a)(V3 − 0) (3.19)

From Eq. 3.17, 3.18 and 3.19 we get:

1

2 Sρ U
3
∞ ·HHdA · CP(a) = r · Ω ·Sρ ·HHdA · U∞(1− a) · V3 (3.20a)

1

2
U2
∞CP(a) = r · Ω · (1− a) · V3 (3.20b)

⇒ V3 =
2U2
∞ · a · (1− a)

r · Ω
(3.21)

Since a′(r) = V3(r)
2·r·Ω , we know the tangential induction factor:

a′(r) =
U2
∞ · a(1− a)

r2 · Ω2
(3.22)

which means V3 ∝ 1
r

(for a = constant). And with the local speed ratio λr = µλ =
µRΩ
U∞

= rΩ
U∞

, where µ = r
R

, we also have:

a′(r) =
a(1− a)

λ2
r

(3.23)

We conclude that the wake rotates more if the turbine moves relatively slower (low λ)
and higher λ leads to less wake rotation.
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Figure 3.10 Figure 3.11

3.4 Blade element momentum theory (BEM)

Regard the annuli independent from each other like rotor discs (see figure 3.11), and
assume that aerodynamic lift & drag accounting to 2-D airfoil theory. The “solidity” at
radius r is defined as:

σr :=
B · c(r)

2πr

where B is the number of blades, therefore the overall solidity is the total blade area
divided by the disc area:

σ :=
B ·
∫ R

0
c(r)dr

πR2
(3.24)

Geometry & speeds:
Note: a & a′ can depend on r, thus a = a(r), a′ = a′(r)

Figure 3.12
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Blade element top view at r:

Figure 3.13 : β is the set pitch angle at radius r, α is the angle of attack, φ = α + β is
the flow angle

Effective wind magnitude:

W =
√
U2
∞(1− a)2 + r2Ω2(1 + a′)2 (3.25)

With 2D-lift coefficient cl(α), 2D-drag coefficient cd(α) and the area of blade element
dAB = c · dr we get the lift and drag of blade element:

Figure 3.14


dL = 1

2
ρ W 2 dAB · cl

dD = 1
2
ρ W 2 dAB · cd

Since sinφ = U∞(1−a)
W

and cosφ = r·Ω·(1+a′)
W

, we can also have the following equations:

• Axial force on all blade elements:

dFA = B · (dL · cosφ+ dD · sinφ) (3.26)

• Tangential force on all blade elements:

dFT = B · (dL · sinφ− dD · cosφ) (3.27)
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(positive if the blade element produce power)

Figure 3.15

Axial and tangential force cause induction a
& a′ due to momentum balance (as before).

• Axial force:

dFA = dṁ · (2au∞) (3.28a)

= ρ · 2πr · dr · u∞(1− a) · 2au∞ (3.28b)

⇒ dFA =
1

2
ρU2
∞ · 2πr · dr · 4a(1− a) (3.29)

• Tangential momentum change:

dFT = dṁ(2a′ · r · Ω) =
1

2
ρU∞ · r · Ω · 2πr dr · 4a′(1− a) (3.30)

From Eq.3.26 = Eq.3.29, Eq.3.27 = Eq.3.30, we get two equations for two unkowns a
& a′ which need to be solved numerically.

Let us first simplify our equations:

Eq. 3.26 = Eq. 3.29:

1

2
ρW 2 ·B · c(cl cosφ+ cd sinφ)dr =

1

2
ρ2πrdrU2

∞4a(1− a) (3.31a)

⇒ W 2 ·B · c(cl cosφ+ cd sinφ) = 2πrU2
∞4a(1− a) (3.31b)

Eq. 3.27 = Eq. 3.30:

1

2
ρW 2 ·B · c(cl sinφ− cd cosφ)dr =

1

2
ρ2πrdrU∞rΩ4a′(1− a) (3.32a)

⇒ W 2 ·B · c(clL sinφ− cd cosφ) = 2πr2U∞Ω4a′(1− a) (3.32b)
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Use solidity σr = B·c
2πr

, local speed ratio λr = rΩ
U∞

and W :

W =
√
U2
∞λ

2
r(1 + a′)2 + U2

∞(1− a)2 (3.33a)

= U∞
√
λ2
r(1 + a′)2 + (1− a)2 (3.33b)

with the expressions:

Figure 3.16

sinφ = (1−a)√
λ2r(1+a′)2+(1−a)2

cosφ = λr(1+a′)√
λ2r(1+a′)2+(1−a)2

Therefore we get the equivalent formula:

From Eq. 3.31b:

(λr(1 + a′)2+(1− a)) · σr · (cl
λr(1 + a′)

λ2
r(1 + a′)2 + (1− a)2

+cd
(1− a)√

λ2
r(1 + a′)2 + (1− a)2

) = 4a(1− a) (3.34a)

⇒
√
λ2
r(1 + a′)2 + (1− a)2 · σr · (clλr(1 + a′+cd(1− a))

= 4a(1− a) (3.34b)

From Eq. 3.32b:√
λ2
r(1 + a′)2 + (1− a)2 · σr

λr
(cl(1− a)−cdλr(1 + a′))

= 4a′(1− a) (3.35)

Dividing both eq. 3.34b by eq. 3.35 for each side gives:

λr ·
clλr(1 + a′) + cd(1− a)

cl(1− a)− cdλr(1 + a′)
=
a

a′
(3.36)

