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Preface

Optimal control regards theoptimizationof dynamic systems. Thus, it bridges
two large and active research communities of applied mathematics, each with
their own journals and conferences. A scholar of numerical optimal control
has to acquire basic numerical knowledge within both fields,i.e. numerical op-
timization on the one hand, and system theory and numerical simulation on
the other hand. Within this text, we start by rehearsing basic concepts from
both fields. Hereby, we give numerical optimization the larger weight, as dyn-
amic system simulation is often covered rather well in engineering and applied
mathematics curricula, and basic optimization concepts such as convexity or
optimality conditions and Lagrange multipliers play a crucial role in numerical
methods for optimal control. The course is intended for students of engineering
and the exact sciences as well as for interested PhD studentsand besides the
abovementioned fields requires only knowledge of linear algebra and numeri-
cal analysis. The course should be accompanied by computer exercises, and its
aim is to give an introduction into numerical methods for solution of optimal
control problems, in order to prepare the students for usingand developing
these methods themselves for specific applications in science and engineering.

The course is divided into four major parts.

• Numerical Optimization [64, 22]

• Discrete Time Optimal Control [10]

• Continuous Time Optimal Control [25, 14]

• Online Optimal Control [30]

This manuscript is based on lecture notes of courses on optimal control that
the authors gave since 2011 at various universities (ETH Zurich, KU Leuven,
Trento, Freiburg, Trondheim, Linkoping and Chalmers University of Techno-
logy). It profited already from feedback by many students, but is still work in
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progress and not yet error free. Special thanks go to Sebastian Sager for in-
spiring discussions on how best to present optimal control,and for suggesting
some of the quotes at the start of each chapter. Both authors want to thank
Jesus Lago Garcia who helped, during a student job contract,with the Latex
editing of text and formulae, who suggested and implementedvaluable chan-
ges in the organization of the chapters, and who in particular collected and
re-edited nearly all of the exercises of this book.

The present version of the manuscript is not yet complete andmisses a few
chapters we are still in the process of writing, and it is not yet proofread care-
fully. However, we decided to put the PDF already online so that we can refer
to the manuscript in courses we teach and recommend it to interested persons.
Feedback is most welcome, in particular at this stage of the writing process!

Gothenburg and Freiburg Sébastien Gros and Moritz Diehl
April 2017

Please send feedback and ideas for improvement to
grosse@chalmers.se.

and
moritz.diehl@imtek.uni-freiburg.de
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Introduction: Dynamic Systems and
Optimization

Optimal control regards the optimization of dynamic systems. We identify dy-
namic systems with processes that are evolving in time and that can be charac-
terized bystates xthat allow us to predict the future behavior of the system.
Often, the dynamic system can be controlled by a suitable choice of inputs
that we denote ascontrols u in this textbook. Typically, these controls shall
be chosen optimally in order to optimize someobjective functionand respect
someconstraints. The process of finding the optimal control inputs requires
numerical methods, and these methods are the focus of the book.

As an example of an optimal control problem, we might think ofan electric
train where the statex consists of the current position and velocity, and where
the controlu is the engine power that the train driver can choose at each mo-
ment. We might regard the motion of the train on a time interval [0,T], and the
objective could be to minimize the consumed energy to drive from Station A
to Station B, and one of the constraints would be that the train should arrive in
Station B at the fixed final time,T.

A typical property of a dynamic system is that knowledge of aninitial state
x0 and acontrol input trajectory u(t) for all t ∈ [0,T] allows one to determine
the wholestate trajectory x(t) for t ∈ [0,T]. 1 As the motion of a train can very
well be modelled by Newton’s laws of motion, the usual description of this
dynamic system is deterministic and in continuous time and with continuous
states.

But dynamic systems and their mathematical models can come in many va-
riants, and it is useful to properly define the names given commonly to different
dynamic system classes, which we do in the next section. Afterwards, we will
discuss two important classes, continuous time and discrete time systems, in

1 For ease of notation, and without loss of generality, we use time t = 0 as start andt = T as end
of most time intervals in this book.

1
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more mathematical detail, before we give an overview of optimization problem
classes and finally outline the contents of the book chapter by chapter.

1.1 Dynamic System Classes

In this section, let us go, one by one, through the many dividing lines in the
field of dynamic systems.

Continuous vs Discrete Time Systems
Any dynamic system evolves over time, but time can come in twovariants:
while the physical time is continuous and forms the natural setting for most
technical and biological systems, other dynamic systems can best be modelled
in discrete time, such as digitally controlled sampled-data systems, or games.

We call a system adiscrete time systemwhenever the time in which the
system evolves only takes values on a predefined time grid, usually assumed
to be integers. If we have an interval of real numbers, like for the physical
time, we call it acontinuous time system. In this book, we usually denote the
continuous time by the variablet ∈ R and write for examplex(t). In case of
discrete time systems, we use an index, usuallyk ∈ N, and writexk for the state
at time pointk.

Continuous vs Discrete State Spaces
Another crucial element of a dynamic system is its statex, which often lives in
a continuous state space, like the position of the train, butcan also be discrete,
like the position of the figures on a chess game. We define thestate spaceX
to be the set of all values that the state vectorx may take. IfX is a subset of a
real vector space such asRnx or another differentiable manifold, we speak of a
continuous state space. If X is a finite or a countable set, we speak of adiscrete
state space. If the state of a system is described by a combination of discrete
and continuous variables we speak of ahybrid state space.

A multi-stage systemis the special case of a system with hybrid state space
that develops through a sequence of stages and where the state space on each
stage is continuous. An example for a multi-stage system is walking, where
consecutive stages are characterized by the number of feet that are on the
ground at a given moment. For multi-stage systems, the time instant when
one stage ends and the next one starts can often be described by a switching
function. This function is positive on one and negative on the other stage, and
assumes the value zero at the time instant that separates thestages.

Another special case are systems that develop in a continuous state space
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and in continuous time, but are sometimes subject to discontinuous jumps,
such as bouncing billiard balls. These can often be modelledas multi-stage
systems with switching functions, plus so calledjump conditionsthat describe
the discontinuous state evolution at the time instant between the stages.

Finite vs Infinite Dimensional Continuous State Spaces
The class of continuous state spaces can be further subdivided into the finite
dimensional ones, whose state can be characterized by a finite set of real num-
bers, and the infinite dimensional ones, which have a state that lives in function
spaces. The evolution of finite dimensional systems in continuous time is usu-
ally described byordinary differential equations (ODE)or their generalizati-
ons, such asdifferential algebraic equations (DAE).

Infinite dimensional systems are sometimes also calleddistributed parame-
ter systems, and in the continuous time case, their behaviour is typically des-
cribed bypartial differential equations (PDE). An example for a controlled
infinite dimensional system is the evolution of the airflow and temperature dis-
tribution in a building that is controlled by an air-conditioning system.

Continuous vs Discrete Control Sets
We denote byU the set in which the controlsu live, and exactly as for the
states, we can divide the possible control sets intocontinuous control setsand
discrete control sets. A mixture of both is ahybrid control set. An example for
a discrete control set is the set of gear choices for a car, or any switch that we
can can choose to be either on or off, but nothing in between.

In the systems and control community, the termhybrid systemdenotes a
dynamic system which has either a hybrid state or hybrid control space, or
both. Generally speaking, hybrid systems are more difficult to optimize than
systems with continuous control and state spaces.

However, an interesting and relevant class are hybrid systems that have con-
tinuous time and continuous states, but discrete controls.They might be called
hybrid systems withexternal switchesor integer controlsand turn out to be
tremendously easier to optimize than other forms of hybrid systems, if treated
with the right numerical methods [69].

Time-Variant vs Time-Invariant Systems
A system whose dynamics depend on time is called atime-variant system,
while a dynamic system is calledtime-invariantif its evolution does not de-
pend on the time and date when it is happening. As the laws of physics are
time-invariant, most technical systems belong to the latter class, but for exam-
ple the temperature evolution of a house with hot days and cold nights might
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best be described by a time-variant system model. While the class of time-
variant systems trivially comprises all time-invariant systems, it is an important
observation that also the other direction holds: each time-variant system can be
modelled by a nonlinear time-invariant system if the state space is augmented
by an extra state that takes account of the advancement of time, and which we
might call the “clock state”.

Linear vs Nonlinear Systems
If the state trajectory of a system depends linearly on the initial value and
the control inputs, it is called alinear system. If the dependence is affine, one
should ideally speak of anaffine system, but often the term linear is used here
as well. In all other cases, we speak of anonlinear system.

A particularly important class of linear systems arelinear time invariant
(LTI) systems. An LTI system can be completely characterized in atleast
three equivalent ways: first, by two matrices that are typically called A and
B; second, by itsstep response function; and third, by itsfrequency response
function. A large part of the research in the control community is devoted to
the study of LTI systems.

Controlled vs Uncontrolled Dynamic Systems
While we are in this book mostly interested incontrolled dynamic systems, i.e.
systems that have a control input that we can choose, it is good to remember
that there exist many systems that cannot be influenced at all, but that only
evolve according to their intrinsic laws of motion. Theseuncontrolled systems
have an empty control set,U = ∅. If a dynamic system is both uncontrolled
and time-invariant it is also called anautonomous system.

Note that an autonomous system with discrete state space that also lives in
discrete time is often called anautomaton.

Within the class of controlled dynamic systems, of special interest are the so
calledcontrollable systems, which have the desirable property that their state
vectorx can be steered from any initial statex0 to any final statexfin in a finite
time with suitably chosen control input trajectories. Manycontrolled systems
of interest are not completely controllable because some parts of their state
space cannot be influenced by the control inputs. If these parts are stable, the
system is calledstabilizable.

Stable vs Unstable Dynamic Systems
A dynamic system whose state trajectory remains bounded forbounded initial
values and controls is called astable system, and anunstable systemotherwise.
For autonomous systems,stability of the system around a fixed point can be
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defined rigorously: for any arbitrarily small neighborhoodN around the fixed
point there exists a region so that all trajectories that start in this region remain
in N. Asymptotic stabilityis stronger and additionally requires that all consi-
dered trajectories eventually converge to the fixed point. For autonomous LTI
systems, stability can be computationally characterized by the eigenvalues of
the system matrix.

Deterministic vs Stochastic Systems
If the evolution of a system can be predicted when its initialstate and the
control inputs are known, it is called adeterministic system. When its evolution
involves some random behaviour, we call it astochastic system.

The movements of assets on the stockmarket are an example fora stochastic
system, whereas the motion of planets in the solar system canusually be assu-
med to be deterministic. An interesting special case of deterministic systems
with continuous state space arechaotic systems. These systems are so sensitive
to their initial values that even knowing these to arbitrarily high, but finite, pre-
cisions does not allow one to predict the complete future of the system: only
the near future can be predicted. The partial differential equations used in we-
ather forecast models have this property, and one well-known chaotic system
of ODE, theLorenz attractor, was inspired by these.

Note that also games like chess can be interpreted as dynamicsystems. Here
the evolution is neither deterministic nor stochastic, butdetermined by the acti-
ons of an adverse player. If we assume that the adversary always chooses the
worst possible control action against us, we enter the field of game theory,
which in continuous state spaces and engineering applications is often denoted
by robust optimal control.

Open-Loop vs Closed-Loop Controlled Systems
When choosing the inputs of a controlled dynamic system, one first way is
decide in advance, before the process starts, which controlaction we want to
apply at which time instant. This is calledopen-loop controlin the systems
and control community, and has the important property that the controlu is a
function of time only and does not depend on the current system state.

A second way to choose the controls incorporates our most recent know-
ledge about the system state which we might observe with the help of measu-
rements. This knowledge allows us to apply feedback to the system by adapting
the control action according to the measurements. In the systems and control
community, this is calledclosed-loop control, but also the more intuitive term
feedback controlis used. It has the important property that the control action
does depend on the current state. The map from the state to thecontrol action is
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called afeedback control policy. In case this policy optimizes our optimization
objective, it is called theoptimal feedback control policy.

Open-loop control can be compared to a cooking instruction that says: cook
the potatos for 25 minutes in boiling water. A closed-loop, or feedback control
of the same process would for example say: cook the potatos inboiling water
until they are so soft that they do not attach anymore to a forkthat you push into
them. The feedback control approach promises the better result, but requires
more work as we have to take the measurements.

This book is mainly concerned with numerical methods of how to compute
optimal open-loop controls for given objective and constraints. But the last part
of the book is concerned with a powerful method to approximate the optimal
feedback control policy:nonlinear model predictive control, a feedback control
technique that is based on the repeated solution of open-loop optimal control
problems.

Focus of This Book: Deterministic Systems with Continuous States
In this textbook we have a strong focus on deterministic systems with conti-
nuous state and control spaces. In Chapters 7 and we considerdiscrete time
systems, and in Chapters 9 to 14 we discuss continuous time systems.

The main reason for this focus on continuous state and control spaces is that
the resulting optimal control problems can efficiently be treated by derivative-
based optimization methods. They are thus tremendously easier to solve than
most other classes, both in terms of the solvable system sizes and of compu-
tational speed. Also, these continuous optimal control problems comprise the
important class of convex optimal control problems, which allow us to find
a global solution reliably and fast. Convex optimal controlproblems are im-
portant in their own right, but also serve as an approximation of nonconvex
optimal control problems within Newton-type optimizationmethods.

1.2 Continuous Time Systems

Most systems of interest in science and engineering are described in form of
differential equations which live in continuous time. On the other hand, all
numerical simulation methods have to discretize the time interval of interest
in some form or the other and thus effectively generate discrete time systems.
We will thus only briefly sketch some relevant properties of continuous time
systems in this section, and sketch how they can be transformed into discrete
time systems. After this section, and throughout the first two parts of the book,
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we will exclusively be concerned with discrete time systems, before we will
finally come back to the continuous time case in Chapter 9.

Ordinary Di fferential Equations
A controlled dynamic system in continuous time can in the simplest case be
described by an ordinary differential equation (ODE) on a time interval [0,T]
by

ẋ(t) = f (x(t),u(t), t), t ∈ [0,T]

wheret ∈ R is the time,u(t) ∈ Rnu are the controls, andx(t) ∈ Rnx is the state.
The functionf is a map from states, controls, and time to the rate of change of
the state, i.e.f : Rnx ×Rnu × [0,T] → Rnx. Due to the explicit time dependence
of the functionf , this is a time-variant system.

We are first interested in the question if this differential equation has a so-
lution if the initial valuex(0) is fixed and also the controlsu(t) are fixed for
all t ∈ [0,T]. In this context, the dependence off on the fixed controlsu(t) is
equivalent to a a further time-dependence off , and we can redefine the ODE
as ẋ = f̃ (x, t) with f̃ (x, t) := f (x,u(t), t). Thus, let us first leave away the de-
pendence off on the controls, and just regard the time-dependent uncontrolled
ODE:

ẋ(t) = f (x(t), t), t ∈ [0,T]. (1.1)

Initial Value Problems
An initial value problem (IVP) is given by (1.1) and the initial value constraint
x(0) = x0 with some fixed parameterx0. Existence of a solution to an IVP
is guaranteed under continuity off with respect to tox and t according to a
theorem from 1886 that is due to Giuseppe Peano. But existence alone is of
limited interest as the solutions might be non-unique.

Example 1.1 (Non-Unique ODE Solution). The scalar ODE withf (x) =√
|x(t)| can stay for an undetermined duration in the pointx = 0 before lea-

ving it at an arbitrary timet0. It then follows a trajectoryx(t) = (t − t0)2/4 that
can be easily shown to satisfy the ODE (1.1). We note that the ODE function f
is continuous, and thus existence of the solution is guaranteed mathematically.
However, at the origin, the derivative off approaches infinity. It turns out that
this is the reason which causes the non-uniqueness of the solution.

As we are only interested in systems with well-defined and deterministic
solutions, we would like to formulate only ODE with unique solutions. Here
helps the following theorem by CharlesÉmile Picard (1890), and Ernst Leo-
nard Lindel̈of (1894).
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Theorem 1.2 (Existence and Uniqueness of IVP). Regard the initial value
problem(1.1) with x(0) = x0, and assume that f: Rnx × [0,T] → Rnx is
continuous with respect to x and t. Furthermore, assume thatf is Lipschitz
continuous with respect to x, i.e., that there exists a constant L such that for all
x, y ∈ Rnx and all t ∈ [0,T]

‖ f (x, t) − f (y, t)‖ ≤ L‖x− y‖.

Then there exists a unique solution x: [0,T] → Rnx of the IVP.

Lipschitz continuity of f with respect tox is not easy to check. It is much
easier to verify if a function is differentiable. It is therefore a helpful fact that
every function f that is differentiable with respect tox is also locally Lip-
schitz continuous, and one can prove the following corollary to the Theorem
of Picard-Lindel̈of.

Corollary 1.3 (Local Existence and Uniqueness). Regard the same initial va-
lue problem as in Theorem 1.2, but instead of global Lipschitz continuity, as-
sume that f is continuously differentiable with respect to x for all t∈ [0,T].
Then there exists a possibly shortened, but non-empty interval [0,T′] with
T′ ∈ (0,T] on which the IVP has a unique solution.

Note that for nonlinear continuous time systems – in contrast to discrete time
systems – it is very easily possible even with innocently looking and smooth
functions f to obtain an “explosion”, i.e., a solution that tends to infinity for
finite times.

Example 1.4(Explosion of an ODE). Regard the scalar examplef (x) = x2

with x0 = 1, and let us regard the interval [0,T] with T = 10. The IVP has
the explicit solutionx(t) = 1/(1 − t), which is only defined on the half open
interval [0,1), because it tends to infinity fort → 1. Thus, we need to choose
someT′ < 1 in order to have a unique and finite solution to the IVP on the
shortened interval [0,T′]. The existence of this local solution is guaranteed by
the above corollary. Note that the explosion in finite time isdue to the fact
that the functionf is not globally Lipschitz continuous, so Theorem 1.2 is not
applicable.

Discontinuities with Respect to Time
It is important to note that the above theorem and corollary can be extended to
the case that there are finitely many discontinuities off with respect tot. In
this case the ODE solution can only be defined on each of the continuous time
intervals separately, while the derivative ofx is not defined at the time points
at which the discontinuities off occur, at least not in the strong sense. But the
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transition from one interval to the next can be determined bycontinuity of the
state trajectory, i.e. we require that the end state of one continuous initial value
problem is the starting value of the next one.

The fact that unique solutions still exist in the case of discontinuities is im-
portant because, first, many optimal control problems have discontinuous con-
trol trajectoriesu(t) in their solution, and, second, many algorithms discretize
the controls as piecewise constant functions which have jumps at the inter-
val boundaries. Fortunately, this does not cause difficulties for existence and
uniqueness of the IVPs.

Linear Time Invariant (LTI) Systems
A special class of tremendous importance are the linear timeinvariant (LTI)
systems. These are described by an ODE of the form

ẋ = Ax+ Bu

with fixed matricesA ∈ Rnx×nx and B ∈ Rnx×nu. LTI systems are one of the
principal interests in the field of automatic control and a vast literature exists on
LTI systems. Note that the functionf (x,u) = Ax+ Bu is Lipschitz continuous
with respect tox with Lipschitz constantL = ‖A‖, so that the global solution
to any initial value problem with a piecewise continuous control input can be
guaranteed.

Many important notions such ascontrollability or stabilizability, and com-
putational results such as thestep responseor frequency response functioncan
be defined in terms of the matricesA and B alone. Note that in the field of
linear system analysis and control, usually also output equationsy = Cx are
present, where the outputsy may be the only physically relevant quantities.
Only the linear operator fromu to y - the input-output-behaviour - is of in-
terest, while the statex is just an intermediate quantity. In that context, the
states are not even unique, because different state space realizations of the
same input-output behavior exist. In this book, however, weare not interested
in input-outputs-behaviours, but assume that the state is the principal quantity
of interest. Output equations are not part of the models in this book. If one
wants to make the connection to the LTI literature, one mightsetC = I.

Zero Order Hold and Solution Map
In the age of digital control, the inputsu are often generated by a computer
and implemented at the physical system as piecewise constant between two
sampling instants. This is calledzero order hold. The grid size is typically
constant, say of fixed length∆t > 0, so that the sampling instants are given by
tk = k · ∆t. If our original model is a differentiable ODE model, but we have
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piecewise constant control inputs with fixed valuesu(t) = uk wtih uk ∈ Rnu on
each intervalt ∈ [tk, tk+1], we might want to regard the transition from the state
x(tk) to the statex(tk+1) as a discrete time system. This is indeed possible, as
the ODE solution exists and is unique on the interval [tk, tk+1] for each initial
valuex(tk) = x0.

If the original ODE system is time-invariant, it is enough toregard one initial
value problem with constant controlu(t) = uconst

ẋ(t) = f (x(t),uconst), t ∈ [0,∆t], with x(0) = x0. (1.2)

The unique solutionx : [0,∆t] → Rnx to this problem is a function of both, the
initial valuex0 and the controluconst, so we might denote the solution by

x(t; x0,uconst), for t ∈ [0,∆t].

This map from (x0,uconst) to the state trajectory is called thesolution map. The
final value of this short trajectory piece,x(∆t; x0,uconst), is of major interest,
as it is the point where the next sampling interval starts. Wemight define the
transition functionfdis : Rnx × Rnu → Rnx by fdis(x0,uconst) = x(∆t; x0,uconst).
This function allows us to define a discrete time system that uniquely describes
the evolution of the system state at the sampling instantstk:

x(tk+1) = fdis(x(tk),uk).

Solution Map of Linear Time Invariant Systems
Let us regard a simple and important example: for linear continuous time sys-
tems

ẋ = Ax+ Bu

with initial valuex0 at t = 0, and constant control inputuconst, the solution map
x(t; x0,uconst) is explicitly given as

x(t; x0,uconst) = exp(At)x0 +

∫ t

0
exp(A(t − τ))Buconstdτ,

where exp(A) is the matrix exponential. It is interesting to note that this map
is well defined for all timest ∈ R, as linear systems cannot explode. The
corresponding discrete time system with sampling time∆t is again a linear
time invariant system, and is given by

fdis(xk,uk) = Adisxk + Bdisuk

with

Adis = exp(A∆t) and Bdis =

∫ ∆t

0
exp(A(∆t − τ))Bdτ.
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Sensitivities
In the context of optimal control, derivatives of the dynamic system simulation
are needed for nearly all numerical algorithms. Following Theorem 1.2 and
Corollary 1.3 we know that the solution map to the IVP (1.2) exists on an
interval [0,∆t] and is unique under mild conditions even for general nonlinear
systems. But is it also differentiable with respect to the initial value and control
input?

In order to discuss the issue of derivatives, which in the dynamic system
context are often calledsensitivities, let us first ask what happens if we call
the solution map with different inputs. For small perturbations of the values
(x0,uconst), we still have a unique solutionx(t; x0,uconst) on the whole inter-
val t ∈ [0,∆t]. Let us restrict ourselves to a neighborhoodN of fixed values
(x0,uconst). For each fixedt ∈ [0,∆t], we can now regard the well defined and
unique solution mapx(t; ·) : N → Rnx, (x0,uconst) 7→ x(t; x0,uconst). A natu-
ral question to ask is if this map is differentiable. Fortunately, it is possible to
show that if f is m-times continuously differentiable with respect to bothx and
u, then the solution mapx(t; ·), for eacht ∈ [0,∆t], is alsom-times continuously
differentiable with respect to (x0,uconst).

In the general nonlinear case, the solution mapx(t; x0,uconst) can only be
generated by a numerical simulation routine. The computation of derivatives
of this numerically generated map is a delicate issue that wediscuss in detail
in the third part of the book. To mention already the main difficulty, note that
most numerical integration routines are adaptive, i.e., might choose to do diffe-
rent numbers of integration steps for different IVPs. This renders the numerical
approximation of the mapx(t; x0,uconst) typically non-differentiable in the in-
putsx0,uconst. Thus, multiple calls of a black-box integrator and application of
finite differences might result in very wrong derivative approximations.

Numerical Integration Methods
A numerical simulation routine that approximates the solution map is often
called anintegrator. A simple but very crude way to generate an approximation
for x(t; x0,uconst) for t ∈ [0,∆t] is to perform a linear extrapolation based on
the time derivative ˙x = f (x,u) at the initial time point:

x̃(t; x0,uconst) = x0 + t f (x0,uconst), t ∈ [0,∆t].

This is called oneEuler integration step. For very small∆t, this approximation
becomes very good. In fact, the error ˜x(∆t; x0,uconst) − x(∆t; x0,uconst) is of
second order in∆t. This motivated Leonhard Euler to perform several steps of
smaller size, and propose what is now called theEuler integration method. We
subdivide the interval [0,∆t] into M subintervals each of lengthh = ∆t/M, and
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performM such linear extrapolation steps consecutively, starting at x̃0 = x0:

x̃ j+1 = x̃ j + h f(x̃ j ,uconst), j = 0, . . . ,M − 1.

It can be proven that the Euler integration method isstable, i.e. that the pro-
pagation of local errors is bounded with a constant that is independent of the
step sizeh. Therefore, the approximation becomes better and better when we
decrease the step sizeh: since theconsistencyerror in each step is of order
h2, and the total number of steps is of order∆t/h, the accumulated error in
the final step is of orderh∆t. As this is linear in the step sizeh, we say that
the Euler method has theorder one. Taking more steps is more accurate, but
also needs more computation time. One measure for the computational effort
of an integration method is the number of evaluations off , which for the Euler
method grows linearly with the desired accuracy.

In practice, the Euler integrator is rarely competitive, because other methods
exist that deliver the desired accuracy levels at much lowercomputational cost.
We discuss several numerical simulation methods later, butpresent here alre-
ady one of the most widespread integrators, theRunge-Kutta Method of Order
Four, which we will often abbreviate asRK4. One step of the RK4 method
needs four evaluations off and stores the results in four intermediate quan-
tities ki ∈ Rnx, i = 1, . . . ,4. Like the Euler integration method, the RK4 also
generates a sequence of values ˜x j , j = 0, . . . ,M, with x̃0 = x0. At x̃ j , and
using the constant control inputuconst, one step of the RK4 method proceeds as
follows:

k1 = f (x̃ j ,uconst)

k2 = f (x̃ j +
h
2

k1,uconst)

k3 = f (x̃ j +
h
2

k2,uconst)

k4 = f (x̃ j + h k3,uconst)

x̃ j+1 = x̃ j +
h
6

(k1 + 2k2 + 2k3 + k4).

One step of RK4 is thus as expensive as four steps of the Euler method. But it
can be shown that the accuracy of the final approximation ˜xM is of orderh4∆t.
In practice, this means that the RK4 method usually needs tremendously fewer
function evaluations than the Euler method to obtain the same accuracy level.

From here on, and throughout the first part of the book, we willleave the
field of continuous time systems, and directly assume that wecontrol a discrete
time systemxk+1 = fdis(xk,uk). Let us keep in mind, however, that the transition
map fdis(xk,uk) is usually not given as an explicit expression but can instead be
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a relatively involved computer code with several intermediate quantities. In the
exercises of the first part of this book, we will usually discretize the occuring
ODE systems by using only one Euler or RK4 step per control interval, i.e. use
M = 1 andh = ∆t. The RK4 step often gives already a sufficient approximation
at relatively low cost.

1.3 Discrete Time Systems

Let us now discuss in more detail the discrete time systems that are at the
basis of the control problems in Chapters 7 and 8 of this book.In the general
time-variant case, these systems are characterized by the dynamics

xk+1 = fk(xk,uk), k = 0,1, . . . ,N − 1 (1.3)

on a time horizon of lengthN, with N control input vectorsu0, . . . ,uN−1 ∈ Rnu

and (N + 1) state vectorsx0, . . . , xN ∈ Rnx.
If we know the initial statex0 and the controlsu0, . . . ,uN−1 we could recur-

sively call the functionsfk in order to obtain all other states,x1, . . . , xN. We
call this aforward simulationof the system dynamics.

Definition 1.5 (Forward simulation). Theforward simulationis the map

fsim : R
nx+Nnu → R

(N+1)nx

(x0; u0,u1, . . . ,uN−1) 7→ (x0, x1, x2, . . . , xN)

that is defined by solving Equation (1.3) recursively for allk = 0,1, . . . ,N− 1.

The inputs of the forward simulation routine are the initialvalue x0 and
the controlsuk for k = 0, . . . ,N − 1. In many practical problems we can only
choose the controls while the initial value is fixed. Though this is a very natural
assumption, it is not the only possible one. In optimization, we might have
very different requirements: We might, for example, have a free initial value
that we want to choose in an optimal way. Or we might have both afixed
initial state and a fixed terminal state that we want to reach.We might also
look for periodic sequences withx0 = xN, but do not knowx0 beforehand. All
these desires on the initial and the terminal state can be expressed by suitable
constraints. For the purpose of this textbook it is important to note that the
fundamental equation that is characterizing a dynamic optimization problem
are the system dynamics stated in Equation (1.3), but no initial value constraint,
which is optional.
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Linear Time Invariant (LTI) Systems
As discussed already for the continuous time case, linear time invariant (LTI)
systems are not only one of the simplest possible dynamic system classes,
but also have a rich and beautiful history. In the discrete time case, they are
determined by the system equation

xk+1 = Axk + Buk, k = 0,1, . . . ,N − 1.

with fixed matricesA ∈ Rnx×nx andB ∈ Rnx×nu. An LTI system is stable if all
eigenvalues of the matrixA are in the unit disc of the complex plane, i.e. have
a modulus smaller or equal to one, andasymptotically stableif all moduli are
strictly smaller than one. It is easy to show that the forwardsimulation map for
an LTI system on a horizon with lengthN is given by

fsim(x0; u0, . . . ,uN−1) =





x0

x1

x2
...

xN





=





x0

Ax0 + Bu0

A2x0 + ABu0 + Bu1
...

ANx0 +
∑N−1

k=0 AN−1−kBuk





.

In order to check controllability, due to linearity, one might ask the question if
after N steps any terminal statexN can be reached fromx0 = 0 by a suitable
choice of control inputs. Because of

xN =
[

AN−1B AN−2B · · · B
]

︸                              ︷︷                              ︸

=CN





u0

u1
...

uN−1





this is possible if and only if the matrixCN ∈ Rnx×Nnu has the ranknx. In-
creasingN can only increase the rank, but one can show that the maximum
possible rank is already reached forN = nx, so it is enough to check if the so
calledcontrollability matrixCnx has the ranknx.

Affine Systems and Linearizations along Trajectories
An important generalization of linear systems are affine time-varying systems
of the form

xk+1 = Akxk + Bkuk + ck, k = 0,1, . . . ,N − 1. (1.4)

These often appear as linearizations of nonlinear dynamic systems along a
given reference trajectory. To see this, let us regard a nonlinear dynamic system
and some given reference trajectory values ¯x0, . . . , x̄N−1 as well as ¯u0, . . . , ūN−1.
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Then the Taylor expansion of each functionfk at the reference value ( ¯xk, ūk) is
given by

(xk+1 − x̄k+1) ≈ ∂ fk
∂x

(x̄k, ūk)(xk − x̄k) +
∂ fk
∂u

(x̄k, ūk)(uk − ūk) + ( fk(x̄k, ūk) − x̄k+1)

thus resulting in affine time-varying dynamics of the form (1.4). Note that even
for a time-invariant nonlinear system the linearized dynamics becomes time-
variant due to the different linearization points on the reference trajectory.

It is an important fact that the forward simulation map of an affine system
(1.4) is again an affine function of the initial value and the controls. More
specifically, this affine map is for anyN ∈ N given by:

xN = (AN−1 · · ·A0) x0 +

N−1∑

k=0

(

ΠN−1
j=k+1A j

)

(Bkuk + ck) .

1.4 Optimization Problem Classes

Mathematical optimization refers to finding the best, oroptimalsolution among
a set of possible decisions, where optimality is defined withthe help of anob-
jective function. Some solution candidates arefeasible, others not, and it is
assumed thatfeasibilityof a solution candidate can be checked by evaluation
of someconstraint functionsthat need for example be equal to zero. Like the
field of dynamic systems, the field of mathematical optimization comprises
many different problem classes, which we will briefly try to classify in this
section.

Historically, optimization has been identified with programming, where a
program was understood as a deterministic plan, e.g., in logistics. For this re-
ason, many of the optimization problem classes have been given names that
contain the wordsprogramor programming. In this book we will often use
these names and their abbreviations, because they are stillwidely used. Thus,
we use e.g. the termlinear program (LP)as a synonym for alinear optimiza-
tion problem. It is interesting to note that the major society for mathematical
optimization, which had for decades the nameMathematical Programming So-
ciety (MPS), changed its name in 2011 toMathematical Optimization Society
(MOS), while it decided not to change the name of its major journal,that still
is calledMathematical Programming. In this book we chose a similarly prag-
matic approach to the naming conventions.
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Finite vs Infinite Dimensional Optimization
An important divididing line in the field of optimization regards the dimension
of the space in which the decision variable, sayx, is chosen. Ifx can be repre-
sented by finitely many numbers, e.g.x ∈ Rn with somen ∈ N, we speak of a
finite dimensional optimization problem, otherwise, of aninfinite dimensional
optimization problem. The second might also be referred to asoptimization
in function spaces. Discrete time optimal control problems fall into the first,
continuous time optimal control problems into the second class.

Besides the dimension of the decision variable, also the dimension of the
constraint functions can be finite or infinite. If an infinite number of inequa-
lity constraints is present while the decision variable is finite dimensional, one
speaks of asemi-infinite optimization problem. This class naturally arises in
the context ofrobust optimization, where one wants to find the best choice of
the decision variable that satisfies the constraints for allpossible values of an
unknown but bounded disturbance.

Continuous vs Integer Optimization
A second dividing line concerns the type of decision variables. These can be
eithercontinuous, like for example real valued vectorsx ∈ Rn, or any other
elements of a smooth manifold. On the other hand, the decision variable can
be discrete, or integer valued, i.e. we havez ∈ Zn, or, when a set of binary
choices has to be made,z ∈ {0,1}n. In this case one often also speaks ofcom-
binatorial optimization. If an optimization problem has both, continuous and
integer variables, it is called amixed-integer optimization problem.

An important class of continuous optimization problems arethe so called
nonlinear programs (NLP). They can be stated in the form

minimize
x ∈ Rn

f (x)

subject to g(x) = 0,

h(x) ≤ 0,

where f : Rn → R, g : Rn → Rng, andh : Rn → Rnh are assumed to be at
least once continuously differentiable. Note that we use function and variable
names such asf andx with a very different meaning than before in the context
of dynamic systems. In Chapters 2 to 6 we discuss algorithms to solve this
kind of optimization problems, and the discrete time optimal control problems
treated in Chapters 7 and 8 can also be regarded as a speciallystructured form
of NLPs. Two important subclasses of NLPs are thelinear programs (LP),
which have affine problem functionsf ,g,h, and thequadratic programs (QP),



DRAFT

1.4 Optimization Problem Classes 17

which have affine constraint functionsg,h and a more general linear quadratic
objective f (x) = c⊤x+ 1

2 x⊤Bx with a symmetric matrixB ∈ Rn×n.
A large class of mixed-integer optimization problems are the so calledmixed

integer nonlinear programs (MINLP), which can be stated as

minimize
x∈Rn

z∈Zm

f (x, z)

subject to g(x, z) = 0,

h(x, z) ≤ 0.

(1.5)

Among the MINLPs, an important special case arises if the problem functions
f ,g,h are affine in both variables,x andz, which is called amixed integer linear
program (MILP). If the objective is allowed to be linear quadratic, one speaks
of a mixed integer quadratic program (MIQP). If in an MILP only integer
variables are present, one usually just calls it aninteger program (IP). The field
of (linear) integer programming is huge and has powerful algorithms available.
Most problems in logistics fall into this class, a famous example being the
travelling salesman problem, which concerns the shortest closed path that one
can travel through a given number of towns, visiting each town exactly once.

An interesting class of mixed-integer optimization problems arises in the
context of optimal control of hybrid dynamic systems, whichin the discrete
time case can be regarded a special case of MINLP. In continuous time, we
enter the field of infinite dimensional mixed-integer optimization, often also
calledMixed-integer optimal control problems (MIOCP).

Convex vs Nonconvex Optimization
Arguably the most important dividing line in the world of optimization is bet-
ween convex and nonconvex optimization problems. Convex optimization pro-
blems are a subclass of the continuous optimization problems and arise if the
objective function is a convex function and the set of feasible points a convex
set. In this case one can show that anylocal solution, i.e. values for the deci-
sion variables that lead to the best possible objective value in a neighborhood,
is also aglobal solution, i.e. has the best possible objective value among all fe-
asible points. Practically very important is the fact that convexity of a function
or a set can be checked just by checking convexity of its building blocks and if
they are constructed in a way that preserves convexity.

Several important subclasses of NLPs are convex, such as LPs. Also QPs are
convex if they have a convex objectivef . Another example areQuadratically
Constrained Quadratic Programs (QCQP)which have quadratic inequalities
and whose feasible set is the intersection of ellipsoids. Some other optimization
problems are convex but do not form part of the NLP family. Twowidely used
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classes aresecond-order cone programs (SOCP)andsemi-definite programs
(SDP)which have linear objective functions but more involved convex feasible
sets: for SOCP, it is the set of vectors which have one component that is larger
than the Euclidean norm of all the other components and whichit is called
thesecond order cone, and for SDP it is the set of symmetric matrices that are
positive semi-definite, i.e. have all eigenvalues larger than zero. SDPs are often
used when designing linear feedback control laws. Also infinite dimensional
optimization problems such as optimal control problems in continuous time
can be convex under fortunate circumstances.

In this context, it is interesting to note that a sufficient condition for con-
vexity of an optimal control problem is that the underlying dynamic system
is linear and that the objective and constraints are convex in controls and sta-
tes. On the other hand, optimal control problems with underlying nonlinear
dynamic systems, which are the focus of this book, are usually nonconvex.

Optimization problems with integer variables can never be convex due to
the nonconvexity of the set of integers. However, it is of great algorithmic ad-
vantage if mixed-integer problems have a convex substructure in the sense that
convex problems arise when the integer variables are allowed to also take real
values. These so calledconvex relaxationsare at the basis of nearly all com-
petitive algorithms for mixed-integer optimization. For example, linear integer
programs can be solved very efficiently because their convex relaxations are
just linear programs, which are convex and can be solved veryefficiently.

1.5 Overview, Exercises and Notation

As said before, the book is divided into four major parts. Below we list the
topics which are treated in each part.

• Numerical Optimization: Newton-type optimization methods in many vari-
ants.

• Discrete Time Optimal Control: problem formulations, sparsity structure ex-
ploitation and dynamic programming.

• Continuous Time Optimal Control: numerical simulation, indirect methods
and Hamilton-Jacobi-Bellman equation based approaches, direct colloca-
tion, differential-algebraic equations.

• Online Optimal Control: parametric optimization, online quadratic and non-
linear programming, efficient initializations, real-time iterations.

The four parts build on each other, so it is advisable to read and work on them
in the order in which they are presented in the book.
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Exercises
At the end of each chapter there is a collection of exercises.Some of the exe-
rcises are solvable by pen and paper, but many exercises needthe use of a
computer. In this case, very often we require the use of the following software:

• MATLAB ( www.mathworks.com) or the open-source alternative OCTAVE
(https://www.gnu.org/software/octave/).

• The open source packages:

– CasADi (https://github.com/casadi/casadi/wiki).
– ACADO (http://acado.github.io/).
– qpOASES (https://projects.coin-or.org/qpOASES).

