Modeling and System Identification – Microexam 2

Prof. Dr. Moritz Diehl, IMTEK, Universität Freiburg January 24, 2020, 10:00-12:00, Freiburg

Surname:		Name:			Matriculation number	r:				
	Study:	Programm:	Bachelor	Master						
	Please fill in your name above and tick exactly ONE box for the right answer of each question below. You can get a maximum of 10 points on this microexam.									
1.	We would like to know the unknown probability θ that a phone breaks when it is dropped. We assume that the phone thrown onto the ground either breaks or has no damage. In an experiment we have dropped 100 smartphones and obtained 19 broken smartphones. What is the negative log likelihood function $f(\theta)$ that we need to minimize in order to obtain the maximum likelihood (ML) estimate of θ ?									
	(a) $-\log(81\theta) - \log(19(1-\theta))$	(a) $\left[-\log(81\theta) - \log(19(1-\theta)) \right]$		(b)						
				(d) [
2.	You are given a pendulum which is by nature a nonlinear system and can be modeled by $y(t) = \theta_1 \cos(\theta_1)$ ments. Which of the following algorithms should you use to estimate the parameters θ ?				$s(\theta_2 t - \theta_2 t)$	$+\theta_3$), where $y(t)$ are the measure-				
	(a) Weighted Least Squares (V	WLS)		(b) [Linear Least Square	s (LLS	S)			
	(c) Recursive Least Squares (RLS)			(d) [(d) Nonlinear Least Squares (NLS)					
3.	onsider a model that is linear in parameter (LIP). Which of the following algorithms could you use to estimate the parameters without ruto memory problems or high computational costs for a continuous and infinite flow of measurement data?					nate the parameters without running				
	(a) LLS	(b) ML		(c)	WLS		(d) RLS			
4.	You are asked to give a computationally efficient approximation of the covariance of the estimate computed in the previous question model is given as $y_N = \Phi_N \theta + \epsilon_N$ with $\epsilon_N \sim \mathcal{N}(0, \Sigma_\epsilon)$, $Q_N = \Phi_N^\top \Phi_N$ and $L(\theta, y_N)$ is the negative log likelihood function. The computed by $\Sigma_{\hat{\theta}} \approx \dots$									
	$(\mathbf{a}) \left[(\Phi_N^\top \Sigma_{\epsilon_N} \Phi_N)^{-1} \right]$	(b) \square Q_N^{-1}		(c) [(d) $ [(\nabla^2_{\theta} L^2(\theta, y_N))^{-1}]$			
5.	Let θ_{R} denote the <i>regularized</i> LLS	estimator using L_2 1	L_2 regularization. Which of the following is NOT true?							
	(a) $\theta_{\rm R}$ can be computed analy	pe computed analytically.		(b) \square $\theta_{\rm R}$ incorporates prior knowledge about θ .						
	(c) $\theta_{\rm R}$ is asymptotically biase	c) $\ \ \ \ \ \ \ \ \ \ \ \ \ $		(d) \square θ_{R} is biased.						
6.	We use the Gauss-Newton (GN) alg	use the Gauss-Newton (GN) algorithm to solve a nonlinear estimation problem. Which of the following statements is NOT true <i>in</i>				statements is NOT true in general?				
	(a) The idea of GN is to linearize the residual function.		(b) [(b) GN uses a Hessian approximation.						
	(c) GN finds the global minimizer of the objective function.			(d) [(d) The inverse of the GN Hessian approximates Σ_{θ} .					
7.	Which of the following models with	ich of the following models with input $u(k)$ and output $y(k)$ is NOT linear-in-the-parameters w.r.t. $\theta \in \mathbb{R}^2$?								
	(a) $y(k) = \theta_1 u(k)^4 + \theta_2 \exp(u(k))$ (c) $y(k) = \theta_1 \sqrt{u(k)} + \theta_2 u(k)$			(b) $y(k) = \theta_1 \exp(\theta_2 u(k))$						
			$(d) y(k) = y(k-1) \cdot (\theta_1 + \theta_2 u(k))$							
8.	$\Phi_N = [\varphi(1), \varphi(2), \dots, \varphi(N)]^{\top}.$	wen is a set of measurements $y_N = [y(1), y(2), \dots, y(N)]^{\top}$ and the linear model $y_N = \Phi_N \theta + \epsilon_N$ with i.i.d. Gaussian noise ϵ_N , where $y_N = [\varphi(1), \varphi(2), \dots, \varphi(N)]^{\top}$. Using an RLS algorithm where Q_N is updated recursively with $Q_{N+1} = Q_N + \varphi(N+1)\varphi(N+1)^{\top}$, ich of the following minimisation problems is solved at each iteration step to estimate the parameter $\hat{\theta}(N+1)$ after $N+1$ measurements? $N+1 = \arg\min_{\theta} \frac{1}{2} \dots$								
	(a) $\ \theta - \hat{\theta}(N)\ _{Q_N}^2 + \ y(N) - \varphi(N)^{\top}\theta\ _2^2$			(b) [(b)					
	(c) $\ \theta - \hat{\theta}(N)\ _2^2 + \ y(N + \theta)\ _2^2$	$1) - \varphi(N+1)^{\top}\theta $	$ \frac{1}{2} $	(d) [$y_{N+1} - \Phi_{N+1} \cdot \theta$					