Recall from rotor disc theory a′ = a(1−a)
λ2r

:

a′ =
a

λr

(1− a)− cd
cl
λr(1 + a′)

λr(1 + a′) + CD
CL

(1− a)
(3.37a)

=
a(1− a)

λ2
r

(
1− cd

cl
λr

1+a′

1−a

1 + cd
cl

(1− a) · 1
λr

)
(3.37b)
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And if we get the quadratic equation in a′:

a′
2

+

(
1 +

cd

cl

· 1

λr

)
a′ −

(
a(1− a)

λ2
r

− cd

cl

a

λr

)
(3.38)

There will be only positive solution meaningful:

a′ = −
1 + cd

cl
· 1
λr

2
+

√
(1 + cd

cl
· 1
λr

)2

4
+
a(1− a)

λ2
r

− CD
cl

a

λr
(3.39)

For CD = 0, we set:

a′ = −1

2
+

√
1

4
+
a(1− a)

λ2
r

(3.40a)

= −1

2
+

1

2

√
1 +

4a(1− a)

λ2
r

(3.40b)

= −1

2
+

1

2
+

1

4

4a(1− a)

λ2
r

(3.40c)

=
a(1− a)

λ2
r

+O(λ−4
r ) (3.40d)

Note that by Taylor series
√

1 + x = 1 + 1
2
x+O(x2)
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3.4.1 BEM example

Let us now assume a few typical values: λr ∈ [1, 7] and B = 3. For λR = 7, a = 1
3

for all
r (extracting maximum power due to Betz’ limit):

Figure 3.17

Let’s assume that the 2D lift and drag coefficients of each radial airfoil can be chosen
to be cl = 1 and cd = 0.01.

a′ ≈ a(1−a)
λ2r

= 2
9
· 1
λ2r

Get local solidity from Eq. 3.34b:

σr =
4a(1− a)

CLλr(1 + a′) + CD(1− a)
· 1√

λ2
r(1 + a′)2 + (1− a)2

=
8

9

1

λr(1 + a′) +0.006̄︸ ︷︷ ︸
≈0

· 1

λr(1 + a′)

√
1 +

4

9

1

(1 + a′)λr)︸ ︷︷ ︸≈0

≈ 8

9

1

λ2
r

Figure 3.18 Figure 3.19
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What does this mean for chord length c?

Since σr = B·c
2πr

= 8
9

1
λ2r

, we know:

c =
2πr

B
· 8

9
· R

2

r2
· 1

λ2
R

=
2πR

Bλ2
R

· 8

9
· 1

µ

≈ 2πR

B
· 2% · 1

µ
≈ 4%

R

µ

Figure 3.20

For R = 50 m,
we get c(R) = 2 m and
c(10 m) = 10 m.
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Most important equation to remember:

λr = r
R
· λ� 1

CL
CD
� 1

 Assumptions

Axial momentum balance:
Force on blade area:

FB =
1

2
ρ · AB (λrU∞)2︸ ︷︷ ︸

W 2

·CL

Equals thrust on annulus:

FA = ρAAU∞(1− a)(2a · U∞)

=
1

2
ρAA · U2

∞ · 4a(1− a)︸ ︷︷ ︸
CT (a) Figure 3.21

Local solidity:

σr =
AB
AA

=
B · c(r)

2πr

Optimal chord:

Z
Z
ZZ

1

2
ρU2
∞ · AB · CL · λ2

r =
Z
Z

ZZ

1

2
ρU2
∞ · AA · 4a(1− a)

⇒ σr · CL = 4a(1−a)
λ2r

= 8
9
· 1
λ2r

a = 1
3

(optimal)

⇒ B · c(r)
2πr

CL(r) =
8

9

1

λ2

R2

r2

⇒ c(r) =
1

B · CL(r)

2π · 8 ·R2

9 · λ2 · r
∝ 1

r

Figure 3.22

For a fixed cl (and the above assumptions),
the optimal chord is inversely proportional
to radius
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3.4.2 Practical blade design

In practice “linear taper” is often used (see figure 3.23), meaning that the chord length
is an affine function of the radius, avoiding the excessive growth of the chord length close
to the hub. To compensate for the lower solidity, one can increase the angle of attack in
order to increase CL(r) accordingly. Here the drag loss in the inner part of the blade is
less important to us.

Figure 3.23

3.4.3 What is the flow angle?

Figure 3.24

The flow angle φ = β + α,
where β is the twist,
therefore α = φ− β
(fixed α for the best CL

CD
).

sinφ =
(1− a)

λr(1 + a′)

√√√√1 +
(1− a)2

λ2(1 + a′)2︸ ︷︷ ︸
≈0

≈ 1− a
λr(1 + a′)

≈ 2

3

1

λr
(a = 2

3
, a′ = 0)
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Figure 3.25 Refer to Page 36 for angle definitions.
Here α0 is an assumed constant angle of attack.

φ = sin−1(2
3
· R
r·λ) ≈ 2

3
R
λ
· 1
r

(inversely proportional to r)

3.5 The power harvesting factor zeta

Recall the definition of the power harvesting factor ζ:

ζ =
power actually harvested

wind power through blade area
=

P
1
2
ρABU3

0

Here we have a radial dependence of ζ, i.e., we write ζ(r)

ζ(r) =
Cp2πrdr 1

2
ρU3

0

σr2πrdr
1
2
ρU3

0

=
Cp

σr
(3.41)

Most basic model (neglecting blade drag and other losses):

Cp(a) = 4a(1− a)2

σrCLλ
2
r = 4a(1− a)→ σr =

4a(1− a)

λ2
rCL

ζ =
Cp

σr
=

4a(1− a)2λ2
rCL

4a(1− a)
= (1− a)CLλ

2
r (3.42)

At optimal a = 1
3
→ ζ =

2

3
CLλ

2
r for optimal choice.