Sometimes exercises can only be done with help of data or template files,
which can all be downloaded on the webpage that is accompanying this book
(http://www.syscop.de/numericaloptimalcontrol).

Notation
Within this book we useR for the set of real numbers,R+ for the non-negative
ones andR++ for the positive ones,Z for the set of integers, andN for the set
of natural numbers including zero, i.e. we identifyN = Z+. The set of real-
valued vectors of dimensionn is denoted byRn, andRn×m denotes the set of
matrices withn rows andm columns. By default, all vectors are assumed to
be column vectors, i.e. we identifyRn = Rn×1. We usually use square brackets
when presenting vectors and matrices elementwise. Becausewill often deal
with concatenations of several vectors, sayx ∈ Rn and y ∈ Rm, yielding a
vector inRn+m, we abbreviate this concatenation sometimes as (x, y) in the
text, instead of the correct but more clumsy equivalent notations [x⊤, y⊤]⊤ or

[

x
y

]

.

Square and round brackets are also used in a very different context, namely for
intervals inR, where for two real numbersa < b the expression [a,b] ⊂ R
denotes the closed interval containing both boundariesa andb, while an open
boundary is denoted by a round bracket, e.g. (a,b) denotes the open interval
and [a,b) the half open interval containinga but notb.

When dealing with norms of vectorsx ∈ Rn, we denote by‖x‖ an arbitrary
norm, and by‖x‖2 the Euclidean norm, i.e. we have‖x‖22 = x⊤x. We denote a
weighted Euclidean norm with a positive definite weighting matrix Q ∈ Rn×n

by ‖x‖Q, i.e. we have‖x‖2Q = x⊤Qx. TheL1 andL∞ norms are defined by‖x‖1 =
∑n

i=1 |xi | and‖x‖∞ = max{|x1|, . . . , |xn|}. Matrix norms are the induced operator

www.mathworks.com
https://www.gnu.org/software/octave/
https://github.com/casadi/casadi/wiki
http://acado.github.io/
https://projects.coin-or.org/qpOASES
http://www.syscop.de/numericaloptimalcontrol
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norms, if not stated otherwise, and the Frobenius norm‖A‖F of a matrixA ∈
R

n×m is defined by‖A‖2F = trace(AA⊤) =
∑n

i=1
∑m

j=1 Ai j Ai j .
When we deal with derivatives of functionsf with several real inputs and

several real outputs, i.e. functionsf : Rn → Rm, x 7→ f (x), we define the
Jacobian matrix∂ f

∂x (x) as a matrix inRm×n, following standard conventions.
For scalar functions withm= 1, we denote the gradient vector as∇ f (x) ∈ Rn,
a column vector, also following standard conventions. Slightly less standard,
we generalize the gradient symbol to all functionsf : Rn → Rm even with
m> 1, i.e. we generally define in this book

∇ f (x) =
∂ f
∂x

(x)⊤ ∈ Rn×m.

Using this notation, the first order Taylor series is e.g. written as

f (x) = f (x̄) + ∇ f (x̄)⊤(x− x̄)) + o(‖x− x̄‖).

The second derivative, or Hessian matrix will only be definedfor scalar functi-
ons f : Rn→ R and be denoted by∇2 f (x).

For square symmetric matrices of dimensionn we sometimes use the symbol
Sn, i.e. Sn = {A ∈ Rn×n|A = A⊤}. For any symmetric matrixA ∈ Sn we
write A<0 if it is a positive semi-definite matrix, i.e. all its eigenvalues are
larger or equal to zero, andA≻0 if it is positive definite, i.e. all its eigenvalues
are positive. This notation is also used formatrix inequalitiesthat allow us to
compare two symmetric matricesA, B ∈ Sn, where we define for exampleA<B
by A− B<0.

When using logical symbols,A ⇒ B is used when a propositionA implies
a propositionB. In words the same is expressed by “IfA then B”. We write
A ⇔ B for “A if and only if B”, and we sometimes shorten this to “A iff B”,
with a double “f”, following standard practice.

Exercises

1.1 Consider a linear model of some coutry population with the state vector
x ∈ R100 representing the population of each age group. Letxi(k) mean
the number of people of agei during yeark. For instance,x6(2014) would
be the number of people who are 6 years old in year 2014. Each year
babies (0-year-olds) are formed depending on a linear birthrate:

x0(k+ 1) =
99∑

j=0

β j x j(k)



DRAFT

Exercises 21

Each year most of the population ages by one year, except for afraction
who die according to mortality rateµ:

xi+1(k+ 1) = xi(k) − µi xi(k) i = 0, . . . ,98

(a) Download the filebirth_mortality_rates.m from the book web-
site to obtain the birth rateβ and mortality rateµ. Plot them as a
function of the population age.

(b) Write the discrete time model in the form of

x(k+ 1) = A x(k)

(c) Lord of the Flies: Setting an initial population of 100 four-year-olds,
and no other people, simulate the system for 150 years. Make a3-d
plot of the population, with axes{year, age, population}.

(d) Eigen decomposition: Plot the eigenvalues ofA in the complex plane.
Plot the real part of the two eigenvectors ofA which have largest
eigenvalue magnitude
Is this system stable? What is the significance of these eigenvectors
with large eigenvalues?

(e) Run two simulations: in each simulation, use forx(0) the real part of
an eigenvector from the previous question. What is the significance
of this result?

1.2 Consider a two-dimensional model of an airplane with statesx = [px, pz, vx, vz]
where position~p = [px, pz] and velocity~v = [vx, vz] are vectors in the
x− z directions. We will use the standard aerospace convention that x̂ is
forward and ˆz is DOWN, so altitude is−pz. The system has one cont-
rol u = [α], whereα is the aerodynamic angle of attack in radians. The
system dynamics are:

d
dt





px

pz

vx

vz





=





vx

vz

Fx/m
Fz/m





wherem = 2.0 is the mass of the airplane. The forces~F on the airplane
are

~F = ~Flift + ~Fdrag+ ~Fgravity

Lift force ~Flift is

~Flift =
1
2
ρ‖~v‖2CL(α)Sref êL
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where lift directionêL = [vz,−vx]/‖~v‖, and lift coefficientCL = 2πα 10
12.

Sref is the wing aerodynamic reference area. The drag force~Fdrag is

~Fdrag=
1
2
ρ‖~v‖2CD(α)Sref êD

Drag directionêD = −~v/‖~v‖, and drag coefficientCD = 0.01+
C2

L
ARπ . The

gravitational force is

~Fgravity = [0,m g]

Use AR= 10,ρ = 1.2, g = 9.81,Sref = 0.5.

(a) Write the continuous time model in the form of

d
dt

x = f (x,u) (1.6)

(b) Simulate the system for 10 seconds using theode45MATLAB function.
Useα = 3◦, and initial conditionspx = pz = vz = 0, vx = 10. Plotpx,
pz, vx, vz vs. time, andpx vs. altitude.

(c) Convert the system to the discrete time form

x(k+ 1) = fd(x(k),u(k))

using a forward Euler integrator. Simulate this system and compare
to ode45. Estimating the accuracy by eye, how small do you have
to make the time step so that results are similar accuracy toode45?
Using the MATLAB functionstic andtoc, how much time does
ode45 take compared to forward Euler for similar accuracy?

(d) Re-do the previous item using 4th order Runge-Kutta (RK4) instead
of forward Euler. Which is faster (for similar accuracy) among the
three methods?

(e) Linearize the discrete time RK4 system to make an approximate sy-
stem of the form

x(k+ 1) ≈ f (x̃, ũ) +
∂ f
∂x

(x̃, ũ)
︸   ︷︷   ︸

A

(x(k) − x̃) +
∂ f
∂u

(x̃, ũ)
︸   ︷︷   ︸

B

(u(k) − ũ)

using a first order Taylor expansion around the point ˜x = [10,3,11,5]⊤,
ũ = 5◦.
The Jacobian is given by

∂ f
∂x
=

(

∂ f
∂px
,
∂ f
∂pz
,
∂ f
∂vx
,
∂ f
∂vz

)

.

You can approximate the Jacobian by doing small variations in all
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directions ofx andu (finite differences). For example, in the direction
of px the derivative∂ f

∂px
is given by:

∂ f
∂px

(x̃, ũ) ≈ f (x̃+ [δ,0,0,0]⊤, ũ) − f (x̃, ũ)
δ

.

(f) Plot the Eigenvalues ofA in the complex plane. Is the system stable?
Is this a problem?

1.3 Introduction to CasADi 1: CasADi is an open-source software tool for
solving optimization problems in general and optimal control problems
in particular. In its most typical usage, it leaves it to the user to formulate
the problem as a standard form constrained optimization problem of the
form:

minimize
x

f (x)

subject to x ≤ x ≤ x

g ≤ g(x) ≤ g,

(1.7)

wherex ∈ Rnx is the decision variable,f : Rnx → R is the objective
function, andg : Rnx → R

ng is the constraint function. For equality
constraints, the upper and lower bounds are equal.

In this exercise,f is a convex quadratic function andg is a linear
function, in which case we refer to problem (13.14) as a (convex) qua-
dratic program (QP). To solve a QP with CasADi, start by creating a
struct containing expressions forx, f andg:

• MATLAB:

x = SX . sym ( ’ x ’ , n ) ;
f = ( some e x p r e s s i o n o f x )
g = ( some e x p r e s s i o n o f x )
prob = s t r u c t ( ’ x ’ , x , ’ f ’ , f , ’ g ’ , g ) ;

• Python:

x = SX . sym ( ’ x ’ , n )
f = ( some e x p r e s s i o n o f x )
g = ( some e x p r e s s i o n o f x )
prob = { ’ x ’ : x , ’ f ’ : f , ’ g ’ : g }

This symbolic representation of the problem is then used to construct
a QP solver as follows:
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• MATLAB:

s o l v e r = qps o l ( ’ s o l v e r ’ , ’ qpoases ’ , prob ) ;

• Python:

s o l v e r = qps o l ( ’ s o l v e r ’ , ’ qpoases ’ , prob )

where the arguments are, respectively, thedisplay nameof the solver
s, the solverplugin – here the open-source QP solver qpOASES – and
and the above symbolic problem formulation. A set of algorithmic op-
tions can be passed as an optional forth argument. Optimization solvers
arefunctionsin CasADi that are evaluated to get the solution:

• MATLAB:

r e s = s o l v e r ( ’ x0 ’ , x0 , ’ l bx ’ , lbx , ’ ubx ’ , ubx ,
’ l bg ’ , lbg , ’ ubg ’ , ubg ) ;

• Python:

r e s = s o l v e r ( x0 :=0 , lbx = lbx , ubx=ubx ,
l bg= lbg , ubg=ubg )

Wherelbx, ubx, lbg andubg are the bounds ofx andg(x) andx0 is
an initial guess forx (less important for convex QPs, since the solution
is unique).

Exercise example: Hanging ChainWe want to model a chain atta-
ched to two supports and hanging in between. Let us discretize it with
N mass points connected byN − 1 springs. Each massi has position
(yi , zi), i = 1, . . . ,N. The equilibrium point of the system minimises the
potential energy. The potential energy of each spring is

Vi
el =

1
2

Di

(

(yi − yi+1)2 + (zi − zi+1)2
)

.

The gravitational potential energy of each mass is

Vi
g = mi g0 zi .

The total potential energy is thus given by:

Vchain(y, z) =
1
2

N−1∑

i=1

Di

(

(yi − yi+1)2 + (zi − zi+1)2
)

+ g0

N∑

i=1

mi zi , (1.8)

wherey = [y1, · · · , yN]T andz= [z1, · · · , zN]T .
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We wish to solve

minimize
y,z

Vchain(y, z) (1.9)

subject to constraints modeling the ground, to be introduced below.

(a) Go to the CasADi website and locate the user guide. Make sure the
version of the user guide matches the version of CasADi used in the
book (3.0.0). Then, with a Python or MATLAB interpreter in front of
you, read Chapter 3 as well as Sections 4.1-4.3 in Chapter 4 ofthe
user guide.

(b) From the course website, you will find solution scripts for Python and
MATLAB that solve the unconstrained problem usingN = 40, mi =

40/N kg, Di = 70N N/m, g0 = 9.81 m/s2 with the first and last
mass point fixed to (−2,1) and (2,1), respectively. Go through the
script and make sure you understand the steps.

(c) Introduce ground constraints:zi ≥ 0.5 andzi − 0.1yi ≥ 0.5, for i =
2, · · · ,N−2. Solve your QP again, plot the result and compare it with
the previous one.

http://casadi.org
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Root-Finding with Newton-Type Methods

Nature and nature’s laws lay hid in night;
God said “Let Newton be” and all was light.
— Alexander Pope

In this first part of the book we discuss several concepts fromthe field of nu-
merical analysis and mathematical optimization that are important for optimal
control. Our focus is on quickly arriving at a point where thespecific optimi-
zation methods for dynamic systems can be treated, while thesame material
can be found in much greater detail in many excellent textbooks on numeri-
cal optimization such as [64]. The reason for keeping this part on optimiza-
tion self-contained and without explicit reference to optimal control is that this
allows us to separate between the general concepts of numerical analysis and
optimization on the one hand, and those specific to optimal control on the other
hand. We slightly adapt the notation, however, in order to prepare the interface
to optimal control later.

In essence, optimization is about finding the inputs for somepossibly nonli-
near function that make the output of the function achieve some desired proper-
ties. In the simplest case, one demands that the function output should have a
certain value, and assumes that the function has exactly as many inputs as it has
outputs. Many problems in numerical analysis – in particular in optimization
– can be formulated as such root-finding problems. Newton’s method and its
variants are at the basis of virtually all methods for their solution. Throughout
this chapter, let us therefore consider a continuously differentiable function
R : Rn → Rn, z 7→ R(z), where our aim is to solve the nonlinear equation
system

R(z) = 0.

Newton’s idea was to start with an initial guessz0, and recursively generate a

26
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sequence of iterates{zk}∞k=0 by linearizing the nonlinear equation at the current
iterate:

R(zk) +
∂R
∂z

(zk)(z− zk) = 0.

We can explicitly compute the next iterate by solving the linear system:

zk+1 = zk −
(

∂R
∂z

(zk)

)−1

R(zk).

Note that we have to assume that the JacobianJ(zk) := ∂R
∂z (z) is invertible.

More general, we can use an invertible approximationMk of the Jacobian
∂R
∂z (zk). The general Newton type iteration is

zk+1 = zk − M−1
k R(zk).

Depending on how closelyMk approximatesJ(zk), the local convergence can
be fast or slow, or the sequence may even not converge.

Example 2.1.RegardR(z) = z16−2, where∂R
∂z (z) = 16z15. The Newton method

iterates:

zk+1 = zk − (16z15)−1(z16 − 2.

The iterates quickly converge to the solutionz∗ with R(z∗) = 0. In fact, the
convergence rate of Newton’s method isq-quadratic. Alternatively, we could
use a Jacobian approximation, e.g. the constant valueMk = 16 corresponding
to the true Jacobian atz= 1. The resulting iteration would be

zk+1 = zk − (16)−1(z16 − 2).

This approximate method might or might not converge. This might or might
not depend on the initial valuez0. If the method converges, what will be its
convergence rate? We investigate the conditions onR(z), z0 and Mk that we
need to ensure local convergence in the following sections.

2.1 Local Convergence Rates

Definition 2.2 (Different types of convergence rates). Assume zk ∈ Rn, zk → z.
Then the sequence zk is said to converge:

(i) Q-linearly⇔

‖zk+1 − z‖ 6 C‖zk − z‖ with C < 1 (2.1)
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holds for all k> k0. The “Q” in Q-linearly means the “Q” of “quotient”.
Another equivalent definition is:

lim supk→∞
‖zk+1 − z‖
‖zk − z‖ < 1.

(ii) Q-superlinearly⇔

‖zk+1 − z‖ 6 Ck‖zk − z‖ with Ck → 0.

This is equivalent to:

lim supk→∞
‖zk+1 − z‖
‖zk − z‖ = 0.

(iii) Q-quadratically⇔

‖zk+1 − z‖ 6 C‖zk − z‖2 with C < ∞

which is equivalent to:

lim supk→∞
‖zk+1 − z‖
‖zk − z‖2

< ∞.

Example 2.3(Convergence rates). Consider examples withzk ∈ R, zk → 0
andz= 0.

(i) zk =
1
2k converges q-linearly:zk+1

zk
= 1

2.
(ii) zk = 0.99k also converges q-linearly:zk+1

zk
= 0.99. This example converges

very slowly toz. In practice we desireC in equation (2.1) be smaller than,
say, 1

2.
(iii) zk =

1
k! converges Q-superlinearly, aszk+1

zk
= 1

k+1.

(iv) zk =
1

22k converges Q-quadratically, becausezk+1

(zk)2 =
(22k

)2

22k+1 = 1 < ∞. For

k = 6, zk = 1
264 ≈ 0, so in practice convergence up to machine precision is

reached after roughly 6 iterations.

2.2 A Local Contraction Theorem

Theorem 2.4(Local Contraction). Regard a nonlinear differentiable function
R : Rn → Rn and a solution point z∗ ∈ Rn with R(z∗) = 0, and the Newton
type iteration zk+1 = zk − M−1

k R(zk) that is started at the initial value z0. The
sequence zk converges to z∗ with contraction rate

‖zk+1−z∗‖ ≤
(

κk+
ω

2
‖zk−z∗‖

)

‖zk−z∗‖
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if there existω < ∞ andκ < 1 such that for all zk and z holds

‖M−1
k (J(zk) − J(z))‖ ≤ ω‖zk − z‖ (Lipschitz, or ”omega”, condition),

‖M−1
k (J(zk) − Mk)‖ ≤ κk ≤ κ (compatibility, or ”kappa”, condition)

and if ‖z0 − z∗‖ is sufficiently small, namely‖z0 − z∗‖ < 2(1−κ)
ω

.

Note:κ = 0 for exact Newton.

Proof

zk+1 − z∗ = zk − z∗ − M−1
k R(zk)

= zk − z∗ − M−1
k (R(zk) − R(z∗))

= M−1
k (Mk(zk − z∗))

−M−1
k

∫ 1

0
J(z∗ + t(zk − z∗))(zk − z∗)dt

= M−1
k (Mk − J(zk))(zk − z∗)

−M−1
k

∫ 1

0

[

J(z∗+t(zk−z∗))−J(zk)
]

(zk−z∗)dt.

Taking the norm of both sides:

‖zk+1 − z∗‖ ≤ κk‖zk − z∗‖

+

∫ 1

0
ω‖z∗ + t(zk − z∗) − zk‖dt ‖zk − z∗‖

=
(

κk + ω

∫ 1

0
(1− t)dt

︸        ︷︷        ︸

= 1
2

‖zk − z∗‖
)

‖zk − z∗‖

=
(

κk +
ω

2
‖zk − z∗‖

)

‖zk − z∗‖.

Convergence follows from the fact that the first contractionfactor,
(

κ0 +

ω
2 ‖zk − z∗‖

)

is smaller thanδ :=
(

κ + ω
2 ‖zk − z∗‖

)

, and thatδ < 1 due to the

assumption‖z0 − z∗‖ < 2(1−κ)
ω

. This implies that‖z1 − z∗‖ ≤ δ‖z0 − z∗‖, and
recursively that all following contraction factors will bebounded byδ, such
that we have the upper bound‖zk − z∗‖ ≤ δk‖z0 − z∗‖. This means that we
have at least linear convergence with contraction rateδ. Of course, the local
contraction rate will typically be faster than this, depending on the values of
κk. �

Remark: The above contraction theorem could work with slightly weaker
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assumptions. First, we could restrict the validity of the ”omega and kappa con-
ditions” to a norm ball around the solutionz∗, namely to the set{z | ‖z− z∗‖ <
2(1−κ)
ω
}. Second, in the omega and kappa conditions, we could have used slig-

htly weaker conditions, as follows:

‖M−1
k (J(zk) − J(zk + t(z∗ − zk)))(z

∗ − zk)‖ ≤ ωt‖zk − z∗‖2 (weakerω cond.)

‖M−1
k (J(zk) − Mk)(zk − z∗)‖ ≤ κk‖zk − z∗‖ (weakerκ cond.).

The above weaker conditions turn out to be invariant under affine transformati-
ons of the variableszas well as under linear transformations of the root finding
residual function functionR(z). For this reason, they are in general preferable
over the assumptions which we used the above theorem, which are only in-
variant under linear transformations ofR(z), but simpler to write down and
to remember. Let us discuss the concept of affine invariance in the following
section.

2.3 Affine Invariance

An iterative method to solve a root finding problemR(z) = 0 is called ”af-
fine invariant” if affine basis transformations of the equations or of the varia-
bles will not change the resulting iterations. This is an important property in
practice. Regard, for example, the case where we would like to generate a met-
hod for finding an equilibrium temperature in a chemical reaction system. You
can formulate your equations measuring the temperature in Kelvin, in Celsius
or in Fahrenheit, which each will give different numerical values denoting the
same physical temperature. Fortunately, the three values can be obtained by
affine transformations from each other. For example, to get the value in Kelvin
from the value in Celsius you just have to add the number 273.15, and for the
transition from Celsius to Fahrenheit you have to multiply the Celsius value
with 1.8 and add 32 to it. Also, you might think of examples where you indi-
cate distances using kilometers or nanometers, respectively, resulting in very
different numerical values that are obtained by a multiplication or division by
the factor 1012, but have the same physical meaning. The fact that the choice
of units or coordinate system will result just in a affine transformation, applies
to many other root finding problems in science and engineering. It is not unre-
asonable to ask that a good numerical method should behave the same if it is
applied to problems formulated in different units or coordinate systems. This
property we call ”affine invariance”.

More mathematically, given two invertible matricesA, B ∈ Rn×n and a vector
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b ∈ Rn, we regard the following root finding problem

R̃(y) := AR(b+ By) = 0.

Clearly, if we have a solutionz∗ with R(z∗) = 0, then we can easily construct
from it a y∗ such thatR̃(y∗) = 0, by inverting the relationz∗ = b + By∗, i.e.
y∗ = B−1(z∗ − b). Let us now regard an iterative method that, starting from an
initial guessz0, generates iteratesz0, z1, . . . towards the solution ofR(z) = 0.
The method is called ”affine invariant” if, when it is applied to the problem
R̃(y) = 0 and started with the initial guessy0 = B−1(z0 − b) (i.e. the same point
in the new coordinate system), it results in iteratesy0, y1, . . . that all satisfy the
relationyk = B−1(zk − b) for k = 0,1, . . ..

It turns out that the exact Newton method is affine invariant, and many ot-
her Newton type optimization methods like the Gauss-Newtonmethod share
this property, but not all. Practically speaking, to come back to the conversion
from Celsius to Fahrenheit, Newton’s method would perform exactly as well in
America as in Europe. In contrast to this, some other methods, like for exam-
ple the gradient method, would depend on the chosen units andthus perform
different iterates in America than in Europe. More severely, a method that is
not affine invariant usually needs very careful scaling of the modelequations
and decision variables in order to work well, while an affine invariant method
works (usually) well, independent of the chosen scaling.

2.4 Tight Conditions for Local Convergence

The local contraction theorem of this chapter gives sufficient conditions for
local convergence. Here, the omega condition is not restrictive, becauseω can
be arbitrarily large, and is satisfied on any compact set if the functionR is
twice continuously differentiable (ω is given by the maximum of the norm of
the second derivative tensor, a continuous function, on thecompact set). Also,
we could start the iterations arbitrarily close to the solution, so the condition
κ + ω

2 ‖z0 − z∗‖ < 1 can always be met as long asκ < 1. Thus, the only really
restrictive condition is the condition that the iteration matricesMk should be
similar enough to the true JacobiansJ(zk), so that aκ < 1 exists. Unfortuna-
tely, the similarity measure of the kappa-condition might not be tight, so if we
cannot find such aκ, it is not clear if the iterations converge or not.

In this section we want to formulate a sufficient condition for local conver-
gence that is tight, and even find a necessary condition for local convergence
of Newton-type methods. For this aim, we only have to make oneassumption,
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namely that the iteration matricesMk are given by a continuously differentia-
ble matrix valued functionM : Rn→ Rn×n, i.e. that we haveMk = M(zk). This
is for example the case for an exact Newton method, as well as for any method
with fixed iteration matrixM (the function is just constant in this case). It is
also the case for the Gauss-Newton method for nonlinear least squares optimi-
zation. We need to use a classical result from nonlinear systems theory, which
we will not prove here.

Lemma 2.5(Linear Stability Analysis). Regard an iteration of the form zk+1 =

G(zk) with G a continuously differentiable function in a neighborhood of a fixed
point G(z∗) = z∗. If all Eigenvalues of the Jacobian∂G

∂z (z∗) have a modulus

smaller than one, i.e. if the spectral radiusρ
(
∂G
∂z (z∗)

)

is smaller than one, then
the fixed point is asymptotically stable and the iterates converge to z∗ with a
Q-linear convergence rate with asymptotic contraction factor ρ

(
∂G
∂z (z∗)

)

. On
the other hand, if one of the Eigenvalues has a modulus largerthan one, i.e.
if ρ

(
∂G
∂z (z∗)

)

> 1, then the fixed point is unstable and the iterations can move
away from z∗ even if we have an initial guess z0 that is arbitrarily close to z∗.

Here, we use the definition of the spectral radiusρ(A) of a square matrixA,
as follows:

ρ(A) := max{|λ| | λ is Eigenvalue ofA}.

We will not prove the lemma here, but only give some intuition. For this aim
regard the Taylor series ofG at the fixed pointz∗, which yields

zk+1 − z∗ = G(zk) − z∗

= G(z∗) +
∂G
∂z

(z∗)(zk − z∗) +O(‖zk − z∗‖2) − z∗

=
∂G
∂z

(z∗)(zk − z∗) +O(‖zk − z∗‖2).

Thus, up to first order, the nonlinear system dynamics ofzk+1 = G(zk) are
determined by the JacobianA := ∂G

∂z (z∗). A recursive application of the relation
(zk+1−z∗) ≈ A · (zk−z∗) yields (zk−z∗) = Ak · (z0−z∗)+O(‖z0−z∗‖2). Now, the
matrix productAk shrinks to zero with increasingk if ρ(A) < 1, and it grows to
infinity if ρ(A) > 1.

When we apply the lemma to the continously differentiable mapG(z) :=
z−M(z)−1R(z), then we can establish the following theorem, which is the main
result of this section.

Theorem 2.6 (Sufficient and Necessary Conditions for Local Newton Type
Convergence). Regard a Newton type iteration of the form zk+1 = zk−M(zk)−1R(zk),
where R(z) is twice continuously differentiable with Jacobian J(z) and M(z)



DRAFT

2.4 Tight Conditions for Local Convergence 33

once continuously differentiable and invertible in a neighborhood of a solu-
tion z∗ with R(z∗) = 0. If all Eigenvalues of the matrix I− M(z∗)−1J(z∗) have a
modulus smaller than one, i.e. if the spectral radius

κexact := ρ
(

I − M(z∗)−1J(z∗)
)

is smaller than one, then this fixed point is asymptotically stable and the ite-
rates converge to z∗ with a Q-linear convergence rate with asymptotic con-
traction factorκexact. On the other hand, ifκexact> 1, then the fixed point z∗ is
unstable.

Proof We prove the theorem based on the lemma, applied to the mapG(z) :=
z − M(z)−1R(z). We first check that indeedz∗ = G(z∗), due to the fact that
R(z∗) = 0. Second, we need to compute the Jacobian ofG atz∗:

∂G
∂z

(z∗) = I − ∂(M−1)
∂z

(z∗) R(z∗)
︸︷︷︸

=0

−M(z∗)−1∂R
∂z

(z∗)

= I − M(z∗)−1J(z∗).

�

In summary, the spectral radius of the matrixI − M(z∗)−1J(z∗) is a tight
criterion for local convergence. If it is larger than one, the Newton type method
diverges, if it is smaller than one, the method converges.

Remark: The local contraction rateκexact directly depends on the difference
between the exact and the approximate Jacobian, due to the trivial matrix iden-
tity

I − M(z∗)−1J(z∗) = M(z∗)−1(M(z∗) − J(z∗)).

For Newton’s method itself, the two matrices are identical,M(z∗) = J(z∗), and
the linear contraction rate is zero:κexact= 0. This should be expected due to the
fact that Newton’s method converges quadratically. For Newton-type methods
with nonzeroκexact, the convergence will be linear only, but it can be very fast
linear convergence if the approximate Jacobian is close to the exact one and
κexact ≪ 1. On the other hand, if the difference between the two matrices is
too large, the spectral radiusκexact might become larger than one, making the
Newton-type method divergent.
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2.5 Globalization

When the initial guessz0 for starting a Newton-type iteration is too far from
the solution, the iterates usually do not converge. In orderto be able to reach
the region of local convergence, most Newton-type methods use a form of glo-
balization for ensuringglobal convergence, i.e., convergence from any starting
point. Here, we only give one example for a globalization technique for an
exact Newton method, one that is based on line search.

Globalization by Armijo backtracking line search. To design a simple glo-
balization procedure for a Newton method to solveR(z) = 0, we regard the
function V(z) = (1/2)‖R(z)‖2 as the merit function. Because its gradient is
given by∇V(z) = J(z)′R(z), the exact Newton stepp(z) ≔ −J(z)−1R(z) is a
descent direction for any point withR(z) , 0, as can be seen by computing the
scalar product∇V(z)′p(z) = −R(z)′J(z)J(z)−1R(z) = − ‖R(z)‖2 < 0. This me-
ans that there exists a step lengthα ∈ (0,1] such thatV(z+ αp(z)) < V(z). To
ensure sufficient decrease of the merit function in each iteration, we can even
impose the strongerArmijo conditionthat requires

V(z+ αp(z)) ≤ V(z) + αγ∇V(z)′p(z) (2.2)

for some fixedγ ∈ (0,1/2), e.g.,γ = 0.01. By choosing any step lengthα that
satisfies the Armijo condition, one can prevent the iteratesfrom jumping bet-
ween points of nearly equal merit-function value without making progress. To
prevent the steps from becoming infinitely small, one can usethe backtracking
algorithm. First, one checks if the step lengthα = 1 satisfies the Armijo con-
dition. If not, one reducesα by a constant factor, i.e., one reducesα to βα

with a fixed valueβ ∈ (0,1), e.g.,β = 0.8, and checks the Armijo condition
again. If it is satisfied, one accepts the step length; if not,one reduces the va-
lue ofα further, each time by the constant factorβ. For descent directions and
continuously differentiable merit functions, the backtracking algorithm always
terminates and delivers a step length larger than zero. In fact, it delivers the lar-
gest valueα ∈ {1, β, β2, . . .} that satisfies the Armijo condition (2.2). We denote
the selected step length byα(z) in order to express its implicit dependence on
z.

In summary, the globalized Newton’s method iterates according to the sy-
stem dynamicsz+ = f (z) with f (z) = z+ α(z)p(z). Note that while the merit
functionV(z) is continuous and even differentiable, the discrete time systemf
is not continuous due to the state dependent switches in the backtracking pro-
cedure. Under mild assumptions on the functionR(z), one can ensure global
convergence of the damped Newton procedure to a stationary point of the me-
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rit function, i.e., to a pointz∗ with ∇V(z∗) = 0, which can either be a solution
with R(z∗) = 0 or a point whereJ(z∗) is singular.

Exercises

2.1 Sketch the root finding residual functionR : R→ R, R(z) := z16 − 2 and
its tangent atz0 = 1, and locate the first Newton iteratez1 in the graph.

2.2 For the root finding problem above, regard a Newton-type method with
fixed iteration matrixM := 20 and locate the first Newton-type iterate in
the graph. Also draw the corresponding Taylor-type approximation that
is given by the linear functioñR(z) := z0 + M(z− z0).

2.3 Define the iteration mapG(z) := z − M(z)−1R(z) for R(z) := z16 − 2
with two different choices forM: first, with MNewton(z) = J(z) (exact
Newton), and second, withMfixed := 20 (fixed Jacobian approximation).
Draw both iteration maps on the positive orthant. Also draw the diagonal
line corresponding to the identity map, and sketch the first three Newton-
type iterates for both methods.

2.4 As above, plot the iteration map for the fixed Jacobian method, but now
for different values ofMfixed. For which values ofMfixed do you expect
divergence? How would you justify your expectation analytically, and
how can it be interpreted visually?

2.5 Write a computer program for Newton-type optimization inRn , that
takes as inputs a functionF(z), a Jacobian approximationM(z), and a
starting pointz0 ∈ Rn, and which outputs the first 20 Newton type itera-
tions. Test your program withR(z) = z16 − 2 and exact Jacobian starting
at different positive initial guesses. How many iterations do you typically
need in order to obtain a solution that is exact up to machine precision?

2.6 An equivalent problem toz16 − 2 = 0 can be obtained bylifting it to a
higher dimensional space [2], as follows:

R(z) =





z2 − z2
1

z3 − z2
2

z4 − z2
3

2 − z2
4





.

Implement Newton’s method for this lifted problem and startit at z0 =

[1,1,1,1]⊤. Also implement the Newton method for the unlifted pro-
blem, and compare the convergence of the two algorithms.

2.7 Consider the root finding problemR(z) = 0 with R : R → R,R(z) :=
tanh(z) − 1

2. Convergence of Newton’s method will be sensitive to the
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chosen initial valuez0. Plot R(z) and observe the non-linearity. Imple-
ment Newton’s method (with full steps) and test if it converges or not for
different initial valuesz0.

2.8 Regard the problem of finding a solution to the nonlinear equation sy-
stem x = ey and x4 + y4 = 4 in the two variablesx, y ∈ R. Sketch
the solution sets to the two individual equations as curves in R2 and lo-
cate the intersection points. Now regard the solution of this system with
Newton’s method, initialized at the pointx = y = 2. Based on the system
linearization at this initial guess, sketch the solution sets of the two li-
near equations that define the first Newton iterate, and locate this iterate
graphically.

2.9 Regard the two dimensional root finding problem from Question 2.8
above and solve it with your implementation of Newton’s method from
Question 2.5, using different initial guesses. Does it always converge,
and if it converges, does it always converge to the same solution?

2.10 Consider the following optimization problem:

minimize
z

(1− z2
1) + 100 (z2 − z2

1)2

︸                         ︷︷                         ︸

=: f (z)

where the objectivef : R2 → R is the famous Rosenbrock function. A
solution to this problemz∗ can be obtained by solution of the nonlinear
system∇ f (z) = 0. Compute the gradient of the Rosenbrock function,
R(z) := ∇ f (z) and the Jacobian ofR (i.e. the Hessian matrix off ) on
paper. Implement Newton’s method. Start with different initial guesses
and observe the convergence.

2.11 Solve the previous exercise with the a simple Newton-type method, where

you use a fixed Jacobian approximation that is given byM =

[

200 0
0 200

]

.

2.12 A hanging chain can be modeled as a set ofN balls (each with massm)
connected byN − 1 massless rods ( each of lengthL). We assume that
the two endpoints of the chain are fixed, and are interested inthe equi-
librium positions of all balls in between. In this exercise,we compute
these positions by using the equilibrium of forces and Newton’s method.

Applying the equilibrium conditions to each ball produces the follo-
wing set of equations, fori = 1, . . . ,N − 1.

Fi+1 = mg

[

0
1

]

+ Fi (2.3)

whereg is the gravitational acceleration andFi ∈ R2 is defined as the
force between the ballsi and i + 1. On the other hand, considering the
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geometry of the chain, the following relation between the ball positions
pi can be obtained:

pi+1 = pi + L
Fi

‖Fi‖2
. (2.4)

Here,pi ∈ R2 represents the position of the balli. Assume thatN = 15,
Li = 1 [m] andm= 5 [kg].

(a) Fixing the position of the first massp1 to

[

0
10

]

, knowing the forceF1

and using Equations (2.3) and (2.4), we can create a forward map and
compute all the forcesFi and positionspi . Implement a function that
uses as inputF1 and outputs the positionsp1, . . . , p15 of every mass.

(b) Now we want to fix also the position of the last massp15 to

[

10
10

]

.

The function from the previous task generatesp15 as a function of the
initial force F1. Form a root finding problemR(z) = 0, with z := F1

andR(z) := p15(z) −
[

10
10

]

.

(c) In order to apply Newton’s method toR(z), we have to compute its
derivative. Finite differences provide an easy method for this. Defi-
ning the Jacobian ofR(z) at a pointzasJ(z), finite differences use the
fact that:

J(z)p ≈ R(z+ ǫp) − R(z)
ǫ

where we can use e.g.ǫ = 10−6. If using first p =

[

1
0

]

and thenp =
[

0
1

]

, the Jacobian can be computed after three calls ofR(z). Implement

the computation of the Jacobian ofJ(z) at an arbitrary pointzby finite
differences.

(d) Implement Newton’s method to obtain theF∗1 that satisfies the equili-
brium of forces and solves the root finding problem. Use the forward
map computed on the first task and plot the position of every mass
under equilibrium conditions.

(e) Can you formulate and solve an equivalent ”lifted” root finding pro-
blem for computing the rest position of the chain?
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Nonlinear Optimization

The great watershed in optimization is not
between linearity and nonlinearity, but con-
vexity and nonconvexity.
— R. Tyrrell Rockafellar

The optimization problem with which we are concerned in thisand the fol-
lowing chapters is the standardNonlinear Program (NLP)that was already
stated in the introduction:

minimize
w ∈ Rn

f (w)

subject to g(w) = 0,

h(w) ≤ 0,

(3.1)

where f : Rn → R, g : Rn → Rng, andh : Rn → Rnh are assumed to be
twice continuously differentiable. Functionf is called theobjective function,
functiong is the vector ofequality constraints, andh the vector ofinequality
constraints. We start with some fundamental definitions. First, we collect all
points that satisfy the constraints in one set.

Definition 3.1 (Feasible set). Thefeasible setΩ is the set

Ω := {w ∈ Rn | g(w) = 0, h(w) ≤ 0} .

The points of interest in optimization are those feasible points that minimize
the objective, and they come in two different variants.

Definition 3.2 (Global minimum). The pointw∗ ∈ Rn is aglobal minimizerif
and only if (iff) w∗ ∈ Ω and∀w ∈ Ω : f (w) ≥ f (w∗). The valuef (w∗) is the
global minimum.

38
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Unfortunately, the global minimum is usually difficult to find, and most al-
gorithms allow us to only findlocal minimizers, and to verify optimality only
locally.

Definition 3.3 (Local minimum). The pointw∗ ∈ Rn is a local minimizeriff
w∗ ∈ Ω and there exists a neighborhoodN of w∗ (e.g., an open ball aroundw∗)
so that∀w ∈ Ω ∩N : f (w) ≥ f (w∗). The valuef (w∗) is a local minimum.

In order to be able to state the optimality conditions that allow us to check if
a candidate pointw∗ is a local minimizer or not, we need to describe the feasi-
ble set in the neighborhood ofw∗. It turns out that not all inequality constraints
need to be considered locally, but only theactiveones.

Definition 3.4 (Active Constraints and Active Set). An inequality constraint
hi(w) ≤ 0 is calledactiveat w∗ ∈ Ω iff hi(w∗) = 0 and otherwiseinactive. The
index setA(w∗) ⊂ {1, . . . ,nh} of active inequality constraint indices is called
the ”active set”.

Often, the nameactive setalso comprises all equality constraint indices, as
equalities could be considered to be always active.

Problem (3.1) is very generic. In Section 3.1 we review some special cases,
which still yield large classes of optimization problems. In order to choose
the right algorithm for a practical problem, we should know how to classify it
and which mathematical structures can be exploited. Replacing an inadequate
algorithm by a suitable one can reduce solution times by orders of magnitude.
E.g., an important structure is convexity. It allows us to tofind global minima
by searching for local minima only.

