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Preface

These notes are based on the notes originally written by Michael Erhard and Moritz Diehl for the
control part of the course ”Energy Systems: Hardware and Control” (part of REM master). The
notes are expanded with new material covered in the control concepts part of the course " Power
Electronic, Devices and Circuits” (PECD). The aim of the control part of the PECD course is
to make its attendants familiar with concepts of state space control that include linear quadratic
regulator (LQR), the Kalman filter and Model Predictive Control (MPC).

About the notation used in these lecture notes, a matrix A is capitalized and denoted using
bold and roman style, a vector x is lower case and denoted using bold and roman style, a scalar
x is lower case and denoted using italic style.

Sections marked with (*) are not covered in the PECD course, but are left as reference for the
curious reader.



Chapter 1

(*) Background on Dynamic
Systems in State Space

A dynamic system responds to an input signal u(¢) with an output signal y(¢) as depicted in the
following block diagram

u(t) —= F (—»y(t)

This behavior could be regarded as a 'mapping in time domain’ of a function u : ¢t — u(t) to a
function y : ¢t — y(t),

ur—y = F{u} (1.1)
An example is a RC-lowpass circuit and its response to a step input signal
U
R
I N
c y(t)
u(t) y(t)=uc(t)
T t
O O -

1.1 System dynamics given by Ordinary Differential Equa-
tions

If the system dynamics is given by ordinary differential equations (ODE), the system can be
represented as follows

Input Output
u(t) x(t) = £(x(t),u(t), 1) y(t)

e x is the n-dimensional internal state of the system. It can be regarded as 'memory’ of the
system.



e The dynamics is given by the equations of motion in form of an ODE
x(t) = £(x(t), u(t), 1) (1.2)

called ’state equation’ (or ’system equation’). It determines the time evolution of the state
x(t) by an ordinary differential equation.

e The second equation
y(t) = g(x(t), u(t), t) (1.3)

is called ’output equation’ and maps the state (and input) to the output vector y(¢). Note
that the output, state and input vectors can have a different dimensions.

1.2 Linear Time-Invariant (LTT) System

A dynamical system F' is called linear if the following conditions are fulfilled:

1. Superposition principle
F{U1+UQ} :F{u1}+F{u2} (14)

which can be illustrated as follows

up (t) up (t) F{}

2. Principle of amplification

F{cu} = cF{u} (1.5)
depicted as follows
u(t) y(t) u(t) y(t)
— ¢ | F{} — — F{} | ¢ —

A dynamical system F is called time-invariant, if for any function u(t)

y = F{u} (L6)
the equation
yo = F{uo} (1.7)

is valid for all ¢y, where the function definitions ug : ¢ — ug(t) = u(t — tp) and yo : t — yo(t) =
y(t — to) are introduced. This can be illustrated by

—» LTI —>»




Note: For time invariance, the initial (internal) states of the system have to be 0 (zero state).
The general LTI system in state space can be written as

x(t) = Ax(t)+ Bu(t) (1.8)
y(t) = Cx(t)+ Du(t) (1.9)

This set of equations including dimensions of vectors and matrices can be drawn in the following
block diagram

= D
Int t
) (oo
u(t) x(t) x(t) y(t)
B C
p (n x p) " (g X n)\ q
\\
A Matrix
Multiplication
(nxn)

SISO and MIMO systems In a LTI system, the state vector x € R” has dimension n, the
input vector u € RP has dimension p and the output vector y € R? had dimension g. Therefore,
the state space matrices have dimension: A € R"*" B € R"*P C € R?7*" and D € R9*P.

As a special case, we can consider a LTI system with only one input and one output, p = 1
and ¢ = 1. This kind of system is called Single-Input Single-Output (SISO) and it is formulated
as

x(t) = Ax(t) + bu(t) (1.10)
y(t) = c"x(t) + du(t) (1.11)

where A € R"*" b e R" c € R"” and d € R.
The generic case where p > 1 and ¢ > 1 is denoted as Multiple-Input Multiple-Output (MIMO).

Linearization The idea is to consider the behavior of a system around a reference or steady-
state point by linearization of the ODE. As example we consider trajectory control of a satellite
on an orbit

reference trajectory

- - - real trajectory

In absence of disturbances and with zero steering input, the satellite would fly on the orbit, denoted
as solid trajectory. By introduction of a local (orthogonal) coordinate system, we only consider
deviations from this reference trajectory. x = 0 would then describe a satellite flying on the
reference trajectory. As deviations are expected to be small compared to the overall trajectory,
linearization of the spherical coordinate system is an adequate modelling approach.



In the subsequent sections of this course, only linear systems will be considered. Although
almost all real world problems lead to nonlinear ODE, linearization is a powerful tool, which can
be applied in many cases. The following procedure is applied

1. Set up general ODE.
2. Linearize system around equilibrium point.
3. Design controller.

4. Validate control design with general (nonlinear) ODE in numerical simulations.

1.3 Setup of State Space Equations

In this section, we consider a SISO system. The dynamics is assumed to be given by a linear
differential equation

y<"> + an_1y<"_1> + -+ a1y + apy = bn_1u<"_1> + -+ blu + bou (112)

The superscript (" denotes the n'® time derivative, the a;,b; € IR are constant real coefficients.
For sake of simplicity, we dropped the time dependencies of v and y. We also assumed b, = 0
(i.e., D = 0 in state space form) for simplicity.

Control Canonical Form In the following, this system shall be described as LTI system in
state space. The derivation is done in two steps.

Step 1 Solve for the u(t) term on the right hand side (RHS) of the ODE, i.e. consider
y<n> +an_1y<n71> +...+a1y+aoy =u (113)

This system of n'® order is transformed into a 1%* order system by introduction of the state
X = [71,...,2,]" and the definitions

T =y (1.14)
xr3 = y = ig (116)
(1.17)
vy = YV = (1.18)
The ODE (1.13) can then be written as
: d -1y _ (1) ~
Tn = ay =y = —anYy —r— a1y —agy +u
= —QAp_1Tp — - — A1T9 — AT1 + U (1.19)
or in matrix representation
0 1 i [0 ]
0 1 0
x(t) = R x(t) + | | ul) (1.20)
0 1 0
L _a/O _al PRI PR PR _an71 1 L 1 1




Step 2 : As the system is linear, we can solve (1.13) for «(¢), i(t),... on the RHS separately
and then add the results to obtain the solution for the complete system. For the solution of (1.13)
for 4(t) on the RHS, the possibility of swapping LTI systems is exploited as follows

u(t) d u(tl LT o u(t) LTI aa(tl a &)
T @ “law [ T Tlaawy|[ |« [ T

Hence, instead of solving for u(t), we solve for u(t) and take the solution & (t) = x2(t) instead of
x1(t). Applying this principle to higher orders and utilizing (1.14-1.18) yields

y(t) = [bo, b1, ..., bu—1] x(t) (1.21)
The result can be summarized as
Control Canonical Form
0 1 1 [ 0]
0 1
x(t) = R x()+ | lu)  (1.22)
0 1 0
L _a’O —a/]. e e e _an—l i i 1 |
y(t) = [bo,br,. ., bua]x(2) (1.23)

Similar considerations lead to the following alternative form, which shall be given without deriva-

tion

Observer Canonical Form
0 0 —Q T r bO 7
1 —Qaq b1
) .
x(t) = x(t) + u(t) (1.24)
0

L 1 —Ap—1 ] L b”_l J

y(t) = [0,...,0,1]x(t) (1.25)

It should be remarked that the state space representation for a given ODE (1.12) is not unique.
A transformation will be discussed later in Sect. 1.5.

1.4 Solution of the State Space ODE

In the following, the equation
x(t) = Ax(t) + Bu(t) (1.26)

with x(t9) = xo as initial condition will be solved.



Homogeneous solution
x(t) = eAtto)x (1.27)

is the solution for
x(t) = Ax(t) (1.28)

which is the homogeneous part of (1.26). We used the matriz exponential function, which is defined
by

LAt —tg)
oAlt—to) - Z ( ' 0) (1.29)
rt v!
The time derivative reads
d apory A= AY(E—t9)" = AVw(t—to)" !
dte T VZO v! a ; V!
AVt —tg)Y
= AN V0 pAto) 1.30
Z o) e (1.30)

Computing the time derivative of the solution (1.27) yields
x(t) = A eAltt)x, = Ax(t) (1.31)
———
x(t)

and proves that the solution fulfills (1.28).

General Solution The general solution reads

t

x(t) = ®(t,t0)x0 +/<I>(t,T)Bu(T)dT (1.32)
with
B(t,tg) = Al (1.33)

Note that the first term is the homogeneous solution due to the initial condition xy and the second
term is a convolution integral of input u(t). In order to show that (1.32) is a solution, we compute
%x(t) by deriving (1.32)
/ d
x(t) = A®(t,t0)xo + ®(t,¢) Bu(t) + / ®(t,7)Bu(r)dr
—— dt
=T AD(t,r)
¢

= A& to)xo+ / &(t,7)Bu(r)dr | +Bu(t) = Ax(t) + Bu(t)  (1.34)

to

= x(t), compare (1.32)



1.5 Diagonalization and Modal Canonical Form

Repetition Eigenvalues and Eigenvectors

e Eigenvalue A and eigenvector v are defined by the following equation:

Av =)v (1.35)

e The characteristic polynomial of A is defined by?®

p(A) = det(\I — A) (1.36)

e Eigenvalues \; are the roots of the characteristic polynomial, i.e., solution of the
characteristic equation p(\) = 0.