Case A - at outer blade element (tip): λ2
r ≈ 7, CL ≈ 1, ζ ≈ 32

Case B - half way: ζ ≈ 8
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Chapter 4

Mechanics & Dynamics of Wind
Turbines

Loads and Forces:

Sources:

• Aerodynamics (lift & drag)

• Gravity

• Inertia (gyroscopic & centrifugal)

• Electro mechanical (generator torque)

• Operational (brakes, yaw and pitch actuator)

Type of Loads:

• Steady (static & rotational)

• Cyclic: multiples (harmonics) of rotation frequency

– “1P” once per revolution

– “3P” 3 times per revolution

– “B.P” B times per revolution (If B = number of blades, B.P = “Blade passing
frequency”)

• Resonant (vibration of tower & blades)

• Transient (start, stop, yew)

• Stochastic (wind)
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4.1 Steady loads in normal operation

Figure 4.1

FT ≈
P

2
3
U∞

(4.1)

FG = mN · g (4.2)

Example: P = 6 MW, U∞ = 9 m/s, mN = 360 t

FT ≈
P

2
3
U∞

=
6 MW

2
3
· 9 m/s

= 1 MN

FG = mN · g
= 360 · 103kg · 9.81 m/s2

= 3.6 MN

4.2 Stress and strain

Regard material under tension:

Figure 4.2

Stress:

σ =
F

A
[Pa] (4.3)

Strain:

ε =
∆L

L
[−] (4.4)
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Stress-strain curve:

Figure 4.3

Example steel: Young’s modulus E = 200 GPa, Yield strength Y = 250 MPa, [ Ulti-
mate tensile stregth U = 500 MPa]

At which strain does a steel start to deform plastically/ permanently?

σY = E · εY (4.5)

σY = Y (4.6)

εY =
Y

E
(4.7)

When does a beam start to deform?

Figure 4.4

εY =
d

ρ
(4.8)
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4.3 (Static) beam bending (Euler-Bernoulli theory)

Hooke’s law:

σ = E · ε (4.9)

σ = stress [Pa]
E = Young’s modulus [Pa]
ε = strain (deformation) [%]

Figure 4.5

Figure 4.6

Figure 4.7
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Strain:

ε =
z

ρ
(4.10)

Because 1
ρ

= d2w(x)
dx2

we get:

ε = z · d2w(x)

dx2
(4.11)

Bending moment:

M(x) =

d∫
−d

z · σ(z) · dA (4.12a)

=

d∫
−d

z · E · z · (d2w(x)

dx2
) · dA (4.12b)

= E(
d2w(x)

dx2
)

d∫
−d

z2dA

︸ ︷︷ ︸
:= I (second moment of area)

(4.12c)

= E · I · d2w(x)

dx2
(4.12d)

⇒M = E · I · 1

ρ
(4.13)

Static beam equation/ Euler Bernoulli:

d2

dx2

(
E(x)I(x)d2w(x)

dx2

)
= q(x) (4.14)

“Shear force” = dM(x)
dx

= Q(x)

“Distributed load” = d2M(x)
dx2

= dQ(x)
dx

= q(x)
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Example 1 - Cantilever beam with end load:

Figure 4.8

M(x) = E · I · d2w
dx2

= F (L− x)

Q(x) = dM
dx

= −F

dQ(x)
dx

= 0

E, I is constant and there is no
distributed load, q(x) = 0
(No gravity of the beam)

d2w
dx2

= F
E·I · (L− x)

w(x) = F
E·I (Lx2

2
− x3

6
+ c0 + c1x), with initial value c1 = 0 and c0 = 0

⇔ w(x) = Fx2

6EI
(3 · L− x)

W (L)︸ ︷︷ ︸
displacement

= F ·L2

6EI
(2 · L) =

force︷︸︸︷
F · L3

3 · E · I︸ ︷︷ ︸
spring constant

Example 2 - Cantilever beam with constant loading:

Figure 4.9

q(x) ≡ q ≡ constant
E, I is constant.
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q

E · I
=

d4w(x)

dx4
(4.15)

⇔ w(x) =
q

E · I
· (x

4

24
+ c3x

3 + c2x
2 + c1x+ c0) (4.16)

Boundary conditions: w(0) = 0⇒ c0 = 0, dw(0)
dx

= 0⇒ c1 = 0

M(x) =
d2w

dx2
· E · I (4.17)

M(L) = 0⇒ d2w
dx2

(L) = 0

Q(x) =
dM(x)

dx
(4.18)

Q(L) = 0⇒ d3w
dx3

(L) = 0

From Eq 4.17:
x2

2
+ 6c3x+ 2c2

∣∣∣∣
x=L

= 0 (4.19)

From Eq 4.18:

x+ 6c3|x=L = 0⇒ c3 = −1

6
(4.20)

From Eq 4.19:
L2

2
− L2 + 2c2 = 0⇔ c2 =

1

4
L2 (4.21)

w(x) =
q

E · I
(
x4

24
+
L

6
x3 +

1

4
L2x2) (4.22a)

=
qx2

EI · 24
(x2 − 4Lx+ 6L2) (4.22b)

