Supervised Machine Learning A Gentle Introduction

Dr. Jia-Jie (JJ) Zhu Max Planck Institute for Intelligent Systems

> Guest lecture with Prof. Moritz Diehl January 10th, 2020 University of Freiburg

What exactly is ML/AI?

Field of study that gives computers the ability to learn without being explicitly programmed.

Supervised Learning

Regression Classification

The optimal control problem

 $\underset{u_t,t=0,\ldots,N-1}{\text{minimize}}$

subject to

$$\sum_{t=1}^{N-1} g(x_t, u_t) + J(x_N)$$
$$x_{t+1} = f(x_t, u_t), \forall t$$
$$h_t(x_t, u_t) \le 0, \forall t$$
$$x_0 = x_p$$

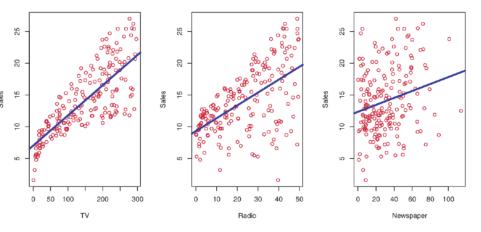
- The system model $f: (x, u) \mapsto x^+$ makes predictions (next state) based on given data (current state and control).
- Such predictive modeling is the study of (supervised) machine learning.

The system model may be uncertain/unknown

Figure adopted from M. Kelly 2017

If you are a ML consultant hired by a client...

The **Advertising** data set consists of the sales of that product in 200 different markets, along with advertising budgets for the product in each of those markets for three different media: **TV**, radio, and newspaper. Your job is to provide advice on how to improve sales of a particular product.



Data in machine learning

In machine learning, we usually work with data sets denoted by $\{x_i,y_i\}_{i=1,2,\ldots,n}$

$x_i =$	$\begin{pmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{ip} \end{pmatrix}$	input features independent variable predictors	y_i	output dependent variable response
---------	--	---	-------	--

In our example, x_{i1} might be the TV budget, x_{i2} the radio budget, and x_{i3} the newspaper budget. y_i is the sale of the product.

Data in machine learning

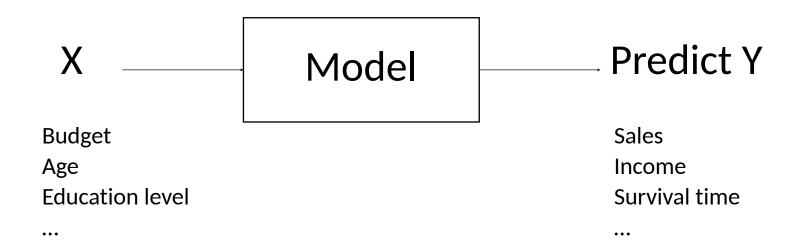
In machine learning, we usually work with data sets denoted by $\{x_i, y_i\}_{i=1,2,...,n}$

$x_i =$	$\begin{pmatrix} x_{i1} \\ x_{i2} \end{pmatrix}$	input features		output dependent variable
	\vdots (x_{ip})	independent variable predictors	y_i	response

In machine learning, we are interested in figuring out the relationship between in order to make predictions. This relationship can be denoted as $Y = f(X) + \epsilon$

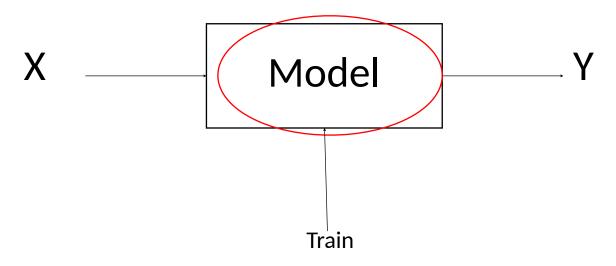
Regression

Regression



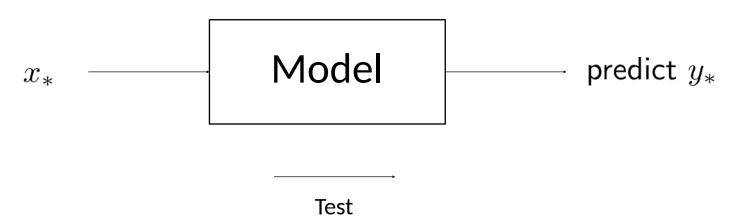
How does it work?