“An alternative definition would be p()\) = det(A — AI). We use the definition above to obtain p(A) =
N +an71>\n71 R

In the following, we assume for simplicity that the eigenvalues of A are different, i.e. A; # A; for
i # j. As a consequence, there exists a matrix V such that

A=VAV! o A=V'AV (1.37)
with
A1
A= . (1.38)
An
The matrix V is composed of the (right) eigenvectors vy, ..., v, by
V= [vy, ..., vy (1.39)
The left eigenvectors wy ,...,w, are the rows of the inverse matrix as follows
w
o=Vt (1.40)
Wi

Considering V™'V = I element-wise yields the relation between the left and right eigenvectors

WiTVj =% = { (1) f)(;l;lérjvi]se (1.41)
The matrix A can then be written
A1 wi
A=[vy,...,v,] : (1.42)

s34

Now, the matrix exponential reads (assume ¢y = 0)

oo

At _ VAVt _ l —1\vyv
At ¢ _ZOV!(VAV )t

with (VAV™H)Y = VAVTIVAV™!... VAV~ = VA*V~!
N——

=I

— 1 jnz — —
= V(Z A )V L= veAty -t (1.43)

v=0 '

10



with

e/\lt
o0 AV
At _ v o__ .

e —27t - . (1.44)

v=0 e)\nt
For ®(-) follows
B(t) = Al = z:e)‘itviw;r (1.45)
i=1

A

The expressions eti'v,; can be regarded as dynamic modes of the system. The homogeneous

solution now reads

x(t) = ®(t)xo = ZeAitvi(wiT X0) (1.46)

where the term (w, X¢) could be interpreted as ’excitation’ amplitude of mode i due to the initial

condition given by xq.
Regarding the state space system
x(t) = Ax(t) + Bu(t) (1.47)
y(t) = Cx(t)+ Du(t) (1.48)

and by definition of the new state variables z(t) by
z(t) =V Ix(t) (1.49)
we get for (1.47) by multiplication with V=1 from the left
V%) = VVAVV I x(t) + V7'Bu(t) = AV x(t) + V" !Bu(t) (1.50)
=1
As a result the ODE reads
A1
z(t) = z(t) + V" 'Bu(t) (1.51)
An
y() = CVz(t) + Du(t) (1.52)

This representation is denoted modal canonical form.
For a SISO system we can define the vectors

b1
© | =V7'b [E1,...,60] =c"V (1.53)
bn

and draw the following block diagram

11
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3
o™
3

An

K n “dynamic modes”

1.6 Dynamics and Stability
For consideration of stability, we examine the time evolution of the modes in equation (1.46)

() =Y Mvw, (1.54)
=1

mode

As simple example, we consider a system with n = 2 states in the form
®(t) = eMiviw] +eMivow, (1.55)

For an initial value problem (u(t) = 0) with xo = c¢vs (c is a constant), the solution reads

x(t) = ®(t)xo = eMlivy w] evy +e vy wy evy = ceMlvy (1.56)
— —
0 c

This corresponds to an excitation of mode As.
The A; in the exponential determines the time evolution of mode ¢ as depicted in the following
figures

12
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There are two comments on eigenvalues with imaginary part Im(\) # 0

e If the coefficients of the characteristic polynomial are real values, which is usually the case
for physical systems, and an eigenvalue A has an imaginary part Im(\) # 0, the complex
conjugated value A\* is also an eigenvalue. In other words: complex eigenvalues occur as
pairs. The same holds for the eigenvectors.

e The oscillating parts in the time evolution of the state variables are always composed of the
two modes A and \* resulting in real values, e.g.

M 4 Nt = 2eRe N cog(Im(N)t) (1.57)

BIBO Stability A system is said to have bounded input bounded output (BIBO) stability if
every bounded input results in a bounded output.

+umax +ymax
u(t) y ()
u(t) J\/\IL/ — System |— y(t) W
—Umax —Ymax
[u(®)]] < vmax — [y (DI < Ymax

BIBO Stability

An LTI system is BIBO stable (and internally stable) if Re()\;) < 0 for all eigenvalues \;.

Proof (sketch): assume x¢ = 0 (LTI system)

y(t) = C / B(t, 7)u(t)dr (1.58)

13



Hence, the following holds
t
[0)] < € [ Bt 7)dr (1.59)
0

It remains to show that ||-|| on the RHS is bounded. This is done by considering that ®(-) involves

terms
t t
7t <
/Tle)\TdT: [e”} — 7/7‘l_1€/\7d7 (1.60)
A o A
0 0

The [-] term is bounded if Re(\) < 0. The integral on the RHS is considered by induction ! — (I—1)
until [=0.

O

Note that for Re(\) = 0, the system is neutrally or marginally stable, but not BIBO stable as a
bounded input function leading to an unbounded output can be found.

Methods to examine stability

e Compute eigenvalues explicitly and check whether Re();) < 0. Nowadays this is easy to do
on a computer.

e Utilize algebraic criteria on the characteristic polynomial, e.g. Hurwitz or Routh. This is
particularly useful if no computer is available.

14



Chapter 2

Controllability

2.1 Controllability

We consider controllability, i.e., control of the state x = [x1,22]" by input u for the following
introductory examples
1. 2.
R R
O I O O ® I O
u Cl T (A Cl T1
O —LO O I O
R
I — 1
Cy To Cs T2
1 -

1. Is not controllable as x5 is ‘disconnected’.

2. Here we have to distinguish two cases. For C7 = Cs the subsystems would behave equally,
hence the states can not be manipulated separately. System not controllable. For Cj # Cy
any state can be generated by appropriate choice of u(¢), hence system controllable.

Controllability

A system is controllable, if in finite time ¢; any initial state x(0) can be driven to any given
final state x(¢f) by appropriate choice of the control signal u(t) for 0 <t < ¢;.

This can be depicted as follows

“any given”
x(tf)
“any” T Task: “find a u(¢) for this transition
X0
| | -
[ [ o
0 ts

15



By consideration of the solution of the state space ODE

te

x(tr) = eAx(0) + / AT Bu(r) dr (2.1)
0
we get
te
x(t) — eAx(0) = / AT Bu(r) dr (2.2)

The value x; is defined by setting the LHS equal to —e®%x;. As the equation has to be valid for

any x(t¢) and any x(0), the following equation has to hold for all x; € R".
te
—eAlrx; = /eA(tf*T)Bu(T) dr (2.3)
0
The system is controllable, if for any x; € IR", a finite ¢f and a control input u(t) for 0 < ¢ < ¢¢

can be found, such that (2.3) holds. In other words: by appropriate choice of u(t), the system can
be driven from any initial state x; to the zero state in finite time ;.

Controllability for SISO Systems

Criterion by Kalman (1960). Define controllability matrix

C = [b,Ab,A%, ..., A" 'b] (2.4)

The system (A, b) is controllable, if C has full rank n. i.e. det(C) # 0.

Proof: consider

[}

Hence

0 v=0
> b 1YY
= Y A% / %mﬂ dr (2.6)
o ) v!
Thus we get for x;
Xi = — Z A"bu, (2.7)
v=0

This equation has a solution for any x;, if A”b span up the complete vector space, such that any
X; can be composed by appropriate choice of the u, coefficients.

It remains to show that A¥b with v = 0, ..., 0o span up the complete vector space if b, Ab, A?b, ..

are linearly independent, i.e. C is non-singular. The argument is based on the theorem of Cayley-
Hamilton for the characteristic polynomial p(A) = 0, which states that A™ can be written as linear
combination (LC) of A% ..., A"~ !, Hence, A"*! = AA" can be written as LC of A°,..., A" and
recursively as LC of A% ..., A"~!. As a consequence, it is sufficient to consider A°,..., A"~

O

16
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Example We consider the introductory example on page 15. The system ODE read

R N FORS [l O

RC>

The controllability matrix is then

N G
c—[vam_[Rfl 6% ]

Hence the system is controllable if

1 1 1
1e4C) = Reny ) ( RG; Rcl) #0

which is equivalent to C7 # Cs.

(2.9)

(2.10)

Control Input for State Transition The task is to control the state transition from xg — Xy

with a piece-wise constant control input given as follows

u(t)

A (5%

Uo

L

X0 Xf

Using the solution of the ODE (2.1), we get

m—1 tiga

xp = eAtmx, + Z / Al =hdr | u;
i=0

t;

By defining
tit1
pi = eAltm=Thdr
t;
(2.11) can be written as
Ug
[poa'”apm—l] = Xf —€Ath0
Um—1
Hence the input amplitudes can be computed by
Uo
-1
= [Po; .- Pm—1] (Xf - €At’"Xo)
Um—1

(2.11)

(2.12)

(2.13)

(2.14)

It should be remarked that due to the dimensions, (at least) n control steps are needed for an
n-dimensional state vector. In addition, the times ¢; have to be chosen such that the p; are linearly

independent.

17



2.2 Extension to MIMO Systems

Having introduced controllability for SISO systems, we now sketch the criteria for MIMO systems.

Controllability for MIMO systems

The controllability matrix can now be defined as

C=[B,AB,A’B,..., A" 'B] (2.15)

The system (A, B) is controllable if rank(C) = n. (Note that C is a matrix of size n x (np).)

Proof (sketch): repeat basically the same as above by replacing b by B and u(t) by u(¢).

< X =—»_ A'bu, (2.16)

v=0

Hence the columns of [B,AB7A2B, e 7A”_lB] have to span up the vector space IR". This
condition is equal to rank(C) = n. Note that we can stop the sum at n due to the Cayley-Hamilton
theorem.