M(x) = E · I · d2w

dx2
= 9 · (1

2
x2 − Lx+

L2

2
) (4.23)

Q(x) = q(x− L) (4.24)
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4.3.1 Moment at the blade root

Euler-Bernoulli:

d2

dx2

(
E(x)I(x)

d2w(x)

dx2

)
= q(x) =: M(x)− “Bending Moment”

dM(x)

dx
= Q(x) - “Shear force”

Recall: maximum strain εmax = Y
E

d2w

dx2
≈ 1

ρ

and

d

ρ
= E

Maximum moment we can support:

εmax =
d2w

dx2
(0) =

d(0)M(0)

I(0)E(0)
(4.25)

Mmax = εmax
IE

d
=
IY

d
(4.26)

4.3.2 Loads at blade root (in flapwise direction)

For a blade in an ideal design, the distributed load q(r) is given by 1
B

the thrust of the
corresponding annulus:

Figure 4.10
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dF = 4a(1− a)︸ ︷︷ ︸
CT(a)

·1
2
ρU2
∞ · 2πr · dr (4.27a)

= CT(a) · 1

2
ρU2
∞ · 2πr︸ ︷︷ ︸

=B·q(r)

·dr (4.27b)

q(r) = CT(a) · 1

2
ρU2
∞ · 2πr ·

1

B
(4.28)

The bending moment at the bladeroot (r = 0) can be computed by integration:

M(0) =

R∫
0

q(r) · rdr (4.29a)

=
1

B
· CT(a) · 1

2
ρ U2

∞ · 2π ·
R∫

0

r2dr

︸ ︷︷ ︸
:= R3

3

(4.29b)

=
1

B
· CT(a) · 1

2
ρ U2

∞ ·
2

3
πR3 (4.29c)

=
1

B

2

3
·R · CT(a) · 1

2
ρ U2

∞ · (πR2)︸ ︷︷ ︸
:= FT (Total force on actuator disc)

(4.29d)

Shear force at blade root is trivially given by Q(0) = FT
B

.

Easy to remember: FT
B

(total force on blade) × 2
3
R (2

3
of radius) equals moment M(0).

If we assume all forces acting on 2
3
R, we get the right bending moment.
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Figure 4.11

FT ≈
P

(1− a)U∞
(4.30)

Example: 1 MN for 6 MW at
U∞ = 9 m/s and R = 75 m:

M(0) = 2
3
R · FT

3
= 50 m · 1

3
MN

≈ 16 MN ·m

What is the maximum bending stress at blade root? Regard the annulus cross-section:

Figure 4.12

r2 − r1 = b� r2

I = π
4
r2

4 − π
4
r1

4 ≈ πr2
3 · b

I
r2

= πr2
2 · b

σmax = r2
I
M(0) = M(0)

I
r2

= M(0)
πr22·b

If r2 = 1 m, σmax = 250 MPa, how thick should the blade root shell be?

b =
M(0)

πr2
2
· 1

σmax

= 5
MN ·m

m2 · 1

250 MPa
=

1

50
m = 2 cm
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4.4 Oscillations & eigenmodes

4.4.1 Intro: spring-mass-damper-system

mẍ+ βẋ+ kx = F (t) (4.31)


x : displacement, m : mass
F (t) : external force
kx : spring force
β : (viscous/ linear) damping

Figure 4.13
For F (t) = F0 · ejωt, where F0 > 0 and we take the real part of the solution in design,

then the solution is given by:

x(t) = x0 · ejωt, x0 ∈ C (4.32)

ẋ = (jω) · x0e
jωt (4.33)

ẍ = −ω2x0e
jωt (4.34)

−mω2x0e
jωt + βjωx0e

jωt + kx0e
jωt = F0e

jωt (4.35)

x0 · (k −mω2︸ ︷︷ ︸
real

+ jβω︸︷︷︸
imaginary

) = F0 (4.36)

x0 is a complex number with magnitude:

|x0| =
F0√

(k −mω2)2 + β2ω2
(4.37)

Maximum |x0| is approximately taken at natural resonant “Eigen frequency” ωNR with:

k −m ωNR
2 = 0⇔ ωNR =

√
k

m
(4.38)
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How much can F0 be amplified?

Spring force F spring
0 = k · x

|F spring
0 | = k|x0| =

F0√
(1− ( ω

ωNR
)2)2 + β2

k2
ω2

(4.39)

At ω = ωNR we get:

|F spring
0 |
F0

=
k

β ωNR

(4.40)

That is, the smaller the damping, the higher the amplification.

Figure 4.14 Bode diagram of
|F spring

0 (ω)|
F0

Amplification factors can be 5 – 10, so resonance shall typically be avoid. At very low
frequencies, spring force equals applied force, i.e., static analysis is sufficient (see section
4.2).
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4.4.2 Eigenmodes

For spring-mass-damper systems with more than one degree of freedom. The displace-
ment can be described by a vector w(t) ∈ Rn and the equation of motion becomes:

Mẅ + Dẇ + Kw = F(t) (4.41)

 M : mass matrix, ∈ Rn×n

D : damping matrix
K : stiffness matrix, ∈ Rn×n Figure 4.15

If damping is neglected (D = 0), natural resonances must satisfy w̄ ∈ Rn:

w(t) = w̄ · ejωt (4.42)

Mẅ + Kw = 0 (4.43)

That is,

− ω2Mw̄ + Kw̄ = 0⇔ (M−1K− ω2I)w̄ = 0 (4.44)

This is an eigenvalue equation for matrix M−1K ∈ Rn×n, and we know there are
n eigenvalues with n eigenvectors w̄ (“eigenmodes”). As both M and K are positive
definite, eigenvalues of M−1K are real & positive. We are often only interested in the
eigenmodes with lowest eigenfrequency.