Given training data: $\{x_i, y_i\}_{i=1,2,...,n}$, we train (fit, teach) the model.



How does it work?

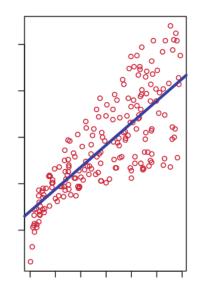
Then we pass the new (unseen) test data x_* to the model to predict the unknown quantity of interest y_* .



Linear Regression

The model:
$$f(x) = \theta^T x$$

How do we learn from the data?



Linear Regression

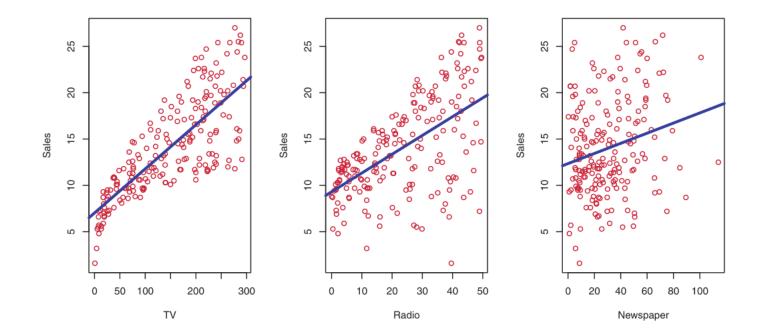
The model: $f(x) = \theta^T x$ How do we learn from the data? We minimize the objective function:

This is called least square regression

$$\min_{\theta} J(\theta) = \sum_{i} (\theta^T x^{(i)} - y^{(i)})^2,$$

where $\{x^{(i)}, y^{(i)}\}_{i=1,2,...}$ is the training dataset. This process is called optimization.

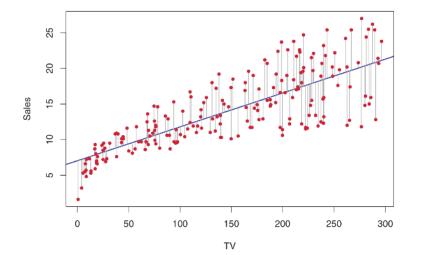
Case study: Advertising data set



Case study: Advertising data set

sales $\approx \theta \times TV + \theta_0$

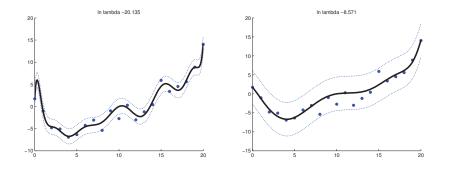
Given data, we want to solve $\min_{\theta} J(\theta) = \sum_{i} (\theta^T x^{(i)} - y^{(i)})^2$



Solving this optimization problem, we have found that Y = 7.03 + 0.0475X.