O
Repetition: Rank of a Matrix
rank(M) = number of linearly independent column vectors in M
(or alternatively)
= number of linearly independent row vectors in M.
2.3 Gilbert Criterion and Kalman Decomposition
The modal canonical form was introduced by the transformation (1.49)
z(t) =V 1x(t) (2.17)

which could be regarded as transformation of the system (A,B,C,D) — (A, B, C,D) with the
matrices

A1
B=V!B C=CV A=V I!AVv= (2.18)
An
Note that A; # A; for i # j to avoid a more theoretical discussion. For a SISO system in modal

canonical form, controllability (and observability, a notion that will be introduced later in the
course) can be understood by the following descriptive block diagram

18



Y
=
o

AL
u(t) y(t)
_.‘
- Bn Cn
controllable observable
- mode
ifb; #£0 ifé; #0

ilbert Criterion (for system
*) Gilb Criteri for SISO
The system (A,B, ¢) (with \;#\; for i#£7) is

e controllable if all elements b; of b are non-zero.

e observable if all elements & of €' are non-zero.

Proof (without).

Finally, it should be remarked that each mode can be attributed the two properties control-
lability and observability separately. Hence, the modes can be split up into four classes called
Kalman decomposition, depicted in the following figure

controllable

not observable

controllable
observable

not controllable
observable

not controllable

|
I
|
I
|
I
|
I
|
I
|
I
|
[}
|
|
|
|
|
|
|
I not observable
|

|

In these notes, we consider only the part of the system that is both controllable and observable.

2.4 Stabilizability

Stabilizability is a weaker notion than controllability.

19



Stabilizability

The system (A, B) is stabilizable if there exist a matrix K € RP*" such that the matrix
A — BK is stable.

Recall that in the considered (continuous time) framework, a matrix M is stable if Re();) < 0 for
all eigenvalues \; of M.

The idea of stabilizability is that all unstable modes of the system must be controllable, such
that all eigenmodes of the matrix A — BK can be made stable. That is formalized in the following
theorem

Controllability and Stabilizability

If the system (A, B) is controllable, then it is stabilizable.

Proof (without).
The converse is not true: as an example, a stable system with some uncontrollable modes is
stabilizable (by choosing e.g. K = 0) but not controllable.

20



Chapter 3

State Feedback Control

Before diving into the details of state feedback control, we remind ourselves of the ’classical’ control
loop

disturbance
. z(t)
comparison
/

reference K output

w(t) ¢ y(t)
controller - plant

The distinguishing feature is the feedback of the output, which is compared to the reference value
and thereby enables the control loop to compensate for disturbances z(t) # 0. In this chapter,
the implementation of feedback controllers for state space systems will be discussed. Note that in
the subsequent sections, we will focus on state feedback, which is different to the output feedback
of the ’classical’ control loop above. Firstly, this is done as equations become easier as for output
feedback. Secondly and more importantly, state feedback can be implemented as there are methods
to reconstruct the state from output measurements by observers, which will be discussed in chapter
5 in detail.

3.1 State Feedback

For further considerations, we assume D = 0 to simplify notation. Now, a feedback is added to
our state space system as follows
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initial condition

|
o (nxp) (gxn)
: A le—e@ :
|
|
| e Plant !
K |-
(pxn) State Feedback Controller

The state feedback controller is defined by
u(t) = —Kx(t) (3.1)

Inserting this equation into the state space ODE x(t) = Ax(t) + Bu(t) yields the following ODE
for the feedback system
x(t) = (A — BK)x(t) (3.2)

We now demand two requirements:

e (REQ1) Choose K such that the state space control loop is stable.

For any initial value x¢ # 0, x(¢) 2% 0.

(A — BK) is a stable matrix, i.e., all its eigenvalues have a negative real part.

¢ (REQ2) Introduce a reference input w and demand that the output vector y(¢t) — w for
t — oo.

The second requirement can be achieved by adding a prefilter to the control feedback loop as
follows
Prefilter @~ -~ """ """ """ - - -----------—---

Reference
w(t)

(pxq)

|
~
A

Before discussing implementation details, we would like to summarize some properties

1. A feedback feature was added to the plant.
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2. The control law reads
u(t) = —Kx(t) + Nw (3.3)
It should be remarked that no classical ’comparison’ of reference w and output values y is

carried out.

3. The complete state vector x(t) (or at least an estimate, see chapter 5) may be needed for
the controller implementation.

4. A disturbance is considered as initial condition x(¢g) = x¢ # 0, which corresponds to an
‘initial kick’ rather than to a persistent disturbance.

Control design task
1. Choose K, N such that REQ1 and REQ2 are fulfilled.

2. Consider performance measures for the closed loop. The following two possibilities will be
discussed further in detail

e select eigenvalues and thereby determine speed and overshooting of the control loop
(pole placement), see section 3.4.

e minimize a quadratic performance index (LQR), see chapter 4.

3.2 Prefilter

In the following, the prefilter will be discussed in order to achieve a certain set-point wq. It should

be noted that most of the discussed control issues in the subsequent sections and chapters will be

simplified to a zero set-point x — 0 controller for clarity of concepts. The reader should keep in

mind that adding a prefilter as presented in this section will extend those to arbitrary set-points.
For determination of the prefilter we insert (3.3) into the ODE

x(t) = Ax(t)+Bu(t) (3.4)
y() = Ox(t) (3.5)
and obtain for a constant (or at least step-wise constant) w(t) = wy
x(t) = (A — BK)x(t) — BNwy (3.6)
The system is assumed to be stable (X(¢) — 0 for t — oo) and hence the state converges x(t) = Xoo.
Inserting these two relations into (3.6) yields
0 = (A — BK)xo + BNw, (3.7)
and with (3.5)
Yoo = C(BK — A) " 'BNwj (3.8)
As we demand for yo, = wy (REQ2), we get
CBK-A)'BN=1 (3.9)

and for the prefilter

N = (C(BK—A)'B)"’ (3.10)
Without going further into detail, a final remark on the number of control variables shall be given.
Regarding the dimensions of the matrices in (3.10)

N=(C (BK-A)!' B )! (3.11)
~~ — =~
(@xn)  (nxn) (nxp)

we get (¢ x p) for N. Hence, it is invertible for p=g¢, i.e. for control of ¢ output variables, ¢ control
variables (or more) are necessary. Note that this is different to controllability (section 2.1), where
the value is given for a certain point in time. Here we demand that y(¢) approaches wq for ¢t — oo.
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3.3 Prefilter as a Reference Generator

The prefilter matrix N can also be obtained in a different way that can be interpreted as a reference
generator. Though equivalent, the reference generator perspective is a bit more intuitive and also
more robust against implementation errors and therefore slightly preferable. It replaces the control
law in Eq. (3.3) by the control law

u(t) = ugs — K(x(t) — Xss) (3.12)

where the reference steady state values ugs and xg are obtained from the desired reference value
w via the linear maps

U = Nyw  and xg = Nyw (3.13)

such that they satisfy the conditions that the reference is indeed in a steady state, i.e. that
0 = Axy + Bug, and that the output is at the desired reference value, i.e. that w = Cxg.
Together, this yields a linear system that the matrices Ny and N, need to satisfy for all w,

namely
A B Ny |0
&[5
Assuming invertibility of the matrix on the left hand side, this yields the explicit expression
-1
Ny | |A B 0
ISR @19

Note that the matrices Ny and Ny do not depend on the feedback matrix K and can thus be
computed independently from it. A comparison between Eq. (3.3) on the one hand and Egs. (3.12)
and (3.13) on the other hand shows that the prefilter matrix N in Eq. (3.3) could in principle also
be obtained from the relation

N =N, + KNy (3.16)

but in the reference generator implementation one would directly generate the control using
Eq. (3.12), leading to the control diagram shown below, which is preferable in an actual imple-
mentation of the feedback controller, and which decouples the design of the prefilter in reference
generator form from the design of the feedback controller.

Ugs(t)

w(t)[ [ Nu %o
Xss(t) + u(t); x(t) l x(t) +4 1y ()

Ny -K

3.4 (*) Pole Placement for SISO Systems

Pole placement in our case means putting the eigenvalues of the closed loop to given values. Before
explaining the method in detail, some brief hints how to choose the eigenvalues for the closed loop
shall be summarized (some more information can be found on the slides).

e In order to achieve stability, all eigenvalues must be shifted to the left half plane, i.e. Re();) <
Ofori=1,...,n.

e The location of the eigenvalues determines speed and overshooting/oscillations of the closed
loop.
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e For many systems, system dynamics is mainly determined by a dominant eigenvalue (or
eigenvalue pair). In this situation, the focus should be put on this eigenvalue (pair).

For the pole placement, we assume that the system is given in control canonical form

0 1 0
x(t) = N x(t)+ | ¢ | u(t) (3.17)
0 1 0
P 1
y(t) = [bo,-..,bp1]x(t) (3.18)
The feedback controller is given by
ut) = —k'x(t)  with k' =[ko,...,kn 1] (3.19)
Then, the ODE for the feedback system read
x(t) = Ax(t) +bu(t) = (A —bk")x(t)
0 1
= x(t) (3.20)
0 1
(—ao—ko) o (~ana k)
A=

with the thereby defined matrix for the closed loop A.;. The idea is now to give the eigenvalues
A for ¢ = 1,...,n in order to obtain a certain dynamical behavior of the system. Hence, the
characteristic polynomial reads

n

pad) = [JA=X) = A"+ pn A" -+ pid 4 po (3.21)
i=1
and defines the coefficients pg,...,p,. As the system is given in control canonical form, the

coefficients of pc;(A) determine the last row of A, hence
0 1

Ag= (3.22)
0 1

_po PN .. _pn_l

Comparison with (3.20) yields —a; — k; = —p; and hence for the coeflicients of the controller
k; = p; — a;. In summary, we get the first rule for pole placement

Pole Placement

Assume a system in control canonical form with characteristic polynomial (CP)

A" 4 any A N e+ ag (3.23)
A given CP (calculated from given eigenvalues) for the closed loop
A" 4 P A 4 A+ po (3.24)

is implemented by the state feedback controller with vector

k' =[(po —ao), -, (Pn—1 — an-1)] (3.25)
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For systems not given in control canonical form, the control feedback might be determined by
calculating the characteristic polynomial of the closed loop

pa(N) = det(A\I - A +bk ") (3.26)

and comparing the coefficients. This will be demonstrated by the following simple example.

