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What exactly is ML/AI?

Field of study that gives computers the ability to learn without being explicitly 
programmed.



Supervised Learning
Regression 

Classification



The optimal control problem

minimize
ut,t=0,...,N�1

N�1X

t=1

g(xt, ut) + J(xN )

subject to xt+1 = f(xt, ut), 8t
ht(xt, ut)  0, 8t
x0 = xp

<latexit sha1_base64="9974Ku0D9onDC2Atq182pEabiuM="></latexit>

The system model may be uncertain/unknown

• The system model                      makes 
predictions (next state) based on given 
data (current state and control).


• Such predictive modeling is the study 
of (supervised) machine learning.

f : (x, u) 7! x+
<latexit sha1_base64="RvnJt0SetfpyZw7bnRh4/u6Hi6I="></latexit>

Figure adopted from M. Kelly 2017



If you are a ML consultant hired by a client…

The Advertising data set consists 
of the sales of that product in 
200 different markets, along 
with advertising budgets for the 
product in each of those markets 
for three different media: TV , 
radio , and newspaper. Your job 
is to provide advice on how to 
improve sales of a particular 
product. 



Data in machine learning

input 
features 
independent variable 
predictors

output 
dependent variable 
response



Data in machine learning

input 
features 
independent variable 
predictors

output 
dependent variable 
response



Regression



X Predict YModel

Regression

Budget 
Age 
Education level 
… 

Sales 
Income 
Survival time 
… 



How does it work?

X YModel

Train



How does it work?

Model

Test



Linear Regression



Linear Regression

This is called least square regression



Case study: Advertising data set



Case study: Advertising data set



Generalized linear model

• Consider the the generalized linear model: . 
• The mapping  is called a “feature map”. 

• This allows us to model non-linear relationship. (you have learned non-linear least square) 

•

f(x) = θ⊤ϕ(x)
ϕ : x ↦ ϕ(x)
7.5. Ridge regression 225
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Figure 7.7 Degree 14 Polynomial fit to N = 21 data points with increasing amounts of !2 regularization.
Data was generated from noise with variance σ2 = 4. The error bars, representing the noise variance σ2,
get wider as the fit gets smoother, since we are ascribing more of the data variation to the noise. Figure
generated by linregPolyVsRegDemo.

7.5 Ridge regression

One problem with ML estimation is that it can result in overfitting. In this section, we discuss a
way to ameliorate this problem by using MAP estimation with a Gaussian prior. For simplicity,
we assume a Gaussian likelihood, rather than a robust likelihood.

7.5.1 Basic idea

The reason that the MLE can overfit is that it is picking the parameter values that are the
best for modeling the training data; but if the data is noisy, such parameters often result in
complex functions. As a simple example, suppose we fit a degree 14 polynomial to N = 21 data
points using least squares. The resulting curve is very “wiggly”, as shown in Figure 7.7(a). The
corresponding least squares coe!cients (excluding w0) are as follows:

6.560, -36.934, -109.255, 543.452, 1022.561, -3046.224, -3768.013,
8524.540, 6607.897, -12640.058, -5530.188, 9479.730, 1774.639, -2821.526

We see that there are many large positive and negative numbers. These balance out exactly
to make the curve “wiggle” in just the right way so that it almost perfectly interpolates the data.
But this situation is unstable: if we changed the data a little, the coe!cients would change a lot.

We can encourage the parameters to be small, thus resulting in a smoother curve, by using a
zero-mean Gaussian prior:

p(w) =
∏

j

N (wj |0, τ2) (7.30)

where 1/τ2 controls the strength of the prior. The corresponding MAP estimation problem
becomes

argmax
w

N∑

i=1

logN (yi|w0 +wTxi,σ
2) +

D∑

j=1

logN (wj |0, τ2) (7.31)



How to do it on a computer? (sklearn)



Deep neural nets
The hottest topic in machine learning and beyond



Neural networks are computational models motivated by our 
understanding of the brain.  

A single neuron



A network of neurons



How to learn/train NN?

When training DNN, we solve the following optimization problem. 

 

Where  is the NN with weights . 
Recall, you have learned the derivation of this in MLE/MAP.  
When applying stochastic gradient descent to the above problem, the training is sometimes 
called back-propagation (due to the chain rule).

min
θ

N

∑
i=1

(fθ(x(i)) − y(i))2,

fθ θ



Deep Neural Network – Stack them up!

This is called multi-layer perceptron (MLP).

Convolutional neural net (CNN)

Recurrent neural net (RNN)

Other structures



A closer look: what is learning? 
Model assessment and selection



Empirical risk minimization (ERM)

The ML task is to minimize the following empirical risk. 

                             

where  is the predictive model. It can be linear or arbitrary form 
such as NN. 
However, exact minimization of ER will result in overfitting. (nature’s 
distribution is typically not degenerative)

Remp =
1
N

N

∑
i=1

L (yi, δ (xi)),

δ(xi)



Solution: regularization

Instead of the empirical loss, we minimize the regularized version:  

 

• This works with simple linear models, as well as more complicated models such as deep 
neural nets.  