Generalized linear model

- Consider the the generalized linear model: $f(x) = \theta^{\top} \phi(x)$.
 - The mapping $\phi: x \mapsto \phi(x)$ is called a "feature map".
- This allows us to model non-linear relationship. (you have learned non-linear least square)



How to do it on a computer? (sklearn)

Training (a.k.a. learning, fitting):

model = linear_model.LinearRegression()
model.fit(data: X, Y)

Testing (a.k.a. predicting, evaluating):

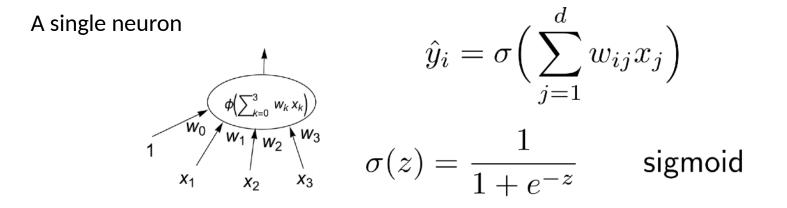
Y = model.predict(new data: X)

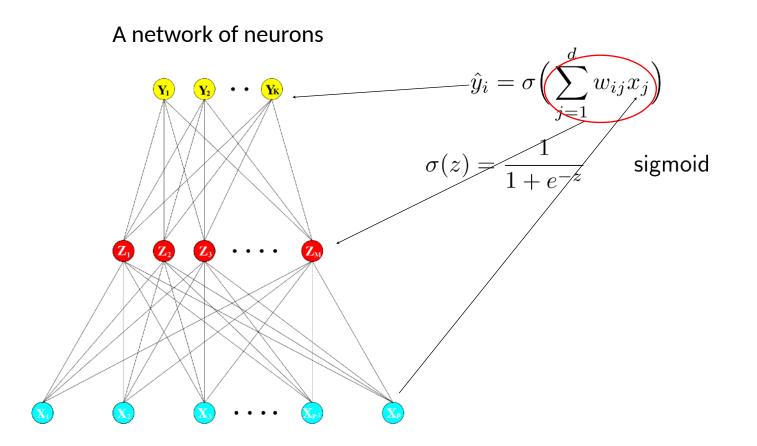
More about this during the hands-on session.

Deep neural nets

The hottest topic in machine learning and beyond

Neural networks are computational models motivated by our understanding of the brain.





How to learn/train NN?

Recall that we minimize the objective function in linear regression

$$\min_{\theta} J(\theta) = \sum_{i} (\theta^T x^{(i)} - y^{(i)})^2$$

When training DNN, we solve the following optimization problem.

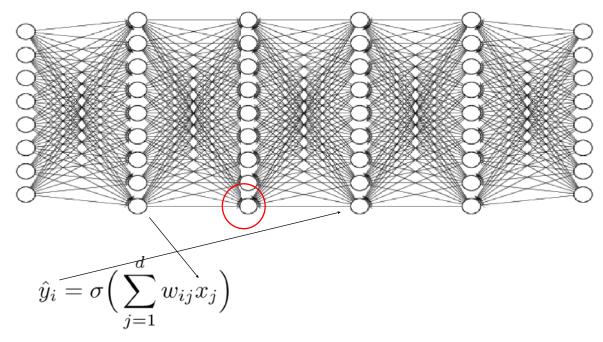
$$\min_{\theta} \sum_{i=1}^{N} \left(f_{\theta}(x^{(i)}) - y^{(i)} \right)^2,$$

Where f_{θ} is the NN with weights θ .

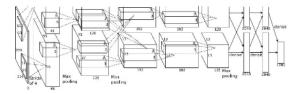
Recall, you have learned the derivation of this in MLE/MAP.

When applying stochastic gradient descent to the above problem, the training is sometime called back-propagation (due to the chain rule).

Deep Neural Network - Stack them up!



Other structures Convolutional neural net (CNN)



Recurrent neural net (RNN)

arget chars:	°0"	Υ.	т	"U"
	1.0 2.2 -3.0	0.5	0.1	0.2
output layer	2.2	0.3	0.5	-1.5
output my at		-1.0	1.9	-0.1
	4.1	1.2	-1.1	2.2
		1		W by
				A4_10
	0.2	1.0	0.1 W N	0.3
hidden layer	0.3 -0.1 0.9	- 0.3	0.5 W h	0.9
	0.9	0.1	-0.3	0.7
			2125	
	1	1	1	W_M
				11_0
	1	0	0	0
incut layer	0	1	0	0
	000	0	0 1 0	
		and the second second		0
inpul chars.	167	°0"	T	T

This is called multi-layer perceptron (MLP).