Assume a system given by
1 3 1
a-[b 2] e[l -

The eigenvalues (poles) shall be placed at A\; = —1 and Ay = —2. Hence the given characteristic
polynomial for the closed loop is

pcl(/\) - (/\ - /\1)(/\ - /\2) = /\2 + (—/\1 - /\2)/\ + (/\1)\2) (328)
This must be same as computed by using (3.26)

A=14k  —3+k )
k1 A+ 14 ko
= A4 (ky 4+ ko) +4ky —ky —1 (3.29)
——

——
=—A1—X2=3 =A1A2=2

pa(\) = det(A\I — A +bk") = det(

Comparing the coefficients as indicated results in

k' = [k1, ko] = [1.2,1.8] (3.30)

3.5 (*) Transformation to Control Canonical Form and Ack-
ermann’s Formula for LTI-SISO Systems
In the following, we will apply the pole placement method to systems given in another than control

canonical form. The procedure is to consider the transformation to control canonical form first
and then derive a general formula for k.

Transformation to Control Canonical Form

The transformation T, defining the new state vector z(t) = Tx(¢) and applied to
x(t) = Ax(t) + bu(t) (3.31)

results in the control canonical form

0 1 0
a(t) = 2(t) + | © | ult) (3.32)
0 1
_aO ... ... _an—l 1 1
for S
tl
t{ A
T = , (3.33)
tiFAnfl |

where t] is the last row of the inverse controllability matrix

1

C'=[b,Ab,..., A" 'b] " (3.34)

Note that the system must be controllable for calculation of the inverse C~1.
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Proof (sketch): Applying the transformation z(t) = Tx(t) to (3.31) yields

Tx(t) = TAT 'Tx(t)+ Tbu(t)
=I
< #(t) = TAT 'z(t) + Thbu(t) (3.35)

The following two steps show that Th and TAT™! are the respective matrices of the control
canonical form (3.32).

1. Using the definitions of C, t{ and the relation C™1C = I we get

*
*
[b,Ab,...,A" 'b] =1 (3.36)
ty
Consideration of the last row yields
t/Ab = 0 v=1,...,(n—2) (3.37)
t] A" b = 1 (3.38)
and hence
0
Tb=| ° (3.39)
0
1
2. It remains to show that
0 1
TAT ! = (3.40)
0 1
_aO DR RS —an_l
which can be written as
0 1
TA = T (3.41)
0 1
_a/(_) PR ... —an71

Inserting the definition of t{ (3.33) yields

t] t] A
t{ A t{ A2
: A= : (3.42)
tiFAn72 tlTAnfl
t{ An—t (—aot]{ —ait{ A —-- —a,_1t{ A"~ 1)

The equality of the rows can be easily recognized except for the last row which reads
t] A" = —apt{ —ait{ A —-- —a,_1t{ A"! (3.43)
This relation can be shown using the theorem of Cayley-Hamilton

t{ (ap + a1 A+ a, 1A+ A") =t/p(A) =0 (3.44)
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We now consider the pole placement

u(t) = —k'z(t) = —@X(t) (3.45)
kT

The state feedback can be calculated as

k' = k'T (3.46)
t{
t{ A
= [(po—a0),---, (Pn—1 — an-1)] : (3.47)
tf At
= (po—ao)t] +(p1—a))t] A+ -+ (pno1 — an_1)t] A" (3.48)
t (po+P1A+-+pn 1AV —ag— a1 A — - —a, AT (3.49)
=A™ as pa(A)=0
t) (po+prIA+-+p1 A"+ AT (3.50)
t/ p(A) (3.51)

This controller realization is called Ackermann’s formula, which shall be summarized

Pole Placement (Ackermann’s Formula)

Given the characteristic polynomial p(\) for the closed loop, the control feedback has to

be chosen as k' = t] p(A) where t{ is the last row of the inverse controllability matrix

¢! = [b,Ab,...,A"1b] .

3.6 (*) Modal Control for MIMO Systems

Consider the state feedback for a MIMO system given as follows

u(t) . System x(t)
(») (A,B) (n)

-K

A

(pxn)

For SISO systems the feedback matrix K has the dimensions (1xn) and is determined uniquely by
given n eigenvalues. For MIMO system there is an ambiguity and an infinite number of possible
feedback realizations for n given eigenvalues. Hence, different controller design principles have to
be applied.

The idea of modal control is the following: for p control variables the eigenvalues for p observ-
able modes are given in order to define the feedback controller. In other words, the eigenvalues
of p modes are “shifted” towards desired design values. This approach is denoted modal control.
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Considering the problem in modal canonical form (assume \; # \; for i # j), we would like to get

[ A i [ (M —=Aa1) 0 --- 0
_ )‘p _ (/\p_Acl,p) o - 0
a(t) = " (1) T e P ()
L A'n, | L * .. * 0 e 0 ]
(3.52)
where A¢1 i, ¢ =1,...,p are the new eigenvalues of the closed loop. Note that we ordered the state

variables in z such that the first p eigenvalues are to be shifted. From (3.52) we get

Z() = XNzi(t) +coupling (x) i=(p+1),...,n '

Thus, the first p eigenvalues are shifted while the remaining eigenvalues are unchanged.

Modal Control Feedback
For given eigenvalues Mg 1, ..., Ac,p for the closed loop, the control feedback is given by
K=
-1
w, B (M = Aar1) wi
up) =—| . o x(t) (354)

w;B (Ap — Acip) W;

where Aq,..., A\, are the eigenvalues and Wi, ... ,w; are the left eigenvectors of A.

Proof: consider transformation z(t) = V~1x(t) for

x(t) = Ax(t) + Bu(t) (3.55)
V7x(t) = VIAVV Ix(t)+V 'Bu(t) (3.56)
I
—z(t) = Az(t)+V 'Bu()
Az(t) — V'BKV z(t) (3.57)
K

We now derive K using (3.54)

-1
WIB (Al — )\cl,l) WlT
K = V!B : , : (3.58)
w;—B (Ap — Acip) W;
_ WIB _
B w| B (A1 = A1) wi
w . .
= WWPIB : : [Vlv""vn]
pT W;B (Ap = Actp) w,
wiB | M;
M;
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where M; and My can be computed using the definitions of w, and v;

1
1 0 0
1
M= | . M, = : (3.59)
1 0 0
* e % (pxn)
L _
(nxp)
We finally get ) -
(A1 —=Ac11) 0 0
5 ()\p*)\cl,p) o --- 0
L * e * 0o --- 0 ]
which is equivalent to the feedback matrix in (3.52).
(]

The modal control feedback can be depicted as follows

—.—> mode A\ 21

| . |
u(t) | () ()