4.4.3 Rayleighs method

Assume we have a good guess of an eigenmode vector, w̄ ∈ Rn. To find the corresponding
ω2 ∈ R, we can use the equation:

Kw̄ = ω2Mw̄ (4.45)

Eq. 4.45 is overdertermined if w̄ is fixed, but to multiply eq. 4.45 by 1
2
w̄T gives:

1

2
w̄>Kw̄︸ ︷︷ ︸

elastic/potential energy at max. displacement

=

kinetic energy at max. speed︷ ︸︸ ︷
ω2 · 1

2
w̄>Mw̄ (4.46)

ω =

√
1
2
w̄>Kw̄

1
2
w̄>Mw̄

:= f(w̄) (4.47)
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If the guess of w̄ is good, this method can give surprisingly accurate estimation of ω.
(To check, one can insert ω & w̄ in eq. 4.45).

What is the error of Rayleighs method?

Assume ω0 ∈ R and ω0 ∈ Rn are the true eigen-pair, i.e., they satisfy:

Kw0 = ω2
0Mw0 (4.48)

w̄ = w0 + ∆w with ∆w is the error of our guess. We then get:

ω2 =
1
2
w̄>Kw̄

1
2
w̄>Mw̄︸ ︷︷ ︸

:= f(w̄)

=

:= f(w0) = ω0
2︷ ︸︸ ︷

1
2
w0
>Kw0

1
2
w0
>Mw0

+∇f(w0)>∆w +O(‖∆w‖2) (4.49)

But here:

∇f(w0) =
(1

2
w0
>Mw0)Kw0 − (1

2
w0
>Kw0)Mw0

(1
2
w0
>Mw0)2

(4.50a)

=
Kw0 − ω0

2Mw0

(1
2
w0
>Mw0)

= 0 (4.50b)

Thus, the error is of second order:

ω2 = ω2
0 +O(‖∆w‖2) (4.51)

Example 1: for M & K

m2ẍ2 + k2(x2 − x1) = 0

m1ẍ1 + k1 · x1 − k2(x2 − x1) = 0

w =

(
x1

x2

)
∈ R2

Figure 4.16

(
m1 0
0 m2

)
︸ ︷︷ ︸

:= M ∈ R2×2

ẅ +

:= K ∈ R2×2︷ ︸︸ ︷[
(k1 + k2) −k2

−k2 k2

]
w = 0 (4.52)
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Example 2:

w(t) = w̄ · ejωt

Assume m2 � m1, k1 ≈ k2

w̄ =

(
1
2

)
(eigenvector)

w(t) =

[
ejωt

2 · ejωt
]

Figure 4.17

Ekin =
1

2
w̄>Mw̄ =

1

2
(m1 + 4m2)ω2A0

2 (4.53)

Epotential =
1

2
w̄>Kw̄ (4.54a)

=
1

2
A0

2 ·
(

1
2

)> [
(k1 + k2) −k2

−k2 k2

](
1
2

)
(4.54b)

=
1

2
A0 ·

(
1
2

)> [
(k1 + k2)− 2k2

−k2 + 2k2

]
(4.54c)

=
1

2
A0(k1 − k2) + 2k2 (4.54d)

=
1

2
A0(k1 + k2) (4.54e)

ω2 =
k1 + k2

m1 + 4m2

≈ k1 + k2

4
· 1

m2

≈ k1

2
· 1

m2

(4.55)
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4.4.4 Dynamic beam equation

Euler-Bernoulli & Lagrange produced equation 4.56, the Dynamic Beam Equation. Note,
this equation also depends on time, and hence the ”dynamic” beam equation.

∂2

∂x2

(
E(x) · I(x)∂

2w
∂x2

)
= q(x, t)− µ(x) · ∂2w

∂t2
(4.56)

 µ(x) : mass density per length
q(x, t) : distributed load
w(x, t) : time varying solution (no damping)

Figure 4.18

Note that this is a linear PDE, which after spacial discretization we get:

Kw = −M · ẅ (4.57)

Ekin =
1

2

L∫
0

M(x) ·
(
∂w

∂t

)2

dx (4.58)

Eela =
1

2

L∫
0

E(x)I(x) ·
(
∂2w

∂x2

)2

dx (4.59)
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4.4.5 Tower eigenmodes

Both nacelles and towers have mass. For example, MHI-VESTAS V164 9.5 MW:

Figure 4.19

So the eigenmodes need to be computed for a very unequal mass distribution. The
lowest two eigenmodes look approximately as follows:

Figure 4.20 Lowest eigenmode Figure 4.21 2nd-lowest eigenmode
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Kinetic energy:

Ekin =
1

2

L∫
0

µ(x)

(
∂w(x, t)

∂t

)2

dx (4.60)

Elastic poetential energy:

Eela =
1

2

L∫
0

E(x)I(x)

(
∂2w(x, t)

∂x2

)2

dx (4.61)

Assuming for the example above w(x, t) = w̄(x) · ejωt with w̄(x) = A0 · x
2

L2 for a rough
approximation of the lowest eigenmode, and assuming constant mass µ(x), E(x) and I(x)
throughout the tower, we would get the following estimation by using Rayleigh’s method:

Ekin = ω2 ·

1

2

L∫
0

mtower

L

(
A0

L2

)2 (
x2
)2

dx+
1

2
mnacelleA0

2

 (4.62a)

=
ω2

2
A0

2

mtower

L5

L∫
0

x4dx+mnacelle

 (4.62b)

= ω2A0
2

2

(
1

5
mtower +mnacelle

)
(4.62c)

Eela =
1

2

L∫
0

E · I
(
A0

2

L2

)
dx (4.63a)

=
A0

2

2
E · I

(
4

L4

)
L (4.63b)

=
A0

2

2
E · I 4

L3
(4.63c)

Equating Ekin = Eela gives:

ω2
(mtower

5
+mnacelle

)
=

4EI

L3
(4.64)
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Site and weight of wind turbines:

Example 1: VESTAS V90, 1.8 MW

Tower height: 120 m

Blade length: R = 45 m

Nacelle weight: 75 t

3 blades weight: 40 t

 = 115 t

Tower weight: 152 t

Figure 4.22

Example 2: MHI-VESTAS V164, 9.5 MW

Tower height: 105 m

Blade length: R = 82 m

Nacelle weight: 390 t

3 blades weight: 105 t

 ≈ 150 t

Tower weight: 400 t

Base diameter: 6.5 m

Figure 4.23
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4.4.6 Stiff & soft towers

Lowest excitation freuquencies:

1P : “Rotor rotation frequency” (blade excitation, blade asymmetries)

B.P : “Blade passing frequency” (with B = number of blades)

With tip speed ratio λ = R·Ω
U∞

, radius R and wind speed U∞ we have:

ω1P = Ω =
λ · U∞
R

(4.65)

ωB.P = B · Ω = B · λU∞
R

(4.66)

Note that we always have ωB.P = B · ω1P . ω1P typically varies with wind speed.
There would be problems if ω1P or ωB.P become equal to tower eigenfrequencies, so we
have to avoid resonance with (a) tower design and (b) controller design.

Given the range of operational speeds, the tower can be operated in three frequency
domains (see figure 4.27):

A○: “soft-soft” if its lowest ωtower is in region A○.

B○: “soft-stiff” if ωtower is in region B○.

C○: “stiff-stiff” if ωtower is in region C○, i.e., higher than B.P . In this case, all eigen-
frequencies are above ωmax

B.P

Figure 4.24

Note: The lowest eigenfrequency of tower matters!
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Example: MHI-VASTAS V164

λ = 8
R = 80 m

U∞ = 10 m/s
Ω = 1 rad/s

Figure 4.25

4.5 Blade oscillation & centrifugal stiffening

Blade oscillations mostly occur “flapwise”, i.e., forward-backward.

Figure 4.26

Interestingly, due to rotation, the blades “stiffen” and has higher eigenfrequencies than
it would have without rotating. Let’s see why.

4.5.1 Rotating, hinged beam (no elasticity)

Figure 4.27

Moment of inertia:

I =

R∫
0

µ(r) · r2dr (4.67)

Flapwise oscillation angle: ϕ

Rotating frequency: Ω

Restoring moment: M(ϕ)

Iϕ̈ = M(ϕ) (4.68)
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Moment M(ϕ) comes from centrifugal force:

M(ϕ) = −
R∫

0

µ(r)Ω2 · r · cos(ϕ)︸ ︷︷ ︸
≈ 1

·
≈ ϕ︷ ︸︸ ︷

sin(ϕ) ·rdr (4.69a)

≈ −ϕ · Ω2

R∫
0

µ(r)r2dr (4.69b)

= −ϕ · Ω2 · I (4.69c)

With eq. 4.68 this gives:

Iϕ̈ = −Ω2Iϕ⇔ ϕ(t) = A sin(Ωt) (4.70)

Eigenfrequency equals rotor frequency!

4.5.2 Rotating beam with torsional spring

Figure 4.28

Spring constant K

Natural resonance: ωNR =

√
K

I
(4.71)

M(ϕ) = −Ω2Iϕ−Kϕ (4.72)

Iϕ̈ = −(Ω2I +K)ϕ (4.73)

ϕ̈ = −(Ω2 +
K

I
)ϕ = −(Ω2 + ωNR

2)ϕ (4.74)

ωR
2 = ωNR

2 + Ω2︸ ︷︷ ︸
“centrifugal stiffening”

(4.75)
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Chapter 5

Control of Wind Turbines

There are two different ways of controlling the wind turbines:

(a) Passive control by mechanical design. For example:

Figure 5.1 Tail-rotor
Figure 5.2 Vane

(b) Active control by sensor-actuator systems, usually using digital controllers:

Figure 5.3
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5.1 Sensors and Actuators in wind turbines

Sensors:

• A generator speed, rotor speed, wind speed, yaw rate

• Temperature of gearbox oil, generator winding, ambient air, etc

• Blade pitch, blade azimuth, yaw angle, wind direction

• Grid power, current, voltage, grid frequency

• Tower top acceleration, gearbox vibration, shaft torque, blade root bending moment,
etc

• Environment (icing, humidity, lightning)

Actuators:

• Generator

• Motors: pitch, yaw

• Linear motors, magnets, switches

• Hydraulic powers and pistons (high power & speed)

• Resistance heaters & fans for temperature control

• Brakes (rotor, yaw)

68



5.2 Control system architecture

Figure 5.4

Usually, the “supervisory control” is on high level for turbine operating status. And
“Dynamic control” is on low level (e.g. torque, pitch, power...etc).