A closer look: what is learning?

Model assessment and selection

Empirical risk minimization (ERM)

The ML task is to minimize the following **empirical risk**.

$$R_{emp} = \frac{1}{N} \sum_{i=1}^{N} L\left(y_{i}, \delta\left(\mathbf{x}_{i}\right)\right),$$

where $\delta(x_i)$ is the predictive model. It can be linear or arbitrary form such as NN.

However, exact minimization of ER will result in overfitting. (nature's distribution is typically not degenerative)

Solution: regularization

Instead of the empirical loss, we minimize the regularized version:

$$\frac{1}{N}\sum_{i=1}^{N} L\left(y_{i}, \delta\left(\mathbf{x}_{i}\right)\right) + \lambda R(\delta)$$

- This works with simple linear models, as well as more complicated models such as deep neural nets.
- This forces the function map to have some regularity commonly found in natural

domains, such as smoothness.

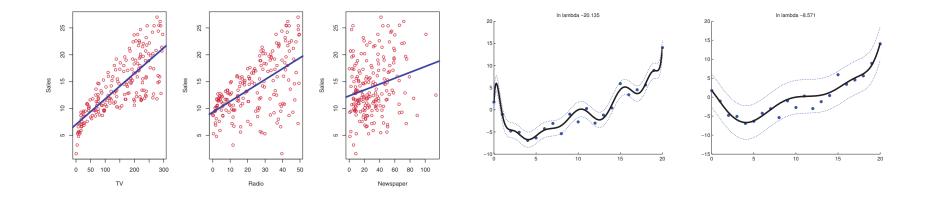
"learning = extraction of the regularity from the data"
 (B. Schoelkopf or someone else)

Example: ridge regression (RR)

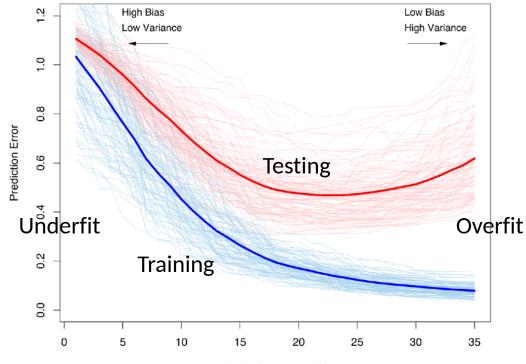
• Given dataset,

$$\sum_{i} \left(\theta^{\mathsf{T}} \phi(x^{(i)}) - y^{(i)} \right)^2 + \lambda \|\theta\|_2^2.$$

• The **regularization** term controls functions to not 'wiggle' too much.



The regularization reflects in the so-called variance and bias trade-off



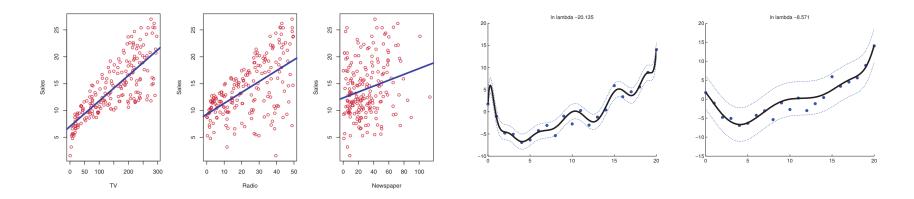
Model Complexity (df)

Example: ridge regression (RR)

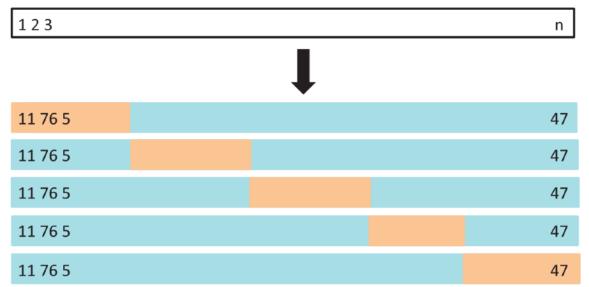
• Given dataset,

$$\sum_{i} \left(\theta^{\mathsf{T}} \phi(x^{(i)}) - y^{(i)} \right)^2 + \lambda \|\theta\|_2^2.$$

• How do we choose λ ?