—>O0— V'B \4

+++++
~~~~~

Y
Q

- ]1 G e

w:rB Zp é
Mo o TRV o oo B NG
(pxp) - 5
| -] |
Controller (nxn)



The controller ’picks out’ the first p eigenmodes and ’shifts them towards’ the desired values
Ac1y- -+, Acl,p- Note that a coupling to the remaining modes is introduced as indicated by the red
dashed arrows. However, the coupling does not modify the other eigenvalues Ap1, ..., Ap.

It should be finally noted that there are even more general ways to set up the feedback. In
the case of p = n, all n eigenvalues and n eigenvectors of the closed loop could be ’designed’
independently.
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Chapter 4

Linear Quadratic Regulator

(LQR)

The idea is to introduce and optimize a performance index as depicted in the following

Step response N Initial value problem

x(t)

A\ %]
‘minimize’ area
t ref. input wg /

~——

‘minimize’ area

1 \/

Y

to

For a good controller performance, one would demand for a fast response and little overshooting,
hence for minimizing the shaded areas. The performance index for the LQR controller is introduced

as
o'}

J{x,u} = %/ (x"(1)Qx(t) + u' (t)Ru(t)) dt (4.1)
0

where Q is a positive definite (n x n) matrix and R a positive definite (p X p) matrix. The vector
x(t) is the solution of the ODE of the system with initial condition x¢ and u(t) the according
steering input. The matrices Q and R can be regarded as tuning parameters in order to meet
design requirements. While Q penalizes slow responses and overshoots, R adds a penalization
to steering actuation. Although this interpretation is relevant for some applications e.g. saving
steering gas in satellites, it could be generally regarded as a general knob in order to achieve the
desired controller behavior. Note, that both terms in the integral are quadratic measures (instead
of a norm measure indicated by the colored areas in the figure above).
Now, the control task is to find a feedback matrix K

u(t) = —Kx(t) (4.2)
such that J is minimized. This could be formally written as

K = arg Ir;{i/n J{x,u} (4.3)

u=—K
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4.1 Lyapunov Equation

Before tackling the problem with the whole performance index (4.1), the problem shall be solved
for quadratic functionals, thus considering

oo
1
y=3 / xT(H)Qx(t) dt (4.4)
0
With the homogeneous solution for the system ODE x(t) = Ax(t)
x(t) = eAlxg (4.5)
we get
1 7 1 7
J = 3 /xgeATthAtxo dt = §X8— /eATthAt dt | xo (4.6)
0 0
By defining
P = /eATthAt dt (4.7)
0
we get the performance index as function of the initial condition xq
L T
J= 3%0 Pxg (4.8)

In the following, we derive an equation for P by partial integration of the definition (4.7)

P= / eATIQeA At = eATthAtA—lro - / ATeATIQeA A dt (4.9)
0
0 0

_QA*I

ATPA-1

The two terms on the RHS result in —QA ™! as eA! "28° 0 for a stable system and in ATPA~!
by using the definition (4.7). The resulting equation

P=-QA !'-ATPA! (4.10)

is multiplied with A from the right hand side to obtain the

’Lyapunov Equation: PA+ATP=-Q (4.11)

This equation allows for calculation of P from the system matrix A and the weighting matrix Q.

4.2 Optimal Controller
We now come back to controller design and consider

u(t) = —Kx(t) — u' (t) = —x"HK" (4.12)
For the ODE of the closed loop we get

x(t) = Ax(t) — BKx(t) = (A — BK)x(t) (4.13)

‘Acli
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Hence with the definition
A=A -BK

we have the ODE
x(t) = Aax(¢)

The performance index (4.1) now reads

(4.14)

(4.15)

1 T 1 T
Jo= g / (x"(1)Qx(t) + u' (H)Ru(t)) dt = 3 / (x"(1)Qx(t) +x" (K RKx(t)) dt
0 0
17 -
= 5 [x (t)Qax(t) dt (4.16)
0
with
Qu=Q+K'RK (4.17)
For P, defined by
1
J= 5xoTPx0 (4.18)
the Lyapunov equation for the closed loop reads
PA,+AlP=-Qu (4.19)
In order to compute the matrix K leading to an optimum (minimum) of J, we demand
aJ 01 ¢
= Zx, Pxo =0 4.20
Oky Ok 20 0 (420)
fori=1,...,pand j =1,...,n. The k;; denote the elements of K. In the following, we consider

the optimality condition for all xo € IR™ (which is reasonable for state feedback systems) and thus

are allowed to reduce the condition to

0

P=0
3l<:ij
The element-wise partial derivative % of (4.19) yields
oP 0Aq 8AT1 + OP 0Qal
= Ay +P dp 4 A =
Oy N ok, Tk, M Ok, T Ok
~—— ~—~—
=0 =0
With
Ag=A-BK and Qu=Q+K'RK
we get
0K OKT oK' oK
-PB_—— — B'P=— RK -K'R
Oky; Ok Oki; Iki;
and oK 5
K K
RK-B'P)=(PB-K'R

The above equation has to be satisfied for all indices 4, j. This yields
RK-B'P=0

As result, we get the

Optimal LQR Controller: K=R 'B'P
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(4.24)

(4.25)

(4.26)

(4.27)



Note, that it depends on matrix P, which will be computed in the following. Inserting (4.27) into
(4.14) and (4.17) results in

Aj=A-BK=A-BR'B'P (4.28)
and
Qu=Q+K'RK=Q+P'BR )'RR'B'P=Q+P'BR")'B'P (4.29)
Insertion of these relations into (4.19) yields
PA-PBR'B'P+A'P-P'BR)'B'P=-Q-P'BR")'B'P (4.30)
(x1) (x1)

As result we get the

| Matrix-Riccati-Equation: ~ ATP + PA~ PBR'B'P + Q= 0| (4.31)

We recall, that (A, B) is the state space description of the plant and Q, R are the given parameter
matrices. The basic steps are to use (4.31) for computation of P and then determining K via (4.27).
Two final notes for the given LQR design shall be noted for sake of completeness without further
discussion of details: the system (A, B) has to be controllable and the system (A, Q) has to be
observable, where Q is given by Q = Q' Q.

4.3 Choice of () and R Matrices

In this section, some rough ideas on the choices of the Q and R matrices shall be given.

e As the choice of the Q and R matrices is crucial for the result, the LQR concept should be
regarded more as a mathematical recipe for carrying out the controller design rather than
as a self-contained procedure, which comes up with the ’optimal’ controller. In practice one
would choose certain matrices Q and R, then compute the controller based on these matrices
and compare simulations to given specifications. Eventually, the whole design process has
to be repeated with different Q and R matrices to end up at the desired controller behavior
after some iterations.

e As a thumb rule, one could start with diagonal matrices and choose

1
ii = - ,=1,..., 4.32
%, Maximum acceptable value for z? ! " (432)
1 .
ri; = > i=1...,p (4.33)

Maximum acceptable value for u;
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Chapter 5

Observability, State Estimation
and Kalman Filter

The task of an observer (also known as state estimator) is to reconstruct the (hidden) state vector
of an system, especially in order to implement a state feedback controller, which is based on the
knowledge of the state vector. This can be depicted as follows

Control

u(t)

Plant

internal state
x(t) (hidden)

y(t)

Estimated

state X(t)
Observer |—@—»

Y

State Feedback

5.1 Observability for SISO Systems

Introductory examples: can the state x(tp) be determined from y(t) ?

1.

T

€2

1. is not observable, as state variable x5 is not connected to the output.

2. is observable if A\; # As. Note that the output has to be observed for an interval of finite
duration in order to discriminate the values z; and xs.
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Observability

A system is observable, if the initial state xo = x(0) can be determined from the knowledge
of the control input u(t) and the output y(t) over a finite time interval [0, ¢¢].

Iustration:
state “hidden”
0 t
un A A N
— e
0 b
X0
“known” A “observed”

reconstruction J

The time evolution of y(t) can be computed as

H,_/
Ytreo (t)=

t
y(t) = xo—l—/cT Al=Tbu(r)dr (5.1)
0

The homogeneous solution is defined as yree(t). The second summand is the inhomogeneous part
and represents the driven time evolution, which can be computed as function of the known input
u(t) as

t
yfree - /CT Alt- T)bu )dT (52)
0
Therefore, if the undriven system
x(t) = Ax(t) (5.3)
y(t) = c'x(t) (5.4)

is observable, the same holds for the driven system. In other words: the system is observable, if
state x¢ can be reconstructed from ygeo(t) by “inversion” of

Yrreo () = c'eBtxg (5.5)
Kalman Observability Criterion
Define
cT
c'A
O=| cTA? (5.6)
CTAn71
The system (A, c') is observable, if O has full rank n.

Proof (sketch): Reconstruction of x¢ from yee(t1), - - -, Ytreo(tn) for t1, ... ¢, € [0;t¢].

Ytree (1) clefls
: = : X0 (5.7)
Ytroo (tn) clehln
M=
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The state xg can be computed as

yfree(tl)
xo=M"! : (5.8)
yfree(tn)
if t1,...,t, can be chosen such that M is invertible. A row of M reads
A? A3
CTCAti = CT + CTAti + CT7t12 + CT?ti} + -
= ¢’ + aiﬁlcTA + ai72CTA2 4t ozi}ncTA”_1 (5.9)
The last line represents a linear combination of the vectors ¢',cT A,...,c" A?"! with the coeffi-

cients «; ;. The sum can be stopped at (n—1) due to the theorem of Cayley-Hamilton. Now, M
is invertible, if its rows are linearly independent. In order to get n linearly independent rows, the

vectors ¢, ¢ A,...,cT A""! have to be linearly independent (or O non-singular).
O
Example We consider observability of the introductory examples on page 36
A0
A= { 0 A ] (5.10)
1.
T _ 1 0
c'=[,0 <= O= [ M0 (5.11)
For the determinant follows det(QO) = 0, hence system is not observable.
2.
T 11
c'=[,1] < 0= [ N (5.12)

Here, det(O) = Az — A1, hence det(O) # 0 and system is observable for A; # As.
Reconstruction of States Based on the proof, we can summarize a recipe for reconstruction
of the state for given y(¢;) and u(t), 0 <t < max(¢;) fori =1,...,n.

1. Compute Ygee(t;), compare (5.2)

t;