For the general case we review the first and second order conditions of opti-
mality in Sections 3.2 and 3.3, respectively.

3.1 Important Special Classes

Linear Optimization
An obvious special case occurs when the functionsf , g, andh in (3.1) are
linear, resulting in a linear optimization problem (or Linear Program, LP)

minimize
w ∈ Rn

c⊤w

subject to Aw− b = 0,

Cw− d ≤ 0.
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Here, the problem data arec ∈ Rn,A ∈ Rng×n,b ∈ Rng,C ∈ Rnh×n, andd ∈ Rnh.
It is easy to show that one optimal solution of any LP – if the LPdoes

have a solution and is not unbounded – has to be a vertex of the polytope of
feasible points. Vertices can be represented and calculated by means of basis
solution vectors, with a basis ofactive inequality constraints. Thus, there are
only finitely many vertices, giving rise to Simplex algorithms that compare
all possible solutions in a clever way. However, naturally also the optimality
conditions of Section 3.2 are valid and can be used for algorithms, in particular
interior point methods.

Quadratic Optimization
If in the general NLP formulation (3.1) the constraintsg,h are affine, and the
objective is a linear-quadratic function, we call the resulting problem a Qua-
dratic Optimization Problem or Quadratic Program (QP). A general QP can be
formulated as follows.

minimize
w ∈ Rn

c⊤w+
1
2

w⊤Bw

subject to Aw− b = 0,

Cw− d ≤ 0.

(3.2)

Here, the problem data arec ∈ Rn,A ∈ Rng×n,b ∈ Rng,C ∈ Rnh×n,d ∈ Rnh,
as well as the “Hessian matrix”B ∈ Rn×n. Its name stems from the fact that
∇2 f (w) = B for f (w) = c⊤w+ 1

2w⊤Bw.
The eigenvalues ofB decide on convexity or non-convexity of a QP, i.e., the

possibility to solve it in polynomial time to global optimality, or not. If B<0
we speak of a convex QP, and ifB≻0 we speak of a strictly convex QP. The
latter class has the property that it always has unique minimizers.

Convex Optimization
Roughly speaking, a set is convex, if all connecting lines lie inside the set:

Definition 3.5 (Convex Set). A setΩ ⊂ Rn is convex if

∀x, y ∈ Ω, t ∈ [0,1] : x+ t(y− x) ∈ Ω.

A function is convex, if all secants are above the graph:

Definition 3.6 (Convex Function). A function f : Ω → R is convex, ifΩ is
convex and if

∀x, y ∈ Ω, t ∈ [0,1] : f (x+ t(y− x)) ≤ f (x) + t( f (y) − f (x)).
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Note that this definition is equivalent to saying that the Epigraph of f , i.e.,
the set{(x, s) ∈ Rn × R|x ∈ Ω, s≥ f (x)}, is a convex set.

Definition 3.7 (Concave Function). A function f : Ω→ R is called “concave”
if (− f ) is convex.

Note that the feasible setΩ of an optimization problem (3.1) is convex if
the functiong is affine and the functionshi are convex, as supported by the
following theorem.

Theorem 3.8(Convexity of Sublevel Sets). The sublevel set{x ∈ Ω | h(x) ≤ 0}
of a convex function h: Ω→ R is convex.

Definition 3.9 (Convex Optimization Problem). An optimization problem with
convex feasible setΩ and convex objective functionf : Ω→ R is called acon-
vex optimization problem.

Theorem 3.10(Local Implies Global Optimality for Convex Problems). For
a convex optimization problem, every local minimum is also aglobal one.

We leave the proofs of Theorems 3.8 and 3.10 as an exercise.
There exists a whole algebra of operations that preserve convexity of functi-

ons and sets, which is excellently explained in the text books on convex opti-
mization [8, 22]. Here we only mention an important fact thatis related to the
positive curvature of a function. Before we proceed, we introduce an important
definition often used in this book.

Definition 3.11 (Generalized Inequality for Symmetric Matrices). We write
for a symmetric matrixB = B⊤, B ∈ Rn×n that “B<0” if and only if B is
positive semi-definitei.e., if ∀z ∈ Rn : z⊤Bz≥ 0, or, equivalently, if all (real)
eigenvalues of the symmetric matrixB are non-negative:

B<0⇐⇒ min eig(B) ≥ 0.

We write for two such symmetric matrices that “A<B” iff A − B<0, and
“A4B” iff B<A. We sayB≻0 iff B is positive definite, i.e., if ∀z ∈ Rn \ {0} :
z⊤Bz> 0, or, equivalently, if all eigenvalues ofB are positive

B≻0⇐⇒ min eig(B) > 0.

Theorem 3.12(Convexity forC2 Functions). Assume that f: Ω→ R is twice
continuously differentiable andΩ convex and open. Then f is convex if and
only if for all x ∈ Ω the Hessian is positive semi-definite, i.e.,

∀x ∈ Ω : ∇2 f (x)<0.
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Again, we leave the proof as an exercise. As an example, the quadratic ob-
jective function f (x) = c⊤x + 1

2 x⊤Bx of (3.2) is convex if and only ifB<0,
because∀x ∈ Rn : ∇2 f (x) = B.

3.2 First Order Optimality Conditions

An important question in continuous optimization is if a feasible pointw∗ ∈ Ω
satisfies necessary first order optimality conditions. If itdoes not satisfy these
conditions,w∗ cannot be a local minimizer. If it does satisfy these conditions,
it is a hot candidate for a local minimizer. If the problem is convex, these
conditions are evensufficient to guarantee that it is a global optimizer. Thus,
most algorithms for nonlinear optimization search for suchpoints. The first
order condition can only be formulated if a technical “constraint qualification”
is satisfied, which in its simplest and numerically most attractive variant coms
in the following form.

Definition 3.13(LICQ). Thelinear independence constraint qualification(LICQ)
holds atw∗ ∈ Ω iff all vectors∇gi(w∗) for i ∈ {1, . . . ,ng} and∇hi(w∗) for
i ∈ A(w∗) are linearly independent.

To give further meaning to the LICQ condition, let us combineall active
inequalities with all equalities in a map ˜g defined by stacking all functions on
top of each other in a colum vector as follows:

g̃(w) =

[

g(w)
hi(w)(i ∈ A(w∗))

]

. (3.3)

LICQ is then equivalent to full row rank of the Jacobian matrix ∂g̃
∂w(w∗).

The Karush-Kuhn-Tucker Optimality Conditions
This condition allows us to formulate the famous KKT conditions that are due
to Karush [51] and Kuhn and Tucker [54].

Theorem 3.14(KKT Conditions). If w∗ is a local minimizer of the NLP(3.1)
and LICQ holds at w∗ then there exist so called multiplier vectorsλ ∈ Rng and
µ ∈ Rnh with

∇ f (w∗) + ∇g(w∗)λ∗ + ∇h(w∗)µ∗ = 0 (3.4a)

g(w∗) = 0 (3.4b)

h(w∗) ≤ 0 (3.4c)

µ∗ ≥ 0 (3.4d)

µ∗i hi(w
∗) = 0, i = 1, . . . ,nh. (3.4e)
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Regarding the notation used in the first line above, please observe that in this
script we use the gradient symbol∇ also for functionsg,h with multiple out-
puts, not only for scalar functions likef . While∇ f is a column vector, in∇gwe
collect the gradient vectors of all output components in a matrix which is the
transpose of the Jacobian, i.e.,∇g(w) := ∂g

∂w(w)⊤. Note: The KKT conditions
are the First order necessary conditions for optimality (FONC) for constrained
optimization, and are thus the equivalent to∇ f (w∗) = 0 in unconstrained opti-
mization. In the special case of convex problems, the KKT conditions are not
only necessaryfor a local minimizer, but evensufficientfor aglobalminimizer.
In fact, the following extremely important statement holds.

Theorem 3.15. Regard a convex NLP and a point w∗ at which LICQ holds.
Then:

w∗ is a global minimizer⇐⇒ ∃λ, µ so that the KKT conditions hold.

The Lagrangian Function
Definition 3.16 (Lagrangian Function). We define the so called “Lagrangian
function” to be

L(w, λ, µ) = f (w) + λ⊤g(w) + µ⊤h(w).

Here, we have used again the so called “Lagrange multipliers” or “dual va-
riables”λ ∈ Rng andµ ∈ Rnh. The Lagrangian function plays a crucial role in
both convex and general nonlinear optimization, not only asa practical short-
hand within the KKT conditions: using the definition of the Lagrangian, we
have (3.4a)⇔ ∇wL(w∗, λ∗, µ∗) = 0.

Remark 1:In the absence of inequalities, the KKT conditions simplifyto
∇wL(w, λ) = 0, g(w) = 0, a formulation that is due to Lagrange and was much
earlier known than the KKT conditions.

Remark 2:The KKT conditions require the inequality multipliersµ to be
positive,µ ≥ 0, while the sign of the equality multipliersλ is arbitrary. An
interesting observation is that for a convex problem withf and allhi convex
andg affine, and forµ ≥ 0, the Lagrangian function is a convex function in
w. This often allows us to explicitly find the unconstrained minimum of the
Lagrangian for any givenλ and µ ≥ 0, which is called the Lagrange dual
function, and which can be shown to be an underestimator of the minimum.
Maximizing this underestimator over allλ andµ ≥ 0 leads to the concepts of
weak and strong duality.
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Complementarity
The last three KKT conditions (3.4c)-(3.4e) are called thecomplementarity
conditions. For each indexi, they define an L-shaped set in the (hi , µi) space.
This set is not a smooth manifold but has a non-differentiability at the origin,
i.e., if hi(w∗) = 0 and alsoµ∗i = 0. This case is called a weakly active constraint.
Often we want to exclude this case. On the other hand, an active constraint with
µ∗i > 0 is called strictly active.

Definition 3.17. Regard a KKT point (w∗, λ∗, µ∗). We say thatstrict comple-
mentarityholds at this KKT point iff all active constraints are strictly active.

Strict complementarity is a favourable condition because,together with a
second order condition, it implies that the active set is stable against small
perturbations. It also makes many theorems easier to formulate and to prove,
and is also required to prove convergence of some numerical methods.

3.2.1 Interpretation of the KKT conditions

It is extremely useful to equip ourselves with an interpretation of the KKT
conditions (3.4). We present here thephysical interpretation, where we see
the KKT conditions as aforce balancebetween the objective function and the
constraints. It is easiest to construct this interpretation on a two-dimensional
problem. The objective function can then be seen as a landscape with hills and
depressions, and the optimal solution can be seen as a ”ball”rolling towards
the lowest point in that landscape. The force exerted by the cost function on
the solution corresponds to theslopeof the cost function, i.e.:

−∇ f (w∗) .

In this picture, equality constraints can be seen as a ”rail”(or as a surface in
dimensions higher than two) along which the ”ball” is forcedto move. Inequa-
lity constraints can be seen as ”barriers” that divide the landscape and contain
the ”ball” in a restrained domain. The constraints then exert forces on the ball,
maintaining it on the rail and on the correct side of the barriers.

Equality constraints, the rail in our landscape, are described by the manifold
g(w) = 0. The ”ball” is free to move along the rail but cannot leave it. The rail
then exerts a force on the ”ball” only in directions orthogonal to the rail. Such
directions are readily described by∇g(w). The KKT condition (3.4a) for pure
equality constraints reads as:

∇ f (w∗) + ∇g (w∗) λ∗ = 0

and prescribes that at the solutionw∗, λ∗, the force exerted by the cost function
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µ = −0.63446 µ = 0.14645
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Figure 3.1 Illustration of the KKT conditions for an equality-constrained NLP.
The ”slope” of the cost function−∇ f (w) pushes the ”ball” towards its lowest
point. The ”ball” is maintained on the ”rail”, i.e. the equality constraintsg (w) = 0,
via the force−∇g (w) λ, but is free to move along the rail. At the solutionw∗, λ∗,
the forces exerted by the rail and the cost function even out.

−∇ f (w∗) and the force exerted by the rail i.e.−∇g (w∗) λ∗ are in balance. The
rail will exert whatever force (in the orthogonal direction) is required to main-
tain the ”ball” on the rail, hence the role of the Lagrange multipliers λ∗ is
to adjust the force of the rail in order to balance out the gradient of the cost
function. This interpretation is illustrated in Figure 3.1.

Similarly, inequality constraints, the barriers in our landscape, are described
by the manifoldh(w) ≤ 0, and can exert a force on the ”ball” only in directi-
ons orthogonal to the barrier, i.e.∇h(w), andonly towards the interior of the
feasible domain. The sign constraint (3.4b) on the Lagrangemultipliersµ asso-
ciated to the inequality constraints is then needed to ensure that the barrier can
only ”push” the ”ball” into the feasible domain, but cannot force it to remain
in contact with the barrier. The complementarity slacknesscondition (3.4e) es-
sentially means that the barrier can exert a force on the ”ball” if and only if the
”ball” is in contact with the barrier. This interpretation is illustrated in Figure
3.2.

Finally the LICQ condition also has a physical interpretation. In the two-
dimensional case, when the LICQ fails, some constraints exert forces that are
collinear at the solution, resulting in infinite forces. This interpretation is illus-
trated in Figure 3.3.
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µ = −0.63446 µ = 0
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∇h (w∗) µ∗

Figure 3.2 Illustration of the KKT conditions for an inequality-constrained NLP.
The ”slope” of the cost function−∇ f (w) pushes the solution towards its lo-
west point. The solution contained by the ”barrier”, i.e. the inequality constraints
h (w) ≤ 0 to remain within the feasible domain via the force−∇h (w) µ, but is free
to move along the barrier and towards the interior of the feasible domain. At the
solutionw∗, µ∗, the forces exerted by the barrier and the cost function even out.
If the solution is in contact with the barrier, then the force is non-zero and pushes
towards the interior of the feasible domain, i.e.h(w∗) = 0, µ > 0 (left graph).
Otherwise, the barrier exerts no force on the solution, i.e.h(w∗) < 0, µ = 0 (right
graph).
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Figure 3.3 Failure of the LICQ condition. The optimal solutionis not a KKT
point. In this case, the forces exerted by the constraintsh1(w) andh2(w) are colli-
near, and cannot balance the slope of the cost function−∇ f (w), even though the
constraints prevent the solution from moving further toward the minimum of the
cost function.
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3.3 Second Order Optimality Conditions

In case of strict complementarity at a KKT point (w∗, λ∗, µ∗), the optimization
problem can locally be regarded to be a problem with equalityconstraints only,
namely those within the function ˜g defined in Equation (3.3). Though more
complex second order conditions can be formulated that are applicable even
when strict complementarity does not hold, we restrict ourselves here to this
special case.

Theorem 3.18(Second Order Optimality Conditions). Let us regard a point
w∗ at which LICQ holds together with multipliersλ∗, µ∗ so that the KKT con-
ditions (3.4a)-(3.4e)are satisfied and let strict complementarity hold. Regard
a basis matrix Z∈ Rn×(n−ng̃) of the null space of∂g̃

∂w(w∗) ∈ Rng̃×n, i.e., Z has full

column rank and∂g̃
∂w(w∗)Z = 0.

Then the following two statements hold:

(a) If w∗ is a local minimizer, then Z⊤∇2
wL(w∗, λ∗, µ∗)Z<0.

(Second Order Necessary Condition, short : SONC)

(b) If Z⊤∇2
wL(w∗, λ∗, µ∗)Z≻0, then w∗ is a local minimizer.

This minimizer is unique in its neighborhood, i.e., a strictlocal minimizer,
and stable against small differentiable perturbations of the problem data.
(Second Order Sufficient Condition, short: SOSC)

The matrix∇2
wL(w∗, λ∗, µ∗) plays an important role in optimization algo-

rithms and is called theHessian of the Lagrangian, while its projection on the
null space of the Jacobian,Z⊤∇2

wL(w∗, λ∗, µ∗)Z, is called thereduced Hessian.

Quadratic Problems with Equality Constraints
To illustrate the above optimality conditions, let us regard a QP with equality
constraints only.

minimize
w ∈ Rn

c⊤w+
1
2

w⊤Bw

subject to Aw+ b = 0.

We assume thatA has full row rank i.e., LICQ holds. The Lagrangian is
L(w, λ) = c⊤w + 1

2w⊤Bw + λ⊤(Aw + b) and the KKT conditions have the
explicit form

c + Bw+ A⊤λ = 0

b + Aw = 0.
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This is a linear equation system in the variable (w, λ) and can be solved if the
so calledKKT matrix

[

B A⊤

A 0

]

is invertible. In order to assess if the unique solution (w∗, λ∗) of this linear
system is a minimizer, we need first to construct a basisZ of the null space ofA,
e.g., by a full QR factorization ofA⊤ = QRwith Q = (Y|Z) square orthonormal
andR = (R̄⊤|0)⊤. Then we can check if the reduced Hessian matrixZ⊤BZ is
positive semidefinite. If it is not, the objective function has negative curvature
in at least one of the feasible directions andw∗ cannot be a minimizer. If on the
other handZ⊤BZ≻0 thenw∗ is a strict local minimizer. Due to convexity this
would also be the global solution of the QP.

Invertibility of the KKT Matrix and Stability under Perturba tions
An important fact is the following. If the second order sufficient conditions for
optimality of Theorem 3.18 (b) hold, then it can be shown thatthe KKT-matrix





∇2
wL(w∗, λ∗, µ∗) ∂g̃

∂w(w∗)⊤
∂g̃
∂w(w∗)





is invertible. This implies that the solution is stable against perturbations. To
see why, let us regard a perturbed variant of the optimization problem (3.1)

minimize
w ∈ Rn

f (w) + δ⊤f w

subject to g(w) + δg = 0,

h(w) + δh ≤ 0,

(3.5)

with small vectorsδ f , δg, δh of appropriate dimensions that we summarize as
δ = (δ f , δg, δh). If a solution exists forδ = 0, the question arises if a solution
exists also for smallδ , 0, and how this solution depends on the perturbation
δ. This is is answered by the following theorem.

Theorem 3.19(SOSC implies Stability of Solutions). Regard the family of
perturbed optimization problems(3.5) and assume that forδ = 0 exists a lo-
cal solution(w∗(0), λ∗(0), µ∗(0)) that satisfies LICQ, the KKT condition, strict
complementarity, and the second order sufficient condition of Theorem 3.18
(b). Then there exists anǫ > 0 so that for all‖δ‖ ≤ ǫ exists a unique local
solution(w∗(δ), λ∗(δ), µ∗(δ)) that depends differentiably onδ. This local solu-
tion has the same active set as the nominal one, i.e., its inactive constraint
multipliers remain zero and the active constraint multipliers remain positive.
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The solution does not depend on the inactive constraint perturbations. If g̃
is the combined vector of equalities and active inequalities, andλ̃ and δ̃2 the
corresponding vectors of multipliers and constraint perturbations, then the de-
rivative of the solution(w∗(δ), λ̃∗(δ)) with respect to(δ1, δ̃2) is given by

d

d(δ1, δ̃2)

[

w∗(δ)
λ̃∗(δ)

]∣
∣
∣
∣
∣
∣
δ=0

= −




∇2
wL(w∗, λ∗, µ∗) ∂g̃

∂w(w∗)⊤
∂g̃
∂w(w∗)





−1

This differentiability formula follows from differentiation of the necessary
optimality conditions of the parametrized optimization problems with respect
to (δ1, δ̃2)

∇ f (w∗(δ)) +
∂g̃
∂w

(w∗)⊤λ̃ + δ1 = 0

g̃(w∗(δ)) + δ̃2 = 0

Invertibility of the KKT matrix and stability of the solution under perturbations
are very useful facts for the applicability of Newton-type optimization methods
that are discussed in the next chapter.

Multipliers as Shadow Costs of the Constraints
One immediate consequence of the above sensitivity result is that the gradient
of the objective functionf (w∗(δ) with respect to the perturbation parameterδ

is due to the chain rule given by

d
dδ

f (w∗(δ))
∣
∣
∣
∣
∣

⊤

δ=0
= −





∇2
wL(w∗, λ∗, µ∗) ∂g̃

∂w(w∗)⊤
∂g̃
∂w(w∗)





−1 [

∇w f (w∗)
0

]

=

[

0
λ̃∗

]

The last equality can be derived by noting that the KKT matrixis invertible,
thus the solution unique, and that the gradient of the Lagrangian is zero at the
solution. The interpretation of the result is twofold: first, due to the leading
zeros, it can be seen that the objective valuef (w∗(δ) is completely insensitive
against perturbationsδ f in the gradient of the objective, or more general, in
perturbations of the objective function. This remarkable observation is a conse-
quence of the fact that the minimizer is in a flat region of the reduced objective,
thus feasible changes inw∗(δ) do not change the objective up to first order. The
second interpretation is equally interesting: the appearance of the multipliers
in the gradient means that changesδg̃ to the constraints lead directly to an in-
crease or decrease in the costf (w∗(δ). Thus, for positive multipliers, the cost
increases for positive perturbations of the constraints, and the increase in the
cost is directly given by the multiplier valuesλ̃. Note that this is consistent with
the fact that the inequality multipliers are restricted to be positive: an increase
in δh will tighten the inequality constraint, i.e., reduce the feasible set, such
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that the objective function can only increase. Also note that the physical units
of the multipliers are given by the objective unit divided bythe corresponding
constraint units, i.e., for an objective in Euro and a constraint that restricts
some distance in meter, the multiplier would have the unit Euro/meter. This is
the famous interpretation of multipliers as ”shadow costs”of the constraints.

Software: An excellent tool to formulate and solve convex optimization pro-
blems in a MATLAB environment is CVX, which is available as open-source
code and easy to install.

Software for solving a QP Problem: MATLAB: quadprog. Commercial: CPLEX,
MOSEK. Open-source: CVX, qpOASES.

For anyone not really familiar with the concepts of nonlinear optimization
that are only very briefly outlined here, it is highly recommended to have a look
at the excellent Springer text book “Numerical Optimization” by Jorge Noce-
dal and Steve Wright [64]. Who likes to know more about convex optimization
than the much too brief outline given in this script is recommended to have a
look at the equally excellent Cambridge University Press text book “Convex
Optimization” by Stephen Boyd and Lieven Vandenberghe [22], whose PDF is
freely available.

Exercises

3.1 Consider the following NLP:

minimize
w ∈ RN

1
2

w⊤w

subject to N − w⊤w ≤ 0.

What is the solution of the above problem? Is it a KKT point ? Is it
regular ? Does it fulfil the SOSC ? Justify and explain.

3.2 Solve the same questions of the previous tasks on the modified NLP:

minimize
w ∈ R2

1
2

w⊤w

subject to w1w2 − 1 = 0,

2− w⊤w ≤ 0.
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3.3 A colleague of yours wants to solve the following problem:

minimize
w ∈ R2

w1 + w2 (3.6a)

subject to w1 + w2 = aw2
1 + bw2

2 + c (3.6b)

with a,b > 0. He observes the equality constraint (3.6b) and the cost
(3.6a) and concludes that solving (3.6) is equivalent to solving:

minimize
w ∈ R2

aw2
1 + bw2

2 + c

which takes the trivial solutionx, y = 0. He then realizes that something
is wrong with his approach, but he cannot explain what goes wrong. Help
him.

3.4 Prove that the unconstrained optimization problem

minimize
x ∈ Rn

f (x)

with f : Rn→ R a continuous, coercive function, has a global minimum
point.
Hint: Use the Weierstrass Theorem and the following definition.

Definition (Coercive functions). A continuous functionf (x) that is
defined onRn is coercive if

lim
‖x‖→∞

f (x) = +∞

or equivalently, if∀ M ∃R : ‖x‖ > R⇒ ‖ f (x)‖ > M.
3.5 Determine and explain whether the following functions are convex or

not:

(a) f (x) = c⊤x+ x⊤A⊤Ax

(b) f (x) = −c⊤x− x⊤A⊤Ax

(c) f (x) = log(c⊤x) + exp(b⊤x)

(d) f (x) = − log(c⊤x) − exp(b⊤x)

(e) f (x1, x2) = 1/(x1x2) onR2
++.
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(f) f (x1, x2) = x1/x2 onR2
++.

3.6 Determine and explain whether the following sets are convex or not:

(a) Ω = {x ∈ Rn | x⊤B⊤Bx≤ c⊤x}

(b) A ball, i.e., a set of the form:

B(xc, r) = {x | ‖x− xc‖ ≤ r} = {x | (x− xc)
⊤(x− xc) ≤ r2}

(c) A cone, i.e., a set of the form:

C = {(x, t) | ‖ x ‖ ≤ t}

(d) A wedge, i.e., a set of the form:

{x ∈ Rn | a⊤1 x ≤ b1,a
⊤
2 x ≤ b2}

(e) A polyhedra:

{x ∈ Rn | Ax� b, Cx� d}

(f) The set of points closer to one set than another:

C := {x ∈ Rn|dist(x, S) ≤ dist(x,T)},
with dist(x, S) := inf{||x− z||2 | z ∈ S}

3.7 Consider the followingmixed-integer quadratic program(MIQP):

minimize
x ∈ {0,1}n

x⊤Qx+ q⊤x

subject to Ax≥ b

where the optimization variablesxi are restricted to take values in{0,1}.
Solving mixed-integer problems is in general a challengingtask, thus it
is common practice to reformulate them as the following:

minimize
x ∈ {0,1}n

x⊤Qx+ q⊤x

subject to Ax≥ b,

xi(1− xi) = 0 i = 0, · · · ,n− 1.

(a) Is this reformulation continuous?
(b) Is this reformulation convex?
(c) Is this reformulation a QP problem?
(d) Compute the Lagrangian functionL(x, λ, µ).
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(e) Derive the first and second order optimality conditions for this speci-
fic problem.

3.8 Regard, first just on paper, the following NLP:

minimize
x ∈ R2

x2

subject to x2
1 + 4x2

2 ≤ 4,

x1 ≥ −2,

x1 = 1

(a) How many degrees of freedom, how many equality, and how many
inequality constraints does this problem have?

(b) Sketch the feasible setΩ of this problem. What is the optimal solu-
tion?

(c) Bring this problem into the NLP standard form

minimize
x ∈ Rn

f (x)

subject to g(x) = 0,

h(x) ≤ 0

by defining the dimensionn and the functionsf ,g,h along with their
dimensions appropriately.

(d) Now formulate three MATLAB functionsf ,g,h for the above NLP,
choose an initial guess forx, and solve the problem usingfmincon.
Check that the output corresponds to what you expected.

3.9 We want to model a chain attached to two supports and hanging in bet-
ween. Let us discretise it withN mass points connected byN−1 springs.
Each massi has position (yi , zi), i = 1, . . . ,N. The equilibrium point of
the system minimises the potential energy. We know that the potential
energy of each spring is given by

Vi
el =

1
2

Di

(

(yi − yi+1)2 + (zi − zi+1)2
)

,

and that the gravitational potential energy of each mass by

Vi
g = mi g0 zi .
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As a result, the total potential energy is given by:

Vchain(y, z) =
1
2

N−1∑

i=1

Di

(

(yi − yi+1)2 + (zi − zi+1)2
)

+ g0

N∑

i=1

mi zi ,

Consideringy = [y1, · · · , yN]⊤ andz= [z1, · · · , zN]⊤, the problem that
we wish to solve is given by:

minimize
y,z

Vchain(y, z),

with optional additional inequality constraints which model a plane that
the chain can not touch. This problem can be formulated by a QPas:

minimize
x

1
2

x⊤Hx+ g⊤x

subject to xlb ≤ x ≤ xub,

alb ≤ Ax≤ aub

wherex = [y1, z1, . . . , yN, zN]⊤. In this representation, you get an equality
constraint by having upper and lower bound equal, i.e.a(k)

lb = a(k)
ub for

somek.

(a) Formulate the problem usingN = 40, mi = 4/N kg, Di = 70N N/m, g0 =

9.81 m/s2 with the first and last mass point fixed to (−2,1) and (2,1),
respectively.

(b) Solve the problem using the functionquadprogfrom MATLAB.
(c) Visualize the solution by plotting (y, z).
(d) Introduce ground constraints:zi ≥ 0.5 andzi−0.1yi ≥ 0.5. Solve your

QP again and plot the result. Compare the result with the previous
one.

(e) What would happen if you add instead of the piecewise linear ground
constraints, the nonlinear ground constraintszi ≥ y2

i to your problem?
The resulting problem is no longer a QP, but is it convex?

(f) What would happen if you add instead the nonlinear ground con-
straintszi ≥ −y2

i to your problem? Is the problem convex?
(g) Introduction to CasADi 2: Based on the template solution of Exe-

rcise 1.3, implement the above problem in CasaADi using IPOPT
instead of qpOASES. To do that, call the functionnlpsol instead of
qpsol and leave the rest identical:

• MATLAB
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s o l v e r = n l p s o l ( ’ s o l v e r ’ , ’ i p o p t ’ , prob ) ;

• Python

s o l v e r = n l p s o l ( ’ s o l v e r ’ , ’ i p o p t ’ , prob )

3.10 The following function has multiple local minima in thedomain [−1,1]×
[−1,1]:

f (x, y) = exp(−x2 − y2) sin(4 (x+ y+ x ∗ y2))

(a) Plot and visualize the function in [−1,1] × [−1,1].
(b) Find the unconstrained minimizer of the function starting at different

initial points, e.g. [0,0], [0.9,0,9], [−0.9,−0,9]. Use the functionfmi-
nuncfrom MATLAB. What do you see?

3.11 Using the same aircraft model from Exercise 1.2, we provide a set of real
measurements of an aircraft’s flight. This data set containsposition me-
asurements ˆpx,k and p̂z,k but not velocity. Since it’s possible to measure
some aircraft parameters with a scale and ruler, you know that mass is
2.5,Ssref is 0.7, and aspect ratio AR is 14. You don’t know the angle of
attackα or initial statex0 so they need to be estimated.

(a) Dowload the fileflight_data.m from the book website to obtain
the dataset. Plot the noisy measurements as a function of time consi-
dering that the measurements were recorded during a time interval of
20 s.

(b) For Exercise 1.2, you wrote a simulation function which you can
think of as taking initial statex0 and angle of attackα as inputs, and
returning the simulated states over the trajectory ¯xk = [ p̄x,k|p̄z,k|v̄x,k|v̄z,k], k =
0 . . .N − 1 as outputs:

[ x̄0, x̄1, . . . , x̄N−1] = fsim(x0, α)

Estimate angle of attackα and initial statex0 by solving the following
NLP:

min
x0,α

N−1∑

k=0

(

p̄x,k(x0, α
) − p̂x,k)

2 +
(

p̄z,k(x0, α) − p̂z,k
)2

Use the RK4 fixed-step integrator from Exercise 1.2. You may need
to adjust the initial guess in order to find the correct local minimum.
A good way to tweak the initial guess is to simulate and plot the
simulated trajectory against the data. You may also need to play with
bounds on your design variables.
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(c) Plot the final estimated trajectory against the noisy data.

3.12 Introduction to CasADi 3: Recalling the Rosenbrock problem from
Exercise 2.10:

(a) Formulate and solve the following version:

minimize
x

x2
1 + 100x2

3

subject to x3 + (1− x1)2 − x2 = 0

Using IPOPT andx = [2.5,3.0,0.75] as a starting point. How many
iterations does the solver need to converge to the solution?Does it
change if we instruct IPOPT to use a limited-memory BFGS approxi-
mation? This can be done by passing the following options dictionary
as the forth argument tonlpsol:

• MATLAB

o p t s = s t r u c t ;
o p t s . i p o p t . h e s s i a na p p r o x i m a t i o n = ’ l i m i t e d −memory ’ ;

• Python

o p t s = { ’ i p o p t . h e s s i a n a p p r o x i m a t i o n ’ : ’ l i m i t e d−memory ’}

(b) Manually eliminatex3 from the problem formulation using the con-
straint equation and resolve the now unconstrained problemwith only
two variables. How does the number of iterations change?

(c) Nonlinear root-finding problems in CasADi A special case of an
NLP is a root-finding problem. We will write them in the form:

g0(z, x1, x2, . . . , xn) = 0

g1(z, x1, x2, . . . , xn) = y1

g2(z, x1, x2, . . . , xn) = y2

...

gm(z, x1, x2, . . . , xn) = ym,

where the first equation uniquely defineszas a function ofx1, . . . , xn

by the implicit function theoremand the remaining equations define
the auxiliary outputsy1, . . . ,ym. Given a functiong for evaluatingg0,
. . . , gm, we can use CasADi to automatically formulate a (differen-
tiable) functionG : {zguess, x1, x2, . . . , xn} → {z, y1, y2, . . . , ym}. This
function includes a guess forz to handle the case when the solution
is non-unique. The syntax for this, assumingn = m= 1, is:
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• MATLAB

z = SX . sym ( ’ x ’ , nz ) ;
x = SX . sym ( ’ x ’ , nx ) ;
g0 = ( some e x p r e s s i o n o f x and z )
g1 = ( some e x p r e s s i o n o f x and z )
g = Func t i on ( ’ g ’ , { z , x } , { g0 , g1} ) ;
G = r o o t f i n d e r ( ’G ’ , ’ newton ’ , g ) ;

• Python

z = SX . sym ( ’ x ’ , nz )
x = SX . sym ( ’ x ’ , nx )
g0 = ( some e x p r e s s i o n o f x & z )
g1 = ( some e x p r e s s i o n o f x & z )
g = Func t i on ( ’ g ’ , [ z , x ] , [ g0 , g1 ] )
G = r o o t f i n d e r ( ’G ’ , ’ newton ’ , g )

where therootfinder function, similar tonlpsol andqpsol, ex-
pects a display name, the name of a solver plugin (here a simple full-
step Newton method) and the problem formulation, here expressed as
a residual function.
Starting with the unconstrained version of the Rosenbrock problem
use CasADi’sgradient function to get a new expression for the gra-
dient of the objective function. According to the first ordernecessary
conditions for optimality, this gradient must be zero. Formulate and
solve this as a root-finding problem in CasADi. Use the same initial
condition as before.
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Newton-Type Optimization Algorithms

It can be programmed in an afternoon if one
has a quadratic programing subroutine avai-
lable [...]
— Michael J. D. Powell (1936-2015), [33]

4.1 Equality Constrained Optimization

Let us first regard an optimization problem with only equality constraints,

minimize
w ∈ Rn

f (w)

subject to g(w) = 0,

where f : Rn → R andg : Rn → Rng are both smooth functions. The idea
of the Newton-type optimization methods is to apply a variant of Newton’s
method to solve the nonlinear KKT conditions

∇wL(w, λ) = 0

g(w) = 0.

In order to simplify notation, we define

z :=

[

w
λ

]

andF(z) :=

[

∇wL(w, λ)
g(w)

]

with z ∈ Rn+ng, F : Rn+ng → Rn+ng, so that we can compactly formulate the
above nonlinear root finding problem as

F(z) = 0.

58
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Starting from an initial guessz0, Newton’s method generates a sequence of
iterates{zk}∞k=0 by linearizing the nonlinear equation at the current iterate

F(zk) +
∂F
∂zk

(zk)(z− zk) = 0 (4.1)

and obtaining the next iterate as its solution, i.e.

zk+1 = zk −
∂F
∂zk

(zk)
−1F(zk).

For equality constrained optimization, the linear system (4.1) has the specific
form1

[

∇wL(wk, λk)
g(wk)

]

+

[

∇2
wL(wk, λk) ∇g(wk)
∇g(wk)⊤ 0

]

︸                         ︷︷                         ︸

KKT-matrix

[

w− wk

λ − λk

]

= 0.

Using the definition

∇wL(wk, λk) = ∇ f (wk) + ∇g(wk)λk

we see that the contributions depending on the old multiplier λk cancel each
other, so that the above system is equivalent to

[

∇ f (wk)
g(wk)

]

+

[

∇2
wL(wk, λk) ∇g(wk)
∇g(wk)⊤ 0

] [

w− wk

λ

]

= 0.

This formulation shows that the data of the linear system only depend onλk

via the Hessian matrix. We need not use the exact Hessian matrix, but can
approximate it with different methods. This leads to the more general class
of Newton-type optimization methods. Using any such approximation Bk ≈
∇2

wL(wk, λk), we finally obtain the Newton-type iteration as

[

wk+1

λk+1

]

=

[

wk

0

]

−
[

Bk ∇g(wk)
∇g⊤(wk) 0

]−1 [

∇ f (wk)
g(wk)

]

. (4.2)

The generalNewton-type methodis summarized in Algorithm 4.1. If we use
Bk = ∇2

wL(wk, λk), we recover theexact Newton method.

Algorithm 4.1 (Equality constrained full step Newton-type method).
Choose:initial guessesw0, λ0, and a toleranceǫ
Set:k = 0

while ‖∇L(wk, λk)‖ ≥ ǫ or ‖g(wk)‖ ≥ ǫ do

1 Recall that in this script we use the convention∇g(w) := ∂g
∂w (w)⊤ that is consistent with the

definition of the gradient∇ f (w) of a scalar functionf being a column vector.
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obtain a Hessian approximationBk

getwk+1, λk+1 from (4.2)
k = k+ 1

end while

4.1.1 Quadratic Model Interpretation

It is easy to show thatwk+1 andλk+1 from (4.2) can equivalently be obtained
from the solution of a QP:

minimize
w ∈ Rn

∇ f (wk)
⊤(w− wk) +

1
2

(w− wk)
⊤Bk(w− wk)

subject to g(wk) + ∇g(wk)
⊤(w− wk) = 0.

(4.3)

So we can interpret the Newton-type optimization method as a“Sequential
Quadratic Programming” (SQP) method, where we find in each iteration the
solutionwQP andλQP of the above QP and take it as the next NLP solution
guess and linearization pointwk+1 andλk+1. This interpretation will turn out
to be crucial when we treat inequality constraints. But let us first discuss what
methods exist for the choice of the Hessian approximationBk.

4.1.2 The Exact Newton Method

The first and obvious way to obtainBk is to use the exact Newton method and
just set

Bk := ∇2
wL(wk, λk).

But how can this matrix be computed? Many different ways for computing
this second derivative exist. The most straightforward wayis a finite difference
approximation where we perturb the evaluation of∇L in the direction of all
unit vectors{ei}ni=1 by a small quantityδ > 0. This yields each time one column
of the Hessian matrix, as

∇2
wL(wk, λk)ei =

∇wL(wk + δei , λk) − ∇wL(wk, λk)
δ

+O(δ). (4.4)

Unfortunately, the evaluation of the numerator of this quotient suffers from
numerical cancellation, so thatδ cannot be chosen arbitrarily small, and the
maximum attainable accuracy for the derivative is

√
ǫ if ǫ is the accuracy with

which the gradient∇wL can be obtained. Thus, we loose half the valid digits.
If ∇wL was itself already approximated by finite differences, this means that
we have lost three quarters of the originally valid digits. More accurate and
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also faster ways to obtain derivatives of arbitrary order will be presented in the
chapter on algorithmic differentiation.

Local convergence rate:The exact Newton method has aquadratic con-
vergence ratein a neighbourhood of the optimal solutionz∗, i.e. ‖zk+1 − z∗‖ ≤
ω
2 ‖zk − z∗‖2 whenzk is sufficiently close toz∗. This means that the number of
accurate digits doubles in each iteration. As a rule of thumb, once a Newton
method is in its area of quadratic convergence, it needs at maximum 6 iterati-
ons to reach the highest possible precision.