5.3 Control of variable speed turbines

For speed control, main actuators are:

• blade pitch

• generator torque
(controlled slowly to avoid drive-train oscillations)

Figure 5.5 Rotation speed as function of wind speed

With the problem that wind speed on rotor discs can not be perfectly known, what is
the maximum power production and power coefficient Cp(λ, β)?
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P =
1

2
ρA · u∞3 · CP (λ, β) (5.1)

The equation 5.1 is the power function, where λ = ΩR
u∞

is the tip speed ratio, β is the
collective blade pitch. And the power coefficient CP is maximized at λ = λ∗ (e.g. = 7)
and β = β∗ 1 (C∗P = CP (λ∗, β∗)).

(Note: ∗ means the optimal value.)

Figure 5.6 shows pitch, torque and λ as function of wind speed. QGen is the generator
torque. In equilibrium, QGen = QAero.

• Region IIA: λ is fixed to λIIAfix = Ωmin·R
u∞

and β is maximized.

CP = CP (λIIAfix , β)

• Region IIB (subrated): λ = λ∗ and β = β∗

CP = C∗P = CP (λ∗, β∗)

This means that P = (constant) ∗ u3
∞

• Region IIC & III: λ is again fixed to λIICfix = Ωmax·R
u∞

and β regulates power.

(Region III is at maximum power.)

Figure 5.6 Torque, λ V.S. wind speed

1The β∗ is centered at 0 as the result of a practical choice to design the blades so that the power
coefficient is maximized.
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5.4 Torque control at partial load (in region IIB)

Torque QGenerator can be controlled directly and should counteract aerodynamic torque
QAero. Given rotor inertia I we have the ODE for Ω:

IΩ̇ = QAero −QGenerator (5.2)

QAero depends on u∞ & Ω & β and is given by PAero = Ω ·QAero, where Ω = λ
R
u∞ so

that λ = RΩ
u∞

:

QAero =
PAero

Ω

=
1

2
ρ(πR2)u∞

3 · CP (λ, β) ·R
λu∞

(5.3a)

=
1

2
ρπR3u∞

2

[
CP (λ, β)

λ

]
︸ ︷︷ ︸

:= CQ(λ, β)

(5.3b)

=
1

2
ρπR5Ω2

[
CP (λ, β)

λ3

]
(5.3c)

How to choose QGenerator when only Ω is measured?

Idea: Find the function QGenerator(Ω) that brings turbine to an optimal tip speed ratio
λ∗ (in region IIB)). Intuitively, setting high QGen if Ω is too large and small QGen if Ω is
too small in order to stabilize the rotor speed. At optimal Ω∗ = λ∗·u∞

R
we would have:

QAero(Ω∗, u∞, β
∗) = QGen(Ω∗) (5.4)

So let us generally try the law:

QGen(Ω) := QAero(Ω,
RΩ

λ∗
, β∗)

=
1

2
ρπR3

(
RΩ

λ∗

)2
CP (λ∗, β∗)

λ∗
(5.5a)

=
1

2
ρπR5CP (λ∗, β∗)

(λ∗)3︸ ︷︷ ︸
constant KGen

· Ω2 (5.5b)
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Is this control-loop stable at Ω∗?

From equation 5.2 we know:

Ω̇ := f(Ω) =
1

I
(QAero(Ω, u∞, β

∗)−QGen(Ω)) (5.6)

Question 1: Is f(Ω∗) = 0? And is it in steady state?

If Ω∗ = λ∗u∞
R

, then by construction QAero(Ω∗, u∞, β
∗) = KGen · (Ω∗)2 such that indeed

f(Ω∗) = 0.

Question 2: If df
dΩ

(Ω∗) < 0, is it stable?

At Ω = Ω∗ = λ∗·u∞
r

and u∞ = Ω∗R
λ∗

, we get:

df

dΩ
=

1

I

(
1

2
ρπR5

)(
−C

∗
PΩ∗

(λ∗)3
− 2C∗P

(λ∗)3
Ω∗
)

(5.7a)

= −
1
2
ρπR5

I · (λ∗)3
· 3C∗P︸ ︷︷ ︸

constant [-]

· Ω∗ (5.7b)

That is, the settling time is proportional to 1
Ω∗

or R
u∞
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5.5 Thrust jump at nominal wind speed

Figure 5.7 Power, Thrust as a function of wind speed

The reason for reduction in thrust for U0 > Unom is the reduction of induction a.

Recall some facts from Betz theory:

Cp =
P

1
2
ρAu3

0

= 4a(1− a)2

CT =
T

1
2
ρAu2

0

= 4a(1− a)

T =
P

(1− a)u0

The optimal power harvesting was achieved for induction factor a∗ = 1
3
.

How does a depend on U0?

At the Betz limit we have Cp := Cp(a∗) = 16
27

and
dCp

da
(a∗) = 0

For U0 ≥ Unom we have to ensure P = Pnom, which is only possible if we reduce Cp.
In a pitch-controlled system, the Cp is reduced via a reduction of the induction factor a
(alternatively, one could also increase the induction factor to reduce the power).