9.	f the measurements is known.							
10.	Give the name of the theorem that provides us with the above result.							
11.			d 0 otherwise) with unknown θ and on, what is the minimisation problem					
	(a) $ y(k) - \theta e^{-\theta} _2^2$		(b) $\left[-\log \sum_{k=1}^{N} \theta e^{-\theta y(k)} \right]$					
			(d)					
12.	For the problem in the previous question, what is a lower bound on the covariance $\Sigma_{\hat{\theta}}$ for any unbiased estimator $\hat{\theta}(y_N)$, assuming that θ_0 is the true value? $\Sigma_{\hat{\theta}} \succeq \dots$							
	(a) N/θ^2		(b) \square θ_0^2/N					
	(c) $\prod_{y_N} N\theta_0^{N-2} \exp[-\theta \sum_k y_k] dy_N$		(d) $\left[\int_{y_N} N\theta^{N-2} \exp[-\theta \sum_k y_k] dy_N \right]^{-1}$					
13.	Which of the following models is time invariant?							
	(a) $\int t \cdot \ddot{y}(t) = \sqrt{u(t)}$	(b)	(c)	(d) $\qquad \dot{y}(t) = t^4 - u(t)$				
14.	In L_1 estimation the measurement errors are assumed to follow a distribution and it is generally speaking more to outliers compared to L_2 estimation.							
	(a) Laplace, sensitive	(b) Gaussian, robust	(c) Gaussian, sensitive	(d) Laplace, robust				
15.	The PDF of a random variable Y is given by $p_Y(y)=\frac{1}{2\sqrt{2\pi}}\exp\left(-\frac{1}{2}\frac{\ y-\theta\ _2^2}{2}\right)$, with unknown $\theta\in\mathbb{R}$. We obtained three measurements $y(1)=2,y(2)=2$, and $y(3)=5$. What is the minimizer θ^* of the negative log-likelihood function ?							
	(a) <u>5</u>	(b) 3	(c) 4	(d) 2				
16.	Which of the following statements is NOT correct. Recursive Least Squares (RLS):							
	(a) implicitly assumes that the measurement noise	there is only i.i.d. and Gaussian	(b) computes an estimation with a computational cost independent of the number of past measurements					
	(c) an be used as an alternat	tive to Maximum Likelihood Esti-	(d) \square can use prior knowledge on the estimated parameter θ					
17.	Which of the following model equations describes a FIR system with input u and output y ? $y(k+1) = \dots$							
	(a) $u(k) + e^{i\pi \cdot k}$	(b) $u(k) - \pi^2 u(k-2)$	(c)	(d) $u(k) \cdot y(k)$				
18.	In practice, how do we estimate the covariance matrix of a parameter estimate θ^* with the objective $f(\theta) = \ R(\theta)\ _2^2$ and $R(\theta)$ being a possibly nonlinear residual function with Jacobian $J(\theta) = \frac{\partial R(\theta)}{\partial \theta} \in \mathbb{R}^{N \times d}$? $\Sigma_{\hat{\theta}} = \frac{\ R(\theta^*)\ _2^2}{N-d} \cdot (\dots)$							
	(a) $\square R(\theta^*)R(\theta^*)^{\top}$	(b)		(d) $ [J(\theta^*)^\top J(\theta^*)]^{-1} $				
19.	You want to estimate the paramters θ of a linear model $y_N = \Phi \theta$. For this you minimze the objective $f(\theta) = \ y_N - \Phi \theta\ _2^2$, but unfortunately your minimization problem $\min_{\theta} f(\theta)$ turns out to be ill-posed. Which of the following statements is NOT true:							
	(a) Regularized LLS can find	a unique minimizer of $f(\theta)$	(b) \square the set of solutions is $\theta^* = \{\theta \nabla f(\theta) = 0\}$					
	(c) the set of solutions is θ^*	$= \{\theta \Phi^{\top} \Phi \theta - \Phi^{\top} y = 0\}$	(d) $\Phi^{\top}\Phi$ is not invertible					
20.	Suppose you are fitting a model to 500 noisy measurements using MAP. Afterwards you compute the R-Squared value of the fit. Which of the following values suggests a meaningful fit?							
	(a) 3.23	(b)1	(c) 0.86	(d) 1				