4.1.3 The Constrained Gauss-Newton Method

Let us regard the special case that the objectivef (w) has a nonlinear least-
squares form, i.e.f (w) = 1

2‖R(w)‖22 with some functionR : Rn → RnR. In this
case we can use a very powerful Newton-type method which approximates the
HessianBk using only first order derivatives. It is called theGauss-Newton
method. To see how it works, let us thus regard the nonlinear least-squares
problem

minimize
w ∈ Rn

1
2
‖R(w)‖22

subject to g(w) = 0.

The idea of the Gauss-Newton method is to linearize at a giveniteratewk both
problem functionsR andg, in order to obtain the following approximation of
the original problem.

minimize
w ∈ Rn

1
2
‖R(wk) + ∇R(wk)

⊤(w− wk)‖22 (4.5a)

subject to g(wk) + ∇g(wk)
⊤(w− wk) = 0. (4.5b)

This is a convex QP which can easily be seen by noting that the objective (4.5a)
is equal to

1
2

R(wk)
⊤R(wk)+ (w−wk)

⊤ ∇R(wk)R(wk)
︸          ︷︷          ︸

=∇ f (wk)

+
1
2

(w−wk)
⊤ ∇R(wk)∇R(wk)

⊤
︸              ︷︷              ︸

=:Bk

(w−wk)

which is convex becauseBk<0. Note that the constant term does not influence
the solution and can be dropped. Thus, the Gauss-Newton subproblem (4.5)
is identical to the SQP subproblem (4.3) with a special choice of the Hessian
approximation, namely

Bk := ∇R(wk)∇R(wk)
⊤ =

nR∑

i=1

∇Ri(wk)∇Ri(wk)
⊤.
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Note that the multipliersλk are not needed in order to compute the Gauss-
Newton Hessian approximationBk. In order to assess the quality of the Gauss-
Newton Hessian approximation, let us compare it with the exact Hessian, that
is given by

∇2
wL(w, λ) =

nR∑

i=1

∇Ri(wk)∇Ri(wk)
⊤ +

nF∑

i=1

Ri(w)∇2Ri(w) +
ng∑

i=1

λi∇2gi(w)

= Bk + O(‖R(wk)‖) + O(‖λ‖).

One can show that in the solution of a problem holds‖λ∗‖ = O(‖R(w∗)‖). Thus,
in the vicinity of the solution, the difference between the exact Hessian and the
the Gauss-Newton approximationBk is of orderO(‖R(w∗)‖).

Local convergence rate:The Gauss-Newton method convergeslinearly,
‖zk+1 − z∗‖ ≤ κ‖zk − z∗‖ with a contraction rateκ = O(‖R(w∗)‖) in a neig-
hbourhood of the solutionz∗. Thus, it converges fast if the residualsRi(w∗) are
small, or equivalently, if the objective is close to zero, which is our desire in
least-squares problems. In estimation problems, a low objective corresponds to
a “good fit”. Thus the Gauss-Newton method is only attracted by local minima
with a small function value, a favourable feature in practice.

4.1.4 Hessian Approximation by Quasi-Newton BFGS Updates

Besides the exact Hessian and the Gauss-Newton Hessian approximation, there
is another widely used way to obtain a Hessian approximationBk within the
Newton-type framework. It is based on the observation that the evaluation of
∇wL at different points can deliver curvature information that can help us
to estimate∇2

wL, similar as it can be done by finite differences, cf. Equa-
tion (4.4), but without any extra effort per iteration besides the evaluation
of ∇ f (wk) and∇g(wk) that we need anyway in order to compute the next
step. Quasi-Newton Hessian update methods use the previousHessian ap-
proximationBk, the stepsk := wk+1 − wk and the gradient differenceyk :=
∇wL(wk+1, λk+1) − ∇wL(wk, λk+1) in order to obtain the next Hessian approxi-
mationBk+1. As in the finite difference formula (4.4), this approximation shall
satisfy thesecant condition

Bk+1sk = yk

but because we only have one single directionsk, this condition does not uni-
quely determineBk+1. Thus, among all matrices that satisfy the secant condi-
tion, we search for the ones that minimize the distance to theold Bk, measured
in some suitable norm. The most widely used Quasi-Newton update formula
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is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update that can be shown to
minimize a weighted Frobenius norm. It is given by the explicit formula:

Bk+1 = Bk −
Bksks⊤k Bk

s⊤k Bksk
+

yky⊤k
s⊤k yk

. (4.6)

Local convergence rate:It can be shown thatBk → ∇2
wL(w∗, λ∗) in the

relevant directions, so thatsuperlinear convergenceis obtained with the BFGS
method in a neighbourhood of the solutionz∗, i.e.‖zk+1−z∗‖ ≤ κk‖zk−z∗‖ with
κk → 0.

4.2 Local Convergence of Newton-Type Methods

We have seen three examples for Newton-type optimization methods which
have different rates of local convergence if they are started close toa solution.
They are all covered by the following theorem that exactly states the conditions
that are necessary in order to obtain local convergence.

Theorem 4.2(Newton-Type Convergence). Regard the root finding problem

F(z) = 0, F : Rn→ Rn

with z∗ a local solution satisfying F(z∗) = 0 and a Newton-type iteration zk+1 =

zk − M−1
k F(zk) with Mk ∈ Rn×m invertible for all k. Let us assume a Lipschitz

condition on the Jacobian J(z) := ∂F
∂z (z) as follows:

‖M−1
k (J(zk) − J(z))‖ ≤ ω‖zk − z∗‖.

Let us also assume a bound on the distance of approximation Mk from the true
Jacobian J(zk):

‖M−1
k (J(zk) − Mk)‖ ≤ κk

whereκk ≤ κ with κ < 1. Finally, we assume that the initial guess z0 is suffi-
ciently close to the solution z∗,

‖z0 − z∗‖ ≤ 2
ω

(1− κ).

Then zk → z∗ with the following linear contraction in each iteration:

‖zk+1 − z∗‖ ≤
(

κk +
ω

2
‖zk − z∗‖

)

· ‖zk − z∗‖.

If κk → 0, this results in a superlinear convergence rate, and ifκk = 0quadratic
convergence results.
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Noting that in Newton-type optimization we have

J(zk) =





∇2
wL(wk, λk)

∂g
∂w(wk)⊤

∂g
∂w(wk) 0





Mk =





Bk
∂g
∂w(wk)⊤

∂g
∂w(wk) 0





J(zk) − Mk =

[

∇2
wL(·)−Bk 0

0 0

]

the above theorem directly implies the three convergence rates that we had
already mentioned.

Corollary 4.3. Newton-type optimization methods converge

• quadratically if Bk = ∇2
wL(wk, λk) (exact Newton),

• superlinearly if Bk → ∇2
wL(wk, λk) (BFGS),

• linearly if ‖Bk − ∇2
wL(wk, λk)‖ is small (Gauss-Newton).

Proof of Theorem 4.2
We will show that‖zk+1 − z∗‖ ≤ δk‖zk − z∗‖ with δk :=

(

κk +
ω
2 ‖zk − z∗‖

)

and
that for allk holdsδk < 1. For this aim let us regard

zk+1 − z∗ = zk − z∗ − M−1
k F(zk)

= zk − z∗ − M−1
k (F(zk) − F(z∗))

= M−1
k (Mk(zk − z∗)) − M−1

k

∫ 1

0
J(z∗ + t(zk − z∗))(zk − z∗)dt

= M−1
k (Mk − ∇2 f (zk))(zk − z∗)

− M−1
k

∫ 1

0

[

∇2 f (z∗ + t(zk − z∗)) − ∇2 f (zk)
]

(zk − z∗)dt.

Taking the norm of both sides:

‖zk+1 − z∗‖ ≤ κk‖zk − z∗‖ +
∫ 1

0
ω‖z∗ + t(zk − z∗) − zk‖dt ‖zk − z∗‖

=
(

κk + ω

∫ 1

0
(1− t)dt

︸        ︷︷        ︸

= 1
2

‖zk − z∗‖
)

‖zk − z∗‖

=
(

κk +
ω

2
‖zk − z∗‖

)

︸                ︷︷                ︸

=δk

‖zk − z∗‖.
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The proof that for allk we have thatδk < 1 proceeds inductively: asδ0 < 1 by
the assumptions of Theorem 4.2, we can conclude that‖z1−z∗‖ ≤ ‖z0−z∗‖. This
in turn implies thatδ1 ≤ δ0. The same reasoning can be made for each of the
following steps, implying that allδk < 1. Thus, the proof is nearly complete.
To obtain the specific convergence rates, we distinguish three cases depending
on the value ofκ respectivelyκk:

(i) ‖zk+1 − z∗‖ ≤ ω
2 ‖zk − z∗‖2, Q-quadratic convergence ifκ = 0,

(ii) ‖zk+1 − z∗‖ ≤ (κk +
ω

2
‖zk − z∗‖)

︸                ︷︷                ︸

→0

‖zk − z∗‖, Q-superlinear ifκk → 0,

(iii) ‖zk+1 − z∗‖ ≤ ( κ
︸︷︷︸

<1

+
ω

2
‖zk − z∗‖

︸       ︷︷       ︸

→0

)‖zk − z∗‖, Q-linear if κk do not converge

to zero.

4.3 Inequality Constrained Optimization

When a nonlinear optimization problem with inequality constraints shall be
solved, two big families of methods exist, first, nonlinear interior point (IP),
and second, sequential quadratic programming (SQP) methods. Both aim at
solving the KKT conditions (3.4) which include the non-smooth complemen-
tarity conditions, but have different ways to deal with this non-smoothness.

4.3.1 Interior Point Methods

The basic idea of an interior point method is to replace the non-smooth L-
shaped set resulting from the complementarity conditions with a smooth ap-
proximation, typically a hyberbola. Thus, a smoothing constant τ > 0 is in-
troduced and the KKT conditions are replaced by the smooth equation system

∇ f (w∗) + ∇g(w∗)λ∗ + ∇h(w∗)µ∗ = 0 (4.7a)

g(w∗) = 0 (4.7b)

µ∗i hi(w
∗) + τ = 0, i = 1, . . . ,nh. (4.7c)

Note that the last equation ensures that−hi(w∗) andµ∗i are both strictly positive
and on a hyperbola.2 Forτ very small, the L-shaped set is very closely approx-
imated by the hyperbola, but the nonlinearity is increased.Within an interior

2 In the numerical solution algorithms for this system, we have toensure that the iterates do not
jump to a second hyperbola of infeasible shadow solutions, byshortening steps if necessary to
keep the iterates in the correct quadrant.
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Figure 4.1 Relaxation of the complementarity slackness condition. We display
here the manifoldµihi (w) + τ = 0 for various values ofτ. The original non-
smooth manifoldµihi (w) = 0 arising in the KKT conditions is displayed as the
thick lines.

point method, we usually start with a large value ofτ and solve the resulting
nonlinear equation system by a Newton method, and then iteratively decrease
τ, always using the previously obtained solution as initialization for the next
one.

One way to interpret the above smoothened KKT-conditions isto use the last
condition to eliminateµ∗i = −

τ
hi (w∗)

and to insert this expression into the first

equation, and to note that∇w
(

log(−hi(w))
)

= 1
hi (w)∇hi(w)). Thus, the above

smooth form of the KKT conditions is nothing else than the optimality condi-
tions of abarrier problem

minimize
w ∈ Rn

f (w) − τ
nh∑

i=1

log(−hi(w))

subject to g(w) = 0.

(4.8)

Note that the objective function of this problem tends to infinity whenhi(w)→
0. Thus, even for very smallτ > 0, the barrier term in the objective function
will prevent the inequalities to be violated. Theprimal barrier methodjust
solves the above barrier problem with a Newton-type optimization method for
equality constrained optimization for each value ofτ. One can observe that the
barrier problem (4.8) and the primal-dual (4.7) deliver thesame solutionwτ

for any given value ofτ. It is also important to know that the error between
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Figure 4.2 Illustration of the primal barrier method presented in (4.8). The left
graph displays an illustrative cost functionf (w) (thick curve), and simple bounds
0 ≤ w ≤ 1. The various objective functions with barrierf (w)−τ∑nh

i=1 log(−hi(w))
are displayed for various values ofτ, alongside their respective minimawτ. The
right graph displays the error between the actual solution to the problemw∗, and
the solutionswτ obtained from the barrier problem (4.8) for various values of τ.

the solution delivered by Interior-Point methods and the exact solution of the
original problem is of the orderO (τ), i.e. the error introduced by the Interior-
Point methods decreases linearly withτ.

Though easy to implement and to interpret, Interior-Point methods are not
necessarily the best in terms of numerical treatment, amongother because its
KKT matrices become very ill-conditioned for smallτ. This is not the case for
theprimal-dual IP methodthat solves the full nonlinear equation system (4.7)
including the dual variablesµ.

For convex problems, very strong complexity results exist that are based on
self-concordanceof the barrier functions and give upper bounds on the total
number of Newton iterations that are needed in order to obtain a numerical
approximation of the global solution with a given precision. When an IP met-
hod is applied to a general NLP that might be non-convex, we can of course
only expect to find a local solution, but convergence to KKT points can still be
proven, and thesenonlinear IP methodsperform very well in practice.

Most IP solvers treat the relaxed complementarity conditions (4.7c) using a
slack formulation, where a set of ”artificial” orslackvariablessi , i = 1, ...,nh
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is added to the problem in order to reformulate it. The equivalent system:

∇ f (w∗) + ∇g(w∗)λ∗ + ∇h(w∗)µ∗ = 0 (4.9a)

g(w∗) = 0 (4.9b)

µ∗i s∗i − τ = 0, i = 1, . . . ,nh (4.9c)

hi(w
∗) + s∗i = 0, i = 1, . . . ,nh (4.9d)

is solved instead of (4.7). Though the form (4.9) is equivalent to (4.7) and
delivers the same solution, it offers several advantages over (4.7), in particular:

• the Newton iteration on system (4.9) can be started with an initial guessw
that is infeasible with respect to the inequality constraints, i.e.hi(w) > 0
for somei, as long as the slack variablessi are initiated and kept positive
throughout the iterations. Hence one does not need to provide a feasible ini-
tial guess. In the course of the Newton iterations, the inequality constraints
are brought to feasibility via the equality constraints (4.9d).

• when a Newton iteration is deployed on system (4.7), one mustensure that
h(w) < 0 thoughout the iterations, which requires a careful backtracking,
i.e. a reduction of the size of the step provided by the Newtoniteration (see
Section 4.4 for more details) untilh(w) < 0 is ensured. Whenh(w) is ex-
pensive to evaluate, such backtracking can be time consuming. In contrast,
ensuring thats > 0, µ > 0 is trivial to do when the form (4.9) is used.
The step-size ensuring the positivity ofsandµ then provides an inexpensive
upper-bound to the actual step-size that ought to be used.

Software: A very widespread and successful implementation of the nonlinear
IP method is the open-source code IPOPT [79, 78]. Though IPOPT can be ap-
plied to convex problems and will yield the global solution,dedicated IP met-
hods for different classes of convex optimization problems can exploit more
problem structure and will solve these problems faster and more reliably. Most
commercial LP and QP solution packages such as CPLEX or MOSEKmake
use of IP methods, as well as many open-source implementations such as the
sparsity exploiting QP solver OOQP.

4.3.2 Sequential Quadratic Programming (SQP) Methods

Another approach to address NLPs with inequalities is inspired by the qua-
dratic model interpretation that we gave before for Newton-type methods. It is
calledSequential Quadratic Programming (SQP)and solves in each iteration
an inequality constrained QP that is obtained by linearizing the objective and
constraint functions:
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minimize
w ∈ Rn

∇ f (wk)
⊤(w− wk) +

1
2

(w− wk)
⊤Bk(w− wk)

subject to g(wk) + ∇g(wk)
⊤(w− wk) = 0,

h(wk) + ∇h(wk)
⊤(w− wk) ≤ 0.

Note that the active set is automatically discovered by the QP solver and can
change from iteration to iteration. However, under strict complementarity, it
will be the same as in the true NLP solutionw∗ once the SQP iterateswk are in
the neighborhood ofw∗.

As before for equality constrained problems, the HessianBk can be cho-
sen in different ways. First, in theexact Hessian SQP methodwe useBk =

∇2
wL(wk, λk, µk), and it can be shown that under the second order sufficient

conditions (SOSC) of Theorem 3.18 (b), this method has locally quadratic
convergence. Second, in the case of a least-squares objective f (w) = 1

2‖R(w)‖22,
we can use the Gauss-Newton Hessian approximationBk = ∇R(wk)∇R(wk)⊤,
yielding linear convergence with a contraction rateκ = O(‖R(w∗)‖). Third,
quasi-Newton updates such as BFGS can directly be applied, using the La-
grange gradient differenceyk := ∇wL(wk+1, λk+1, µ

k+1) − ∇wL(wk, λk+1, µ
k+1)

in formula (4.6).
Note that in each iteration of an SQP method, an inequality constrained

QP needs to be solved, but that we did not mention yet how this should be
done. One way would be to apply an IP method tailored to QP problems. This
is indeed done, in particular within SQP methods for large sparse problems.
Another way is to use a QP solver that is based on anactive set method, as
sketched in the next subsection.

Software: A successful and sparsity exploiting SQP code is SNOPT [43].
Many optimal control packages such as MUSCOD-II [56] or the open-source
package ACADO [49, 1] contain at their basis structure exploiting SQP met-
hods. Also the MATLAB solverfmincon is based on an SQP algorithm.

4.3.3 Active Set Methods

Another class of algorithms to address optimization problems with inequa-
lities, theactive set methods, are based on the following observation: if we
would know the active set, then we could solve directly an equality constrai-
ned optimization problem and obtain the correct solution. The main task is
thus to find the correct active set, and an active set method iteratively refines
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a guess for the active set that is often called theworking set, and solves in
each iteration an equality constrained problem. This equality constrained pro-
blem is particularly easy to solve in the case of linear inequality constraints,
for example in LPs and QPs. Many very successful LP solvers are based on an
active set method which is called thesimplex algorithm, whose invention by
Dantzig [28] was one of the great breakthroughs in the field ofoptimization.
Also many successful QP solvers are based on active set methods. A major ad-
vantage of active set strategies is that they can very efficiently be warm-started
under circumstances where a series of related problems haveto be solved, e.g.
within an SQP method, within codes for mixed integer programming, or in the
context of model predictive control (MPC) [39].

4.4 Globalisation Strategies

In all convergence results for the Newton-type algorithms stated so far, we had
to assume that the initialization was sufficiently close to the true solution in or-
der to make the algorithm converge, which is not always the case. Indeed, the
Newton iteration using the SQP approach is based on solving successive qua-
dratic problems which approximate locally the original problem. The Newton
step then takes the minima of the current quadratic problem as a guess for the
minima of the original problem. However, the Newton step canbe large, and
leave the region of validity of the quadratic model. In such cases, the Newton
step can be counterproductive for improving the optimalityand/or feasibility
of the iterate. We illustrate this problem in the unconstrained case in Figure 4.3

An approach often used to overcome this problem is to use ahomotopybe-
tween a problem we have already solved and the problem we wantto solve:
in this procedure, we start with the known solution and then proceed slowly,
step by step modifying the relevant problem parameters, towards the problem
we want to solve, each time converging the Newton-type algorithm and using
the obtained solution as initial guess for the next problem.Applying a homo-
topy requires more user input than just the specification of the problem, so
most available Newton-type optimization algorithms have so calledglobali-
sation strategies. Most of these strategies can be interpreted as automatically
generated homotopies.

In the ideal case, a globalisation strategy ensuresglobal convergence, i.e.
the Newton-type iterations converge to a local minimum fromarbitrary initial
guesses. Note that the termsglobal convergenceandglobalisation strategies
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Figure 4.3 Illustration of the failure of the full Newton step.The Newton itera-
tion is based on solving successive quadratic problems, which model locally the
original optimisation problem. If the Newton step provided by the quadratic mo-
del leaves its region of validity, and can then provide a worsepoint wk+1 than the
previous one, i.e.wk. In this example, the Newton step going fromwk to wk+1

increases the cost function.

have nothing to do withglobal optimization, which is concerned with finding
global minima for non-convex problems.

Here, we only touch the topic of globalisation strategies very superficially,
and for all details we refer to textbooks on nonlinear optimization and recom-
mend in particular [64].

Two ingredients characterize a globalization strategy: first, a measure of pro-
gress, and second, a way to ensure that progress is made in each iteration.

4.4.1 Measuring Progress: Merit Functions and Filters

When two consecutive iterations of a Newton-type algorithm for solution of a
constrained optimization problem shall be compared with each other it is not
trivial to judge if progress is made by the step. The objective function might
be improved, while the constraints might be violated more, or conversely. A
merit functionintroduces a scalar measure of progress with the property that
each local minimum of the NLP is also a local minimum of the merit function.
Then, during the optimization routine, it can be monitored if the next Newton-
type iteration gives a better merit function than the iterate before. If this is not
the case, the step can be rejected or modified.
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A widely used merit function is theexact L1 merit function

T1(w) = f (w) + σ(‖g(w)‖1 + ‖h+(w)‖1)

with f (w) the objective,g(w) the residual vector of the equality constraints, and
h+(w) the violations of the inequality constraints, i.e.h+i (w) = max(0,hi(w)) for
i = 1, . . . ,nh. Note that the L1 penalty function is non-smooth. If the penalty
parameterσ is larger than the largest modulus of any Lagrange multiplier at
a local minimum and KKT point (w∗, λ∗, µ∗), i.e. if σ > max(‖λ∗‖∞, ‖µ∗‖∞),
then the L1 penalty is exact in the sense thatw∗ also is a local minimum of
T1(w). Thus, in a standard procedure we require that in each iteration a descent
is achieved, i.e.T1(wk+1) < T1(wk), and if it is not the case, the step is rejected
or modified, e.g. by a line search or a trust region method.

A disadvantage of requiring a descent in the merit function in each iteration
is that the full Newton-type steps might be too often rejected, which can slow
down the speed of convergence. Remedies to are e.g. a “watchdog technique”
that starting at some iteratewk allows up toM − 1 full Newton-type steps
without merit function improvement if theMth iterate is better, i.e. if at the
end holdsT1(wk+M) < T1(wk), so that the generosity was justified. If this is not
the case, the algorithm jumps back towk and enforces strict descent for a few
iterations.

A different approach that avoids the arbitrary weighting of objective function
and constraint violations within a merit function and oftenallows to accept
more full Newton-steps comes in the form offilter methods. They regard the
pursuit of a low objective function and low constraint violations as two equally
important aims, and accept each step that leads to an improvement in at least
one of the two, compared to all previous iterations. To ensure this, a so called
filter keeps track of the best objective and constraint violation pairs that have
been achieved so far, and the method rejects only those stepsthat aredomina-
ted by the filteri.e., for which one of the previous iterates had both, a better
objective and a lower constraint violation. Otherwise the new iterate is accep-
ted and added to the filter, possibly dominating some other pairs in the filter
that can then be removed from the filter. Filter methods are popular because
of the fact that they often allow the full Newton-step and still have a global
convergence guarantee.

4.4.2 Ensuring Progress: Line Search and Trust-Region Methods

If a full Newton-type step does not lead to progress in the chosen measure, it
needs to be rejected. But how can a step be generated that is acceptable? Two
very popular ways for this exist, one calledline search, the othertrust region.
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A line search method takes the result of the QP subproblem as atrial step
only, and shortens the step if necessary. If (wQP

k , λ
QP
k , µ

QP
k ) is the solution of the

QP at an SQP iteratewk, it can be shown (if the QP multipliers are smaller than
σ) that the step vector orsearch direction(wQP

k −wk) is a descent direction for
the L1 merit functionT1, i.e. descent inT1 can be enforced by performing,
instead of the full SQP stepwk+1 = wQP

k , a shorter step

wk+1 = wk + t(wQP
k − wk)

with a damping factor orstep length t∈ (0,1]. One popular way to ensure
global convergence with help of of a merit function is to require in each step
the so calledArmijo condition, a tightened descent condition, and to perform
a backtrackingline search procedure that starts by trying the full step (t = 1)
first and iteratively shortens the step by a constant factor (t ← t/β with β > 1
) until this descent condition is satisfied. As said, the L1 penalty function has
the desirable property that the search direction is a descent direction so that the
Armijo condition will eventually be satisfied if the step is short enough. Line-
search methods can also be combined with a filter as a measure of progress,
instead of the merit function.

An alternative way to ensure progress is to modify the QP subproblem by
adding extra constraints that enforce the QP solution to be in a small region
around the previous iterate, thetrust region. If this region is small enough, the
QP solution shall eventually lead to an improvement of the merit function, or
be acceptable by the filter. The underlying philosophy is that the linearization
is only valid in a region around the linearization point and only here we can
expect our QP approximation to be a good model of the originalNLP. Similar
as for line search methods with the L1 merit function, it can be shown for
suitable combinations that the measure of progress can always be improved
when the trust region is made small enough. Thus, a trust region algorithm
checks in each iteration if enough progress was made to accept the step and
adapts the size of the trust region if necessary.

As said above, a more detailed description of different globalisation strate-
gies is given in [64].

Exercises

4.1 Prove that a regularized Newton-type stepxk+1 = xk− (Bk+αI )−1∇ f (xk)
with Bk a Hessian approximation,α a positive scalar andI the iden-
tity matrix of suitable dimensions, converges to a small gradient step
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xk+1 = xk − 1
α
∇ f (xk) asα→ ∞.

4.2 Show that the Newton method is guaranteed to converge to aroot (if it
exists) of any monotonically increasing convex differentiable function
F : R→ R.

4.3 Let f be a twice continuously differentiable function satisfyingLI �
∇2 f (x) � mI for someL > m > 0 and letx∗ be the unique minimizer of
f overRn.

(a) Show that for anyx ∈ Rn:

f (x) − f (x∗) ≥ m
2
||x− x∗||2.

(b) Let {xk}k≥0 be the sequence generated by the damped Newton’s met-
hod with constant stepsizetk = m

L . Show that:

f (xk) − f (xk+1) ≥ m
2L
∇ f (xk)

⊤(∇2 f (xk))
−1∇ f (xk).

(c) Show thatxk → x∗ ask→ ∞.

4.4 Prove the following theorem on the convergence of the exact Newton
method.

If we apply the exact Newton method on the nonlinear set of equations
r (w) = 0 and the following properties on the Jacobian hold:

• Boundedness:‖∇r (w) ‖ ≥ m, ∀w ∈ Rn,
• Lipschitz continuity:‖∇r (w) − ∇r (x) ‖ ≤ L‖w− x‖, ∀w, x ∈ Rn,

then the Newton iteration converges (locally) with the rate:

‖r (w+ ∆w) ‖ ≤ L
2m2
‖r (w) ‖2.

Hint: use the integration by parts formula:

r (w+ ∆w) = r (w) +
∫ 1

0
∇r (w+ t∆w)⊤ ∆w · dt.

4.5 The goal of this exercise is to Implement different Newton-type methods
that minimize the nonlinear function:

f (x, y) =
1
2

(x− 1)2 +
1
2

(10(y− x2))2 +
1
2

y2. (4.10)
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(a) Derive, first on paper, the gradient and Hessian matrix ofthe function
in (4.10). Then, re-write it in the formf (x, y) = 1

2 ||R(x, y)||22 whereR :
R

2 → R3 is the residual function. Derive the Gauss-Newton Hessian
approximation and compare it with the exact one. When do the two
matrices coincide?

(b) Implement your own Newton method with exact Hessian information
and full steps. Start from the initial point (x0, y0) = (−1,1) and use as
termination condition||∇ f (xk, yk)||2 ≤ 10−3. Keep track of the iterates
(xk, yk) and use the provided function to plot the results.

(c) Update your code to use the Gauss-Newton Hessian approximation
instead. Compare the performance of the two algorithms and plot the
difference between exact and approximate Hessian as a function of
the iterations.

(d) Now try to implement the BFGS formula for calculating theHessian.
Compare the results with the previous algorithms.

(e) Check how the steepest descent method performs on this example.
Your Hessian now becomes simplyαI whereα is a positive scalar
andI the identity matrix. Tryα = 100,200 and 500. For which values
does your algorithm converge? How does its performance compare
with the previous methods?

(f) Imagine you remove the term12y2 from f (x, y) and compare the exact
Newton’s method with the Gauss-Newton. What do you expect?

4.6 Consider an NLP of the form:

minimize
w

Φ (w)

subject to g(w) = 0.
(4.11)

Prove that, under a condition on matrixH that you should specify, the
primal Newton direction for (4.11) is provided by solving the QP:

minimize
∆w

1
2
∆w⊤H∆w+ ∇Φ (w)⊤∆w

subject to g (w) + ∇g (w)⊤∆w = 0
(4.12)

and the Lagrange multipliers of QP (4.12) provide the updatefor the
Lagrange multipliers of (4.11).

4.7 Write a NLP solver for a problem of the type (4.11) using theNewton
method.
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• Have the option between using an exact Hessian and a Gauss-Newton
Hessian approximation.

• Implement a line-search based on the Armijo condition.
• Use‖

[

∇L g
]

‖1 ≤ tol as an exit condition.

Hint: use the matlab symbolic toolbox to automatically compute your
sensitivities∇g, ∇Φ, and H, generate a function computing them using
”matlabFunction”. You will then be able to easily deploy your code to
any NLP of the form(4.11), that will save you a lotof time in the follo-
wing question. Test your code on a strictly convex QuadraticProgram
first, it should converge in one full Newton step.

4.8 Try the following problem:

minimize
w

1
2

w⊤w+ 1⊤w

subject to w⊤w = 1

where1 is a standing vector of ones of adequate dimension, andw ∈ Rn.
Prepare your solver forn = 2, and plots of:

• The trajectory ofw1, w2 in a 2D plot, plot the unit circle representing
the constraint.

• A semi-log plot of your exit criterion‖
[

∇L g
]

‖1 ≤ tol over the ite-
rations.

• Your step sizet over the iterations.

(a) Run the code using the parametersα = β = 0.5 for the line-search
parameters andν = 1 for theT1 merit function. Use a tolerance of
10−8. Useλ = 0 for the dual initial guess and try the following primal
initial guesses:

w =

[

0
1

]

and w =

[

−1
−1

]

and w =

[

−1
1

]

.

Explain what you see.
(b) Try now the initial guess

w =

[

1
1

]

and λ = 0.

What happens ? Explain.
(c) Same question for the initial guess

w =

[

0
0

]

and λ = 0.
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(d) Finally what happens with the initial guess

w =

[

0.5
1

]

and λ = 0.

Can you fix it ?

4.9 We now turn to the following NLP

minimize
w ∈ R3

1
2

w⊤w

subject to w2
1 − 2w3

2 − w2 − 10w3 = 0,

w2 + 10w3 = 0.

(4.13)

Deploy your NLP solver on problem (4.13). You can e.g. use theinitial
guess:

w =





1
1
0





and λ =

[

0
0

]

and a tolerance of 10−8. What do you observe ? Explain.

4.10 Re-use your code to write an SQP solver for the general problems of the
form:

minimize
w

Φ(w)

subject to g(w) = 0,

h(w) ≤ 0.

(4.14)

You can use the Matlab functionquadprogas a QP solver. Make sure
you include a check of the QP solver output (check for infeasibility, and
non-convexity). Verify your code by setting up a QP problem in (4.14),
you should observe a one-step convergence.

4.11 We will again use the aircraft model of Exercise 1.2 withthe aircraft’s
flight noisy data of Exercise 3.11 to estimate a model for the flight trajec-
tory. The data can be obtained in the book website asflight_data.m,
and as before, it represents the position ˆpx,k and p̂z,k during a 20 s flight.
For this exercise, we will assume that the solution trajectory can be mo-
deled by a fifth order polynomial as:
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p̄x,k(θx) = θx,1 + tkθx,2 + θx,3 sin
(

θx,4 + tkθx,5
)

e−θx,6tk

p̄z,k(θz) = θz,1 + tkθz,2 + θz,3 sin
(

θz,4 + tkθz,5
)

e−θz,6tk

Then, in order to model the airplane flight trajectory, we canestimate
the polynomial coefficients by solving the following optimization pro-
blem:

minimize
θx, θz

N−1∑

k=0

(

p̄x,k(θx, θz)
) − p̂x,k)

2 +
(

p̄z,k(θx, θz) − p̂z,k
)2

(a) Write down the objective function in the form of Gauss-Newton:

minimize
θ

1
2

F(θ)⊤F(θ) (4.15)

(b) LinearizeF(θ) analytically to solve forF0, J, where:

F(θ) ≈ F0 + J∆θ

(c) Use Newton’s method with the Gauss-Newton Hessian approxima-
tion to solve (4.15).

(d) Plot px vs−pz, −pz vs time, andpx vs time. It will probably be very
useful in debugging to plot each iteration of the algorithm.

(e) In Exercise 1.2, you used a RK4 integrator to minimize themeasu-
rement errors but for estimatingα and the initial state. Now put that
probem in the Gauss-Newton form. Only write aMATLAB function
for F, not J. A function for computingJ from F is provided in the
book website asfinite_difference_jacob.m. You will call this
function with a command something like:

[F0,J] = finite_difference_jacob(@(x)Fobj(x),x0);

Solve this problem using Newton’s method with the Gauss-Newton
Hessian approximation. For initial guess, use any initial state you
want, and useα = 3◦.

4.12 CasADi Exercise: SQP ImplementationRegard the following optimi-
zation problem:

minimize
x

f (x) :=
1
2

(x1 − 1)2 +
1
2

(10(x2 − x2
1))2 +

1
2

x2
2

subject to g(x) := x1 + (1− x2)2 = 0,

h(x) := 0.2+ x2
1 − x2 ≤ 0

(4.16)
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(a) Re-write on paper the objective function in nonlinear least-square
form f (x) = 1

2‖R(x)‖22 and derive the Gauss-Newton approximation
of the Hessian of the Lagrangian.

(b) We will start by implementing an SQP solver for the unconstrained
problem obtained by removing bothg andh from (4.16). Using the
template provided in the website, implement the CasADi functionsf
andJf that return evaluations off and its Jacobian. Use the numerical
values given in the template to check that your implementation is
correct. Do the same for the residual functionR and its Jacobian.

(c) Using the Jacobian off and R build the Gauss-Newton objective
function

fgn =
1
2
∆xT∇R(xk)∇R(xk)T∆x+ ∇x f (xk)T∆x.

Then, allocate an instance of the QP solver qpOASES using CasADi
and use it to solve the local quadratic approximations in theSQP
iterations. Plot the results using the template. Where do theiterates
converge to?

(d) Include now the equality constraints. Define two CasADi functionsG
andJg that return evaluations ofg and its Jacobian and use them to
define the linearized equality constraint

gl = g(xk) + ∇gx(x
k)T∆x.

Include this constraint in the QP formulation and run the simulation
again. Does the solution change?

(e) Finally, include the inequality constraints. As in Task5.4, defineH
andJh and use them to define the linearized inequality constraints.
Include them in the QP formulation and run the finalized version of
the SQP solver.
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Calculating Derivatives

Progress is measured by the degree of diffe-
rentiation within a society.
— Herbert Read

Derivatives of computer coded functions are needed everywhere in optimi-
zation. In order to just check optimality of a point, we need already to com-
pute the gradient of the Lagrangian function. Within Newton-type optimization
methods, we need the full Jacobian of the constraint functions. If we want to
use an exact Hessian method, we even need second order derivatives of the
Lagrangian.

There are many ways to compute derivatives: Doing it by hand is error prone
and nearly impossible for longer evaluation codes. Computer algebra packages
like Mathematica or Maple can help us, but require that the function is formu-
lated in their specific language. More annoyingly, the resulting derivative code
can become extremely long and slow to evaluate.

On the other hand,finite differencescan always be applied, even if the functi-
ons are only available as black-box codes. They are easy to implement and
relatively fast, but they necessarily lead to a loss of precision of half the valid
digits, as they have to balance the numerical errors that originate from Taylor
series truncation and from finite precision arithmetic. Second derivatives obtai-
ned by recursive application of finite differences are even more inaccurate. The
best perturbation sizes are difficult to find in practice. Note that the computa-
tional cost to compute the gradient∇ f (x) of a scalar functionf : Rn → R is
(n+ 1) times the cost of one function evaluation.

We will see that a more efficient way exists to evaluate the gradient of a
scalar function, which is also more accurate. The technology is calledalgo-
rithmic differentiation (AD)and requires in principle nothing more than that

80
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the function is available in the form of source code in a standard programming
language such as C, C++ or FORTRAN.

5.1 Algorithmic Differentiation (AD)

Algorithmic differentiation uses the fact that each differentiable functionF :
R

n → R
nF is composed of severalelementary operations, like multiplica-

tion, division, addition, subtraction, sine-functions, exp-functions, etc. If the
function is written in a programming language like e.g. C, C++ or FORTRAN,
special AD-tools can have access to all these elementary operations. They can
process the code in order to generate new code that does not only deliver the
function value, but also desired derivative information. Algorithmic differenti-
ation was traditionally calledautomatic differentiation, but as this might lead
to confusion with symbolic differentiation, most AD people now prefer the
termalgorithmic differentiation, which fortunately has the same abbreviation.
A good and authoritative textbook on AD is [45].

In order to see how AD works, let us regard a functionF : Rn → RnF

that is composed of a sequence ofm elementary operations. While the inputs
x1, . . . , xn are given before, each elementary operationφi , i = 0, . . . ,m− 1 ge-
nerates another intermediate variable,xn+i+1. Some of these intermediate vari-
ables are used as output of the code, but in principle we can regard all variables
as possible outputs, which we do here. This way to regard a function evaluation
is stated in Algorithm 5.1 and illustrated in Example 5.2 below.

Algorithm 5.1 (User Function Evaluation via Elementary Operations).
Input: x1, . . . , xn

Output: x1, . . . , xn+m

for i = 0 tom− 1 do
xn+i+1← φi(x1, . . . , xn+i)

end for

Note:eachφi depends on only one or two out of{x1, . . . , xn+i}.

Example 5.2(Function Evaluation via Elementary Operations). Let us regard
the simple scalar function

f (x1, x2, x3) = sin(x1x2) + exp(x1x2x3)

with n = 3. We can decompose this function intom= 5 elementary operations,
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namely

x4 = x1x2

x5 = sin(x4)

x6 = x4x3

x7 = exp(x6)

x8 = x5 + x7.

Thus, if then = 3 inputsx1, x2, x3 are given, them = 5 elementary operations
φ0, . . . , φ4 compute them = 5 intermediate quantities,x4, . . . , x8, the last of
which is our desired scalar output,xn+m.

The idea of AD is to use the chain rule and differentiate each of the elemen-
tary operationsφi separately. There are two modes of AD, on the one hand the
“forward” mode of AD, and on the other hand the “backward”, “reverse”, or
“adjoint” mode of AD. In order to present both of them in a consistent form,
we first introduce an alternative formulation of the original user function, that
uses augmented elementary functions, as follows1: we introduce new augmen-
ted states

x̃0 = x =





x1
...

xn





, x̃1 =





x1
...

xn+1





, . . . , x̃m =





x1
...

xn+m





as well as new augmented elementary functionsφ̃i : Rn+i → Rn+i+1, x̃i 7→
x̃i+1 = φ̃i(x̃i) with

φ̃i(x̃i) =





x1
...

xn+i

φi(x1, . . . , xn+i)





, i = 0, . . . ,m− 1.

Thus, the whole evaluation tree of the function can be summarized as a con-
catenation of these augmented functions followed by a multiplication with a
“selection matrix”C that selects from ˜xm the final outputs of the computer
code.

F(x) = C · φ̃m−1(φ̃m−2(· · · φ̃1(φ̃0(x)))).