For Cp < C∗p we get a < a∗. Applying Taylor expansion:

Cp = 4a(1− a)2 = C∗p +
1

2

d2Cp

da2
(a− a∗)2 + (higher order) (5.8)
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dCp

da
= 4(1− a)2 − 8a(1− a)→

d2Cp

da2
= −16(1− a) + 8a→ d2Cp

da2
= −8

Plugging it into Eq.(5.8) we get:

Cp = C∗p − 4(a− a∗)2 → a− a∗ = −
√
C∗p − Cp

4
(5.9)

How does T depend on u0 − unom > 0?

Cp = C∗p +
dCp

dU0

(Unom)(u− unom) + (higher order) (5.10)

For P = Pmax and u0 = unom:

Cp =
Pmax

1
2
ρAu3

0

→ dCp

du0

= −3
Pmax

1
2
ρAu4

0

→ dCp

du0

= − 3

unom

C∗p

Plugging it into Eq.(5.10) we get:

Cp = C∗p −−
3C∗p
unom

(u0 − unom)→

C∗p − Cp =
3C∗p
unom

(u0 − unom) (5.11)

Plugging it into Eq.(5.11) into Eq.(5.9) we get:

a− a∗ = −

√
3C∗p

4unom(u0 − unom)
(5.12)

T =
P

(1− a(u0))u0

= Tnom +
dT

du0

(u0 − unom) +
dT

da
(a(u0)− a∗)

= Tnom −
Tnom

unom

(u0 − unom) +
Pmax

(1− a)2unom

(a− a∗)

= Tnom

(
1− u0 − unom

unom

)
−

Pmax

(1− a)2unom

√
3C∗p

4unom

(u0 − unom)

(5.13)

74



Chapter 6

Alternative Concepts

6.1 Vertical axis wind turbines

Darrieus rotor:

Figure 6.1

Figure 6.2 Top view

Savonius wind turbine:

Figure 6.3

Figure 6.4 Top view
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6.2 Airborne wind energy (AWE)

See slides: (click here for slides:
https://www.syscop.de/files/2018ss/WES/lectures/20180711WES-AWE.key.pdf)

Variant 2: Generator on ground (pumping cycle)

Figure 6.5 Ground based and pumping cycle

We assume:

• the effect of gravity is neglected.

• cable is parallel to wind W .

• kite flies crosswind with high speed.

where:

V = λ ·W

W : real wind

V : speed of kite

α : roll out speed as fraction of real wind
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6.3 Loyd’s formula

Regard a kite/airfoil under idealized conditions, which means:

• The tether is parallel to the wind.

• No gravity, steady wind W ≡ u∞

• Steady crosswind flight with downward components

Figure 6.6

Given CL & CD, roll out speed αW , wing area A and tip speed ratio λ, the wind &
motion vector in x-y-frame are:

−→
W =

[
W
0

]
(6.1)

−→
V =

[
αW
λW

]
(6.2)

Effective wind:

−→
Ve =

−→
W −

−→
V =

[
(1− α)W
−λW

]
(6.3)

With Ve := ‖Ve‖ = W ·
√

(1− α)2 + λ2 we get:

−→
FD =

1

2
ρA‖Ve‖2 · CD

−→
Ve
‖Ve‖

(6.4a)

=
1

2
ρAVe

2 · CD
[

(1− α)
−λ

]
1√

(1− α)2 + λ2
(6.4b)
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−→
FL =

1

2
ρA‖Ve‖2 · CL

−→
Ve
‖Ve‖

(6.5a)

=
1

2
ρAVe

2 · CL
[
λ
(1− α)

]
1√

(1− α)2 + λ2
(6.5b)

−→
FL +

−→
FD =

1

2
ρAVe

2 1√
(1− α)2 + λ2

[
CD(1− α) + CLλ
−CDλ+ CL(1− α)

]
(6.6)

Steady state means there is no acceleration, that is, no force in the y-direction. Thus
we get:

λCD = (1− α)CL (6.7)

λ = CL
CD

(1− α) (6.8)

The generated power is equal to roll out speed, αW times the x-component of tension
ofFT :

P = α ·W · FT (6.9a)

= α ·W 1

2
ρAW 2

√
(1− α)2 + λ2(CD(1− α) + CLλ) (6.9b)

=
1

2
ρAW 3 · α(1− α)2

[
C3
L

C2
D

+ CL

]
(6.9c)

=
1

2
ρAW 3C

3
L

C2
D

(
1 +

C2
D

C2
L

)
α(1− α)2 (6.9d)

The maximum power is reached if α(1− α)2 is maximized:

f(α) = α(1− α)2 (6.10)

f(α′) = (1− α)2 − 2α(1− α)︸ ︷︷ ︸
:= 0

(6.11)

According to equation 6.11, we get (1− α) = 2α⇒ α∗ = 1
3
.
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Figure 6.7

f(α∗) =
1

3

(
2

3

)2

=
4

27

Loyd’s formula:

P = 1
2
ρAW 3 · 4

27
· C

3
L

C2
D

(
1 +

C2
D

C2
L

)
︸ ︷︷ ︸
≈ 1

(6.12)

Example: Regard CL = 1, CD = 0.05, W = 10 m/s and ρ = 1.2 kg/m3 we get:

P

A
=

= 600 W/m2︷ ︸︸ ︷
1

2
ρW 3 · 4

27
· CL

C2
L

C2
D

(
1 +

C2
D

C2
L

)
︸ ︷︷ ︸

:= ζ “Harvesting factor zeta”

ρ =
4

27
· 400(1 +

1

400
) ≈ 59

P

A
= 36 kW/m2
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