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Exercises for Course on State-Space Control Systems (SSC)
Albert-Ludwigs-Universität Freiburg – Summer Term 2019

Exercise 11: Model Predictive Control
Prof. Dr. Moritz Diehl, Dr. Dang Doan, Benjamin Stickan, Katrin Baumgärtner

MATLAB Consider again the inverted pendulum (Example 4.4), with nonlinear dynamics

dx

dt
= f(x, u) =

[
x2

sinx1 − cx2 + u cosx1

]
.

The states are defined as x1 = θ and x2 = θ̇.

1. In this task, we will linearize the system and compare the trajectories of the nonlinear and linearized
dynamics.

(a) Write a MATLAB function ode(t,x,u) that defines the ODE model. Choose c = 0.2.

(b) Linearize the system around x̄ = [0, 0]> and ū = 0 to get the approximate system

dx

dt
≈ f(x̄, ū) +

∂f

∂x
(x̄, ū)︸ ︷︷ ︸
A

(x− x̄) +
∂f

∂u
(x̄, ū)︸ ︷︷ ︸
B

(u− ū).

(c) Write a MATLAB function ode_lin(t,x,u) that defines the linearized ODE model

(d) Simulate and compare both systems on the time inverval T = [0, 2] s using the MATLAB func-
tion ode45. Set the initial state to x0 = [π

3
, 0]>.

2. Now, we are going to design a discrete-time LQR controller for the linearized system.

(a) Set up the linearized state-space system of the inverted pendulum using MATLAB’s ss function
and discretize it with c2d. Use a sampling time of Ts = 0.1 s.

(b) Design a discrete time LQR controller with the dlqr function. Use

Q =

[
1 0
0 0.1

]
and R = 0.01

(c) Simulate and plot the discretized closed-loop system for N = 20 steps. The initial state is
x0 = [π

3
, 0]>.

Hint: Use the linearized system and input matrices.

3. We will construct an unconstrained MPC problem for the linearized inverted pendulum with a pre-
diction horizon of Nh = 20. The initial state is x0 = [π

3
, 0]>.

(a) Implement a cost function cost_function(Z,Q,R,P,N), which defines the total cost over
the prediction horizon. All optimization variables are collected in a single vector

Z =
[
x0 u0 x1 u1 . . . xN−1 uN−1 xN

]>
.

Use the infinite horizon LQR cost as final state penalty P .
Hint: Use the dlqr command to obtain P .

(b) Implement the equality constraints matrixAeq and vector beq arising from the system dynamics.

(c) Solve the problem with fmincon and simulate the state trajectories for the optimal control
inputs applied to the linearized system.
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4. Add inequality constraints lb and ub, such that |x2| ≤ 0.8. Solve the problem with fmincon and
simulate the state trajectories for the optimal controls applied to the linearized system.

5. Simulate the nonlinear system with the optimal control trajectory from exercise (4). Start at x0 =
[π
3
, 0]>.

6. (a) Write a function [c, ceq] = nonl_constr(Z, N, Ts, nx, nu, x0), which im-
plements the nonlinear system dynamics. Here, nx = 2 denotes the number of states and nu = 1
the number of controls.
Hint: You can use the ode45 function inside this function to implement

x(k + 1)− fd (x(k), u(k)) = 0,

where fd (x(k), u(k)) denotes a discrete time integration of the nonlinear system.

(b) Solve the nonlinear optimization problem with fmincon and simulate the state trajectories for
the optimal controls applied to the nonlinear system.
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