The full Jacobian ofF, that we denote byJF =
∂F
∂x is given by the chain rule as

1 MD thanks Carlo Savorgnan for having outlined to him this wayof presenting forward and
backward AD
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the product of the Jacobians of the augmented elementary functionsJ̃i =
∂φ̃i

∂x̃i
,

as follows:

JF = C · J̃m−1 · J̃m−2 · · · J̃1 · J̃0. (5.1)

Note that each elementary Jacobian is given as a unit matrix plus one extra row.
Also note that the extra row that is here marked with stars∗ has at maximum
two non-zero entries.

J̃i =





1
1

. . .

1
∗ ∗ ∗ ∗





.

For the generation of first order derivatives, algorithmic differentiation uses
two alternative ways to evaluate the product of these Jacobians, theforward
and thebackward modeas described in the next two sections.

5.2 The Forward Mode of AD

In forward AD we first define aseed vector p∈ Rn and then evaluate the
directional derivativeJF p in the following way:

JF p = C · (J̃m−1 · (J̃m−2 · · · (J̃1 · (J̃0p)))).

In order to write down this long matrix product as an efficient algorithm where
the multiplications of all the ones and zeros do not cause computational costs,
it is customary in the field of AD to use a notation that uses “dot quantities”ẋi

that we might think of as the velocity with which a certain variable changes,
given that the inputx changes with speed ˙x = p. We can interpret them as

ẋi ≡
dxi

dx
p.

In the augmented formulation, we can introduce dot quantities ˙̃xi for the aug-
mented vectors ˜xi , for i = 0, . . . ,m−1, and the recursion of these dot quantities
is just given by the initialization with the seed vector,˙̃xi = p, and then the re-
cursion

˙̃xi+1 = J̃i(x̃i) ˙̃xi , i = 0,1, . . . ,m− 1.

Given the special structure of the Jacobian matrices, most elements of˙̃xi are
only multiplied by one and nothing needs to be done, apart from the computa-
tion of the last component of the new vector˙̃xi+1. This last component is ˙xn+i+1
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Thus, in an efficient implementation, the forward AD algorithm works as the
algorithm below. It first sets the seed ˙x = p and then proceeds as follows.

Algorithm 5.3 (Forward Automatic Differentiation).
Input: ẋ1, . . . , ẋn and all partial derivatives∂φi

∂x j

Output: ẋ1, . . . , ẋn+m

for i = 0 tom− 1 do
ẋn+i+1←

∑n+i
j=1

∂φi

∂x j
ẋ j

end for

Note:each sum consist of only one or two non-zero entries.

In forward AD, the function evaluation and the derivative evaluation can be
performed in parallel, which eliminates the need to store any internal informa-
tion. This is best illustrated using an example.

Example 5.4(Forward Automatic Differentiation). We regard the same exam-
ple as above,f (x1, x2, x3) = sin(x1x2) + exp(x1x2x3). First, each intermediate
variable has to be computed, and then each line can be differentiated. For given
x1, x2, x3 and ẋ1, ẋ2, ẋ3, the algorithm proceeds as follows:

x4 = x1x2 ẋ4 = ẋ1x2 + x1ẋ2

x5 = sin(x4) ẋ5 = cos(x4)ẋ4

x6 = x4x3 ẋ6 = ẋ4x3 + x4ẋ3

x7 = exp(x6) ẋ7 = exp(x6)ẋ6

x8 = x5 + x7 ẋ8 = ẋ5 + ẋ7

The result is ˙x8 = (ẋ1, ẋ2, ẋ3)∇ f (x1, x2, x3).

It can be proven that the computational cost of Algorithm 14.15 is smaller
than two times the cost of Algorithm 5.1, or short

cost(JF p) ≤ 2 cost(F).

If we want to obtain the full Jacobian ofF, we need to call Algorithm 14.15
several times, each time with the seed vector correspondingto one of then unit
vectors inRn, i.e. we have

cost(JF) ≤ 2ncost(F).
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AD in forward mode is slightly more expensive than numericalfinite differen-
ces, but it is exact up to machine precision.

5.2.1 The “Imaginary trick” in MATLAB

An easy way to obtain high precision derivatives in MATLAB isclosely related
to AD in forward mode. It is based on the following observation: if F : Rn →
R

nF is analytic and can be extended to complex numbers as inputs and outputs,
then for anyt > 0 holds

JF(x)p =
im(F(x+ itp))

t
+O(t2).

In contrast to finite differences, there is no subtraction in the numerator, so
there is no danger of numerical cancellation errors, andt can be chosen extre-
mely small, e.g.t = 10−100, which means that we can compute the derivative
up to machine precision. This “imaginary trick” can most easily be used in a
programming language like MATLAB that does not declare the type of varia-
bles beforehand, so that real-valued variables can automatically be overloaded
with complex-valued variables. This allows us to obtain high-precision deriva-
tives of a given black-box MATLAB code. We only need to be surethat the
code is analytic (which most codes are) and that matrix or vector transposes
are not expressed by a prime’ (which conjugates a complex number), but by
transp.

5.3 The Backward Mode of AD

In backward AD we evaluate the product in Eq. (5.1) in the reverse order com-
pared with forward AD. Backward AD does not evaluate forwarddirectional
derivatives. Instead, it evaluatesadjoint directional derivatives: when we de-
fine aseed vectorλ ∈ RnF then backward AD is able to evaluate the product
λ⊤JF . It does so in the following way:

λ⊤JF = ((((λ⊤C) · J̃m−1) · J̃m−2) · · · J̃1) · J̃0. (5.2)

When writing this matrix product as an algorithm, we use “bar quantities”
instead of the “dot quantities” that we used in the forward mode. These quan-
tities can be interpreted as derivatives of the final output with respect to the
respective intermediate quantity. We can interpret

x̄i ≡ λ⊤
dF
dxi

.
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Each intermediate variable has a bar variable and at the start, we initialize all
bar variables with the value that we obtain fromC⊤λ. Note that most of these
seeds will usually be zero, depending on the output selection matrixC. Then,
the backward AD algorithm modifies all bar variables. Backward AD gets most
transparent in the augmented formulation, where we have barquantities¯̃xi for
the augmented states ˜xi . We can transpose the above Equation (5.2) in order to
obtain

J⊤Fλ = J̃⊤0 · (J̃
⊤
1 · · · J̃

⊤
m−1 (C⊤λ)

︸︷︷︸

= ¯̃xm
︸       ︷︷       ︸

= ¯̃xm−1

).

In this formulation, the initialization of the backward seed is nothing else than
setting¯̃xm = C⊤λ and then going in reverse order through the recursion

¯̃xi = J̃i(x̃i)
⊤ ¯̃xi+1, i = m− 1,m− 2, . . . ,0.

Again, the multiplication with ones does not cause any computational cost, but
an interesting feature of the reverse mode is that some of thebar quantities can
get several times modified in very different stages of the algorithm. Note that
the multiplicationJ̃⊤i ¯̃xi+1 with the transposed Jacobian

J̃⊤i =





1 ∗
1 ∗

. . . ∗
1 ∗





.

modifies at maximum two elements of the vector¯̃xi+1 by adding to them the
partial derivative of the elementary operation multipliedwith x̄n+i+1. In an effi-
cient implementation, the backward AD algorithm looks as follows.

Algorithm 5.5 (Reverse Automatic Differentiation).
Input: seed vector ¯x1, . . . , x̄n+m and all partial derivatives∂φi

∂x j

Output: x̄1, x̄2, . . . , x̄n

for i = m− 1 down to 0do
for all j = 1, . . . ,n+ i do

x̄ j ← x̄ j + x̄n+i+1
∂φi

∂x j

end for
end for

Note:each inner loop will only update one or two bar quantities.
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Example 5.6(Reverse Automatic Differentiation). We regard the same exam-
ple as before, and want to compute the gradient∇ f (x) = (x̄1, x̄2, x̄3)⊤ given
(x1, x2, x3). We setλ = 1. Because the selection matrixC selects only the
last intermediate variable as output, i.e.C = (0, · · · 0, 1), we initialize the
seed vector with zeros apart from the last component, which is one. In the
reverse mode, the algorithm first has to evaluate the function with all interme-
diate quantities, and only then it can compute the bar quantities, which it does
in reverse order. At the end it obtains, among other, the desired quantitities
(x̄1, x̄2, x̄3). The full algorithm is the following.

// *** forward evaluation of the function ***

x4 = x1x2

x5 = sin(x4)

x6 = x4x3

x7 = exp(x6)

x8 = x5 + x7

// *** initialization of the seed vector ***

x̄i = 0, i = 1, . . . ,7

x̄8 = 1

// *** backwards sweep ***

// * differentiation ofx8 = x5 + x7

x̄5 = x̄5 + 1 x̄8

x̄7 = x̄7 + 1 x̄8

// * differentiation ofx7 = exp(x6)

x̄6 = x̄6 + exp(x6)x̄7

// * differentiation ofx6 = x4x3

x̄4 = x̄4 + x3x̄6

x̄3 = x̄3 + x4x̄6

// * differentiation ofx5 = sin(x4)

x̄4 = x̄4 + cos(x4)x̄5

// differentiation ofx4 = x1x2

x̄1 = x̄1 + x2x̄4

x̄2 = x̄2 + x1x̄4
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The desired output of the algorithm is ( ¯x1, x̄2, x̄3), equal to the three compo-
nents of the gradient∇ f (x). Note that all three are returned inonly onereverse
sweep.

It can be shown that the cost of Algorithm 5.5 is less than 3 times the cost
of Algorithm 5.1, i.e.,

cost(λ⊤JF) ≤ 3 cost(F).

If we want to obtain the full Jacobian ofF, we need to call Algorithm 5.5
several times with thenF seed vectors corresponding to the unit vectors inRnF ,
i.e. we have

cost(JF) ≤ 3nF cost(F).

This is a remarkable fact: it means that the backward mode of AD can compute
the full Jacobian at a cost that is independent of the state dimensionn. This is
particularly advantageous ifnF ≪ n, e.g. if we compute the gradient of a scalar
function like the objective or the Lagrangian. The reverse mode can be much
faster than what we can obtain by finite differences, where we always need
(n + 1) function evaluations. To give an example, if we want to compute the
gradient of a scalar functionf : Rn → R with n =1 000 000 and each call of
the function needs one second of CPU time, then the finite difference approxi-
mation of the gradient would take 1 000 001 seconds, while thecomputation of
the same quantity with the backward mode of AD needs only 4 seconds (1 call
of the function plus one backward sweep). Thus, besides being more accurate,
backward AD can also be much faster than finite differences.

The only disadvantage of the backward mode of AD is that we have to store
all intermediate variables and partial derivatives, in contrast to finite differences
or forward AD. A partial remedy to this problem exist in form of checkpointing
that trades-off computational speed and memory requirements. Instead of all
intermediate variables, it only stores some “checkpoints”during the forward
evaluation. During the backward sweep, starting at these checkpoints, it re-
evaluates parts of the function to obtain those intermediate variables that have
not been stored. The optimal number and location of checkpoints is a science
of itself. Generally speaking, checkpointing reduces the memory requirements,
but comes at the expense of runtime.

From a user perspective, the details of implementation are not too relevant,
but it is most important to just know that the reverse mode of AD exists and
that it allows in many cases a much more efficient derivative generation than
any other technique.
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5.3.1 Efficient Computation of the Hessian

A particularly important quantity in Newton-type optimization methods is the
Hessian of the Lagrangian. It is the second derivative of thescalar function
L(x, λ, µ) with respect tox. As the multipliers are fixed for the purpose of
differentiation, we can for notational simplicity just regard afunction f : Rn→
R of which we want to compute the Hessian∇2 f (x). With finite differences we
would at least need (n+ 2)(n+ 1)/2 function evaluations in order to compute
the Hessian, and due to round-off and truncation errors, the accuracy of a finite
difference Hessian would be much lower than the accuracy of the function f :
we loose three quarters of the valid digits.

In contrast to this, algorithmic differentiation can without problems be app-
lied recursively, yielding a code that computes the Hessianmatrix at the same
precision as the functionf itself, i.e. typically at machine precision. Moreo-
ver, if we use the reverse mode of AD at least once, e.g. by firstgenerating an
efficient code for∇ f (x) (using backward AD) and then using forward AD to
obtain the Jacobian of it, we can reduce the CPU time considerably compared
to finite differences. Using the above procedure, we would obtain the Hessian
∇2 f at a cost of 2n times the cost of a gradient∇ f , which is about four times
the cost of evaluatingf alone. This means that we have the following runtime
bound:

cost(∇2 f ) ≤ 8ncost(f ).

A compromise between accuracy and ease of implementation that is equally
fast in terms of CPU time is to use backward AD only for computing the first
order derivative∇ f (x), and then to use finite differences for the differentiation
of ∇ f (x).

5.4 Algorithmic Differentiation Software

Most algorithmic differentiation tools implement both forward and backward
AD, and most are specific to one particular programming language. They come
in two different variants: either they useoperator overloadingor source-code
transformation.

The first class does not modify the code but changes the type ofthe variables
and overloads the involved elementary operations. For the forward mode, each
variable just gets an additional dot-quantity, i.e. the newvariables are the pairs
(xi , ẋi), and elementary operations just operate on these pairs, like e.g.

(x, ẋ) · (y, ẏ) = (xy, xẏ+ yẋ).



DRAFT

90 Calculating Derivatives

An interesting remark is that operator overloading is also at the basis of the
imaginary trick in MATLAB were we use the overloading of realnumbers
by complex numbers and used the small imaginary part as dot quantity and
exploited the fact that the extremely small higher order terms disappear by
numerical cancellation.

A prominent and widely used AD tool for generic user suppliedC++ code
that uses operator overloading is ADOL-C. Though it is not the most efficient
AD tool in terms of CPU time it is well documented and stable. Another po-
pular tool in this class is CppAD.

The other class of AD tools is based on source-code transformation. They
work like a text-processing tool that gets as input the user supplied source code
and produces as output a new and very differently looking source code that im-
plements the derivative generation. Often, these codes canbe made extremely
fast. Tools that implement source code transformations areADIC for ANSI C,
and ADIFOR and TAPENADE for FORTRAN codes.

In the context of ODE or DAE simulation, there exist good numerical in-
tegrators with forward and backward differentiation capabilities that are more
efficient and reliable than a naive procedure that would consistof taking an
integrator and processing it with an AD tool. Examples for integrators that use
the principle of forward and backward AD are the code DAESOL-II or the
open-source codes from the ACADO Integrators Collection orfrom the SUN-
DIALS Suite.

Exercises

5.1 Assume we have a twice continuously differentiable functionf : R→ R
and we want to evaluate its derivativef ′(x0) at x0 with finite differences.
Further assume that in a neighborhoodN(x0) it holds:

| f ′′(x)| ≤ f ′′max, | f (x)| ≤ fmax (5.3)

with N(x0) := {x |x0 − δ ≤ x ≤ x0 + δ}, δ > t andt the perturbation in the
finite difference approximation. The functionf (x) can be represented on
a computing system with an accuracyǫmach, i.e., it is perturbed by noise
ǫ(x):

f̃ (x) = f (x)(1+ ǫ(x)) |ǫ(x)| ≤ ǫmach.

(a) Compute a boundψ on the error of the finite difference approximation
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of f ′(x0)
∣
∣
∣
∣
∣
∣

f̃ (x0 + t) − f̃ (x0)
t

− f ′(x0)

∣
∣
∣
∣
∣
∣
≤ ψ(t, fmax, f ′′max, ǫmach).

(b) Which valuet∗ minimizes this bound and which value has the bound
at t∗?

(c) Do a similar analysis for the central differences wherẽf ′(x0) = f̃ (x0+t)− f̃ (x0−t)
2t .

Hint: you can assume that also the third derivative is bounded in
[x0 − t, x0 + t].

5.2 Consider a two-dimensional model of an airplane with statesx = [px, pz,
vx, vz] where position~p = [px, pz] and velocity~v = [vx, vz] are vectors in
thex−zdirections. We will use the standard aerospace convention that x̂
is forward and ˆz is down, so altitude is−pz. The system has one control
u = [α], whereα is the aerodynamic angle of attack in radians. A Matlab
function has been provided for you which integrates the system in time,
implementing:

xk+1 = xk + h ∗ f (xk,uk)

where the continuous time system dynamics have the form:

f (x,u) =





vx

vz

Fx/m
Fz/m





with

~F = ~Flift + ~Fdrag+ ~Fgravity.

As well as outputtingxk+1, this function also provides∂xk+1
∂xk

and ∂xk+1
∂uk

.
This function is available asintegrate_airplane_ode.m at the book
webpage. In this exercise we want to find controls for the airplane so that
it gets a maximum velocity in upwards direction at the end of the horizon
(after 2 seconds) usingh = 0.02 and a horizon length ofN = 100. In
particular, we will optimize the following NLP:

minimize
U ∈ R100

φ(U) = vz,N(U)

subject to −1◦ ≤ Uk ≤10◦, k = 0 . . .N − 1

A matlab functionfunction [phi, grad_phi, X] = phi_obj(U)
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has been provided at the webpage in the filephi_obj.m. This function
computesvz,N (phi) and a time history of states (X). It also returns∂vz,N

∂U
(grad_phi), but this part is incomplete - you will implement it yourself.

(a) Usephi_obj.m to solve the NLP usingfmincon letting Matlab es-
timate derivatives. Yourfmincon call should look like:

opts = optimset(’display’,’iter’,’algorithm’,...

’interior-point’,’MaxFunEvals’,100000);

alphasOpt = fmincon(@phi_obj, alphas0, [], [],...

[], [], lb, ub, [], opts);

Useαk = 0, k = 0 . . .N−1 as an initial guess. Plotpx vs−pz andα vs
time. How much time and iterations does the solver need to converge?

(b) Using reverse mode AD, complete the missing part ofphi_obj.m to
computegrad_phi.

(c) Solve the NLP withphi_obj.m andfmincon again, this time using
exact derivatives. Yourfmincon call should look like:

opts = optimset(’GradObj’,’on’,’display’,’iter’,...

’algorithm’,’interior-point’);

alphasOpt = fmincon(@phi_obj, alphas0, [], [],...

[], [], lb, ub, [], opts);

Useαk = 0, k = 0 . . .N−1 as an initial guess. Plotpx vs−pz andα vs
time. How much time and iterations does the solver need to converge?
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Parameter Estimation

6.1 Parameter Estimation via Least-Squares Penalties

A common source of optimization problems are least-squaresproblems, which
often arise from parameter estimation tasks. Let us in this section discuss how
these problems are formulated, starting with linear least-squares problems and
then going to nonlinear ones.

6.1.1 Unconstrained linear least-squares

For a start, let us first consider the followinglinear model

Aw= y (6.1)

that aims at explaining the set of measured dataymeas∈ Rny via the vector of
parameters w∈ Rnw, i.e. one aims at having

Aw≈ ymeas.

In this context, matrixA ∈ Rny×nw serves as a set of input data, and provides
themodel structure.

For aredundantset of measurementsymeas, i.e. for ny > nw, (6.1) is over-
determined and typically does not have a solution. In this situation, matrixA
has more rows than columns, and is not invertible. This issueis addressed via
solving afitting probleminstead of solving the original problem (6.1). Fitting
provides a vector of parameters ˆw that minimises the fitting error orresidualin
system (6.1), defined as

e= Aw− ymeas

The vector of parameter ˆw is then determined by means of the following opti-

93
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misation problem:

ŵ = min
w

1
2
‖Aw− ymeas‖2Q (6.2)

where the symmetric positive-definite matrixQ is an ad-hocweighting matrix.

Example 6.1. Let us consider the problem of fitting a line of equationz =
w1x + w2 to a set of measured pairs of points{xk, zk} for k = 1, . . . ,N. We
formulate the estimation ofw1, w2 as a least-squares problem:

minimize
w

N∑

k=1

1
2

(w1xk + w2 − zk)
2

which can be put in the form (6.2) using:

A =





x1 1
...

xN 1





, w =

[

w1

w2

]

, ymeas=





z1
...

zN





.

Solution to the unconstrained least-squares problem
Problem (6.2) is solved by finding a stationary point of its cost function, i.e. a
vectorw that satisfies:

∇w
1
2
‖Aw− ymeas‖2Q = A⊤Q

(

Aw− ymeas) = 0.

The optimal vector of parameterw then reads as:

ŵ =
(

A⊤QA
)−1

A⊤Qymeas. (6.3)

In the special caseQ = I , one can recognise thatw is obtained via thepseudo-
inverseof matrix A, i.e.

ŵ =
(

A⊤A
)−1

A⊤
︸        ︷︷        ︸

A†

ymeas.

Remark: The size of matrixA⊤A is nw × nw. For a very large number of
parametersw, i.e. for nw very large, the factorisation of the possibly dense
matrix A⊤A can be challenging.

Moments of the parameter estimation
Let us assume here that the fitting erroreof the linear model (6.1) results from
a zero-mean normally distributed additive measurement noise, i.e.

ymeas= Aw0 + n (6.4)
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wherew0 is the actual vector of parameters, andn ∼ N (0,Σn). We want to
understand the impact of the measurement noisen on the resulting estimated
parameters ˆw by computing its two first moments (expected value and covari-
ance). It should be observed here that since the noisen is Gaussian and since
the least-squares solution (6.3) is a linear map applied to the measurements
ymeas, the resulting parameter estimation ˆw is also following a Gaussian distri-
bution, i.e.:

ŵ ∼ N (E {ŵ} ,Σŵ)

whereE {ŵ} andΣŵ are the expected value and covariance of the estimation ˆw.
The expected valueE {ŵ} can be easily computed:

E {ŵ} = E
{(

A⊤QA
)−1

A⊤Qymeas
}

=

(

A⊤QA
)−1

A⊤QE {Aw0 + n} =
(

A⊤QA
)−1

A⊤QAw0 = w0 (6.5)

where we have used the fact thatE {n} = 0. It follows that the parameter estima-
tion obtained via solving the fitting problem (6.2) isunbiased, i.e.E {ŵ} = w0.
The covariance of the parameter estimation then reads as:

Σŵ = E
{

(ŵ− w0)(ŵ− w0)⊤
}

.

Let us defineA†Q =
(

A⊤QA
)−1 A⊤Q. We then have ˆw = A†Qy = A†Q(Aw0 + n)

and becauseA†QA = I , we have the following identity:

ŵ− w0 = A†Qn

such that we get

Σŵ = A†QE
{

nn⊤
} (

A†Q
)⊤
,

and definingΣn = E
{

nn⊤
}

, we finally have:

Σŵ =
(

A⊤QA
)−1

A⊤QΣnQA
(

A⊤QA
)−1

.

Observe that for the specific choice

Q = Σ−1
n , (6.6)

the covariance of the parameter estimation reduces to:

Σŵ =
(

A⊤QA
)−1

.

We will see in the next two sections that the choice of weighting matrix (6.6)
can be interpreted as optimal in two different ways.
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Least-squares and maximum likelihood estimator
Let us consider an alternative view of deciding the best parameter estimation ˆw
from a set of measurementsymeas. Instead of the fitting problem (6.2), we will
consider finding the value ofw that maximises the likelihood of obtaining the
observed measurementsymeas. Sincew andymeasare continuous variables, we
frame this question in terms of probability densities. We formulate the maxi-
mum likelihood problem as follows:

ŵ = arg max
w

f
(

ymeas|w)

(6.7)

where f (ymeas|w) is the conditional probability distribution ofymeas, for a given
parameterw. A simple interpretation of (6.7) is: what is the value that the
parameterw should have in order to make the probability density of observing
ymeasmaximal ?

From (6.4) and for a givenw, it is clear thatymeasfollows a normal distribu-
tion of the form:

ymeas∼ N (Aw,Σn) ,

hence

f
(

ymeas|w)

= exp
{

− (

Aw− ymeas)⊤ Σ−1
n

(

Aw− ymeas)
}

· const.

We then reformulate the optimisation problem (6.7) as follows, using the mo-
notonicity of the logarithm:

ŵ = arg max
w

f
(

ymeas|w)

= arg min
w
− log

{

f
(

ymeas|w)}

=

arg min
w

(

Aw− ymeas)⊤ Σ−1
n

(

Aw− ymeas) .

It follows that problem (6.7) delivers the same solution ˆw as the least-squares
problem (6.2) with the choice of weight (6.6). Hence the least-squares problem
with the choice of weight (6.6) is a maximum-likelihood estimator.

Least-squares as a minimiser of the estimation covariance
In this section, we show that the choice of weight (6.6) is optimal in the sense
that it minimises the trace of the covariance of the parameter estimationΣŵ,
i.e. it minimises the uncertainty of the estimated parameter.

The trace operator, here denoted as trace(.), sums the elements of the diago-
nal of the matrix it is applied to, i.e. for an arbitrary matrix M ∈ Rn×n:

trace(M) =
n∑

i=1

Mii .
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Taking the trace of a matrix is identical to summing up the matrix eigenvalues,
i.e.

trace(M) =
n∑

j=1

λ j (M) ,

and is identical to the sum of the matrix singular values if the matrix is sym-
metric positive-definite.

To establish the statement of this section, let us define the matrix K ∈ Rnw×ny

as a generic linear estimator providing the estimation of the parameter vector
ŵ from the measurementsymeas, i.e.:

ŵ = Kymeas= K (Aw+ n) .

In order to recover an unbiased estimator, i.e. to ensure that E {ŵ} = w, matrix
K must satisfy:

KA = I . (6.8)

It can be verified that the covariance of the parameter estimation ŵ then reads
as:

Σŵ = E
{

ŵŵ⊤
}

− E {ŵ}E
{

ŵ⊤
}

= KΣnK⊤.

Let us then consider the following matrix optimisation problem:

minimize
K

1
2

trace
(

KΣnK⊤
)

(6.9a)

subject to KA− I = 0, (6.9b)

which minimises the covariance of ˆw under the constraint that the estimator
should be ”unbiased”, i.e. Eq. (6.8). Even though problems of the form (6.9)
have not been considered so far in this book, they can be solved using very
similar techniques as seen previously. To that end, we definethe Lagrangian
function associated to (6.9):

L(K,Z) =
1
2

trace
(

KΣnK⊤
)

+ trace
(

Z⊤ (KA− I )
)

where matrixZ ∈ Rnw×nw acts as the set of Lagrange multipliers associated to
the constraint (6.9b), and trace

(

Z⊤ (KA− I )
)

defines a scalar product between
Z andKA− I . The solution to (6.9) is then given by:

∇KL(K,Z) = 0, KA− I = 0.



DRAFT

98 Parameter Estimation

The trace operator is linear and has the following useful properties:

trace(ABC) = trace(BCA) = trace(CAB) , ∇Atrace(AB) = B⊤.

It can then be verified that:

∇KL(K,Z) =
1
2
∇K trace

(

KΣnK⊤
)

+ ∇K trace
(

Z⊤KA
)

=

= KΣn + ZA⊤ = 0.

HenceK = −ZA⊤Σ−1
n , and using the constraint (6.9b):

−ZA⊤Σ−1
n A = I ⇒ Z = −

(

A⊤Σ−1
n A

)−1
.

We finally get as the optimal solutionK∗ =
(

A⊤Σ−1
n A

)−1
A⊤Σ−1

n , i.e.

ŵ = K∗y
meas=

(

A⊤Σ−1
n A

)−1
A⊤Σ−1

n ymeas.

Hence, the least-squares problem (6.2) with the choice of weight (6.6) mini-
mizes the trace of the covariance matrix of the parameter estimationΣŵ. More
generally than discussed here, one can prove that the optimal linear estimator
K∗ minimizes not only the trace of the covariance, but any othermeaningful
performance measure: for any unbiased linear estimatorK with KA = I holds

KΣnK⊤ � K∗ΣnK⊤∗ .

The reasoning above was minimizing the trace.

6.1.2 Nonlinear least-squares

We now turn to the problem of estimating a set of parameters inthe case a
nonlinear measurement function is in use. Consider the problem:

ŵ = arg min
w

1
2
‖y (w) − ymeas‖2Q, (6.10)

wherey (.) : Rnw 7→ Rny is an arbitrary yet sufficiently smooth function.

Solution to the unconstrained nonlinear least-squares problem
Problem (6.10) is in a form suitable for the Gauss-Newton method with the
nonlinear residual function (see Section 4.1.3), with the residual function:

R(w) = Q
1
2
(

y (w) − ymeas) .
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The estimation ˆw is then typically obtained by performing the Newton-type
iterations:

wk+1 = wk − B−1
k ∇R(wk) R(wk) , ∇R(wk) = ∇y (wk) Q

1
2 ,

to convergence, whereBk = ∇R(wk)∇R(wk)
⊤ is the Gauss-Newton Hessian

approximation for problem (6.10).

Moments of the parameter estimation
Similarly to the linear least-squares case, we are interested in assessing the
moments of the parameter estimation ˆw resulting from measurement noise,
mainly its expected value and covariance. However, compared to the linear
least-squares case, using a nonlinear measurement function has some impor-
tant consequences.

The first important observation we need to make concerns the expected value
of the parameter estimation. By definition, the expected value of the estimated
parameter is given by:

E {ŵ} =
∫

W
w fw (w) dw

whereW is the domain of ˆw and fw the probability density function of ˆw. We
note that the solution ˆw to problem (6.10) satisfies the KKT conditions:

∇w
1
2
‖y (w) − ymeas‖2Q =

1
2
∇w

(

R⊤R
)

= ∇wRR= 0. (6.11)

Because the measurement functiony (w) is nonlinear, (6.11) yields an im-
plicit nonlinear map from the measurementsymeasto the estimated parameters
ŵ. It follows that even assuming that the measurements are subject to additive,
Gaussian noise, i.e.:

ymeas= y (w0) + n, n ∼ N (0,Σn) , (6.12)

wherew0 is the true value of the parameter, the resulting probability density
function of the estimated parameterfw is in general not a Gaussian distribution.
In particular, it follows that in general:

E {ŵ} =
∫

W
w fw (w) dw, w0. (6.13)

This result needs to be contrasted with (6.5), and warns us that in the case of a
nonlinear measurement function, the expected value of the parameter estima-
tion does, in general, not match the true value of the parameter. We then say
that the nonlinear least-squares problem (6.10) providesbiasedestimations.
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We are interested next in estimating the covariance of the solution of pro-
blem (6.10). As detailed previously, for a nonlinear measurement function
y (w), the estimation ˆw will in general not have a Gaussian distribution, even
when the noise distribution has. It follows that assessing the true covariance of
the parameter estimation is in general an intricate problem. To circumvent this
issue, we consider a linearisation of the nonlinear fitting problem (6.10) at its
solution, and deploy a similar approach as in the linear least-squares case. The
distribution of the parameter estimation ˆw is then approximated as Gaussian.
We detail this approach next.

Using the additive noise (6.12), the residual functionRbecomes

R(w,n) = Q
1
2 (y (w) − y (w0) − n) .

In the absence of measurement noise, i.e. withn = 0, the solution to the fitting
problem (6.10) yields the true parameterw0 with R(w0,0) = 0. The true pa-
rameterw0 is then solution of (6.11). We carry out the analysis by taking the
first-order approximation of the (nonlinear) KKT conditions (6.11) atn = 0
andw0:

H (w0,n) (ŵ− w0) +
∂

∂n
(∇wR(w0,n) R(w0,n)) n+ O

(

‖n‖2
)

= 0, (6.14)

whereH (w0,n) is the Hessian of the least-square penalty. We observe that

∂

∂n
(∇wR(w0,n) R(w0,n)) = −∇y (w0) Q. (6.15)

We then obtain the following linear system:

ŵ− w0 = H (w0)−1∇y (w0) Qn+ O
(

‖n‖2
)

describing to a first-order approximation the error betweenthe estimated pa-
rameterŵ and its true valuew0. We can then approximate the covariance of
ŵ:

Σŵ = E
{

(ŵ− w0) (ŵ− w0)⊤
}

≈ H (w0)−1∇y (w0) QΣnQ∇y (w0)⊤ H (w0)−1 .

Using the choice of weight (6.6), i.e.Q = Σ−1
n , we obtained:

Σŵ = E
{

(ŵ− w0) (ŵ− w0)⊤
}

≈ H (w0)−1∇y (w0) Q∇y (w0)⊤ H (w0)−1 .

(6.16)

Finally, the Gauss-Newton Hessian approximation for problem (6.11) reads as:

H (w0,n) ≈ ∇wR(w0,n)∇wR(w0,n)⊤ = ∇y (w0) Q∇y (w0)⊤
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such that (6.16) can be further approximated as:

Σŵ ≈
(

∇y (w0) Q∇y (w0)⊤
)−1

. (6.17)

Note that if the measurement functiony (w) is linear, i.e.y (w) = Aw, then
∇y (w) = A⊤, and (6.17) yields (6.1.1).

We illustrate next the concepts developed in this subsection.

Example 6.2. Consider the nonlinear least-squares problem:

minimize
w

1
2

N∑

k=1

‖z(w, xk) − ymeas
k ‖2

Σ−1
n

(6.18)

whereymeas
k , xk, w ∈ R andz(w, xk) = w+ xkw3. We write problem (6.18) in

the form (6.10) using:

y (w) =





z(w, x1)
...

z(w, xN)





, ymeas=





ymeas
1
...

ymeas
N





.

We useN = 10, and use an additive Gaussian noise in the measurements, i.e.

ymeas= y (w0) + n, n ∼ N (0,Σn) .

We then solve problem (6.18) for 50000 randomly generated noise sequences
n ∈ RN, and a true parameterw0 = 0.2. Figure 6.1 reports the resulting dis-
tribution of the parameter estimation ˆw for various levels of noiseΣn (shaded
dots). The true distribution is approximated as a Gaussian distribution of mean
E {ŵ} and using the covariance given by (6.17), reported as the plain black
curves in Figure 6.1. The plain lines report the true valuew0 while the dashed
lines report the true expected value of ˆw. It can be observed that for a small
measurement noise, the estimation ˆw is practically unbiased and the Gaussian
distribution is a good approximation of its true distribution. For a larger me-
asurement noise, the estimation becomes biased and the distribution becomes
clearly non-Gaussian.

Bias and Consistency
It is important in the context of nonlinear least square estimation to have a
clear understanding of the difference between a biased estimator and a consis-
tent estimator. As detailed in the previous section, the nonlinear least-squares
estimator (6.10) is biased, i.e. in general

E {ŵ} , w0 (6.19)
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Figure 6.1 distribution of the parameter estimationw, for various measurement
noise covariance. The black curve report the Gaussian distribution estimating the
true distribution. The dots represent the

because of the integral (6.13). Put in practical terms, assuming that one accu-
mulates a large number of realizations ˆwk of the nonlinear least square estima-
tion (6.10) computed fromNexp different experimentsi = 1, ...,Nexp, one shall
not expect that averaging the estimates ˆwi will deliver an estimator that conver-
ges tow0 for Nexp→ ∞. However, it is crucial here to distinguish between bias
and inconsistency. To that end, we consider the problem presented in Example
6.2, i.e.

ŵN = arg min
w

1
2

N∑

k=1

‖y (w, xk) − ymeas
k ‖2Q, (6.20)

where we assume that a Gaussian noise enters linearly in the measurements,
i.e.ymeas

k = y (w0, xk)+n. As detailed previously, the nonlinear estimator (6.20)
is biased, but it is nonethelessconsistent, in the sense that limN→∞ ŵN → w0,
i.e. the estimator (6.20) converges to the true value of of the parameterw as
the number of data sampleN → ∞. More details on this remark and on the
difference between unbiased and consistent estimators can be found in e.g.
[59].

An interesting interpretation of this lack of equivalence is to construe it as
a non-commutativity between the argmin and the summation operation. More
specifically, let us label ˆwN,i the least-squares estimates stemming from a batch
of N data pointxk,i , ymeas

k,i with k = 1, ...,N obtained in an experimenti. Sup-
pose now thatNexp experiments are performed, such thati = 1, ...,Nexp. The
following two approaches can then be used to compute an estimation of the



DRAFT

6.1 Parameter Estimation via Least-Squares Penalties 103

true parameterw0:

µ
(

ŵN,1, ..., ŵN,Nexp

)

:=
1

Nexp

Nexp∑

i=1

ŵN,i

=
1

Nexp

Nexp∑

i=1

arg min
w

1
2

N∑

k=1

‖y (

w, xk,i
) − ymeas

k,i ‖
2
Q,

(6.21)

and

ŵN×Nexp := arg min
w

1
2

1
Nexp

Nexp∑

i=1

N∑

k=1

‖y (

w, xk,i
) − ymeas

k,i ‖
2
Q, (6.22)

We then observe that

lim
Nexp→∞

µ
(

ŵN,1, ..., ŵN,Nexp

)

, lim
Nexp→∞

ŵN×Nexp = w0 (6.23)

We then observe that (6.22) converges to the to the true parameterw0 while
(6.21) does not. The difference between the two estimations lies solely in com-
muting the summation1

Nexp

∑Nexp

i=1 with the minimization.

6.1.3 Constrained least-squares

We now turn to the problem of estimating a set of parameters subject to con-
straints. The vector of parameterw is then determined by means of the follo-
wing optimisation problem:

w∗ = arg min
w

1
2
‖y (w) − ymeas‖2Q (6.24a)

subject to g(w) = 0 (6.24b)

wherey (.) : Rnw 7→ Rny andg(.) : Rnw 7→ Rnc is a sufficiently smooth function.

Remark: a possible interpretation of the equality constraint (6.24b) is that it
embeds in problem (6.24) the prior knowledge that the estimated parameter ˆw
sits on the manifoldM = {w | g(w) = 0} with absolute certainty. Such certainty
must be treated with care. Indeed, if functiong represents a model underlying
the estimation problem, includingg as a constraint in (6.24) entails that one as-
sumes that the underlying model captures the reality perfectly. However, such
an assumption is rarely valid in practice.

Solution to the constrained nonlinear least-squares problem
As in Section 6.1.2, one can recognise in (6.24) a problem in aform suitable
for the Gauss-Newton method (see Section 4.1.3). We then getthe solution to
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problem (6.24) via iterating the linear system:
[

Bk ∇g (wk)
∇g (wk)

⊤ 0

] [

wk+1 − wk

λk+1

]

= −
[

∇R(wk) R(wk)
g (wk)

]

whereR(wk) = Q
1
2 (y (wk) − ymeas) andBk = ∇R(wk)∇R(wk)

⊤ is the Gauss-
Newton Hessian approximation for problem (6.24).

Moments of the parameter estimation
Similarly to the nonlinear, unconstrained least-squares case, we are interested
in assessing the moments of the parameter estimation ˆw resulting from measu-
rement noise, mainly its expected value and covariance. In particular, we are
interested in understanding the effect of the equality constraintg in problem
(6.24).

Similarly to (6.11), we note that the solution ˆw to problem (6.24) is impli-
citly given by the KKT conditions:

∇wR(w,n) R(w,n) + λ⊤g (w) = 0

g (w) = 0.
(6.25)

As in Section 6.1.2, because the measurement and (or) constraint functions
y (w) , g (w) are nonlinear, the conditions (6.25) yield an implicit nonlinear map
from the measurementsymeasto the estimated parameters ˆw. It also follows that
the distribution of the estimated parameters ˆw is in general not Gaussian, and
that the expected value of ˆw does in general not match the true value of the
parameter, i.e. the constrained nonlinear least-square estimator is biased.

We deploy a similar approach as in Section 6.1.2 to assess thecovariance
of the nonlinear constrained estimator (6.24). In the absence of measurement
noise, i.e. withn = 0, the solution to the fitting problem (6.24) yields the true
parameterw0, solution of (6.25). It is interesting to observe that forn = 0, the
multipliersλ0 associated to the constraintg in (6.24) are zero, i.e.λ0 = 0.