• This forces the function map to have some regularity commonly found in natural 

domains, such as smoothness.  
• “learning = extraction of the regularity from the data’’  

(B. Schoelkopf or someone else)

1
N

N

∑
i=1

L (yi, δ (xi)) + λR(δ)



Example: ridge regression (RR)

• Given dataset, 

                            . 

• The regularization term controls functions to not ‘wiggle’ too much.

∑
i

(θ⊤ϕ(x(i)) − y(i))2 + λ∥θ∥2
2
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7.5 Ridge regression

One problem with ML estimation is that it can result in overfitting. In this section, we discuss a
way to ameliorate this problem by using MAP estimation with a Gaussian prior. For simplicity,
we assume a Gaussian likelihood, rather than a robust likelihood.
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to make the curve “wiggle” in just the right way so that it almost perfectly interpolates the data.
But this situation is unstable: if we changed the data a little, the coe!cients would change a lot.
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p(w) =
∏
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where 1/τ2 controls the strength of the prior. The corresponding MAP estimation problem
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The regularization reflects in the so-called 
variance and bias trade-off

Training

Testing

OverfitUnderfit



Example: ridge regression (RR)

• Given dataset, 

                            . 

• How do we choose ?

∑
i

(θ⊤ϕ(x(i)) − y(i))2 + λ∥θ∥2
2

λ
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One problem with ML estimation is that it can result in overfitting. In this section, we discuss a
way to ameliorate this problem by using MAP estimation with a Gaussian prior. For simplicity,
we assume a Gaussian likelihood, rather than a robust likelihood.
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K-fold Cross-Validation (CV)

Choose the model (hyper-parameter) 
with the smallest CV error.



Use CV to choose hyperparameter for ridge 
regression

λ = ∞



Big picture: ML as function approximation

minimize
ut,t=0,...,N�1

N�1X

t=1

g(xt, ut) + J(xN )

subject to xt+1 = f(xt, ut), 8t
ht(xt, ut)  0, 8t
x0 = xp

<latexit sha1_base64="9974Ku0D9onDC2Atq182pEabiuM="></latexit>

• What we have talked about so far is to 
build a model using tools such as GLM 
and DNN to approximate the function


• Mathematically, this is called function 
approximation.

f : (x, u) 7! x+
<latexit sha1_base64="RvnJt0SetfpyZw7bnRh4/u6Hi6I="></latexit>

Figure adopted from M. Kelly 2017



Big picture: ML as function approximation
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7.5 Ridge regression

One problem with ML estimation is that it can result in overfitting. In this section, we discuss a
way to ameliorate this problem by using MAP estimation with a Gaussian prior. For simplicity,
we assume a Gaussian likelihood, rather than a robust likelihood.

7.5.1 Basic idea

The reason that the MLE can overfit is that it is picking the parameter values that are the
best for modeling the training data; but if the data is noisy, such parameters often result in
complex functions. As a simple example, suppose we fit a degree 14 polynomial to N = 21 data
points using least squares. The resulting curve is very “wiggly”, as shown in Figure 7.7(a). The
corresponding least squares coe!cients (excluding w0) are as follows:
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We see that there are many large positive and negative numbers. These balance out exactly
to make the curve “wiggle” in just the right way so that it almost perfectly interpolates the data.
But this situation is unstable: if we changed the data a little, the coe!cients would change a lot.
We can encourage the parameters to be small, thus resulting in a smoother curve, by using a

zero-mean Gaussian prior:

p(w) =
∏

j

N (wj |0, τ2) (7.30)

where 1/τ2 controls the strength of the prior. The corresponding MAP estimation problem
becomes

argmax
w

N∑

i=1

logN (yi|w0 +wTxi,σ
2) +

D∑

j=1

logN (wj |0, τ2) (7.31)

(Generalized) linear model

Data efficient 
Interpretable — white/gray box 

Need to design features 
Hard to cope with large datasets 
Can only model limited functions 
But often enough

Neural nets

Extremely scalable  
Can work with huge datasets 

Data hungry 
Optimization is questionable

Other
Gaussian process, polynomial chaos, mixture density, 
kernel regression,
… 

In general, we can classify methods into 
parametric and non-parametric ones.



Summary
In this lecture, we have learned:


• The training—testing paradigm of supervised machine learning


• Model classes such as GLM (ridge reg.) and NN


• How to regularize and select models


• The framework of empirical risk minimization


• The essence of learning is seeking regularity in nature



*technical

References & 
Recommendations for further reading
• Online courses 

• A Ng’s ML/DL courses on Coursera 
• G Hinton’s course on Coursera 
• N de Freitas’s machine learning lectures 
• Stanford CS230/1n (deep learning, CNN stuff) 

• Textbooks: 
• James et al., An Introduction to Statistical Learning with Applications in R 
• *Hastie et al., The Elements of Statistical Learning 
• Murphy, Machine Learning: A Probabilistic Perspective 
• *Bishop, Pattern Recognition and Machine Learning 
• *Schoelkopf et al., Learning with Kernels 
• Sutton et. al., Reinforcement Learning, an Introduction 
• Goodfellow et. al, Deep Learning