e (1) = y(t:) — / T A by(r) dr (5.13)
0

fori=1,...,n
2. Reconstruct state xg, compare (5.7) and (5.8)

CTeAtl Ytree (tl)
Xo = : : (5.14)

CTeAt” Yfree (tn)
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5.2 Extension to MIMO Systems

Having introduced observability for SISO system, we now sketch the criteria for MIMO systems.

Observability for MIMO systems
The observability matrix O is defined as

C
CA

0=| CA? (5.15)

CAn—l

The system (A, C) is observable if rank(OQ) = n. (Note that O is a matrix of size (nr) x n.)

5.3 Detectability

Detectability stands to observability similarly to how stabilizability stands to controllability.
Namely, detectability is a weaker notion than observability.

Detectability

The system (A, C) is detectable if there exist a matrix L € R"*? such that the matrix
A — LC is stable.

The idea of detectability is that all unstable modes of the system must be observable, such that
all modes of the system (A — LC,C) can be made stable. That is formalized in the following
theorem

Observability and Detectability

If the system (A, C) is observable, then it is detectable.

Proof (without).
The converse is not true: as an example, a stable system with some unobservable modes is
detectable (by choosing e.g. K = 0) but not observable.

5.4 Luenberger Observer

In principle state estimation could be accomplished by the following scheme

u(t) Real Plant State
—x(1)
x = Ax + Bu
Model Estimate
; — X(t)
x = Ax+ Bu

There are some prerequisites that x(¢) becomes a 'good’ estimate for the state vector x(t).

e The system has to be stable.
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e Absence of significant disturbances.
e Model should be accurate.

In order to obtain a better estimate or make the estimation feasible for unstable plants, a feedback
is introduced. This leads to the Luenberger Observer depicted in the following

Plant

e }

! I

u(t ! x(t t

Qo—c‘p—» x=Ax+Bu ®) = C ﬂl&)—.—»

I

| |

! I

L o L L L L L L L L L L L L m - o

u Y

Y

L (=
L o o e
Observer
where L is the feedback matrix.
The ODE for the observer reads
x(t) = Ax(t) + Bu(t) + r(t) (5.16)
Insertion of
r(t) = L(y(t) - y(t)) = Ly(t) — LCx(?) (5.17)
yields .
z(t) = (A — LC)x(t) + Bu(t) + Ly(t) (5.18)
Considering the ODE for the estimation error, defined by
e(t) = x(t) — x(t) (5.19)

gives with y(t) = Cx(t)
é(t) = x(t) — x(t) Ax(t) +Bu(t) — (A — LC)x(t) — Bu(t) — Ly(t)

= (A—-LC) (x(t) — %x(t)) (5.20)

Hence the dynamics is described by the state equation
é(t) = (A —LC)e(t) (5.21)
In order to obtain a reasonable estimate, we demand for the following
e The observer must be stable, i.e. e(t) — 0 for t — oc.

e As a consequence, the real parts of the eigenvalues of (A — LC) must be negative Re(\;) < 0
fori=1,...,n.

e The speed of the observer is determined by the position of the eigenvalues.
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5.5 Observer Design

The problem could be recognized as similar to controller design

Observer
A -LC

Controller
A - BK

In order to apply the design principles of state feedback control of chapter 3, we apply a trick. As
eigenvalues are the same for a matrix and its transpose, the transposed system could be considered,
i.e. the following

AT -C'LT (5.22)
Hence, we obtain the following mapping
Controller Observer
A AT
B c’
K LT

The dynamics could be sketched in the subsequent diagram

Uf(t)

er(t
& — ATef + CTUf ( )

LT

A

Note that the dynamics of uf(¢) and e¢(t) are the same as of e(t), but these are fictitious (and not
the transposed!) quantities.

(*) Pole placement for Observer Applying the pole placement of chapter 3.4 to the intro-
duced substitutions results in

Pole Placement for Observer Canonical Form (SISO)
For a system given in observer canonical form
[0 -0 e oo 0 —ag ] by
1 —ay bl
. 1
x(t) x(t) + u(t) (5.23)
0 .
L 1 —ap_1 | b”*1
yt) = [0,...,0,1]x(¢) (5.24)
The characteristic polynomial
PN = A" L AT A (5.25)
is implemented by the feedback
(lo — ao)
1= : (5.26)
(ln—l - an—l)
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(*) Ackermann’s Formula for Observer Recalling section 3.5 the controller reads

k' =t/p(A) (5.27)
where t{ is the last row of the inverse controllability matrix C™! = [b, Ab,... ,A”_lb}_1 As
introduced in the previous section, we use AT for A and (¢')" = c for b. The feedback gain is
given by

1= (k") = (t/p(A)" =p(AT)ts (5.28)
where t{ is the last row of [c,ATc,...,(AT)""!c] ~!'. Therefore t; is the last column of
c’ !
™ -1 c'A
([c, ATc,... (AT)"c] ) - _ — 0! (5.29)
CTAnfl

In summary we get

Ackermann’s Formula for Observer

Given the characteristic polynomial p(\) for the observer, the feedback has to be chosen as
1 =p(AT)t; where t; is the last column of the inverse observability matrix

T —1

CTAn71

Note that the system has to be observable in order to compute the inverse of O.

5.6 Control Loop with Observer
In this section, a state feedback of the estimated state vector will be considered as follows

u(t) y(#)

Plant > x(t)
Observer
,—»

-K |-
State Feedback
Controller
Hence the feedback is given by
u(t) = —Kx(t) (5.30)
Combining the plant system
x(t) = Ax(t)+ Bu(t) (5.31
y(t) = Cx(¢ 5.32

and the observer state equation (5.18)

x(t) = (A — LC)x(t) + Bu(t) + Ly(t) (5.33)

42



into a set of ODE for the combined system yields

[ 28 ] B [ L% (A—igIE BK) } [ igg } (5.34)

The eigenvalues of the combined system are calculated as follows

B [ (AT A) BK
0=p() = det ( ~LC (M- A +LC + BK) D
_ 4 [ (\I - A +BK) BK
= et(_()\I—A—i—BK) (/\I—A—l—LC—i—BK)D
- [ (\I - A +BK) BK
= det(_ 0 (AI—A+LC)D
= det(A\I — (A — BK)) det(A\I— (A — LC)) (5.35)
closed loop observer

For the manipulations above we made use of the linear algebra lemma that the determinant does
not change when adding columns n + 1,...,2n to columns 1,...,n from first to second line and
when subtracting rows 1,...,n from rows n+1, ..., 2n from second to third line. The last equality
utilized the lemma for computing the determinant of a block matrix. As result we could state state
that the eigenvalues of the state feedback control loop are not changed by the observer design,
this is called separation theorem. Based on this, the state feedback design can be carried out
independently from the observer.
On the choice of eigenvalues for the observer, the following could be stated

e The eigenvalues should be placed to the left of the closed loop eigenvalues, otherwise the
reaction of the system to disturbances, which cause differences between the state of the plant
and the estimate, would be too slow.

e Theoretically, the observer could be made arbitrarily fast. As the algorithm involves differ-
entiation, this is critical w.r.t. noise in measurements. Hence, the observer should be made
faster than the state feedback, but not significantly faster.

5.7 Relation to Kalman Filter

The idea is to repeat the LQR approach of chapter 4 for calculating the matrix L of the observer
design. We consider a performance index given by

oo

J= % / of ()Qer(t) +  uf (DSur(t)  dt (5.36)
—— —— ————

O process noise measurement noise

for the control loop of the estimation error (5.19) where are Q and S are positive semi-definite
matrices.

Carrying out the substitutions AT — A, CT - B, Q - Q",S = R"T,P —» P', and
computing L = KT we obtain with (4.27)

| L=pC's! (5.37)
Utilizing the matrix Riccati-equation (4.31) we get
APT +PTAT —P'CT(S™HTCcPT+Q" =0 (5.38)
and finally
| PC'S'CP-PAT —AP-Q=0 (5.39)

These are the corresponding equations obtained for the Kalman filter by a stochastic approach.
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Chapter 6

Discrete Time Systems

This chapter deals with linear time invariant systems in discrete time.
The continuous time system is discretized at equidistant sampling instant, with sampling time
T, (that is, the time between two consecutive sampling instants). The value of the system matrices
and vectors at the sampling instant k£ are denoted using the index j, where the sampling starts at
time 0. As an example, the value of the vector x(t) at the k-th sampling instant is the value of
the vector at time t = kT,
xi = x(kTy) (6.1)

The input vector is constant in between sampling instants, i.e. a piecewise constant parametriza-
tion u is employed. Note that other parametrizations are possibles (e.g. piecewise linear or more
generally polynomial).

6.1 Discrete Time LTI Systems

In this chapter, the general LTT system in state space and in continuous time is represented as

x(t) = Ax(t)+ Bou(t) (6.2)
y(t) = Ccx(t)+ D.u(t)

where the index . denotes continuous time.

Generally speaking, the state space representation in discrete time can be derived from the
state space representation in continuous time by means of simulation (that is, integration over
time). In case of LTI systems, it is possible to derive an analytic expression for the state space
system in discrete time, without need to use numerical integration.

In discrete time, the general LTT system in state space (A, B, C,D) can be written as

Xk4+1 = Ax; + Buy (64)
yi = OCx;+ Duy (6.5)

Thanks to the time-invariance property, the system representation is the same at all times. In
particular, we can consider the time ¢ty = 0 and ¢t = T in equation (1.32), obtaining

Ts
x1 = x(T,) = AT =0x(0) + / b T Bou(r)dr
0
; (6.6)
_ eACTSX(O) +/ eActdthu(O) = Axy + Bug
0

where the fact that u(t) is piecewise constant in between sampling instants has been exploited to
move u outside the integral, and the change of variable ¢t = Ty — 7 is performed in the integrator.