We carry out the analysis by taking the first-order approximation of the (non-
linear) KKT conditions (6.25) atn = 0 andw0:

H (w0,n) (ŵ− w0) +
∂

∂n

(

∇wR(w,n) R(w,n) + λ⊤g (w)
)

n+ O
(

‖n‖2
)

= 0

∇g (w0)⊤ (ŵ− w0) = 0

(6.26)

where H (w0,n) now stands for the Hessian of the constrained least-square
problem (6.24). We observe that the main difference between (6.14) and (6.26)
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is that now the first-order variation ˆw−w0 is restricted to the null-space of the
constraints Jacobian∇g (w0)⊤. We additionally observe that:

∂

∂n

(

∇wR(w,n) R(w,n) + λ⊤g (w)
)

= −∇y (w0) Q,

i.e. it is identical to the unconstrained case (6.15). It follows that the first-order
variation ofŵ− w0 is provided by:

[

H (w0,n) ∇g (w0)
∇g (w0)⊤ 0

]

︸                     ︷︷                     ︸

M

ẑ
︷    ︸︸    ︷
[

ŵ− w0

λ̂ − λ0

]

=

[

−∇y (w0) Q
0

]

︸          ︷︷          ︸

φ

n+ O
(

‖n‖2
)

(6.27)

It will be useful to consider in the following the range-space/null-space de-
composition of the constraints Jacobian∇g (w0)⊤, i.e. matricesN, F such that:

∇g (w0)⊤ N = 0, ∇g (w0)⊤ F = I .

It can then be verified that:

ŵ− w0 = −
(

N⊤H (w0,n) N
)−1

N⊤∇y (w0) Qn+ O
(

‖n‖2
)

.

The matrixH̄ = N⊤H (w0,n) N is labelled thereduced Hessianof problem
(6.24) and is the projection of the Hessian of the problem in the space of the
admissible primal directions. We can then obtain:

Σŵ = En

(

(ŵ− w0) (ŵ− w0)⊤
)

= H̄−1N⊤∇y (w0) QΣnQ∇y (w0)⊤ NH̄−1+O
(

‖n‖2
)

.

Using the choice of weightQ−1 = Σn then yields:

Σŵ = En

(

(ŵ− w0) (ŵ− w0)⊤
)

= H̄−1N⊤∇y (w0) Q∇y (w0)⊤ NH̄−1 + O
(

‖n‖2
)

.

Finally, the Gauss-Newton Hessian approximation for problem (6.24)

H (w0,n) ≈ ∇wR(w0,n)∇wR(w0,n)⊤ = ∇y (w0) Q∇y (w0)⊤

yields:

Σŵ = H̄−1N⊤H (w0,n) NH̄−1 + O
(

‖n‖2
)

= H̄−1 + O
(

‖n‖2
)

.

It follows that the inverse of the reduced Hessian of problem(6.24) at the
noise-free solutionw0 provides an estimation of the covariance of ˆw.
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6.2 Alternative convex penalties

Though the least-squares cost function is by far the most widespread cost used
in fitting problems, there exist other penalty functions than theL2 norm that
are used at different occasions. Like theL2 norm, all commonly used penalty
functions are convex. We discuss two of the most popular ones.

6.2.1 L1 norm

The first common alternative penalty for fitting problems uses theL1-norm as
a penalty function. Here, we consider the fitting problem:

minimize
w

‖y (w) − ymeas‖1

subject to g(w) = 0.
(6.28)

1 Slack formulation
A cost function involving anL1 penalty is non-differentiable. One must be very
careful when deploying Newton algorithms on non-smooth problems in order
to obtain a reasonably fast and guaranteed convergence. To circumvent this
problem, we detail next a reformulation of theL1 penalty function in problem
(6.28), which allows for removing the non-smoothness from the cost function,
and place it in the inequality constraints instead. To that end, we introduce an
additional set of variabless ∈ Rn having the same dimension as the vector
subject to theL1 penalty. The variabless are often labelledslack variablesin
the literature, and are used in many different contexts. TheL1 penalty is then
implemented by ”trapping” the fitting errory (w)−ymeasbetweensand−s, i.e.:

−sk ≤ yk (w) − ymeas
k ≤ sk.

If all constraints are active, then we have

|yk (w) − ymeas
k | = sk

and

‖y (w) − ymeas‖1 =
n∑

k=0

sk = 1⊤s.

We then rewrite problem (6.28) as:

minimize
w, s

1⊤s

subject to g(w) = 0,

−s≤ y (w) − ymeas≤ s.

(6.29)
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We leave it as an exercises the proof that (6.29) is equivalent to (6.28).
Remark: problem (6.29) has a linear cost function, and as such may require

some care when using Newton-type algorithms. E.g. the Gauss-Newton Hes-
sian approximation for (6.29) is zero and therefore singular. Nevertheless, the
Gauss-Newton method with zero Hessian might converge in many cases when
applied toL1-fitting problems, and converge even with quadratic convergence
rate, due to the fact that the solution is in a vertex of the feasible set.

When an exact Newton method is used, one needs to observe that the exact
Hessian associated to (6.29) is likely to be indefinite and thus one might want
to apply some level of regularisation.

6.2.2 Huber penalty

minimize
w

Hρ

(

y (w) − ymeas)

subject to g(w) = 0,
(6.30)

where

Hρ (x) =






1
2 x2 if |x| ≤ ρ

ρ
(

|x| − 1
2ρ

)

if |z| > ρ

with ρ ∈ R. The shape of the Huber penalty function is depicted in Figure
6.2. The Huber penaltyHρ (y− ymeas) implements anL2 on the samples of the
fitting error y − ymeas that are smaller thanρ, and anL1 norm on the larger
ones. It is very useful for rejecting outliers, while retaining the nice behaviour
least-squares fitting with respect to the data points that can be well fitted.

Remark: the Huber penalty function is not a norm, since e.g. thehomoge-
neitycondition does not hold, i.e. in generalHρ (αx) , |α|Hρ (x).

Slack formulation The Huber penalty is everywhere differentiable, but not
twice differentiable. Similarly to theL1 norm problem (6.28), a reformula-
tion using slack variables allows for having a smooth formulation of problem
(6.30), which is better suited for the Newton context. The reformulation for
problem (6.30) reads as:

minimize
w

ρ1⊤ν +
1
2
µ⊤µ

subject to g(w) = 0,

−µ − ν ≤ y (w) − ymeas≤ ν + µ,
ν ≥ 0.

(6.31)
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Example 6.3.
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Figure 6.3 Comparison of theL2, L1 norms and the Huber penalty withρ = 1 for
a linear regression with outliers. The crosses report the two points having a zero
residual in theL1 norm problem.

We leave it as an exercises the proof that (6.31) is equivalent to (6.30).
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Exercises

6.1 Linear Least Squares and Maximum Likelihood Estimationare two met-
hods to estimate unknown parameters. State the relation between them.
Can they both be used under the same circumstances?

6.2 Consider the following experimental set up to estimatesthe values ofE
andR.

I (k)

R

+ −

E

V

U(k)

Every experiment consists ofN measurements of the voltageU(k) for
different values ofI (k). The measurementsU(k) are affected by additive
Gaussian noise with meanµ and standard deviationσ:

U(k) = E + RI(k) + nu(k)

Here we assume that the input variableI (k) is not affected by noise.
Tasks:

(a) Import the data available on the website to MATLAB and plot the
U(k), I (k) relation using ’x’ markers.

(b) Use a least squares estimator in matrix form to find the experimental
values ofRandE and plot the linear fit through theU(k), I (k) data.

(c) A thermistor is a resistor which resistance varies with achange of the
resistor temperature. A basic model of such a effect isR = R0(1 +
k1(T(t) − T0)), whereR0 is the resistance at ambient temperatureT0,
and wherek1[ ΩK ] is positive for PTC (positive temperature coefficient)
thermistors and negative for NTC (negative temperature coefficient)
thermistors. On the other hand, resistor self-heating due to power dis-
sipation increases the resistor temperature, being this power dissipa-
tion also a function of the temperature difference between the ambient
and the resistor that can me modelled asP = k2(T(t) − T0)), where
k2[ W

K ] > 0. ModellingR2
0k1/k2 as a single constantk3, and assuming
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that the power dissipated can be approximated byP ≈ I2R0, obtain
the new equation model ofU and compute the least squares estima-
tor of R0, k3 andE. Finally plot the nonlinear fit into the same figure
as before (uselegend and different colors to clearly show the corre-
spondence of each plot).

(d) Using the estimation values of part c, give an approximation of k1
k2

. Is
it a NTC or PTC type of thermistor?

6.3 Given a matrixJ ∈ Rm×n with arbitrary dimensions, a symmetric positive
definite matrixQ ≻ 0, a vector of measurementsη ∈ Rm and a point
x̄ ∈ Rn, calculate the limit:

lim
α→ 0
a > 0

arg min
x

1
2
||η − Jx||22 +

α

2
(x− x̄)⊤Q(x− x̄).

Hint: Use matrix square root and the MoorePenrose pseudoinverse, i.e.,
SVD of a suitable matrix.

6.4 Assume we have a set ofN measurements (xi , yi) ∈ R2 onto which we
would like to fit a liney = ax+ b. This task can be expressed by the
optimization problem:

min
a,b

N∑

i=1

(axi + b− yi)
2 = min

a,b

∥
∥
∥
∥
∥
∥
J

(

a
b

)

− y

∥
∥
∥
∥
∥
∥

2

2

.

(a) Generate the problem data. TakeN = 30 points in the interval [0,5]
and generate the measurementsyi = 3xi +4. Add Gaussian noise with
zero mean and standard deviation 1 to the measurements and plot the
results.

(b) Write down matrixJ and vectory for your fitting problem. Calculate
the coefficientsa,b in MATLAB and plot the obtained line in the
same graph as the measurements.

(c) Introduce 3 outliers in your measurementsy and plot the new fitted
line in your plot.

(d) In this task we want to fit a line to the same set of measurements, but
we use a different cost function:

min
a,b

N∑

i=1

|(axi + b− yi)|.

This objective is not differentiable, so we will need auxiliary varia-
bles to form an equivalent problem. We introduce the so-called slack
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variabless1, . . . , sN and solve instead:

min
a,b,s

∑

i

si

s.t. − si ≤ axi + b− yi ≤ si , i = 1, . . . ,N,

− si ≤ 0, i = 1, . . . ,N.

Solve the problem using the measurementsy (both with and without
outliers) and plot the results against those of the L2 fitting. Which
norm performs better and why?

6.5 You are trying to estimate the offsetθ0 of a voltmeter given a set of values
Y = [50,55,58,61] [V] obtained from an experiment on a setup which
is known to have a true value ofθ0 [V]. In the data sheet of the volt-
meter, it is written that the offset error follows the following probability

distribution f (θ) = 1
8e−

|x−θ0|
4

(a) Name the probability distribution given byf (θ).
(b) Using MLE, write down the minimization problem that you should

solve in order to obtain an estimatorθ̂0 offset.
(c) Solve the minimization problem and provide the numerical result of

θ̂0 in the case thatθ0 = 54 [V].

6.6 In a high precision telescope looking into outer space, we want to esti-
mate the position of an extremely far star as exactly as possible. Unfor-
tunately, only very few photons arrive every hour to the cells of our light
detector. We model the problem in one dimension only. On an line of
N detector cells (which also has a length ofN millimeters, i.e. each cell
is a millimeter wide) we have counted the number of photonsy(k) ∈ N
that arrived in one hour in each cell. We know that the true butunknown
light intensityλ(x; θ) of the star is spread out and bell-shaped, and there-
fore we use bell-shaped function for describing it. The function has three
unknown parameters: the center-pointθ1, the overall scalingθ2, and the
spreadθ3, and is given by

λ(x; θ) = θ2 exp

(

− (x− θ1)2

θ3

)

The interesting fact is that the number of photons arriving in each hour
for a given light intensity follows a Poisson-distribution, i.e. the proba-
bility to county ∈ N photons is given by

P(y) =
λye−λ

y!
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Formulate the negative log-likelihood function for the maximum-likelihood
estimator.

6.7 We will again use the aircraft model of Exercise 1.2 with the aircraft’s
flight noisy data of Exercise 3.11 to estimate a model for the flight trajec-
tory. The data can be obtained in the book website asflight_data.m,
and as before, it represents the position ˆpx,k and p̂z,k during a 20 s flight.
For this exercise, we will assume that the solution trajectory has a poly-
nomial form in timet:

p̄x,k =

10∑

j=0

a j t
j
k, p̄z,k =

10∑

j=0

b j t
j
k,

Then, in order to estimate the polynomial coefficients to obtain the air-
craft model, we should solve the following optimization problem:

minimize
a0,...,a10,
b0,...,b10

N−1∑

k=0

(

p̄x,k(a,b)
) − p̂x,k)

2 +
(

p̄z,k(a,b) − p̂z,k
)2

(a) Formulate the problem as a linear least squares problem and solve it
using the standard formulaxLS = (A⊤A)−1A⊤b. You should expect an
imperfect fit, and possibly a badly conditioned matrix inverse. It may
be better to use theMATLAB mldivide function (which is written as
A\b) instead of the least squares formula.

(b) Plot px vs−pz, −pz vs time, andpx vs time.

6.8 It has been observed that the magnitude of the wind speed in a wind farm
throughout a year follows a distribution given by the following conditio-
ned probability density function:

p(v|λ, k) =






k
λ

(
v
λ

)k−1
e−(v/λ)k

v ≥ 0

0 v ≤ 0
(6.32)

This distribution is known as the Weibull distribution, whereλ > 0 and
k > 0 are the parameters of the distribution andv is the magnitude of the
wind speed at the turbine location. Since these parameters are required
to study the average power that a certain turbine will produce in a certain
location, the task of this problem will be to estimate these parametersλ
andk given some measurements of the wind speed at a given location.

(a) Formulate the negative log-likelihood function givenN measurements
of wind speedv1, . . . , vN from the same same turbine throughout the
year. Simplify this function as much as possible.
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(b) State the minimization problem and simplify again the objective function.
Hint: constant terms in the objective function do not alter the solution
of a minimisation problem.

(c) Import the wind speed data from the website and solve the minimisa-
tion problem to estimateλ andk.

6.9 Consider a test setup with a LED light driven by a PWM (PulseWidth
Modulation) signal with a frequency off0 = 100 Hz. The dutycycleD ∈
[0,1] of a PWM signal determines what portion of a cycle a signal is
active, i.e. it is active forD/ f0 s, and inactive for (1−D)/ f0 s within one
cycle. We want to identify an ARX-type model (Auto-Regressive with
eXogeneous inputs) for the heating of the LED. We take the following
form for the ARX model:

T(k) = −
na∑

i=1

aiT(k− i) +
nb∑

i=1

biD(k− i) + ǫ(k), (6.33)

whereT [C] is the temperature of the LED,D [−] is the dutycycle of the
PWM signal,na,nb are the number of past outputs and inputs, respecti-
vely, andǫ [C] is the output noise.

(a) What assumption do we need in order to do a Linear Least Squares
fit?

(b) Write down the Linear Least Squares problem you need to solve in
order to estimate the parametersai ,bi in Eq. (6.33). State all the vec-
tors and matrices that are needed.

Download from the course website the simulation routineLEDsim.m,
which you can use to simulate the LED. It takesN values for the duty-
cycles and returnsN + 1 resulting temperatures. The initial temperature
is set within this simulation function.

(c) Choose an input signal withN between 50 and 500 and generate me-
asurements from the functionLEDsim.m.

(d) Implement the above Linear Least Squares estimation in MATLAB.
(e) Plot the measurements along with the one-step-ahead predictors at

each time step.
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A lot of times it’s up to our discretion.
— Joe Jimenez

0 5 10 15 20 25 30 35 40 45
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−1

0

1

2

Path constrainth(x1) ≤ 0

Path constrainth(x2) ≤ 0

Initial value:
x0,2

Initial value:x0,1

Terminal conditions:
r (xN) ≤ 0

k

Statexk,1

Statexk,2

Controluk

Figure 7.1 Variables of a discrete optimal control problem with N = 49

Throughout this part of the script we regard for notational simplicity time-
invariant dynamical systems with dynamics

xk+1 = f (xk,uk), k = 0, . . . ,N − 1.

Recall thatuk are thecontrolsandxk thestates, with xk ∈ Rnx anduk ∈ Rnu.

114
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As discussed in the first chapter, if we know the initial statex0 and the con-
trols u0, . . . ,uN−1, we could simulate the system to obtain all other states. But
in optimization, we might have different requirements than just a fixed initial
state. We might, for example, have both a fixed initial state and a fixed terminal
state that we want to reach. Or we might just look for periodicsequences with
x0 = xN. All these desires on the initial and the terminal state can be expressed
by a boundary constraint function

r(x0, xN) = 0.

For the case of fixed initial value, this function would just be

r(x0, xN) = x0 − x̄0

where x̄0 is the fixed initial value and not an optimization variable. Another
example would be to have both ends fixed, resulting in a function r of double
the state dimension, namely:

r(x0, xN) =

[

x0 − x̄0

xN − x̄N

]

.

Finally, periodic boundary conditions can be imposed by setting

r(x0, xN) = x0 − xN.

Other constraints that are usually present arepath constraintinequalities of
the form

h(xk,uk) ≤ 0, k = 0, . . . ,N − 1.

In the case of upper and lower bounds on the controls,umin ≤ uk ≤ umax, the
functionh would just be

h(x,u) =

[

u− umax

umin − u

]

.

7.1 Optimal Control Problem (OCP) Formulations

Two major approaches can be distinguished to formulate and numerically solve
a discrete time optimal control problem, thesimultaneousand thesequential
approach, which we will outline after having formulated theoptimal control
problem in its standard form.
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7.1.1 Original Problem Formulation

Given the system model and constraints, a quite generic discrete time optimal
control problem can be formulated as the following constrained NLP:

minimize
x0,u0,x1,...,

uN−1,xN

N−1∑

k=0

L(xk,uk)+E(xN) (7.1a)

subject to xk+1 − f (xk,uk) = 0, k = 0, . . . ,N − 1, (7.1b)

h(xk,uk) ≤ 0, k = 0, . . . ,N − 1, (7.1c)

r(x0, xN) = 0. (7.1d)

We remark that other optimization variables could be present as well, such
as a free parameterp that can be chosen but is constant over time, like e.g.
the size of a vessel in a chemical reactor or the length of a robot arm. Such
parameters could be added to the optimisation formulation above by defining
dummy states{pk}Nk=1 that satisfy the dummy dynamic model equations

pk+1 = pk, k = 0, . . . ,N − 1.

Note that the initial value ofp0 is not fixed by these constraints and thus we
would have obtained our aim of having a time constant parameter vector that
is free for optimization.

7.1.2 The Simultaneous Approach

The nonlinear program (7.1) is large and structured and can thus in principle be
solved by any NLP solver. This is called thesimultaneous approachto optimal
control and requires the use of a structure exploiting NLP solver in order to be
efficient. Note that in this approach, all original variables, i.e.uk andxk remain
optimization variables of the NLP. Its name stems from the fact that the NLP
solver has to simultaneously solve both, the simulation andthe optimization
problem. It is interesting to remark that the model equations (7.1b) will for
most NLP solvers only be satisfied once the NLP iterations areconverged. The
simultaneous approach is therefore sometimes referred to as aninfeasible path
approach. The methodsdirect multiple shootinganddirect collocationthat we
explain in the third part of this script are simultaneous approaches.

7.1.3 The Reduced Formulation and the Sequential Approach

On the other hand, we know that we could eliminate nearly all states by a
forward simulation, and in this way we could reduce the variable space of the
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NLP. The idea is to keep onlyx0 andU = [u⊤0 , . . . ,u
⊤
N−1]⊤ as variables. The

statesx1, . . . , xN are eleminated recursively by

x̄0(x0,U) = x0

x̄k+1(x0,U) = f (x̄k(x0,U),uk), k = 0, . . . ,N − 1.
(7.2)

Then the optimal control problem is equivalent to areduced problemwith
much less variables, namely the following nonlinear program:

minimize
x0,U

N−1∑

k=0

L(x̄k(x0,U),uk)+E(x̄k(x0,U)) (7.3a)

subject to r(x0, x̄N(x0,U)) = 0, (7.3b)

h(x̄k(x0,U),uk) ≤ 0, k = 0, . . . ,N − 1. (7.3c)

Note that the model Equation (7.2) is implicitly satisfied bydefinition, but is
not anymore a constraint of the optimization problem. This reduced problem
can now be addressed again by Newton-type methods, but the exploitation of
sparsity in the problem is less important. This is called thesequentialapproach,
because the simulation problem and optimization problem are solved sequen-
tially, one after the other. Note that the user can observe during all iterations of
the optimization procedure what is the resulting state trajectory for the current
iterate, as the model equations are satisfied by definition.

If the initial value is fixed, i.e. ifr(x0, xN) = x0 − x̄0, one can also eliminate
x0 ≡ x̄0, which reduces the variables of the NLP further.

7.2 Analysis of a Simplified Optimal Control Problem

In order to learn more about the structure of optimal controlproblems and the
relation between the simultaneous and the sequential approach, we regard in
this section a simplified optimal control problem in discrete time:

minimize
x0,u0,x1,...,

uN−1,xN

N−1∑

k=0

L(xk,uk)+E(xN) (7.4a)

subject to xk+1 − f (xk,uk) = 0, k = 0, . . . ,N − 1, (7.4b)

r(x0, xN) = 0. (7.4c)
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7.2.1 KKT Conditions of the Simplified Problem

We first summarize the variables asw = (x0,u0, x1,u1, . . . ,uN−1, xN) and sum-
marize the multipliers asλ = (λ1, . . . , λN, λr ). Then the above optimal control
problem can be summarized as

minimize
w

F(w)

subject to G(w) = 0.

Here, the objectiveF(w) is just copied from (7.4a) whileG(w) collects all
constraints:

G(w) =





f (x0,u0) − x1

f (x1,u1) − x2
...

f (xN−1,uN−1) − xN

r(x0, xN)





.

The Lagrangian function has the form

L(w, λ) = F(w) + λ⊤G(w)

=

N−1∑

k=0

L(xk,uk) + E(xN) +
N−1∑

k=0

λ⊤k+1( f (xk,uk) − xk+1)

+ λ⊤r r(x0, xN),

and the summarized KKT-conditions of the problem are

∇wL(w, λ) = 0 (7.5a)

G(w) = 0. (7.5b)

But let us look at these KKT-conditions in more detail. First, we evaluate
the derivative ofL with respect to all state variablesxk, one after the other. We
have to treatk = 0 andk = N as special cases. Fork = 0 we obtain:

∇x0L(w, λ) = ∇x0L(x0,u0) +
∂ f
∂x0

(x0,u0)⊤λ1 +
∂r
∂x0

(x0, xN)⊤λr = 0. (7.6a)
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Then the case fork = 1, . . . ,N − 1 is treated

∇xkL(w, λ) = ∇xk L(xk,uk) − λk +
∂ f
∂xk

(xk,uk)
⊤λk+1 = 0. (7.6b)

Last, the special casek = N

∇xNL(w, λ) = ∇xN E(xN) − λN +
∂r
∂xN

(x0, xN)⊤λr = 0. (7.6c)

Second, let us calculate the derivative of the Lagrangian with respect to all
controlsuk, for k = 0, . . . ,N − 1. Here, no special cases need to be considered,
and we obtain the general formula

∇ukL(w, λ) = ∇uk L(xk,uk) +
∂ f
∂uk

(xk,uk)
⊤λk+1 = 0. (7.6d)

Until now, we have computed in detail the components of the first part of
the KKT-condition (7.5a), i.e.∇wL(w, λ) = 0. The other part of the KKT-
condition,G(w) = 0, is trivially given by

f (xk,uk) − xk+1 = 0, k = 0, . . . ,N − 1 (7.6e)

r(x0, xN) = 0. (7.6f)

Thus, collecting all equations (7.6a) to (7.6f), we have stated the KKT-conditions
of the OCP. They can be treated by Newton-type methods in different ways.
Thesimultaneous approachaddresses equations (7.6a) to (7.6f) directly by a
Newton-type method in the space of all variables (w, λ). In contrast to this, the
sequential approachapproach eliminates all the statesx1, . . . , xN in (7.6e) by a
forward simulation, and if it is implemented efficiently, it also uses Eqs. (7.6c)
and (7.6b) to eliminate all multipliersλN, . . . , λ1 in a backward simulation, as
discussed in the following subsection.

7.2.2 Computing Gradients in the Sequential Approach

A naive implementation of the sequential approach would start by coding routi-
nes that evaluate the objective and constraint functions, and then passing these
routines as black-box codes to a generic NLP solver, likefmincon in MAT-
LAB. But this would not be the most efficient way to implement the sequential
approach. The reason is the generation of derivatives, which a generic NLP sol-
ver will compute by finite differences. On the other hand, many generic NLP
solvers allow the user to deliver explicit functions for thederivatives as well.
This allows us to compute the derivatives of the reduced problem functions
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more efficiently. The key technology here is algorithmic differentiation in the
backward mode, as explained in Chapter 5.

To see how this relates to the optimality conditions (7.6a) to (7.6f) of the
optimal control problem, let us simplify the setting even more by assuming a
fixed initial value and no constraint on the terminal state, i.e.r(x0, xN) = x̄0−x0.
In this case, the KKT conditions simplify to the following set of equations,
which we bring already into a specific order:

x0 = x̄0 (7.7a)

xk+1 = f (xk,uk), k = 0, . . . ,N − 1, (7.7b)

λN = ∇xN E(xN) (7.7c)

λk = ∇xk L(xk,uk) +
∂ f
∂xk

(xk,uk)
⊤λk+1, k = N − 1, . . . ,1, (7.7d)

0 = ∇uk L(xk,uk) +
∂ f
∂uk

(xk,uk)
⊤λk+1, k = 0, . . . ,N − 1. (7.7e)

It can easily be seen that the first four equations can trivially be satisfied, by a
forward sweep to obtain allxk and a backward sweep to obtain allλk. Thus,xk

andλk can be made explicit functions ofu0, . . . ,uN−1. The only equation that
is non-trivial to satisfy is the last one, the partial derivatives of the Lagrangian
w.r.t. the controlsu0, . . . ,uN−1. Thus we could decide to eliminatexk andλk and
only search with a Newton-type scheme for the variablesU = (u0, . . . ,uN−1)
such that these last equations are satisfied. It turns out that the left hand side
residuals (7.7e) are nothing else than the derivative of thereduced problem’s
objective (7.3a), and the forward-backward sweep algorithm described above
is nothing else than the reverse mode of algorithmic differentiation. It is much
more efficient than the computation of the gradient by finite differences.

The forward-backward sweep is well known in the optimal control literature
and often introduced without reference to the reverse mode of AD. On the
other hand, it is good to know the general principles of AD in forward or
backward mode, because AD can also be beneficial in other contexts, e.g. for
the evaluation of derivatives of the other problem functions in (7.3a)-(7.3b).
Also, when second order derivatives are needed, AD can be used and more
structure can be exploited, but this is most easily derived in the context of the
simultaneous approach, which we do in the following section.
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7.3 Sparsity Structure of the Optimal Control Problem

Let us in this section regard a very general optimal control problem in the
original formulation, i.e. the NLP that would be treated by the simultaneous
approach.

minimize
x0,u0,x1,...,

uN−1,xN

N−1∑

k=0

Lk(xk,uk)+E(xN) (7.8a)

subject to fk(xk,uk) − xk+1 = 0, k = 0, . . . ,N − 1, (7.8b)
N−1∑

k=0

rk(xk,uk) + rN(xN) = 0, (7.8c)

hk(xk,uk) ≤ 0, k = 0, . . . ,N − 1, (7.8d)

hN(xN) ≤ 0. (7.8e)

Compared to the OCP (7.1) in the previous sections, we now allow indices
on all problem functions making the system time dependent; also, we added
terminal inequality constraints (7.8e), and as boundary conditions we now al-
low now very general coupled multipoint constraints (7.8c)that include the
cases of fixed initial or terminal values or periodicity, butare much more ge-
neral. Note that in these boundary constraints terms arising from different time
points are only coupled by addition, because this allows us to maintain the
sparsity structure we want to exploit in this section.

Collecting all variables in a vectorw, the objective in a functionF(w), all
equalities in a functionG(w) and all inequalities in a functionH(w), the optimal
control problem could be summarized as

minimize
w

F(w)

subject to G(w) = 0,

H(w) ≤ 0.

Its Lagrangian function is given by

L(w, λ, µ) = F(w) + λ⊤G(w) + µ⊤H(w).

But this summarized form does not reveal any of the structurethat is present
in the problem.
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7.3.1 Partial Separability of the Lagrangian

In fact, the above optimal control problem is a very sparse problem because
each of its functions depends only on very few of its variables. This means
for example that the Jacobian matrix of the equality constraints has many zero
entries. But not only first order derivatives are sparse, also the second order
derivative that we need in Newton-type optimization algorithms, namely the
Hessian of the Lagrangian, is a very sparse matrix. This is due to the fact that
the Lagrangian is apartially separablefunction [44].

Definition 7.1 (Partial Separability). A function f : Rn→ R is called partially
separable if it can be decomposed as a sum ofm functions f j : Rn j → R with
n j < n for all j = 1, . . . ,m. This means that for eachj exists a subsetI j of
indices from{1, . . . ,n} and subvectorsxI j of x such that

f (x) =
m∑

j=1

f j(xI j ).

The Lagrangian function of the above optimization problem can explicitly
be decomposed into subfunctions that each depend on some of the multipliers
and only on the variables (xk,uk) with the same indexk. Let us collect again
all variables in a vectorw but decompose it as1 w = (w1, . . . ,wN) with wk =

(xk,uk) for k = 0, . . . ,N − 1 andwN = xN. Collecting all equality multipliers
in a vectorλ = (λ1, . . . , λN, λr ) and the inequality multipliers in a vectorµ =
(µ0, . . . , µN) we obtain for the Lagrangian

L(w, λ, µ) =
N∑

k=0

Lk(wk, λ, µ)

with the local Lagrangian subfunctions defined as follows. The first subfunction
is given as

L0(w0, λ, µ) = L0(x0,u0) + λ⊤1 f0(x0,u0) + µ⊤0 h0(x0,u0) + λ⊤r r0(x0,u0)

and fork = 1, . . . ,N − 1 we have the subfunctions

Lk(wk, λ, µ) = Lk(xk,uk) + λ
⊤
k+1 fk(xk,uk) − λ⊤k xk + µ

⊤
k hk(xk,uk) + λ

⊤
r rk(xk,uk)

while the last subfunction is given as

LN(wN, λ, µ) = E(xN) − λ⊤NxN + µ
⊤
NhN(xN) + λ⊤r rN(xN).

In fact, while each of the equality multipliers appears in several (λ1, . . . , λN) or

1 Note that for notational beauty we omit here and in many other occasions the transpose signs
that would be necessary to make sure that the collection of column vectors is again a column
vector, when this is clear from the context.
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even all problem functions (λr ), the primal variables of the problem do not have
any overlap in the subfunctions. This leads to the remarkable observation that
the Hessian matrix∇2

wL is block diagonal, i.e. it consists only of small sym-
metric matrices that are located on its diagonal. All other second derivatives
are zero, i.e.

∂2L

∂wi∂w j
(w, λ, µ) = 0, for any i , j.

This block diagonality of the Hessian leads to several very favourable facts,
namely that (i) the Hessian can be approximated byhigh-rankor block updates
within a BFGS method [44, 20], and (ii) that the QP subproblemin all Newton-
type methods has the same decomposable objective function as the original
optimal control problem itself.

7.3.2 The Sparse QP Subproblem

In order to analyse the sparsity structure of the optimal control problem, let us
regard the quadratic subproblem that needs to be solved in one iteration of an
exact Hessian SQP method. In order not to get lost in too many indices, we dis-
regard the SQP iteration index completely. We regard the QP that is formulated
at a current iterate (x, λ, µ) and use the SQP step∆w = (∆x0,∆u0, . . . ,∆xN) as
the QP variable. This means that in the summarized formulation we would
have the QP subproblem

minimize
∆w

∇F(w)⊤∆w+
1
2
∆w⊤∇2

wL(w, λ, µ)∆w

subject to G(w) + ∇G(w)⊤∆w = 0,

H(w) + ∇H(w)⊤∆w ≤ 0.

Let us now look at this QP subproblem in the detailed formulation. It is remar-
kably similar to the original OCP. To reduce notational overhead, let us define
a few abbreviations: first, the diagonal blocks of the Hessian of the Lagrangian

Qk = ∇2
wk
L(w, λ, µ), k = 0, . . . ,N,

second, the objective gradients

gk = ∇(x,u)L(xk,uk), k = 0, . . . ,N − 1, and gN = ∇xE(xN),

third the system discontinuities (that can be non-zero in the simultaneous ap-
proach)

ak = fk(xk,uk) − xk+1, k = 0, . . . ,N − 1,
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and fourth the transition matrices

Ak =
∂ fk
∂xk

(xk,uk), Bk =
∂ fk
∂uk

(xk,uk), k = 0, . . . ,N − 1,

fifth the residual of the coupled constraints

r =
N−1∑

k=0

rk(xk,uk) + rN(xN),

as well as its derivatives

Rk =
∂rk

∂(xk,uk)
(xk,uk), k = 0, . . . ,N − 1, and RN =

∂rN

∂x
(xN),

and last the inequality constraint residuals and their derivatives

hk = hk(xk,uk), Hk =
∂hk

∂(xk,uk)
(xk,uk) and hN = hN(xN), HN =

∂hN

∂x
(xN).

With all the above abbreviations, the detailed form of the QPsubproblem is
finally given as follows.

minimize
∆x0,∆u0,...,
∆xN

1
2

N−1∑

k=0

[

∆xk

∆uk

]⊤

Qk

[

∆xk

∆uk

]

+
1
2
∆x⊤NQN∆xN +

N∑

k=0

[

∆xN

∆uN

]⊤

gk + ∆x⊤NgN

(7.9a)

subject to ak + Ak∆xk + Bk∆uk−∆xk+1 = 0, k = 0, . . . ,N − 1, (7.9b)

r +
N−1∑

k=0

Rk

[

∆xk

∆uk

]

+ RN∆xN = 0, (7.9c)

hk + Hk

[

∆xk

∆uk

]

≤ 0, k = 0, . . . ,N − 1, (7.9d)

hN + HN∆xN ≤ 0. (7.9e)

This is again an optimal control problem, but a linear-quadratic one. It is
a convex QP if the Hessian blocksQk are positive semidefinite, and can be
solved by a variety of sparsity exploiting QP solvers.

7.3.3 Sparsity Exploitation in QP Solvers

When regarding the QP (7.9) one way would be to apply a sparse interior point
QP solver like OOQP to it, or a sparse active set method. This can be very
efficient. Another way would be to first reduce, orcondense, the variable space
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of the QP, and then apply a standard dense QP solver to the reduced problem.
Let us treat this way first.

Condensing
When we regard the linearized dynamic system equations (7.9b) they corre-
spond to an affine time variant system in the steps∆xk, namely

∆xk+1 = ak + Ak∆xk + Bk∆uk. (7.10)

If the values for∆x0 as well as for all{∆uk}N−1
k=0 would be known, then also

the values for{∆xk}Nk=1 can be obtained by a forward simulation of this linear
system. Due to its linearity, the resulting map will be linear, i.e. we can write





∆x1
...

∆xN





= v+ M





∆x0

∆u0
...

∆uN−1





,

⇔
∆wdep= v+ M∆wind

with a vectorv ∈ RN·nx and a matrixM ∈ R(N·nx)×(nx+N·nu), and dividing the
variables into a dependent and an independent part,∆w = (∆wdep,∆wind).

The vectorv can be generated recursively by simulating the affine dynamic
system (7.10) with all inputs set to zero, i.e.∆wind = 0. This yields the forward
recursion

v1 = a0, vk+1 = ak + Akvk, k = 1, . . . ,N − 1

for the components of the vectorv = (v1, . . . , vN). The subblocks of the ma-
trix M can be obtained recursively as well in a straightforward way. Note that
the matrix is lower triangular because the states∆x j do not depend on∆uk

if k ≥ j. On the other hand, ifk < j, the corresponding matrix blocks are
A j−1 · · ·Ak+1Bk. Finally, the dependence of∆x j on ∆x0 is A j−1 · · ·A0. In this
way, all blocks of the matrixM are defined.

To get a notationally different, but equivalent view on condensing, note that
the linear dynamic system equations (7.9b) are nothing elsethan the linear
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system





A0 B0 −I
A1 B1 −I

. . .

AN−1 BN−1 −I









∆x0

∆u0

∆x1

∆u1

∆x2
...

∆xN−1

∆uN−1

∆xN





= −





a0

a1
...

aN





.

After reordering the variables into dependent and independent ones, this sy-
stem can be written as





A0 B0 −I
B1 A1 −I

. . .
. . .

. . .

BN−1 AN−1 −I









∆x0

∆u0
...

∆uN−1

∆x1
...

∆xN





= −





a0

a1
...

aN





which we can summarize as

[X|Y]

[

∆wind

∆wdep

]

= −a

so that we get the explicit solution

∆wdep= (−Y−1a)
︸   ︷︷   ︸

=v

+ (−Y−1X)
︸    ︷︷    ︸

=M

∆wind.

Note that the submatrixY is always invertible due the fact that it is lower
triangular and has (negative) unit matrices on its diagonal.

Once the vectorv and matrixM are computed, we can formulate aconden-
sed QPwhich has only the independent variables∆wind as degrees of free-
dom. This condensed QP can be solved by a dense QP solver, and the re-
sulting solution∆w∗ind can be expanded again to yield also the QP solution
for w∗dep = v + M∆w∗ind. The QP multipliersλdep = (λ1, . . . , λN) for the con-
straints (7.9b) can be obtained from the dense QP solution ina slightly more
complex way. The trick is to regard the Lagrangian of the original QP (7.9b),
LQP(∆wind,∆wdep, λdep, λr , µ) and note that the condensed QP yields also the
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multipliersλ∗r , µ
∗, which turn out to be the correct multipliers also for the un-

condensed QP. Thus, the only missing quantity isλ∗dep. It can be obtained by
using the follwing two observations: first, for the true QP solution must hold
that the Lagrange gradient is zero, also with respect to∆wdep. Second, this
Lagrange gradient depends linearly on the unknown multipliers λdep which
contribute to it via the termY⊤λdep, i.e. we have

0 = ∇∆wdepL
QP(∆w∗ind,∆w∗dep, λ

∗
dep, λ

∗
r , µ
∗)

= ∇∆wdepL
QP(∆w∗ind,∆w∗dep,0, λ

∗
r , µ
∗) + Y⊤λ∗dep.

It is a favourable fact that the Lagrange gradient depends onthe missing mul-
tipliers via the matrixY⊤, because this matrix is invertible. Thus, we obtain an
explicit equation for obtaining the missing multipliers, namely

λ∗dep= −Y−T∇∆wdepL
QP(∆w∗ind,∆w∗dep,0, λ

∗
r , µ
∗).

Note that the multipliers would not be needed within a Gauss-Newton method.
Summarizing, condensing reduces the original QP to a QP thathas the size

of the QP in the sequential approach. Nearly all sparsity is lost, but the dimen-
sion of the QP is much reduced. Condensing is favourable if the horizon length
N and the control dimensionnu are relatively small compared to the state di-
mensionnx. If the initial value is fixed, then also∆x0 can be eliminated from
the condensed QP before passing it to a dense QP solver, further reducing the
dimension.

