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Exercises for Lecture Course on Numerical Optimal Control (NOC)
Albert-Ludwigs-Universität Freiburg – Summer Term 2019

Exercise 2: Nonlinear Optimization and Newton-type Methods

Prof. Dr. Moritz Diehl, Florian Messerer, Andrea Zanelli, Dimitris Kouzoupis

In this exercise we will start using solvers for nonlinear and nonconvex optimization problems and
we will implement a simple Newton-type algorithm for unconstrained problems.

1. The Rosenbrock problem. Consider the following unconstrained optimization problem:

min
x,y

f(x, y) := (1− x)2 + 100(y − x2)2. (1)

Such a problem is commonly referred to as Rosenbrock problem. Have a look at the script
provided with this exercise that formulates (1) using CasADi and solves it with the solver for
nonlinear nonconvex optimization problems IPOPT. In this exercise we will implement a simple
Newton-type algorithm that can be used to solve such a problem.

(a) Compute on paper the gradient of f and its Hessian.

(1 point)

(b) Implement two MATLAB functions that take as input arguments x and y and return ∇f
and ∇2f respectively.

(1 point)

(c) Implement the following Newton-type method:

wk+1 = wk −M−1∇f(wk), (2)

where w := [x, y]T and M ≈ ∇2f(wk) is an approximation of the exact Hessian. Test your
implementation with two different Hessian approximations: i) M = ρI2 for different values
of ρ and ii) M = ∇2f(wk). Initialize the iterates at w0 = [1, 1.1]T and run the algorithm
for N = 1000 iterations. Plot the iterates in the x− y space. When using the fixed Hessian
approximation, does the algorithm converge for ρ = 100? And for ρ = 500?

(2 points)

(d) Use now CasADi to compute the gradient and Hessian of f and use it in your implementation
of the Newton method. Hint: once you have created a CasADi expression, you can compute
its Jacobian and Hessian calling the CasADi functions jacobian and hessian:

1 x = MX.sym('x',2,1);
2 expr = sin(x(1))*x(2);
3 j expr = jacobian(expr,x);
4 J = Function('J', {x}, {j expr});

(1 point)

2. A simple dynamic optimization problem. Consider the problem of finding the optimal way
of throwing two balls from different locations such that their distance after a fixed time T is
minimized. The dynamics of the system taken into account can be modeled in two dimensions
by the following differential equation:

ṗ1y = v1y, ṗ2y = v2y

ṗ1z = v1z, ṗ2z = v2z

v̇1y = −(v1y − w)
∥∥v1 − [w, 0]T

∥∥ d1, v̇2y = −(v2y − w)
∥∥v2 − [w, 0]T

∥∥ d2
v̇1z = −v1z

∥∥v1 − [w, 0]T
∥∥ d1 − g, v̇2z = −v2z

∥∥v2 − [w, 0]T
∥∥ d2 − g,
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where piy and piz represent the y and z coordinate of the i-th ball respectively and viy and viz
the components of its velocity. The two balls are subject to drag forces with drag coefficients d1
and d2, side wind w and gravitational acceleration g. In order to achieve the desired goal, we
formulate the following optimization problem:

min
vstart

‖p1(T )− p2(T )‖22 (3a)

s.t. p1z(T ) ≥ 0, p2z(T ) ≥ 0, (3b)

‖v1‖22 ≤ v̄2, ‖v2‖22 ≤ v̄2, (3c)

where vstart := [v1y(0), v1z(0), v2y(0), v2z(0)]T are the decision variables and p(T ) is the output
of an RK4 integrator that discretizes the dynamics of the system. Additional constraints have
been added to the formulation that represent the requirement that the balls have to be above
the ground at time T (notice that, due to the dynamics of the system this implies that the balls
are above the ground at every time t ∈ [0, T ]).

(a) A template MATLAB function that takes the initial velocities of the balls as an input and
returns the final position at time T is provided with this exercise. This function can be used
both with numerical and CasADi symbolic inputs. Complete the provided template and use
it to generate a CasADi expression for p(T ). Use N = 100 equidistant intermediate steps
and T = 0.5 s. Set d1 = 0.1 m−1, d2 = 0.5 m−1 and w = 2 m/s.

(2 point)

(b) Using CasADi, formulate the described dynamic optimization problem (3) and solve it using
IPOPT. Fix v̄ = 15 m/s and p1(0) = [0, 0]T , p2(0) = [10, 0]T . Once you have solved the
optimization problem, simulate the system for the optimal initial velocities and plot the
resulting trajectories in space. Hint: you can have a look at the constrained Rosenbrock ex-
ample provided with this exercise to learn how to formulate constrained problems in CasADi.

(3 points)

(c) [Bonus ] Consider the case where there is no drag (d1 = d2 = 0 m−1). What kind of
optimization problem does (3) become?

(1 bonus point)

(d) [Bonus ] Change (3) to an unconstrained problem by removing (3b) and (3c). Set ‖v1‖2 = v̄
and ‖v2‖2 = v̄ and reformulate (3) such that the angles α1 := arccos(v1y(0)/ ‖v1‖) and
α2 := arccos(−v2y(0)/ ‖v2‖) are the only decision variables. In this way a two-dimensional
dynamic optimization problem is obtained. Use the Newton-type method implemented at
point 1.b to solve such a problem.

(2 bonus points)

This sheet gives in total 10 points and 3 bonus points
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