The equation (6.5) is simply obtained evaluating equation (6.3) at the time ¢ = kTS.
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In summary, the expression of the matrices in the state space representation in discrete time
(A,B,C,D) is

A =erTs (6.7)
Ts
B= / eAtdiB, (6.8)
0
C=C. (6.9)
D=D, (6.10)

6.1.1 Homogeneous Response

The homogeneous response with zero input and initial state xy can be found by successive substi-
tutions

X1 = AXQ
Xo = AX1 = A2X0

Xp = Axp_1 = Akxo

Note that it is computed using only the matrix A.

6.1.2 Forced Response

The forced response with generic non-zero input is computed by induction. The expression for
two consecutive substitutions

Xptr1 = Axpy1 + Bug
= A(AXk + Buk) + Buy1
= AZXk + ABuy + Bug4,
can be generalized as
k—1
xp = AFxo+ Y A" "'Bu, (6.11)

m=0

for k <0.

6.1.3 System output response

The output response is computed by substitution of (6.11) into the equation y; = Cxy + Duy,
obtaining

k-1
yi = CAFx, + Z CA*"=1Bu,, + Duy

m=0

6.2 Stability in Discrete Time
The eigenvalues of the matrix A are defined as

Aivi=Av; forv;,#0 (6.12)
The corresponding vectors v; are the eigenvectors. Equation (6.12 can be rewritten as

()\zI - A)Vl =0
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and together with the condition v; # 0 implies
det(MI—A)=0

which defines the characteristic polynomial of the matrix A.
If A has size n x n, the characteristic polynomial

N ba, A"t ad+ag=0

can be factorized as

A=A)A=A2) - (A= A1) =0

with \; € C. Defined
V = [V1V1 .. .Vn]

and
A0 0
Ao |0
0 ... A1
then
AE 0 0
0 A\
and
AF = (VAV HE = VAPV (6.13)

The asymptotic stability of the system is defined in terms of homogeneous response. Given
any initial state xq, the system is said to be asymptotically stable if the homogeneous response
Xy, converges to 0 as time k — oo,

lim x5 = lim AFxy = lim VA*V~!x, =0
k—o0 k—o0 k—o0

for any xo. Equation (6.13) shows that all elements of A* are a linear combination of the system
modes )\i?, and therefore stability depends on all components decaying to zero with time.

Asymptotic stability

A linear discrete time system is asymptotically stable if and only if all eigenvalues have
magnitude smaller than one, i.e. if they are strictly inside the unit circle in the complex
plan.

The system is not asymptotically stable in the following cases:

e If |)\;] > 1 for one real eigenvalue or a couple of complex-conjugate eigenvalues, the mode
grows exponentially. The system is said unstable.

e If |A\;] = 1 for one real eigenvalue or a couple of complex-conjugate eigenvalues, the system
response neither decays or grows. The system is said marginally stable.

BIBO stability

If a linear discrete time system is asymptotically stable, then it is BIBO stable, i.e. a
bounded input gives a bounded output for every initial value.
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6.3 Discrete Time Linear Quadratic Regulator

In this section, we derive the LQR regulator for LTT systems in discrete time, considering both
infinite and finite control horizons. In the infinite horizon case, the optimal input is a state
feedback with constant gain matrix K, while in the finite horizon case it is a state feedback with
time-varying gain matrix Ky

6.3.1 Infinite horizon

In discrete time, the performance index for the infinite horizon LQP controller reads

— 1 1
J5e{x,u} = Z §ngxk + u} Sx;, + iu;Ruk
k=0

where Q is a symmetric positive semi-definite n X n matrix, S is a p X n matrix and R is a
symmetric positive definite p x p matrix. If the system (A, B) is controllable, then there exist an
input sequence {u} such that the index has finite value. In fact, if the system is controllable, it
can be steered to zero in a finite number of steps 7', and by choosing uy = 0 for k > T all cost
terms are zero for all stages k > 0.

The aim is to compute the optimal input sequence u that minimizes the performance index
J§°. At this stage, no assumptions are made on the structure of u.

Showing the components at the first stage ¥ = 0 and at the generic stage k = n of the
performance index, we get

1 1 1 1
Joo{x,u} = ixa—on + uy Sx¢ + iuJRuo +-- 4 §X;|;an +u,) Sx,, + iu;:Run +...

The value of the index does not change by adding

1 1 1 1
0= ingxo - §XJPX0 + §X1TPX1 — §X1TPX1 + 4
1 1
R §XIPxn — ix:;Pxn + XI_HPXTL_H — XI+1PXn+1 +...

where P is any positive semidefinite matrix, obtaining
) I T I T I T T L I T
Joo{x,u} = 5%0 Pxo + —5%0 Pxo + 5%0 Qxo + uy Sxp + 30 Rug + 2% Px; ) +...
I T I T T L T 1 T
R *§Xn Px, + §X" Qx,, + u, Sx, + §u" Ru, + ianPan +... (6.14)
By using the dynamic equation x;; = Axy; + Bu + k, the expression at the generic stage k = n

1S

1 1 1 1
G = ixIPxn + ixIan + uIan + iuIRun + i(AX” + Bun)TP(Axn + Bu,)
1 1
= 5uZ(R +B PB)u, +u, (S+B'PB)x, + 5xIL(—P +Q+ATPA)x,

that is a quadratic function of u,, with positive definite Hessian matrix (R+BTPB). Furthermore,
note that the quadratic function has the same expression at all stages.

The unique minimizer u}, of the convex quadratic function j, can be obtained by setting the
gradient w.r.t. u,, to zero

Vin = (R+B"PB)u, + (S+B"PA)x, =0
obtaining

u, = —(R+B'PB)"}(S+B'PA)x, = -Kx,
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that computes the optimal input as a state feedback with constant gain matrix K.
Using this expression for uy, the performance index at stage k = n is

Jn “x] (-P+Q+A'"PA—(ST+APB)(R+B'PB) '(S+B'PA))x,

= §Xn
that by choosing the positive definite matrix P as
P=Q+A"PA-(ST+ATPB)(R+B'PB)" ' (S+B'PA) (6.15)

sets to zero the performance index at stage k =n
. 1
Jn = §XI (0)x, =0

Equation (6.15) is the discrete time algebraic Riccati equation (DARE).
Therefore, the performance index expression in (6.14) reduces to

1
V5 {x0} = min J§°{x,u} = §X8—PX0
x,u

that gives the optimal value of the performance index as a function of the initial state xq.

1
An important property of the infinite horizon LQR is that if (A, Q2) is observable then A—BK
is stable, i.e. the optimal state feedback is a stabilizable control.

6.3.2 Finite horizon

In discrete time, the performance index for the finite horizon LQP controller reads

N
1 1 1
Jév{xv uj = E §X£ka + UESXIC + iugRUk + §X1T/QNXN
k=0

where Q and Qpy are symmetric positive semi-definite n X n matrices, S is a p X n matrix and R
is a symmetric positive definite p X p matrix.

The aim is to compute the optimal input sequence u that minimizes the performance index
J&V. At this stage, no assumptions are made on the structure of u.

Showing the components at the first stage & = 0 and at the generic stage & = n of the
performance index, we get

1 1 1 1 1
Jé\'{x, u} = §X(—)FQXO + ugSXO + §u0TRu0 4t §X7TLQXH + ulen + §uTTLRun + §x;QNxN

The value of the index does not change by adding

1 1 1 1
0= §XJP1X0 - §XJP1X0 + §XIP2X1 — §X1TP2X1 —+ -+

1 1
T T T T T T
S §X" Poiix, — §X" Poyixn + %, 1 PxXpp1 — %,  PXpy1 + - + Xy Pyxy —xyPyxy

where Py is any sequence of positive semidefinite matrices, obtaining

1 1 1 1 1
Jév{x, u} = EX(—JFP0X0 + (—QXOTP()XO + §XOTQXO + uOTSXO + §u0TRuO + 2x1TP1x1) + ...

1 1 1 1
cot <—2xIann + QXZQXn + u:;an + §uZRun + 2X71—+1Pn+1xn+1> + ...
1 + 1 +
ot —§XNPNXN+§XNQNXN (616)
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The performance index at the last stage jy is equal to zero by choosing Py = Qy. By using the
dynamic equation x;+1 = Axy; + Bu + k, the expression at the generic stage k = n is

1 1 1 1
ixIann + ixIan + u,TLan + iu,,TLRun + §(Axn +Bu,) P, 1(Ax, + Bu,)

1 1
§u,TL(R +B'P,.1B)u, +u, (S+B'P, 1 B)x, + §x;(—Pn +Q+A'P, 1A,

jn

that is a quadratic function of u,, with positive definite Hessian matrix (R + BTP,,1B).
By choosing the matrix P,, as

P,.=Q,+A'P,, A-(ST+A"P,.,B)R+B'PB)"'(S+B'P,,B) (6.17)
that is called Riccati recursion, the performance index at stage k = n can be written as

T X R+B'P,, B

_ 1 -1 u,
Jn = 2 [un Xn ST 4+ ATPn_;,_lB (R+ BTP"+1B) [R+ BTP"‘HB S+ BTP"'HA] |:x :|

n

showing that j, is a convex quadratic function (since the matrix (R +BTP, 1B)~! is positive
definite, being the inverse of a positive definite matrix), and its minimum j,, = 0 is obtained for

n

[R+BTP,;.B S+BTP,  A] En} =0
giving
u,=—-(R+B'P, 1B Y(S+B'P,,1A)x, = -K,x,
that computes the optimal input as state feedback with time-varying gain matrix K.

Therefore, the performance index expression in (6.16) reduces to

1
ViV{xo} = min J)¥ {x,u} = §X0TP0X0

that gives the optimal value of the performance index as a function of the initial state xq.
Note that by choosing Qn = P, where P is the solution of the DARE, then the Riccati
recursion (6.17) becomes the DARE (6.15).

6.4 Discrete Time Observer

In discrete time, we define the state estimate at time k computed using output measurements up
to time k as Xy, and the one-step-ahead state predictor at time k£ + 1 computed using output
measurements up to time k as f{,ﬁ_l‘k.
The one-step-ahead state predictor is simply computed by forward simulation of the estimator,
as
)A(lc-i-l\lc = A)A(k‘k + Buy (618)

If we define the output error e, at time k as
e = yr — (CxXpjp—1 +Duy)

the state estimator can be computed by correcting the one-step-ahead state predictor using the
information in the new output error

Xpt1|k+1 = Xit1fk + Le€ry1 = Xp1p + Le(Yrr1 — (CXpgri + Dugy1)) (6.19)

where L, is the gain for the state estimator.

49



Insertion of equation (6.19) into equation (6.18) gives an expression to compute the one-step-
ahead state predictor at time k 4 1 as a function of the one-step-ahead state predictor at time k
and the new output measurement at time k + 1

X1k = AXgjr—1 + Leeg) + Buy