On the other hand, if the state dimensionnx is very small compared toN ·nu,
condensing is not favourable due to the fact that it destroyssparsity. This is
most easily seen in the Hessian. In the original sparse QP, the block sparse
Hessian hasN(nx + nu)2 + n2

x nonzero elements. This is linear inN. In contrast
to this, the condensed Hessian is dense and has (nx + Nnu)2 elements, which
is quadratic inN. Thus, if N is large, not only might the condensed Hessian
need more (!) storage than the original one, also the solution time of the QP
becomes cubic inN (factorization costs of the Hessian).

Sparse KKT System
A different way to exploit the sparsity present in the QP (7.9) is tokeep all va-
riables in the problem and use within the QP solver linear algebra routines that
exploit sparsity of matrices. This can be realized within both, interior point (IP)
methods as well as in active set methods, but is much easier toillustrate at the
example of IP methods. For illustration, let us assume a problem without cou-
pled constraints (7.9c) and assume that all inequalities have been transformed
into primal barrier terms that are added to the objective. Then, in each interior
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point iteration, an equality constrained QP of the following simple form needs
to be solved.

minimize
∆x0,∆u0,...,
∆xN

1
2

N−1∑

k=0

[

∆xk

∆uk

]⊤[
Qx

k Qxu
k

(Qxu
k )⊤ Qu

k

][

∆xk

∆uk

]

+
1
2
∆x⊤NQN∆xN

+

N∑

k=0

[

∆xN

∆uN

]⊤

gk+∆x⊤NgN

subject to ak + Ak∆xk + Bk∆uk−∆xk+1 = 0, k = 0, . . . ,N − 1.

(7.11)

Formulating the Lagrangian of this QP and differentiating it with respect to
all its primal and dual variablesy = (∆x0,∆u0, λ1,∆x1,∆u1, . . . λN,∆xN) in this
order we obtain a linear system of the following block tridiagonal form





Qx
0 Qxu

0 A⊤0
(Qxu

0 )⊤ Qu
0 B⊤0

A0 B0 0 −I
−I Qx

1 Qxu
1 A⊤1

(Qxu
1 )⊤ Qu

1 B⊤1
A1 B1 0 −I

−I
. . .

. . .

AN−1 BN−1 0 −I
−I QN









∆x0

∆u0

λ1

∆x1

∆u1

λ2
...

λN

∆xN





=





∗
∗
∗
∗
∗
∗
∗
∗
∗





This linear system can be solved with a banded direct factorization routine,
whose runtime is proportional toN(nx + nu)3. We will see in the next chapter
that a particularly efficient way to solve the above linear system can be obtained
by applying the principle of dynamic programming to the equality constrained
quadratic subproblem (7.11).

Summarizing, the approach to directly solve the sparse QP without conden-
sing is advantageous ifNnu is large compared tonx. It needs, however, sparse
linear algebra routines within the QP solver. This is easierto implement in the
case of IP methods than for active set methods.
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Exercises

7.1 Consider a simple pendulum defined by the system statex = [φ, ω]⊤

whereφ is the angle andω the angular velocity of the pendulum, and
whereφ = 0, represents the pendulum in its inverse position, e.g. the
mass is at the top. The system dynamics are given by:

φ̇ = ω

ω̇ = 2 sin(φ) + u

In this problem, we will solve a Discrete Optimal Control Problem
formulated as an Non-Linear Program by discretization of the dynamics.
In particular, we will use the Matlab fmincon function to solve the follo-
wing NLP:

minimize
x0,...,xN,

u0,...,uN−1

N−1∑

k=0

(φ2
k + u2

k)

subject to ¯x0 − x0 = 0,

f (xk,uk) − xk+1 = 0, k = 0, . . . ,N − 1,

ωmin ≤ ωk ≤ ωmax, k = 0, . . . ,N,

umin ≤ uk ≤ umax, k = 0, . . . ,N,

where the discrete time system dynamics are obtain by a Runge-Kutta
integrator of order 4 with a timestep ofh = 0.2. The horizon of the
optimal control problem isN = 60, the given initial state is ¯x0 = [−π,0],
and the bounds are given byωmin = −π, ωmax = π, umin = −1.1, umax =

1.1.

In order to pass the optimal control problem to the solver we first have
to formulate it as an NLP. The variables of the optimal control problem
are summarized in a vectory = (x0,u0, . . . ,uN−1, xN)⊤. Then the NLP
has the following form:

minimize
y

ψ(y)

subject to G(y) = 0,

ymin ≤ y ≤ ymax.

(7.12)
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(a) Write down the objective functionψ(y) and the constraints on paper.
Use the same order for the constraints as in the optimal control pro-
blem.

G(y) =





...





ymax =









ymin =









Implement the objective and the equality constraints as Matlab functi-
ons

(b) Check if your functionG(y) does what you want by writing a for-
ward simulation function[y]=simulate(x0,U) that simulates, for
a given initial valuex0 and control profileU = (u0, . . . ,uN−1), the
whole trajectoryx1, . . . , xN and constructs from this the full vector
y = (x0,u0, x1, . . . , xN). If you generate for anyx0 andU a vectory
and then you call your functionG(y) with this input, almost all of
your residuals should be zero. Which ones are not zero?
As a test, simulate e.g. withx0 = [0,0.5]⊤ anduk = 1,k = 0, . . . ,N−1
in order to generatey, and then callG(y), to test that your functionG
is correct. Specify the norm of the residualsG(y).

(c) Usefmincon to solve the NLP:

options=optimoptions(@fmincon, ’display’,

’final/iter’,’MaxFunEvals’,100000);

y=fmincon(@objective,y0,[],[],[],[],lby,uby,

@nonlconstraints,options);

As an initialization fory0 you can use ¯x0 for all state variables and
zero for all control variables.
How many iteration does the solver need to converge (use display
option iter)? How long does the call to the minimizer take (use
tic/toc and the display optionfinal)? Plot the evolution of the
state and the applied controls in time. Make an animation to see if the
pendulum swings up.
Hint: You can call the following function several times to create the
animation:

function plot_pendulum(x)

phi = x(1);
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plot([0;sin(phi)], [0;cos(phi)], ’-o’)

xlim([-1,1])

ylim([-1,1])

end

(d) Do a RK4 simulation of the pendulum and apply the optimal con-
trols of part (c) open-loop. Does the pendulum swing up? Doesthe
resulting state trajectory differ from the output of the solver? Why?

(e) Play with other options of the solvers like the type of finite differen-
ces for computing the Jacobian, stopping criteria, and tolerances for
violating the constraints. How do they influences computation time,
number of iterations, and precision of the solution.

7.2 In this exercise, we will again use the same pendulum to solve the NLP
given by (7.12). This time however, we will solve (7.12) by a self written
Sequential Quadratic Programming (SQP) solver with Gauss-Newton
Hessian.

In particular, we will first prepare the calculation of the Jacobian that
is needed in the SQP iterations and we will test the correctness of the
Jacobian by passing it to thefmincon solver and find a faster way to
compute the Jacobian. Then, we will implement the SQP solverby sol-
ving the Quadratic Programs (QP) in each iteration with thenMatlab
quadprog function.

Hint: It is recommended to start the problem by re-using the code from
the previous task.

(a) The Jacobian of the non-linear equality constraintsJG(y) = ∂G
∂y (y)

can be passed directly to thefmincon function by including it as an
output of the constrains function (see Matlab constraints documenta-
tion), and by activating the correctfmincon option:

options=optimoptions(@fmincon,\dots,’GradConstr’,

’on’,\dots);

Calculate the JacobianJG(y) by finite differences, perturbing all 182
directions one after the other usingδ = 10−4. This needs in total 183
calls ofG. Give your routine e.g. the name[jac,Gy]=GJacSlow(y).
ComputeJG for w0 and look at the structure of this matrix by making
a plot using the commandspy(J). Use this Jacobian to solve the
OCP. How many iterations and how much time does the solver need
to converge?

(b) By looking at the structure ofJG, we see that the matrix is very sparse
can be calculated much more efficiently. The JacobianJG(y) = ∂G

∂y (y)
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is block sparse with as blocks either (negative) unit matrices or the
partial derivativesAk =

∂ f
∂x (xk,uk) and Bk =

∂ f
∂u (xk,uk). Fill in the

corresponding blocks in the following matrix

JG(y) =





. . .
. . .

. . .





(c) With this knowledge you can construct the Jacobian in a computatio-
nally much more efficient way, as follows:

• First write a function[A,B]=RK4stepJac(x,u) using finite dif-
ferences with a step size ofδ = 10−4. Here, A = ∂ f

∂x (x,u) and

B = ∂ f
∂u (x,u).

• Using this function [A,B]=RK4stepJac(x,u), implement a
function[jac,Gy]=GJacFast(y).

• Compare if the result is correct by taking the difference
of the Jacobians you obtain by[jac,Gy]=GJacFast(y) and
[jac,Gy]=GJacSlow(y).
Pass this Jacobian to your constraints function. How many iterati-
ons and how much time does the solver need now?

(d) The SQP with Gauss-Newton Hessian (also calledconstrained Gauss-
Newton method) solves a linearized version of this problem in each
iteration. More specific, if the current iterate is ¯y, the next iterate is
the solution of the following Quadratic Program (QP):

minimize
y

y⊤Hy

subject to G(ȳ) + JG(ȳ)(y− ȳ) = 0,

ymin ≤ y ≤ ymax.

(7.13)

Define whatHx andHu need to be in the Hessian

H =





Hx

Hu

. . .

Hx





Hx =

[ ]

Hu =
[ ]

.

(e) Write a function[ybar_next]=GNStep(ybar) that performs one
SQP-Gauss-Newton step by first calling[jac,Gy] = GJacFast(y)
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and then solving the resulting QP (7.13) using the MATLAB Qp sol-
ver quadprog. Note that the QP is very sparse but that this sparsity
is not exploited in full during the call ofquadprog.

(f) Write a loop around your functionGNStep, initialize the GN proce-
dure at aty0, and stop the iterations when‖yk+1 − yk‖ gets smaller
than 10−4. Plot the iterates as well as the vectorG during the itera-
tions. How many iterations do you need? How much time does your
SQP solver need to converge? Plot the evolution of the state and the
applied controls in time.

(g) Find out how to exploit sparsity in thequadprog solver and solve
the SQP with the sparse QP solver. How much time does your SQP
solver need to converge now?

7.3 The aim of this exercise is to bring a harmonic oscillatorto rest with
minimal control effort. For this aim we regard the linear discrete time
dynamic system:

[

pk+1

vk+1

]

=

[

pk

vk

]

+ ∆t

([

0 1
−1 0

] [

pk

vk

]

+

[

0
1

]

uk

)

, k = 1, . . . ,N − 1

(7.14)
with p1 = 10, v1 = 0,∆t = 0.2,N = 51. Denote for simplicity from now
on xk = (pk, vk)⊤.

(a) Write a MATLAB routine[xN]=oscisim(U) that computesxN as a
function of the control inputsU = (u1, . . . ,uN−1)⊤ . Mathematically,
we will denote this function byfoscisim : RN−1→ R2.

(b) To verify that your routine does what you want, plot the simulated
positionsp1, . . . , pN within this routine for the inputU = 0.

(c) Now we want to solve the optimal control problem

minimize
U ∈ RN

‖U‖22

subject to foscisim(U) = 0

Formulate and solve this problem withfmincon. Plot the solution
vectorU as well as the trajectory of the positions in the solution.

(d) Now add inequalities to the problem, limiting the inputsuk in am-
plitude by an upper bound|uk| ≤ umax, k = 1, . . . ,N − 1. This adds
2(N − 1) inequalities to your problem. Which?

(e) Formulate the problem with inequalities infmincon. Experiment with
different values ofumax, starting with big ones and making it smaller.
If it is very big, the solution will not be changed at all. At which cri-
tical value ofumax does the solution start to change? If it is too small,
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the problem will become infeasible. At which critical valueof umax

does this happen?
(f) Both of the above problems are convex, i.e. each local minimum is

also a global minimum. Note that the equality constraint of the opti-
mal control problems is just a linear function at the moment.Make
this constraint nonlinear and thus make the problem nonconvex. One
way is to add a small nonlinearity into the dynamic system (7.14) by
making the spring nonlinear, i.e. replacing the term−1 in the lower
left corner of the system matrix by−(1+µp2

k) with a smallµ, and sol-
ving the problem again. At which value ofµ does the solverfmincon
need twice as many iterations as before?

7.4 We regard again the optimal control problem from Exercise 7.3. We had
previously used the Euler integrator, so let’s now we use a RK4 integra-
tor because it is more accurate. Furthermore, instead of usingfmincon,
you will write your Newton-type optimization method. For notation sim-
plicity, let’s denotefoscisimby gsim.

The necessary optimality conditions (KKT conditions) for the above
problem are

2U∗ +
∂gsim

∂U
(U∗)⊤λ∗ = 0

gsim(U∗) = 0.

Let us introduce a shorthand for the Jacobian matrix:

Jsim(U) :=
∂gsim

∂U
(U)

By linearization of the constraint at some given iterate (Uk, λk) and neg-
lecting its second order derivatives, we get the following (Gauss-Newton)
approximation of the KKT conditions:

[

2Uk

gsim(Uk)

]

+

[

2I Jsim(UK)⊤

Jsim(Uk) 0

] [

Uk+1 − Uk

λk+1

]

= 0

This system can be solved easily by a linear solve in order to obtain a
new iterateUk+1. But in order to do this, we need first to compute the
JacobianJsim(U).

(a) Implement a routine that uses finite differences, i.e. calls the function
gsim (N + 1) times, once at the nominal value and then with each
component slightly perturbed by e.g.δ = 10−4 in the direction of
each unit vectorek, so that we get the approximations

∂gsim

∂uk
(U) ≈ gsim(U + δek) − gsim(U)

δ
.
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We denote the resulting function that gives the full Jacobian matrix
of gsim by Jsim : RN → R2×N.

(b) Now, we implement the Gauss-Newton scheme from above, but as we
are not interested in the multipliers we just implement it asfollows:

Uk+1 = Uk −
[

I 0
]
[

2I Jsim(Uk)⊤

Jsim(Uk) 0

]−1 [

2Uk

gsim(Uk)

]

Choose an initial guess for the controls, e.g.U = 0, and start your ite-
ration and stop when‖Uk+1−Uk‖ is very small. How many iterations
do you need to converge? Do you have an idea why?

7.5 Throughout this exercise, we make our controlled oscillator from the pre-
vious problems slightly nonlinear by making it a pendulum and setting

d
dt

[

p(t)
v(t)

]

=

[

v(t)
−C sin(p(t)/C)

]

+

[

0
1

]

u(t), t ∈ [0,T],

with C := 180/π/4. We again abbreviate the ODE as ˙x = f (x,u) with
x = (p, v)⊤, and choose again the fixed initial valuex0 = (10,0)⊤ and
T = 10. Note thatp now measures the deviation from the equilibrium
state in multiples of 4 degrees (i.e. we start with 40 degrees).

We also regard again the optimal control problem from the last two
problems:

minimize
U ∈ RN

‖U‖22

subject to gsim(U) = 0
(7.15)

and we use again RK4 and do againN = 50 integrator steps to obtain the
terminal statexN as a function of the controlsU = [u0, . . . ,uN−1].

(a) Run again your Gauss-Newton scheme from the last problem, i.e. use
in each iteration finite differences to compute the Jacobian matrix

Jsim(U) :=
∂gsim

∂U
(U)

and iterate

Uk+1 = Uk −
[

I 0
]
[

2I Jsim(Uk)⊤

Jsim(Uk) 0

]−1 [

2Uk

gsim(Uk)

]

How many iterations do you need now with the nonlinear oscillator?
Plot the vectorUk and the resulting trajectory ofp in each Gauss-
Newton iteration so that you can observe the Gauss-Newton algo-
rithm at work.
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(b) Modify your Gauss-Newton scheme so that you also obtain the mul-
tiplier vectors, i.e. iterate withBk = 2I as follows:

[

Uk+1

λk+1

]

=

[

Uk

0

]

−
[

Bk Jsim(Uk)⊤

Jsim(Uk) 0

]−1 [

2Uk

gsim(Uk)

]

Choose as your stopping criterion now that the norm of the residual

KKTRESk :=

∥
∥
∥
∥
∥
∥

[

∇UL(Uk, λk)
gsim(Uk)

]∥
∥
∥
∥
∥
∥
=

∥
∥
∥
∥
∥
∥

[

2Uk + Jsim(Uk)⊤λk

gsim(Uk)

]∥
∥
∥
∥
∥
∥

shall be smaller than a given tolerance, e.g. TOL= 10−4. Store the va-
lues KKTRESk and plot their logarithms against the iteration number
k. Which converge rate does it show?

(c) Now use a different Hessian approximation, namely the BFGS up-
date, i.e. start with a unit Hessian,B0 = I and then update the Hessian
according to

Bk+1 := Bk −
Bksks⊤k Bk

s⊤k Bksk
+

yky⊤k
s⊤k yk

.

with sk := Uk+1 − Uk andyk := ∇UL(Uk+1, λk+1) − ∇UL(Uk, λk+1).
Devise your BFGS algorithm so that you need to evaluate the expen-
sive JacobianJsim(Uk) only once per BFGS iteration. Tipp: remember
the old JacobianJsim(Uk), then evaluate the new oneJsim(Uk+1), and
only then computeBk+1.

(d) Observe the BFGS iterations and regard the logarithmic plot of the
norm of the residual KKTRESk. How many iterations do you need
now? Can you explain the form of the plot? What happens if you
make your initial Hessian guessB0 equal to the Gauss-Newton Hes-
sian, ie.B0 = 2I?

*** In the remainder of this exercise, we want to compute the Jacobian
Jsim(U) in a more efficient way inspired by the reverse mode of algo-
rithmic differentiation (AD). This part of the exercise sheet is optional
and you should only do it if you feel motivated enough. ***

(e) For a start, save your old routine forJsim(U) in a separate folder to be
able to compare the results of your new routine with it later.

(f) Then, note that the RK4 integrator step can be summarizedin a function
Φ so that the last statexN, i.e. the output of the functiongsim(U), is
obtained by the recursion

xk+1 = Φ(xk,uk), k = 0, . . . ,N − 1.



DRAFT

Exercises 137

Along the simulated trajectory{(xk,uk)}N−1
k=0 , this system can be linea-

rized as

δxk+1 = Akδxk + Bkδuk, k = 0, . . . ,N − 1,

where the matrices

Ak :=
∂Φ

∂x
(xk,uk) and Bk :=

∂Φ

∂u
(xk,uk),

can be computed by finite differences. Note that we use the symbol
Bk here for coherence with the notation of linear system theory, but
that this symbolBk here has nothing to do with the Hessian matrixBk

used in the other questions.
To become specific: modify your integrator so that

• Your RK4 step is encapsulated in a single function:

[xnew]=RK4step(x,u)

• You also write a function[xnew,A,B]=RK4stepJac(x,u) using
finite differences with a step size ofδ = 10−4

• Your integrator stores and outputs both the trajectory of states{xk}N−1
k=0

and the trajectory of matrices{(Ak, Bk)}N−1
k=0 . Use three dimensional

tensors likeAtraj(i,j,k).

The interface of the whole routine could be:

[x,Atraj,Btraj]=forwardsweep(U)

(g) Now, using the matricesAk, Bk, we want to computeJsim(U), i.e. write
a routine with the interface[Jsim]=backwardsweep(Atraj,Btraj).
For this aim we observe that

∂gsim

∂uk
(U) = (AN−1AN−2 · · ·Ak+1)

︸                   ︷︷                   ︸

=:Gk+1

Bk

In order to compute all derivatives∂gsim

∂uk
(U) in an efficient way, we

compute the matricesGk+1 = (AN−1AN−2 · · ·Ak+1) in reverse order,
i.e. we start withk = N − 1 and then go down tok = 0. We start by
GN := I and then compute

Gk := Gk+1Ak, k = N − 1, . . . ,0

(h) Combining the forward and the backward sweep from the previous
two questions, and write a new function forJsim(U). It is efficient to
combine it with the computation ofgsim(U), i.e. have the interface
[gsim,Jsim]=gsimJac(U). Compare the result with the numerical
Jacobian calculation from before by takingnorm(Jsimold-Jsimnew).
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(i) How do the computation times of old and the new Jacobian routine
scale withN? This question can be answered without numerical ex-
periments, just by thinking.

(j) Now run your Gauss-Newton algorithm again and verify that it gives
the same solution and same number of iterations as before.

7.6 In this exercise we regard again the discrete time system

xk+1 = Φ(xk,uk)

that is generated by one RK4 step applied to the controlled nonlinear
pendulum with a time step∆t = 0.2. Its state isx = (p, v)⊤ and the ODE
ẋ = f (x,u) is with C := 180/π/10 given as

f (x,u) =

[

v(t)
−C sin(p(t)/C)

]

+

[

0
1

]

u(t).

The key difference respect to the previous exercise is that now, you
will use the simultaneous approach with SQP and a Gauss-Newton Hes-
sian to solve the optimal control problem.

(a) Write the functionΦ(xk,uk) as a MATLAB code encapsulated in a
single function[xnew]=RK4step(x,u)

(b) Let’s define the OCP that we aim to solve in this section. Westart
by considering that the initial value is again ¯x0 = (10,0)⊤ and that
N = 50. Furthermore, we take into account that we define bounds on
p, v, andu, namelypmax = 10, vmax = 10, i.e.xmax = (pmax, vmax)⊤,
andumax = 3. Finally, we can regard the OCP that we solved in the
previous Exercises and that is given by Equation (7.15) as well the
specific structure of the simultaneous approach, so that as aresult the
specific OCP is given by:

minimize
x0,u0,x1,...,

uN−1,xN

N−1∑

k=0

‖uk‖22

subject to ¯x0 − x0 = 0,

Φ(xk,uk) − xk+1 = 0, k = 0, . . . ,N − 1,

xN = 0,

−xmax ≤ xk ≤ xmax, k = 0, . . . ,N − 1,

−umax ≤ uk ≤ umax, k = 0, . . . ,N − 1

Formulate the nonlinear functionG(w), the Hessian matrixH, and
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boundswmax, wherew = (x0,u0, . . . ,uN−1, xN) ∈ Rn andn = 152, so
that the above OCP can be written in the following form:

minimize
w ∈ R152

w⊤Hw

subject to G(w) = 0,

−wmax ≤ w≤wmax.

Define whatHx andHu need to be in the Hessian

H =





Hx

Hu

. . .

Hx





, Hx =

[ ]

,Hu =
[ ]

.

Construct the matrixH and vectorwmax in MATLAB, and write a
MATLAB function [G]=Gfunc(w).

(c) Check if your functionG(w) does what you want by writing a for-
ward simulation function[w]=simulate(x0,U) that simulates, for
a given initial valuex0 and control profileU = (u0, . . . ,uN−1), the
whole trajectoryx1, . . . , xN and constructs from this the full vector
w = (x0,u0, x1, . . . , xN). If you generate for anyx0 andU a vectorw
and then you call your functionG(w) with this input, nearly all your
residuals should be zero. Which components will not be zero?

As a test, simulate e.g. withx0 = (5,0) anduk = 1, k = 0, . . . ,N − 1
in order to generatew, and then callG(w), to test that your function
G is correct.

(d) The SQP with Gauss-Newton Hessian solves a linearized version of
this problem in each iteration. More specific, if the currentiterate is
w̄, the next iterate is the solution of the following QP:

minimize
w ∈ R152

w⊤Hw

subject to G(w̄) + JG(w̄)(w− w̄) = 0,

−wmax ≤ w ≤wmax.

(7.16)

In order to implement the Gauss-Newton method we need the Jaco-
bian JG(w) = ∂G

∂w (w). Considering thatJG(w) is block sparse, where
the the blocks are either (negative) unit matrices, partialderivatives
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Ak =
∂Φ
∂x (xk,uk) or partial derivativesBk =

∂Φ
∂u (xk,uk), fill in the cor-

responding blocks in the following matrix:

JG(w) =





. . .
. . .

. . .





(e) We compute the JacobianJG(w) by finite differences, i.e. perturbing
all 152 directions one after the other. Give your routine e.g. the name
[G,J]=GfuncJacSlow(w). ComputeJG for a givenw (e.g. the one
from above) and look at the structure this matrix, e.g. usingthe com-
mandspy(J).

(f) Write a function[wplus]=GNStep(w) that performs one SQP-Gauss-
Newton step by first calling[G,J]=GfuncJac(w) and then solving
the resulting QP (7.16) usingquadprog from MATLAB. Note that
the QP is a very sparse QP but that this sparsity is not exploited in
full during the call ofquadprog.

(g) Write a loop around your functionGNStep, initialize the GN proce-
dure at atw = 0, and stop the iterations when‖wk+1−wk‖ gets smaller
than 10−4. Plot the iterates as well as the vectorG during the iterati-
ons. How many iterations do you need?

(h) A different algorithm is obtained if we overwrite before each callof
the functionGNStep the values for the states withinw by the result of
a forward simulation, using the corresponding controls andthe initial
value x̄0. Run it again with this modification, using the same zero
initialization for the controls. How many iterations do youneed now?
Do you know to which of the algorithms from the previous exercises
this new method is equivalent?

(i) Finally, you can construct the Jacobian in a much more computatio-
nally efficient way:

• First write a function[xnew,A,B]=RK4stepJac(x,u) using fi-
nite differences with a step size ofδ = 10−4. Here,A = ∂Φ

∂x (x,u)
andB = ∂Φ

∂u (x,u).
• Using this function[xnew,A,B]=RK4stepJac(x,u), implement

a function[G,J]=GfuncJacFast(w).
• Compare if the result is correct by taking the difference of

the Jacobians you obtain by[G,J]=GfuncJacFast(w) and
[G,J]=GfuncJacSlow(w).
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Dynamic Programming

In view of all that we have said in the fo-
regoing sections, the many obstacles we ap-
pear to have surmounted. What casts the pall
over our victory celebration? It is the curse
of dimensionality, a malediction that has pla-
gued the scientist from earliest days.
— Richard E. Bellman

Dynamic programming (DP)is a very different approach to solve optimal
control problems than the ones presented previously. The methodology was
developed in the fifties and sixties of the 19th century, mostprominently by
Richard Bellman [5] who also coined the term dynamic programming. Interes-
tingly, dynamic programming is easiest to apply to systems with discrete state
and control spaces, so that we will introduce this case first.When DP is ap-
plied to discrete time systems with continuous state spaces, some approxima-
tions have to be made, usually by discretization. Generally, this discretization
leads to exponential growth of computational cost with respect to the dimen-
sionnx of the state space, what Bellman called the “curse of dimensionality”.
It is the only but major drawback of DP and limits its practical applicability to
systems withnx ≈ 6. In the continuous time case, DP is formulated as a partial
differential equation in the state space, the Hamilton-Jacobi-Bellman (HJB)
equation, suffering from the same limitation; but this will be treated in Chap-
ter 11. On the positive side, DP can easily deal with all kindsof hybrid systems
or non-differentiable dynamics, and it even allows us to treat stochastic optimal
control with recourse, or minimax games, without much additional effort. An
excellent textbook on discrete time optimal control and dynamic programming
is [9]. Let us now start with discrete control and state spaces.

141
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8.1 Dynamic Programming in Discrete State Space

Let us regard a dynamic system

xk+1 = f (xk,uk)

with f : X × U → X, i.e. xk ∈ X anduk ∈ U, where we do not have to specify
the setsX andU yet. We note, however, that we need to assume they are finite
for a practical implementation of DP. Thus, let us in this section assume they
are finite withnX andnU elements, respectively. Let us also define a stage cost
L(x,u) and terminal costE(x) that take values fromR∞ = R ∪ {∞}, where
infinity denotes infeasible pairs (x,u) or x. The optimal control problem that
we first address can be stated as

minimize
x0,u0,x1,...,

uN−1,xN

N−1∑

k=0

L(xk,uk) + E(xN)

subject to f (xk,uk) − xk+1 = 0, k = 0, . . . ,N − 1,

x̄0 − x0 = 0.

Given the fact that the initial value is fixed and the controls{uk}N−1
k=0 are the

only true degrees of freedom, and given that eachuk ∈ U takes one of thenU
elements ofU, there exist exactlynN

U
different trajectories, each with a specific

value of the objective function, where infinity denotes an infeasible trajectory.
Assuming that the evaluation off and ofL takes one computational unit, and
noting that each trajectory needsN such evaluations, the overall complexity of
simple enumeration isO(NnN

U
). Simple enumeration of all possible trajectories

thus has a complexity that grows exponentially with the horizon lengthN.
Dynamic programming is just a more intelligent way to enumerate all pos-

sible trajectories. It starts from theprinciple of optimality, i.e. the observation
that each subtrajectory of an optimal trajectory is an optimal trajectory as well.
More specifically, in DP we define thevalue functionor cost-to-go functionas
the optimal cost that would be obtained if at timek ∈ {0, . . . ,N} and at state ¯xk

we solve the optimal control problem on a shortened horizon:

Jk(x̄k) = minimize
xk,uk,...,
uN−1,xN

N−1∑

i=k

L(xi ,ui) + E(xN)

subject to f (xi ,ui) − xi+1 = 0, i = k, . . . ,N − 1,

x̄k − xk = 0.

(8.1)
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Thus, each functionJk : X → R∞ summarizes the cost-to-go to the end
when starting at a given state. For the casek = N we trivially haveJN(x) =
E(x). The principle of optimality states now that for anyk ∈ {0, . . . ,N − 1}
holds

Jk(x̄k) = minimize
u

L(x̄k,u) + Jk+1( f (x̄k,u)). (8.2)

This immediately allows us to perform a recursion to computeall functions
Jk one after the other, starting withk = N − 1 and then reducingk in each
recursion step by one, until we have obtainedJ0. This recursion is called the
dynamic programming recursion. Once all the value functionsJk are compu-
ted, theoptimal feedback controlfor a given statexk at timek is given by

u∗k(xk) = arg min
u

L(xk,u) + Jk+1( f (xk,u))

This allows us to reconstruct the optimal trajectory by a forward simulation
that starts atx0 = x̄0 and then proceeds as follows:

xk+1 = f (xk,u
∗
k(xk)), k = 0, . . . ,N − 1.

In this way, DP allows us to solve the optimal control problemup to global op-
timality, but with a different complexity than simple enumeration. To assess its
complexity, let us remark that the most cost intensive step is the generation of
theN cost-to-go functionsJk. Each recursion step (8.2) needs to go through all
nX statesx. For each state it needs to testnU controlsu by evaluating once the
systemf (x,u) and stage costL(x,u), which by definition costs one computati-
onal unit. Thus, the overall computational complexity isO(NnXnU). Compared
with simple enumeration, where we hadO(NnN

U
), DP is often much better even

for moderately sized horizonsN. Let us for example assume an optimal control
problem withnU = 10, nX = 1000,N = 100. Then simple enumeration has a
cost of 10102 while DP has a cost of 106.

One of the main advantages of dynamic programming, that can likewise
be defined for continuous state spaces, is that we do not need to make any
assumptions (such as differentiability or convexity) on the functionsf , L,E
defining the problem, and still it solves the problem up to global optimality.
On the other hand, if it shall be applied to a continuous statespace, we have
to represent the functionsJk on the computer, e.g. by tabulation on a grid in
state space. If the continuous state spaceXcont is a box in dimensionnx, and
if we use a rectangular grid withm intervals in each dimension, then the total
number of grid points ismnx. If we perform DP on this grid, then the above
complexity estimate is still valid, but withnX = mnx. Thus, when DP is applied
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to systems with continuous state spaces, it has exponentialcomplexity in the
dimension of the state space; it suffers from what Bellman called thecurse
of dimensionality. There exist many ways to approximate the value function,
e.g. by neural networks or other functional representations [11], but the global
optimality guarantee of dynamic programming is lost in these cases. On the
other hand, there exists one special case where DP can be performed exactly
in continuous state spaces, that we treat next.

8.2 Linear Quadratic Problems

Let us regard now linear quadratic optimal control problemsof the form

minimize
x,u

N−1∑

i=0

[

xi

ui

]⊤ [

Qi S⊤i
Si Ri

] [

xi

ui

]

+ x⊤NPNxN

subject to x0 − x̄0 = 0,

xi+1 − Ai xi − Biui = 0, i = 0, . . . ,N − 1.

(8.3)

Let us apply dynamic programming to this case. In each recursion step, we

have to solve, for a time varying stage costLk(x,u) =

[

xk

uk

]⊤ [

Qk S⊤k
Sk Rk

] [

xk

uk

]

and a dynamic systemfk(x,u) = Akx+ Bku the recursion step

Jk(x) = min
u

Lk(x,u) + Jk+1( fk(x,u)),

where we start withJN(x) = x⊤PNx. Fortunately, it can be shown that
under these circumstances, eachJk is quadratic, i.e. it again has the form
Jk(x) = x⊤Pkx. More specifically, the following theorem holds, where we drop
the indexk for simplicity.

Theorem 8.1(Quadratic Representation of Value Function). If R + B⊤PB is
positive definite, then the minimum Jnew(x) of one step of the DP recursion

Jnew(x) = min
u

[

x
u

]⊤ ([

Q S⊤

S R

]

+ [A | B]⊤P [A | B]

) [

x
u

]

is a quadratic function explicity given by Jnew(x) = x⊤Pnew x with

Pnew = Q+ A⊤PA− (S⊤ + A⊤PB)(R+ B⊤PB)−1(S + B⊤PA). (8.4)

The proof starts by noting that the optimization problem fora specificx is
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given by

Jnew(x) = min
u

[

x
u

]⊤ [

Q+ A⊤PA S⊤ + A⊤PB
S + B⊤PA R+ B⊤PB

] [

x
u

]

.

Then it uses the fact that for invertiblēR = R+ B⊤PB this problem can be
solved explicitly, yielding the formula (8.4), by a direct application of theSchur
complement lemma, that can easily be verified by direct calculation.

Lemma 8.2(Schur Complement Lemma). If R̄ is positive definite then

min
u

[

x
u

]⊤ [

Q̄ S̄⊤

S̄ R̄

] [

x
u

]

= x⊤
(

Q̄− S̄⊤R̄−1S̄
)

x

and the minimizer u∗(x) is given by u∗(x) = −R̄−1S̄ x.

The above theorem allows us to solve the optimal control problem by first
computing explicitly all matricesPk, and then performing the forward closed
loop simulation. More explicitly, starting withPN, we iterate fork = N −
1, . . . ,0 backwards

Pk = Qk + A⊤k Pk+1Ak − (S⊤k + A⊤k Pk+1Bk)(Rk + B⊤k Pk+1Bk)
−1(Sk + B⊤k Pk+1Ak).

(8.5)
This is sometimes called theDifference Riccati Equation. Then, we obtain the
optimal feedbacku∗k(xk) by

u∗k(xk) = −(Rk + B⊤k Pk+1Bk)
−1(Sk + B⊤k Pk+1Ak)xk,

and finally, starting withx0 = x̄0 we perform the forward recursion

xk+1 = Akxk + Bku
∗
k(xk),

which delivers the complete optimal trajectory of the linear quadratic optimal
control problem.

An important and more general case are problems with linear quadratic costs
and affine linear systems, i.e. problems of the form

minimize
x,u

N−1∑

i=0





1
xi

ui





⊤ 



∗ q⊤i s⊤i
qi Qi S⊤i
si Si Ri









1
xi

ui





+

[

1
xN

]⊤ [

∗ p⊤N
pN PN

] [

1
xN

]

subject to x0 − xfix
0 = 0,

xi+1 − Ai xi − Biui − ci = 0, i = 0, . . . ,N − 1.

(8.6)

These optimization problems appear at many occasions, for example as linea-
rizations of nonlinear optimal control problems, as in Chapter 7.3, in reference
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tracking problems withLi(xi ,ui) = ‖xi − xref
i ‖

2
Q + ‖ui‖2R, or in moving horizon

estimation(MHE) with costLi(xi ,ui) = ‖Cxi − ymeas
i ‖2Q + ‖ui‖2R. They can be

treated by exactly the same recursion formulae as above, by augmenting the
system statesxk to

x̃k =

[

1
xk

]

and replacing the dynamics by

x̃k+1 =

[

1 0
ck Ak

]

x̃k +

[

0
Bk

]

uk

with initial value

x̃fix
0 =

[

1
xfix

0 .

]

Then the problem (8.6) can be reformulated in the form of problem (8.3) and
can be solved using exactly the same difference Riccati equation formula as
before!

8.3 Infinite Horizon Problems

Dynamic programming can easily be generalized to infinite horizon problems
of the form

minimize
x,u

∞∑

i=0

L(xi ,ui)

subject to x0 − x̄0 = 0,

xi+1 − f (xi ,ui) = 0, i = 0, . . . ,∞.

Interestingly, the cost-to-go functionJk(xk) defined in Equation (8.1) becomes
independent of the indexk, i.e it holds thatJk = Jk+1 for all k. This directly
leads to theBellman Equation:

J(x) = min
u

L(x,u) + J( f (x,u))
︸                  ︷︷                  ︸

=J̃(x,u)

.

The optimal controls are obtained by the function

u∗(x) = arg min
u

J̃(x,u).

This feedback is called thestationary optimal feedback control. It is a static
state feedback law.
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8.4 The Linear Quadratic Regulator

An important special case is again the case of a linear systemwith quadra-
tic cost. It is the solution to an infinite horizon problem with a linear system
f (x,u) = Ax+ Buand quadratic cost

L(x,u) =

[

x
u

]⊤ [

Q S⊤

S R

] [

x
u

]

.

For its solution, we just require a stationary solution of the Riccati recur-
sion (8.5), settingPk = Pk+1, which yields the so calledalgebraic Riccati
equation in discrete time

P = Q+ A⊤PA− (S⊤ + A⊤PB)(R+ B⊤PB)−1(S + B⊤PA).

This is a nonlinear matrix equation in the symmetric matrixP, i.e. withnx(nx+

1)/2 unknowns. It can either be solved by an iterative application of the dif-
ference Riccati recursion (8.5) starting with e.g. a zero matrix P = 0, or by
faster converging procedures such as Newton-type methods,where, however,
care has to be taken to avoid possible shadow solutions that are not positive de-
finite. Once the solution matrixP is found, the optimal feedback controlu∗(x)
is given by

u∗(x) = − (R+ B⊤PB)−1(S + B⊤PA)
︸                            ︷︷                            ︸

=K

x.

This feedback is called theLinear Quadratic Regulator (LQR), andK is the
LQR gain.

8.5 Robust and Stochastic Dynamic Programming

One of its most interesting characteristics is that DP can easily be applied to ga-
mes like chess, or torobust optimal control problems. Here, an adverse player
choses counter-actions, or disturbances,wk against us. They influence both the
stage costsLk as well as the system dynamicsfk and while we want to mini-
mize, our adversary wants to maximize. The robust DP recursion for such a
minimax game is simply:

Jk(x) = min
u

max
w

Lk(x,u,w) + Jk+1( fk(x,u,w))
︸                                      ︷︷                                      ︸

=J̃k(x,u)

starting with

JN(x) = E(x).
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The solution obtained by DP takes into account that we can react to the actions
by the adversary, i.e. that we can apply feedback, and in the model predictive
control (MPC) literature such a feedback law is sometimes called Closed-Loop
Robust Optimal Control [7].