K-fold Cross-Validation (CV)



Choose the model (hyper-parameter) with the smallest CV error.

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} MSE_i$$

Use CV to choose hyperparameter for ridge regression

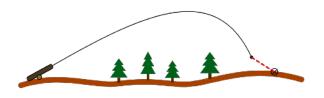
Recall that we minimize the objective function in linear regression

$$\min_{\theta} J(\theta) = \sum_{i} (\theta^T x^{(i)} - y^{(i)})^2$$

We add a term to this objective function to arrive at the ridge regression model

$$\begin{split} \min_{\theta} J(\theta) &= \sum_{i} (\theta^{T} x^{(i)} - y^{(i)})^{2} + \lambda \|\theta\|^{2}.\\ \text{Quiz: what happens to RR when } \lambda = 0?\\ \lambda \text{ is a hyperparameter which we may choose by CV.} \quad \lambda = \infty \end{split}$$

Big picture: ML as function approximation



 $\underset{u_t,t=0,\ldots,N-1}{\text{minimize}}$

subject to

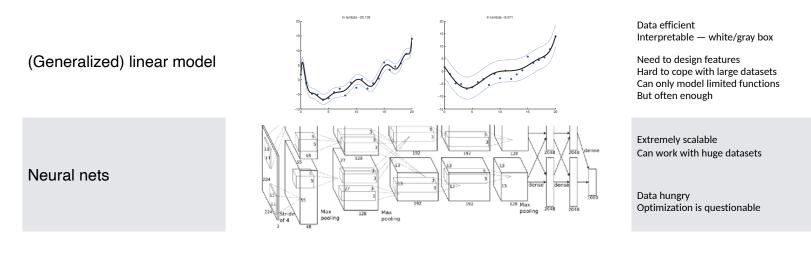
$$\sum_{t=1}^{N-1} g(x_t, u_t) + J(x_N)$$
$$x_{t+1} = f(x_t, u_t), \forall t$$
$$h_t(x_t, u_t) \le 0, \forall t$$
$$x_0 = x_p$$

 What we have talked about so far is to build a model using tools such as GLM and DNN to approximate the function

 $f:(x,u)\mapsto x^+$

 Mathematically, this is called function approximation.

Big picture: ML as function approximation



Other

Gaussian process, polynomial chaos, mixture density, kernel regression,

. . .

In general, we can classify methods into parametric and non-parametric ones.

Summary

In this lecture, we have learned:

- The training—testing paradigm of supervised machine learning
- Model classes such as GLM (ridge reg.) and NN
- How to regularize and select models
- The framework of empirical risk minimization
 - The essence of learning is *seeking regularity in nature*

References &

Recommendations for further reading

- Online courses
 - A Ng's ML/DL courses on Coursera
 - G Hinton's course on Coursera
 - N de Freitas's machine learning lectures
 - Stanford CS230/1n (deep learning, CNN stuff)
- Textbooks:
 - James et al., An Introduction to Statistical Learning with Applications in R
 - *Hastie et al., The Elements of Statistical Learning
 - Murphy, Machine Learning: A Probabilistic Perspective
 - *Bishop, Pattern Recognition and Machine Learning
 - *Schoelkopf et al., Learning with Kernels
 - Sutton et. al., Reinforcement Learning, an Introduction
 - Goodfellow et. al, Deep Learning