= A(Xpjp—1 + Le(yr — (CXpjr—1 + Dug)) + Buy,
= AXy—1 + Bup + AL (yi — (CXpp—1 + Duy)
= AXpp—1 + Bug + Ly — (CXpp—1 + Duy)

where we defined the gain for the one-step-ahead state predictor L as
L=AL,
The error in the one-step-ahead state prediction has the dynamic

AXpp 1)k = Xp 1|k — Xkt 1
= AXjyp-1 + Bug + L(Cxy, + Duy, — (Cxy -1 Duy)) — (Axk + Buy)
= (A - LC)Axy—1

and therefore it converges to zero if the matrix A — LC is stable.

6.5 Discrete Time Kalman Filter

The stationary Kalman filter gives the state observer that is optimal with respect to the perfor-
mance index
o0
T=>
k=0

where wy, is the process noise and vy is the measurement noise, that affect the system as

1
viR vy + iw;—Qflwk

N |

Xpt1 = Axy + Wy
yi = Cxp + v

In a statistical setting, w and v are assumed to be uncorrelated Gaussian noises. The matrices Q™!
and R™! are interpreted as the covariance of the process and measurement noises, respectively.

The expression for the Kalman filter derived using statistical approaches can be formally de-
rived from the expression for the LQR controller by means of the substitutions A — AT and
B — C'. Using these substitutions, the gain for the Kalman estimator is

L.=PC'(R+CPC')!
where the matrix P is the solution of the DARE
P=Q+APAT —APC'(R+CPC") !CPAT

Note that simply plugging the above substitutions in the expression of the LQR gain does not
give the expression for the gain of the Kalman estimator, but instead the expression for the gain
of the Kalman one-step-ahead predictor

L=AL, = APC'(R+CPC')!

that is used to compute the dynamic A — LC of the one-step-ahead prediction error.
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Chapter 7

Introduction to Model Predictive
Control

This chapter contains a brief introduction to Model Predictive Control (MPC) for linear discrete-
time systems. MPC is an advanced control technique with wide industrial use. It formulates the
control problem as an optimization problem, which typically is repeatedly solved on-line, at each
sampling time, as soon as a new state estimate is available. The state estimation is generally
obtained either using Kalman filter, or using Moving Horizon Estimation (that stands to MPC in
the same way as Kalman filter stands to LQR).

MPC employs a model of the system to predict its future evolution (over a finite window of
future steps) and to compute an input sequence optimal with respect to some performance index.
As a difference with respect to LRQ, MPC can naturally and optimally handle constraints and
changes in set point. Furthermore, it allows all matrices and vectors in the state space system,
cost function and constraints to vary stage-wise. The main drawback of MPC is that it requires
significantly longer time to compute the optimal control trajectory, and that this has to be repeated
at each sampling time, since the optimal input sequence is a function of the current state estimate
X0-

7.1 Quadratic Program

In optimization, a Quadratic Program (QP) is an optimization problem with quadratic cost func-
tion and linear constraints

1 +~ ~
min ivTHv +g'v (7.1a)
v
st. Av=b (7.1b)
& < Cv < ﬁ (7.1c)
v<v<v (7.1d)

where (7.1a) is the cost function, (7.1b) are the equality constraints, (7.1c) are the inequality
constraints, and (7.1d) are bounds on variable (that are a special case of general constraints, but
that are much cheaper to handle from a computational point of view, and therefore often treated
explicitly in the solvers).
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7.2 Linear-Quadratic Optimal Control Problem

The MPC formulation that we will consider in this chapter is the discrete time Linear-Quadratic
Optimal Control Problem (LQOCP) with box constraints

N-1
. 1 1
min Z fx;—Qkxk + u;—Skxk + fszkxk + q;—xk + r;—uk + fx;QNxN + q;xN
ux = 2 2 2
St Xg41 = Apxk +Brug +bg, k=0,...,N—1

ngxkgilm kzoauN

u, < ug < ug, k=0,...,N—-1

The value N is called control horizon.

All matrices and vectors can generally vary at each stage of the control problem. Note that
general affine constraints can be defined as well, but that we will not consider them to keep the
exposition easier.

7.2.1 LQOCP as QP

When considered from an optimization point of view, the LQOCP is a QP. Therefore, it can be
solved with any software for QPs (as e.g. quadprog in Matlab). However, the LQOCP has a
special structure that can be exploited to solve it efficiently.

When the LQOCP is represented as a QP, its matrices look like (for the case N = 2)

Q S 0 o0
Ro So 0 0

0
ro

0
0
0
0 0 Sl R1 0 Irp
Q>

ﬁ: 0 0 Q1 S;r 5 g: q1 5
0 0 0 0 q2
N I 0 0 0 0 ET
A=|-A, -B, 1 0 0| , b=|by| |,
0 0 *Al *Bl 1 bl
X0 X0
Uy - up
ﬁ = | X3 5 Vk — i1 3
u; u;
X X2

where it is clear that the matrices have a special structure, and as the horizon length IV increases,
they get increasingly sparse (that is, most of their elements are zero). This special structure can
be efficiently exploited by specialized solvers, that work only with the dense sub-matrices.
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Appendix A

Summary of Useful MATLAB
Commands

In this chapter, useful MATLAB commands for this course will be given without claim to be
complete. Alternatively, you can use the free software package octave.

A.1 Basic Commands

For demonstration, commands and the program output are printed below. In order to suppress
the output, append ’;’ to the end of the line. The explanations are given as comments, which have
to be preceded by '%’. Note, that for some of the following commands, the control package has
to be installed. In Octave it has to be loaded in the beginning

octave:1> pkg load control

For demonstration of the first commands, the following matrices and vectors are used

—-0.25 025 0 0
A= 0 —02 04 b=|0 c' =1,0,0] (A1)
-1 0 0 2

Setting up vectors and matrix

octave:1> B = [0;0;2] % assign column vector
B =
0
0
2
octave:2> C = [1 0 0] % assign row vector
C =
1 0 0
octave:3> C = [1,0,0]; % assign row vector (alternatively)

octave:4> A
A =

[[-0.25 0.25 0];[0 -0.2 0.4];[1 0 0]] % matrix

-0.25000 0.25000 0.00000
0.00000 -0.20000  0.40000
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1.00000 0.00000  0.00000

octave:5> A [-0.25 0.25 0 ; 0 -0.2 0.4 ; 1 0 0]; % matrix (alternatively)

octave:6> A_1 = [B, B, [0;0;1]1]; % combine vectors into matrix
octave:7> A_2 = [A;C] % combine matrix and vector
A2 =
-0.25000 0.25000 0.00000
0.00000 -0.20000 0.40000
1.00000 0.00000 0.00000
1.00000 0.00000  0.00000

octave:8> eye(3); % 3x3 identity matrix

Matrix manipulations:

octave:9> AxB;
octave:10> C%*B;
octave:11> B*C;
octave:12> Ax*2;

% multiplication of matrix and vector
% multiplication of vector and vector
% multiplication of vector and vector
% multiplication of matrix and scalar

Matrix computations

octave:13> det(A) ; % determinant
octave:14> inv(A) ; % inverse matrix
octave:156> A’ ; % transpose
octave:16> transpose(A) ; 7 transpose (alternatively)
octave:17> eig(A) % eigenvalues
ans =
0.32785 + 0.00000i
-0.38892 + 0.39212i
-0.38892 - 0.392121
octave:18> [V,D] = eig(A) 7% eigenvectors and diagonal form with eigenvalues
V =
0.25281 + 0.000001 0.26527 - 0.267451 0.26527 + 0.267451
0.58435 + 0.000001 0.27207 + 0.564691 0.27207 - 0.564691
0.77112 + 0.00000i -0.68206 + 0.00000i -0.68206 - 0.00000i
D =
Diagonal Matrix
0.32785 + 0.00000i 0 0
0 -0.38892 + 0.39212i 0
0 0 -0.38892 - 0.39212i
octave:19> poly(A) % characteristic polynomial
ans =
1.000000 0.450000 0.050000 -0.100000
octave:20> rank(A) ; % rank of a matrix
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Useful stuff

octave:21> f = @(x) x*x Y% define a function
£ =

e(x) x * x

octave:22> f(2) % call the function
ans = 4

A.2 ODE Simulation Example
Numerical simulation of the following system

I bl (A.2)

dt T2 —I1
First, a an Octave function is defined

>> function dx = f_ode(x,t)
dx = [x(2),-x(1)];
endfunction

Then, the time vector is set up
>> t = (0:0.1:10)

corresponding to a simulation for ¢ = 0..10 s with a timestep of 0.1s. Further, the initial condition
is defined

>> x0 = [1 0];

Finally, the simulation is carried out by
>> x_sol = lsode("f_ode", x0, t);
For plotting, use e.g.

>> plot(t,x_sol(:,1));

note, that the index (:,1) picks the first column from the vector.

A.3 State Space Example
In this section, some commands for treating state space systems are demonstrated.

octave:1> A_2 [[-0.25 0.25 0];[0 -0.2 0.4];[0 0 -0.111;

octave:2> B [0;0;2];
octave:3> C = [1 0 0];
octave:4> D = 0;

octave:5> sys = ss(A_2,B,C,D); % setup system

octave:6> step(sys) % plot step response
octave:7> impulse(sys) % plot impulse response
octave:8> rlocus(sys) % plot root locus
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The introduction of a proportional feedback control loop to the system (compare exercises) with
u(t) = —ky(t) (A.3)

yields a closed loop A -matrix
Ag=A —kbc' (A.4)

We thus could define the control loop as system

octave:18> A
octave:19> B [0;0;2];
octave:20> C [1 0 0];
octave:21> roots_cl = @(k) roots(poly(A-k*B*C)); % function for EVals

[[-0.25 0.25 0];[0 -0.2 0.4];[0 0 01];

octave:22> roots_c1(0.008) % eigenvalues of CL for k=0.008
ans =

-0.301965

-0.087432

-0.060603
octave:23> roots_cl(0.2) % eigenvalues of CL for k=0.2
ans =

-0.50700 + 0.000001

0.02850 + 0.279441i

0.02850 - 0.27944i

octave:24> sys_cl = @(k) ss(A-k*B*C,B,C,0); % setup function for CL system
octave:25> step(sys_c1(0.008)) % plot step response (k=0.008)
octave:26> step(sys_cl(0.1)) % plot step response (k=0.1)
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