Alternatively, we might have a stochastic system and the aimis to find the
feedback law that gives us the best expected value. Here, instead of the max-
imum, we take anexpectationover the disturbanceswk. The stochastic DP
recursion is simply given by

Jk(x) = min
u
Ew{Lk(x,u,w) + Jk+1( fk(x,u,w))}
︸                                      ︷︷                                      ︸

=J̃k(x,u)

whereEw{·} is the expectation operator, i.e. the integral overw weighted with
the probability density functionρ(w|x,u) of w givenx andu:

Ew{φ(x,u,w)} =
∫

φ(x,u,w)ρ(w|x,u)dw.

In case of finitely many disturbances, this is just a weightedsum. Note that
DP avoids the combinatorial explosion of scenario trees that are often used in
stochastic programming, but of course suffers from the curse of dimensionality.
It is the preferred option for long horizon problems with small state spaces.

8.6 Interesting Properties of the DP Operator

Let us define thedynamic programming operator Tk acting on one value function,
Jk+1, and giving another one,Jk, by

Tk[J](x) = min
u

Lk(x,u) + J( fk(x,u)).

Note that the operatorTk maps from the space of functionsX→ R∞ into itself.
With this operator, the dynamic programming recursion is compactly written
asJk = Tk[Jk+1], and the stationary Bellman equation would just beJ = T[J].
Let us for notational simplicity drop the indexk in the following. An interesting
property of the DP operatorT is its monotonicity, as follows.

Theorem 8.3(Monotonicity of DP). Regard two value functions J and J′. If
J ≥ J′ in the sense that for all x∈ X holds that J(x) ≥ J′(x) then also

T[J] ≥ T[J′].

The proof is

T[J](x) = min
u

L(x,u) + J( f (x,u))
︸     ︷︷     ︸

≥J′( f (x,u)))

≥ min
u

L(x,u) + J′( f (x,u)) = T[J′](x).
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This monotonicity property holds also for robust or stochastic dynamic pro-
gramming, and is for example used in existence proofs for solutions of the
stationary Bellman equation, or in stability proofs of model predictive control
(MPC) schemes [62].

Another interesting observation is that certain DP operatorsT preserve con-
vexity of the value functionJ.

Theorem 8.4(Convex dynamic programming). If the system is affine in(x,u),
i.e. f(x,u,w) = A(w)x+B(w)u+ c(w), and if the stage cost L(x,u,w) is convex
in (x,u), then the DP, the robust DP, and the stochastic DP operators Tpre-
serve convexity of J, i.e. if J is a convex function, then T[J] is again a convex
function.

Proof It is interesting to note that no restrictions are given on how the functi-
ons depend onw. The proof of the convexity preservation starts by noting that
for fixed w, L(x,u,w) + J( f (x,u,w)) is a convex function in (x,u). Because
also the maximum over allw, or the positively weighted sum of an expectation
value computation, preserve convexity, the functionJ̃(x,u) is in all three cases
convex in bothx andu. Finally, the minimization of a convex function over
one of its arguments preserves convexity, i.e. the resulting value functionT[J]
defined by

T[J](x) = min
u

J̃(x,u)

is convex. �

But why would convexity be important in the context of DP? First, convexity
of J̃(x,u) implies that the computation of the feedback law arg minu J̃(x,u) is a
convex parametric program and could reliably be solved by local optimization
methods. Second, it might be possible to represent the valuefunctionJ(x) more
efficiently than by tabulation on a grid, for example as the pointwise maximum
of affine functions

J(x) = max
i

a⊤i

[

1
x

]

.

It is an interesting fact that that for piecewise linear convex costs and con-
straints and polyhedral uncertainty this representation is exact and leads to an
exact robust DP algorithm that might be calledpolyhedral DP[7, 31]. The
polyhedral convex representability of the cost-to-go for linear systems with
piecewise linear cost is indirectly exploited in some explicit MPC approa-
ches [67, 6]. Polyhedral representations with a limited number of facets can
also be used to approximate a convex cost-to-go and still yield some guaran-



DRAFT

150 Dynamic Programming

tees on the closed-loop system [16, 17, 50]. Finally, note that also the linear
quadratic regulator is a special case of convex dynamic programming.

8.7 The Gradient of the Value Function

The meaning of the cost-to-go, or the value function,Jk is that it is the cost
incurred on the remainder of the horizon for the best possible strategy. In order
to make an interesting connection between the value function and the multi-
pliersλk that we encountered in derivative based optimization methods, let us
now regard a discrete time optimal control problem as in the previous chapters,
but without coupled constraints, as these cannot directly be treated with dyna-
mic programming. We assume further that the initial value isfixed and that all
inequality and terminal constraints are subsumed in the stage costL(x,u) and
terminal costE(xN) by barrier functions that take infinite values outside the
feasible domain but are differentiable inside. For terminal equality constraints,
e.g. a fixed terminal state, assume for the moment that these are approxima-
ted by a terminal region of non-zero volume on which again a barrier can be
defined. Thus, we regard the following problem.

minimize
x0,u0,x1,...,

uN−1,xN

N−1∑

k=0

L(xk,uk) + E(xN)

subject to f (xk,uk) − xk+1 = 0, k = 0, . . . ,N − 1,

x̄0 − x0 = 0.

The dynamic programming recursion for this problem is givenby:

JN(x) = E(x), Jk(x) = min
u

L(x,u)+ Jk+1( f (x,u)), k = N−1, . . . ,0. (8.7)

We remember that we obtained the optimal solution by the forward recursion

x0 = x̄0, xk+1 = f (xk,uk), k = 0, . . . ,N − 1,

whereuk is defined by

uk = arg min
u

L(xk,u) + Jk+1( f (xk,u)). (8.8)

The solution of this optimization problem inu necessarily satisfies the first
order necessary optimality condition

∇uL(xk,uk) +
∂ f
∂u

(xk,uk)
⊤∇Jk+1( f (xk,uk)) = 0 (8.9)

which definesuk locally if the problem is locally strictly convex, i.e., it ob-
jective has a positive definite Hessian at (xk,uk). We now formulate simple
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conditions onxk anduk that follow necessarily from the DP recursion. For this
aim we first note that on the optimal trajectory holdsxk+1 = f (xk,uk) and that
we trivially obtain along the optimal trajectory

JN(xN) = E(xN), Jk(xk) = L(xk,uk) + Jk+1(xk+1), k = N − 1, . . . ,0.

This implies for example that the value function remains constant on the whole
trajectory for problems with zero stage costs. However, it is even more interes-
ting to regard the gradient∇Jk(xk) along the optimal state trajectory. If we
differentiate (8.7) at the pointxk with respect tox we obtain

∇JN(xk) = ∇E(xk),

∇Jk(xk)
⊤ =

d
dx

L(xk,uk) + Jk+1( f (xk,uk))
︸                           ︷︷                           ︸

=:J̃k(xk,uk)

k = N − 1, . . . ,0.

In the evaluation of the total derivative it is needed to observe that the optimal
uk is via (8.9) an implicit function ofxk. However, it turns out that the derivative
does not depend onduk

dxk
because of

d
dx

J̃k(xk,uk) =
∂J̃k

∂x
(xk,uk) +

∂J̃k

∂u
(xk,uk)

︸       ︷︷       ︸

=0

duk

dxk
,

where the partial derivative with respect tou is zero because of (8.9). Thus,
the gradients of the value function at the optimal trajectory have to satisfy the
recursion

∇Jk(xk) = ∇xL(xk,uk) +
∂ f
∂x

(xk,uk)
⊤∇Jk+1(xk+1) k = N − 1, . . . ,0.

This recursive condition on the gradients∇Jk(xk) is equivalent to the first order
necessary condition (FONC) for optimality that we obtainedpreviously for
differentiable optimal control problems, if we identify the gradients with the
multipliers, i.e. set

λk = ∇Jk(xk).

This is a very important interpretation of the multipliersλk: they are nothing
else than the gradients of the value function along the optimal trajectory!

8.8 A Discrete Time Minimum Principle

Collecting all necessary conditions of optimality that we just derived, but sub-
stituting∇Jk(xk) by λk we arrive indeed exactly to the same conditions (7.7)
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that we derived in Chapter 7 in a completely different way.

x0 = x̄0

xk+1 = f (xk,uk), k = 0, . . . ,N − 1,

λN = ∇xN E(xN)

λk = ∇xL(xk,uk) +
∂ f
∂x

(xk,uk)
⊤λk+1, k = N − 1, . . . ,1,

0 = ∇uL(xk,uk) +
∂ f
∂u

(xk,uk)
⊤λk+1, k = 0, . . . ,N − 1.

In the context of continuous time problems, we will arrive ata very similar
formulation, which has the interesting features that the recursion forλ becomes
a differential equation that can be integrated forward in time if desired, and
that the optimization problem in (8.8) does only depend on the gradient of
J. This will facilitate the formulation and numerical solution of the necessary
optimality conditions as a boundary value problem.

8.9 Iterative Dynamic Programming

8.10 Differential Dynamic Programming

Exercises

8.1 Consider a very simple system with statex ∈ {1,2, . . . ,10} and controls
u ∈ {−1,0,1} and time invariant dynamicsf (x,u) = x+ u and stage cost
L(x,u) = |u| on a horizon of lengthN = 3. The terminal costE(x) is
given by zero ifx = 5 and by 100 otherwise. Take pen and paper and
compute and sketch the cost to go functionsJ3, J2, J1, J0.

8.2 Use dynamic programming to solve the following simple discrete time
OCP with one state and one control by hand. On the way towards the
solution, explicitly state the cost to go functionsJ2(x), J1(x), J0(x) and
feedback control lawsu∗0(x) andu∗1(x).

minimize
x0,x1,x2,

u0,u1

1∑

k=0

u2
k + 10x2

2

subject to x0 = 5,

xk+1 = xk + uk, k = 0,1.
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8.3 Regard the discrete time damped-spring system

xk+1 =

(

1 0.02
−0.1 0.992

)

xk +

(

0
0.02

)

uk

over the horizon ofN = 600, with initial statex0 = [10,0].

(a) Simulate and plot the uncontrolled system (u = 0) as a baseline.

(b) Using dynamic programming, minimize the cost function:

N−1∑

k=0

(

x⊤k Qxk + u⊤k Ruk

)

+ x⊤NPNxN

with

Q =

( 1
22 0
0 1

32

)

, R=
(

1
62

)

, PN =

(

1 0
0 1

)

Plot the two states and control against the uncontrolled system.

(c) Consider the infinite-horizon system (N→ ∞) with cost function:

∞∑

k=0

(

x⊤k Qxk + u⊤k Ruk

)

What control policy will minimize this cost function? Implement this
control policy and simulate forN = 600. Plot this in state and control
against the previous two trajectories.

8.4 In this Exercise we regard again the discrete time system

xk+1 = Φ(xk,uk)

that is generated by one RK4 step applied to the controlled nonlinear
pendulum, as defined in Exercise 7.6. Furthermore, we assumethat you
have the MATLAB function[xnew]=RK4step(x,u) available. If not,
refer to Exercise 7.6 for implementation.

We regard the same optimal control problem as last time, withthe
initial value x̄0 = (10,0)⊤ andN = 50 time steps, and boundspmax =

10, vmax = 10, i.e.xmax = (pmax, vmax)⊤, andumax = 10. In contrast to
last time and because of approximation errors, we now have torelax the
terminal constraintxN = 0 to a small box−xN,max ≤ xN ≤ xN,max with
xN,max = (5,5)⊤. We also add a small terminal cost term 10‖xN‖22. As a
result, the optimization problem we want to solve is given by
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= 0 minimize
x0,u0,x1,...,

uN−1,xN

N−1∑

k=0

‖uk‖22 + 10‖xN‖22

subject to Φ(xk,uk) − xk+1 = 0, k = 0, . . . ,N − 1,

−xmax ≤ xk ≤ xmax, k = 0, . . . ,N − 1,

−xN,max ≤ xN ≤ xN,max,

−umax ≤ uk ≤ umax, k = 0, . . . ,N − 1

(a) Discretize the state and control spaces choosing step sizes in all di-
mensions of size 1. Considering that{x ∈ R2| − xmax ≤ x ≤ xmax} and
{u ∈ R| −umax ≤ u ≤ umax} this would result inn = 21·21= 441 state
grid points andm = 7 control grid points. Let us denote the gridded
space and control spaces byX andU. As a first step, define the ter-
minal cost-to-go functionJN(x) on then state grid pointsx ∈ X, i.e.
define all elements of 21 by 21 matrix that you might callJmat. For
infeasible values, i.e. those that exceed the tight bounds of the termi-
nal state, choose a very large number, e.g. 106. For later use, you
might also define a three dimensional tensorJmatTen(i,j,kp1)
with kp1= 1, . . . ,51 in order to store allJk.

(b) The next problem in implementing dynamic programming isthat we
cannot expect that we exactly hit withΦ(x,u) any of the grid points,
i.e. unfortunately we have even forx ∈ X andu ∈ U that usually
Φ(x,u) < X. We can resolve this issue by rounding the value of the
output ofΦ to the next grid point (this corresponds to a piecewise
constant representation ofJk+1 in the DP equation). Let us denote
this function byΦ̃ : X × U → X. Thus, write a MATLAB function
[xnew] = RK4round(x,u) which has the property that it always maps
to the next grid point inX. Note that we introduce uncontrolled dis-
cretiation errors here.

(c) Last, implement the dynamic programming recursion, i.e. write two
nested loop: the outer loop goes through eachx ∈ X and solves the
optimization problem

Jk(x) = min
u∈U
‖u‖22 + Jk+1(Φ̃(x,u))

by enumerating over allu ∈ U in the inner loop. Summarize your dyn-
amic programming operatorT in a functionJmatplus=DPoper(Jmat).
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(d) Starting atJN, generate all fifty more matricesJN−1, . . . , J0, and visu-
alize your cost-to-go functionsJk by plotting the matrix entries as a
two dimensional function (cutting away the “infinitely” high values).
CompareJN andJ0. Can you interpret the form of them ?

(e) In order for DP to be useful, we need to generate control actions for
a given state. They are easily obtained by

u∗k(x) = arg min
u∈U
‖u‖22 + Jk+1(Φ̃(x,u))

Write a functionu=DPcont(x,J) that gives you the dynamic pro-
gramming feedback.

(f) If you want to generate the optimal trajectory for a giveninititial state
x0, we can do aclosed-loopsimulation, i.e. we simulate

xk+1 = Φ(xk,u
∗(xk, Jk+1)).

Note that we donot useΦ̃ in this forward simulation, butΦ, because
we want the feedback to compensate for our discretization errors. Ge-
nerate the trajectories forx andu for the above optimal control pro-
blem.

(g) Assume a small bounded perturbation against which you want to ro-
bustify your controller. Assume for this that your functionΦ is per-
turbed by a perturbationwk ∈ [−1,1]2 as follows

xk+1 = Φ(xk,uk) + 0.1ukwk
︸                   ︷︷                   ︸

=:Φrob(xk,uk,wk)

Discretize the cube in whichw lives e.g. by a 3 by 3 gridW. Also,
you need again to round the result so that you have a functionΦ̃rob :
X ×U ×W→ X. Now solve instead of the nominal DP recursion the
robust DP recursion

Jk(x) = min
u∈U

max
w∈W
‖u‖22 + Jk+1(Φ̃rob(x,u,w)).

Generate the nominal trajectory, i.e. with allwk = 0 by the closed-
loop simulation. Plot the result. What is different now?

(h) Last, generate a random scenario of valueswk inside the cube of per-
turbations, and simulate your closed-loop system again. Verify that
the terminal constraint is still satisfied.

8.5 In this task we are using Dynamic Programming to find optimal controls
to swing up a pendulum. The state of the system isx = [φ, ω]⊤ whereφ
is the angle andω the angular velocity of the pendulum. Whenφ = 0,
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the pendulum is in its inverse position, e.g. the mass is at the top. The
system dynamics are given by

φ̇ = ω

ω̇ = 2 sin(φ) + u

whereω ∈ [ωmin, ωmax], andu ∈ [umin,umax].
To find the controls for the pendulum swing-up, we are solvingthe

following optimal control problem:

minimize
x0,...,xN,

u0,...,uN−1

N−1∑

k=0

(φ2
k + u2

k)

subject to ¯x0 = x0,

f (xk,uk) − xk+1 = 0, k = 0, . . . ,N − 1,

umin ≤ uk ≤ umax, k = 0, . . . ,N − 1,

ωmin ≤ ωk ≤ ωmax, k = 0, . . . ,N.

(8.10)

Dynamic Programming requires a system which is discrete in space
and in time. We already prepared the discretization of the continuous sy-
stem for you in the filependulum_template.m on the course webpage.
The discretization is done in the following way:

The discrete versions ofφ,ω andu live in the integer spaceZ and thus
are denoted byφZ, ωZ anduZ. The conversion from real space to inte-
ger space is done by projection of the variables intoNφ, Nω, Nu equally
spaced bins in the range of the variables. In the template fileyou find
predefined functions to convert the variables between integer and real
numbers, e.g.phiZ_to_phi andphi_to_phiZ.

To complete the tasks, fill in the missing parts of the template file
pendulum_template.m.

(a) Use the functionintegrate_Z to simulate the system in discrete
space withx0 = [0.4,0]⊤ andu = 0. Do N = 60 integration steps
and use a timestep ofh = 0.12. Plot the evolution ofφ andω in time
(in continuous state space). Make a plot (animation) that shows the
motion of the pendulum. Assume a rod length of 1m. You don’t need
to submit the animation in the pdf, it’s just for you to see if the system
behaves well.

(b) In the following section of the template file you see the precalcula-
tion of all integrations in the discrete state space to avoidunnecessary
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computations during Dynamic Programming. For a given combina-
tion of φZ, ωZ, anduZ, the resulting state from integration [φ+Z, ω

+
Z]

is stored in the lookup tablesPhiNext andWNext and the costs are
stored in the tableL.

Use the lookup tables to do the same simulation as in Task 1. Plot the
evolution ofφ andω in time (in continuous state space).

(c) Implement the backward pass (recursion) of Dynamic Programming,
i.e. calculate the cost-to-go functionJk(xk) going fromk = N tok = 1.
For k = N, the cost-to-go is initialized zero for all states (no terminal
cost). Fill in the missing lines in the template file for this task. Use
N = 60 andh = 0.12.

(d) Simulate the system using the optimal controls which aregiven by

u∗k(xk) = arg min
u

φ2
k + u2 + Jk+1( f (xk,u))

starting fromx0 = [−π,0]⊤. Plot the evolution ofφ andω in time
(in continuous state space). Make a plot (animation) that shows the
motion of the pendulum to see if the pendulum swings up.

8.6 Consider the inverted pendulum problem defined by the optimal cont-
rol problem given by Equation (8.10). This time, we will try to find an
approximate solution to the optimal control problem by linearising the
original non-linear problem and finding a solution to the corresponding
linear-quadratic problem of the form:

minimize
x0,...,xN,

u0,...,uN−1

N−1∑

k=0

[

xk

uk

]⊤ [

Qk S⊤k
Sk Rk

] [

xk

uk

]

+ x⊤NPNxN

subject to x0 = x̄0,

xk+1 =Akxk + Bkuk, k = 0, . . . ,N − 1.

In order to solve the different tasks download thelqr_template.m
from the website.

(a) Linearise the system dynamics around the pointx = [0,0]⊤, u = 0
analytically by differentiation to obtain a continuous time system of
the form: ẋ = Acx + Bcu. Then you can obtain the corresponding
discrete time systemxk+1 = Axk + Buk with a timestep of 0.1 using
the Matlab commands:



DRAFT

158 Dynamic Programming

sysc = ss(Ac,Bc,eye(2),0);

sysd = c2d(sysc,0.1);

A = sysd.a;

B = sysd.b;

Specify the continuous time and discrete time system matricesAc, Bc,
A, B.

(b) Bring the objective of the optimal control problem into aquadratic
form and specify the matricesQ, R, S.

(c) Calculate recursively thePk matrices (Difference Ricatti Equation)

for k = N − 1, . . . ,0 with N = 60 starting fromPN =

[

0 0
0 0

]

.

(d) Calculate the first cost-to-goJ0 for the linear system for each state of
the dynamic programming exercise of exercise sheet 3. Make a3D
contour plot with a fine level-step ofJ0 using the matlab commands:

[C,handle] = contour3(J0);

set(handle,’LevelStep’,get(handle,’LevelStep’)*0.2)

Compare the contour plot with the contour plot of the non-linear cost-
to-go function of the dynamic programming exercise the you can get
with theget_first_J() function in the template.
What are the similarities/differences of the two contour plots?

(e) Starting fromx0 = [− π8 ,2]⊤, calculate the optimal feedback and the
complete optimal trajectory of the linear quadratic optimal control
problem by forward recursion.
Make a plot with the evolution of the state in time and a plot ofthe op-
timal feedback controls vs. time. Does the controller bringthe system
to the steady state?

(f) Apply the same optimal controls (open-loop) to the non-linear pen-
dulum system. Start from the same initial statex0 and simulate the
system using theintegrate_rk4 function. Make a plot of state evo-
lution and controls as before. Does the controller bring thesystem to
the steady state? Discuss the result.

(g) Implement a feedback controller, i.e. calculate the optimal feedback
for the current state and simulate the non-linear system using
integrate_rk4. Make a plot of state evolution and controls as be-
fore. Does the controller bring the system to the steady state?

(h) Solve the Algebraic Ricatti Equation by iteratively calculating the
Pk matrices until convergence. We say, convergence is reachedif the
Frobenius norm of differences between the current matrixPcur and
the next matrixPnext is below 10−5:
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norm(Pnext-Pcur, ’fro’) <= 1e-5

(i) Use the solution to the Algebraic Ricatti Equation to implement a
Linear-Quadratic-Regulator(LQR). Simulate the system withintegrate_rk4.
Make a plot of state evolution and controls as before. Does the con-
troller stabilize the system at the steady state?

8.7 We shall consider a simple OCP with two states (x1, x2) and one control
(u):

minimize
x,u

∫ ⊤

0
x1(t)2 + x2(t)2 + u(t)2 dt

subject to ˙x1 = (1− x2
2) x1 − x2 + u, x1(0) = 0,

ẋ2 = x1, x2(0) = 1,

−1 ≤ x1(t) ≤ 1,

−1 ≤ x2(t) ≤ 1,

−1 ≤ u(t) ≤ 1,

with T = 10.
To be able to solve the problem using dynamic programming, wepara-

meterize the control trajectory intoN = 20 piecewise constant intervals.
On each interval, we then take 1 step of a RK4 integrator in order to get
a discrete-time OCP of the form:

minimize
x,u

N−1∑

k=0

F0(x(k)
1 , x(k)

2 ,u(k))
N−1∑

k=0

F0(x(k)
1 , x(k)

2 ,u(k))

subject to x(k+1)
1 = F1(x(k)

1 , x(k)
2 ,u(k)), k = 0, . . . ,N − 1, x(0)

1 = 0,

x(k+1)
2 = F2(x(k)

1 , x(k)
2 ,u(k)), k = 0, . . . ,N − 1, x(0)

2 = 1,

−1 ≤ x(k)
1 ≤ 1, k = 0, . . . ,N,

−1 ≤ x(k)
2 ≤ 1, k = 0, . . . ,N,

−1 ≤ u(k) ≤ 1, k = 0, . . . ,N − 1.

(a) Implement the RK4 integrator for the system dynamics. Take a look
to Chapter 10 if you need help.

(b) The continuousx1, x2 andu are uniformly discretized in 101 values.
Create the vectors containing the discrete values of the variables. Mo-
dify the integrator so that the dynamics round up to the closest dis-
crete value.
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(c) Using the stage cost and starting atx1(T), x2(T), recursively compute
the cost of every possible state (x(k)

1 , x(k)
2 ,u(k)).

(d) Using the initial conditions solve the problem using dynamic pro-
gramming.

(e) Add the additional end-point constraintx1(T) = −0.5 andx2(T) =
−0.5. How does the solution change?
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Continuous Time Optimal Control Problems

When we are confronted with a problem whose dynamic system lives in con-
tinuous time and whose control inputs are a continuous profile, i.e. functions
of time living in an∞-dimensional functional space, we speak of acontinuous
time optimal control problem. This type of problem is the focus of this third
part of this script. We will encounter variations of the sameconcepts as in the
discrete time setting, such as Lagrange multipliersλ, the value functionJ, or
the difference between sequential or simultaneous methods. Some numerical
methods and details, however, are only relevant to the continuous time setting,
such as the indirect methods and Pontryagin’s Maximum Principle described
in Chapter 12, or the ODE solvers with sensitivity generation described in
Section 10.4.

9.1 Formulation of Continuous Time Optimal Control
Problems

In an ODE setting, many continuous-time optimal control problem can be sta-
ted as follows.

minimize
x(·),u(·)

∫ T

0
L(x(t),u(t))dt+ E (x(T))

subject to x(0)− x0 = 0, (fixed initial value),

ẋ(t) − f (x(t),u(t)) = 0, t ∈ [0,T], (ODE model),

h(x(t),u(t)) ≤ 0, t ∈ [0,T], (path constraints).,

r (x(T)) ≤ 0, (terminal constraints)

161
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The problem and its variables are visualized in Figure 9.1.

terminal
constraintr(x(T)) ≤ 0

✻
path constraintsh(x,u) ≤ 0

initial value
x0 r

statesx(t)

controlsu(t)
✲♣

0 t
♣

T
Figure 9.1 The variables and constraints of a continuous time optimal control
problem.

The integral cost contributionL(x,u) is sometimes called theLagrange term
(which should not be confused with the Lagrange function) and the terminal
costE(x(T)) is sometimes called aMayer term. The combination of both, like
here, is called aBolza objective.

Note that any Lagrange objective term can be reformulated asa Mayer term,
if we add an additional “cost state”c that has to satisfy the differential equa-
tion ċ = L(x,u), and then simply addc(T) to the terminal Mayer cost term.
Conversely, every differentiable Mayer term can be replaced by by a Lagrange
term, namely byL(x,u) = ∇E(x)⊤ f (x,u), as the cost integral then satisfies the
equality

∫ ⊤
0

L(x,u)dt =
∫ ⊤

0
dE
dt dt = E(x(T)) − E(x0). These two equivalences

entail that formulating a problem involving only a Lagrangeterm or only a
Mayer term present no loss of generality. However, in this script we will use
the full Bolza objective.

9.2 Problem reformulation

So far, we wrote all functionsL,E, f ,h independent of timet or of parameters
p, and we will leave both of these generalizations away in the remainder of this
script. However, all the methods presented in the followingchapters can easily
be adapted to these two cases, using again state augmentation, as follows. If
a time-dependency occurs in the problem, one just need to introduce a “clock
state”t with differential equatioṅt = 1, and work with the augmented system
˙̃x = f̃ (x̃,u):

x̃ =

[

x
t

]

, f̃ (x̃,u) =

[

f (x,u, t)
1

]

.
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Likewise, in the case time-constant, but free optimizationparametersp appear
in the problem, they can be incorporated as “parameter state” p with differen-
tial equation ˙p = 0 and free initial value.

Another interesting case specific to continuous-time problems is when the
durationT of the problem is free. As an example, we might think of a robot
arm that should move an object in minimal time from its current state to some
desired terminal position. In this case, we might rescale the time horizon to
the interval [0,1] by a time constant but free variableT that is treated like an
optimization parameter. We then regard a scaled problem

x̃ =

[

x
T

]

, f̃ (x̃,u) =

[

T · f (x,u)
0

]

with pseudo timeτ ∈ [0,1] yielding the dynamics

˙̃x ≡ d
dτ

x̃ = f̃ (x̃,u)

and whereT is treated as a parameter, i.e. the initial conditionT(0) for the
“state”T is free andT satisfiesṪ = 0.

We note that although all the above reformulations make it possible to trans-
fer the methods in this script to the respective special cases, an efficient nu-
merical implementation should exploit the structures inherent in these special
cases.

9.3 Multi-stage Problems

A special class of continuous-time optimal control problems are multi-stage
Problems, where the problem formulation can “switch” in thecourse of the
horizon [0, T]. Such problems occur when e.g. the system dynamics, the cost
function or the constraints change discontinuously at sometime instant. The
time instant at which the switching occurs can be fixed, free or even event-
dependent (i.e. occurring when the system states fulfil a specific condition).
Classical examples of multiple-stage optimal control problems stem from con-
tact problem such as e.g. walking robots, shocks (e.g. a bouncing ball), the lan-
ding pattern of airliners (where the configuration of the plan has to be adjusted
according to prescribed rules, yielding event-based changes in the dynamics),
industrial robots picking up and releasing objects. However, we will assume
hereafter that theordering in which the changes occur is prescribed and inde-
pendent of the system evolution. This excludes e.g. handling problems such as
gear-shifting in vehicles, where the order in which the gears are shifted is not
prescribed but depends on the vehicle trajectory.
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A fairly simple way of framing a multi-stage problem mathematically is to
consider eachstageof the problem as an optimal control problem of its own,
and to link the different stages by matching the terminal state of a state to the
initial condition of the following stage. AnN-stage multi-stage problem can
then be formulated as:

minimize
x(·),u(·),T1,...N

N−1∑

k=0

∫ Tk+1

Tk

Lk(xk(t),uk(t))dt+ Ek (xk(Tk+1))

subject to x0(T0) − x̄0 = 0, (initial value),

xk(Tk) − xk−1(Tk) = 0, (state continuity),

ẋk(t) − fk(xk(t),uk(t)) = 0, t ∈ [Tk,Tk+1], (ODE model),

hk(xk(t),uk(t)) ≤ 0, t ∈ [Tk,Tk+1], (path constraints),

rk (xk(Tk)) ≤ 0, (terminal const.),

Tk − Tk+1 ≤ 0, (time ordering)

wherex̄0 are the assigned initial conditions for the multi-stage problem, and
the variablesT0,...,N are the switching times between stages. Clearly, if they
are prescribed, they should then be excluded from the variables of the optimal
control problem. Each stage can then be treated as a separatefree end time
problem, apart from the constraintsxk(Tk) − xk−1(Tk) linking the state trajec-
tories between stages. Many variations of the above formulation are possible
and useful to tackle various kinds of multi-stage problems.

9.4 Hybrid problems

9.5 what else ?

9.6 Overview of Numerical Approaches

Generally speaking, there are three basic families of approaches to address
continuous-time optimal control problems, (a) state-space, (b) indirect, and (c)
direct approaches, cf. the top row of Fig. 9.2. We follow herethe outline given
in [37].

State-space approachesuse the principle of optimality that states that each
subarc of an optimal trajectory must be optimal. While this was the basis of
dynamic programming in discrete time, in the continuous time case this leads
to the so-calledHamilton-Jacobi-Bellman (HJB) equation, a partial differential
equation (PDE) in the state space. Methods to numerically compute solution
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Continuous Time Optimal Control
✏✏✏✏✏✏✏✏✏✏

PPPPPPPPPP

Hamilton-Jacobi- Bellman
Equation:

Tabulation in
State Space

Indirect Methods,
Pontryagin:

Solve Boundary Value
Problem

Direct Methods:
Transform into Nonlinear

Program (NLP)

✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭

✏✏✏✏✏✏✏✏✏✏

✁
✁
✁✁

Direct Single Shooting:
Only discretized controls in

NLP
(sequential)

Direct Collocation:
Discretized controls and

states in NLP
(simultaneous)

Direct Multiple Shooting:
Controls and node start

values in NLP
(simultaneous)

Figure 9.2 The optimal control family tree.

approximations exist, but the approach severely suffers from Bellmans “curse
of dimensionality” and is restricted to small state dimensions. This approach
is briefly sketched in Chapter 11.

Indirect Methodsuse the necessary conditions of optimality of the infinite
problem to derive a boundary value problem (BVP) in ordinarydifferential
equations (ODE). This BVP must numerically be solved, and the approach
is often sketched as “first optimize, then discretize”, as the conditions of op-
timality are first written in continuous time for the given problem, and then
discretized in one way or another in order for computng a numerical solution.
The class of indirect methods encompasses also the well known calculus of va-
riations and the Euler-Lagrange differential equations, and the so-calledPon-
tryagin Maximum Principle. The numerical solution of the BVP is performed
by shooting techniques or by collocation. The two major drawbacks are that
the underlying differential equations are often difficult to solve due to strong
nonlinearity and instability, and that changes in the control structure, i.e. the
sequence of arcs where different constraints are active, are difficult to handle:
they usually require a completely new problem setup. Moreover, on so called
singular arcs, higher index differential-algebraic equations (DAE) arise which
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necessitate specialized solution techniques. This approach is briefly sketched
in Chapter 12.

Direct methodstransform the original infinite-dimensional optimal cont-
rol problem into a finite-dimensional nonlinear programming problem (NLP)
which is then solved by structure-exploiting numerical optimization methods.
Roughly speaking, direct methods transform (typically vianumerical methods)
the continuous-time dynamic system into a discrete-time system and then pro-
ceed as described in the first two parts of this script. The approach is therefore
often sketched as “first discretize, then optimize”, as the problem is first con-
verted into a discrete one, on which optimization techniques are then deployed.
One of the most important advantages of direct methods over indirect ones is
that they can easily treat all sorts of constraints, such as e.g. the inequality path
constraints in the formulation above. This ease of treatment stems from the fact
that the activation and de-activation of the inequality constraints, i.e. structu-
ral changes in active constraints, occurring during the optimization procedure
are treated by well-developed NLP methods that can efficiently deal with such
active set changes. All direct methods are based on one form or another of
finite-dimensional parameterization of the control trajectory, but differ signifi-
cantly in the way the state trajectory is handled, cf. the bottom row of Fig. 9.2.
For solution of constrained optimal control problems in real world applicati-
ons, direct methods are nowadays by far the most widespread and successfully
used techniques, and are therefore the focus of this script.Brief descriptions
of three of the direct methods – single shooting, multiple shooting, and collo-
cation – and some algorithmic details are given in Chapter 13, while we point
out that the first two parts of the script covering finite dimensional optimi-
zation and discrete time dynamic systems have already covered most of the
algorithmic ideas relevant for direct approaches to optimal control.

Exercises

9.1 . . .
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Numerical Simulation

Deploying optimal control on problems involving non-trivial continuous-time
dynamics hinges on having efficient and accurate numerical simulations tools,
which allow for building discretizations of these continuous dynamics. This
chapter provides a brief but crucial exploration of these tools.

The existence of a solution to an Ordinary Differential Equation (ODE) with
defined initial conditions, also call Initial-Value Problem (IVP), is guaranteed
under continuity off with respect to tox and t according to a theorem from
1886 due to Giuseppe Peano, [? ]. But existence alone is of limited interest as
the solutions might be non-unique. For example, the scalar ODE ẋ(t) =

√
|x(t)|

with x(0) = 0 admits as solution:

x(t) =

{

0 for t < t0,
1
4(t − t0)2 for t ≥ t0,

for any t0 ≥ 0, such that its solution is not unique. This ODE is continuous at
the origin, but its slope approaches infinity, which causes the non-uniqueness.
More important than the existence of the ODE solution is therefore its (lo-
cal) uniqueness discussed in the following theorem by CharlesÉmile Picard
(1890), [? ], and Ernst Leonard Lindelöf (1894), [? ]:

Theorem 10.1(Existence and Uniqueness of IVP). Regard the initial value
problem(1.1)with x(0) = x0, and assume that f is continuous with respect to
x and t. Furthermore, assume that f is Lipschitz continuous with respect to x,
i.e., that there exists a constant L such that for all x, y and all t∈ [0,T]

‖ f (x, t) − f (y, t)‖ ≤ L‖x− y‖.

Then there exists a unique solution x(t) of the IVP in a neighbourhood of
(x0,0).

Note that this theorem can be extended to the case wheref (x, t) has finitely

167
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many discontinuities with respect tot, in which case the solutions are still
unique, but the ODE solution has to be defined in the weak sense. The fact that
unique solutions still exist in the case of discontinuitiesis important because
(a) many optimal control problems have discontinuous control trajectoriesu(t)
in their solution, and (b) many algorithms, the so calleddirect methods, first
discretize the controls, often as piecewise constant functions which have jumps
at the interval boundaries. These finitely many discontinuities in the control do
not cause difficulties for the existence and uniqueness of the IVPs.

Following Theorem 10.1 we know that a unique ODE (or DAE) solution
exists to the IVP ˙x = f (x, t), x(0) = x0 under mild conditions, namely the
Lipschitz continuity off with respect to the statex and continuity with respect
to the timet. This solution exists on the whole interval [0,T] if the time T >

0 is chosen small enough. Note that for nonlinear continuoustime systems
– in contrast to discrete time systems – it is very easily possibly even with
innocently-looking functionsf to obtain an “explosion” in the solution of the
ODE, i.e., a solution that tends to infinity in finite time. E.g. the trivial ODE
ẋ = x2, x(0) = 1 has the explicit solutionx(t) = 1/(1− t) tending to infinity for
t → 1. This simple example reveals that we cannot guarantee the existence of
the solution to a differential equation on any given interval [0,T] for arbitrary
T, but only on sufficiently small time intervals.

10.1 Numerical Integration: Explicit One-Step Methods

Numerical integration methods are used to approximately solve a well-posed
IVP that satisfies the conditions of Theorem 10.1. They come in many different
variants, and can be categorized according to two major branches, on the one
hand the one-step vs. the multistep methods, on the other hand the explicit vs.
the implicit methods.

In the following of our exploration of numerical optimal control we will
need to discuss the numerical integration over arbitrary time intervals, e.g.
[t0, tf ]. Let us start in this section with the explicit one-step methods, which
is arguably the most basic numerical integration method. All numerical inte-
gration methods start by discretizing the state trajectories over a discretization
time grid over the integration interval[t0, tf ]. For the sake of simplicity, let us
assume a uniform time grid, i.e. having fixed interval sizes of ∆t = (t0 − tf ) /N,
whereN is an integer. The discretization time grid is then setup astk := t0 + k∆t
with k = 0, . . .N, and divides the time interval[t0, tf ] into N subintervals
[tk, tk+1], each of length∆t. Then, the solution is approximated on the grid
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points tk by discrete valuessk that shall satisfysk ≈ x(tk), for k = 0, . . . ,N,
wherex(t) is the exact solution to the IVP.

Numerical integration methods differ in the ways they approximate the so-
lution on the grid points and in between, but they all shall have the property
that if N → ∞ then sk → x(tk). This property is labelledconvergence. Met-
hods differ in how fast the integrator converges asN increases. One says that a
method is convergent with orderp if

max
k=0,...,N

‖sk − x(tk)‖ = O(∆tp).

The simplest integrator is the explicit Euler method. It first setss0 := x0 and
then recursively computes, fork = 0, . . . ,N − 1:

sk+1 := sk + ∆t f (sk, tk).

It is a first-order method, i.e.p = 1, and due to this low order it is very ineffi-
cient and should not be used in practice. Indeed, a few extra evaluations off in
each step can easily yield higher-order methods. E.g. theexplicit Runge-Kutta
(RK) methodsdue to Runge (1895), [? ], and Kutta (1901), [? ] use on each
discretization interval [tk, tk+1] not only one butm evaluations off . They then
hold intermediate state valuess(i)

k , i = 1, . . . ,m within each interval [tk, tk+1],
which live on a grid of intermediate time pointst(i)k := tk + ci ∆t with suitably
chosenci ∈ [0,1]. One RK step is then obtained via the following construction:

sk,1 := sk,

sk,2 := sk + ∆t a21 f
(

sk,1, tk,1
)

,

sk,3 := sk + ∆t
(

a31 f
(

sk,1, tk,1
)

+ a32 f
(

sk,2, tk,2
))

,

...

sk,i := sk + ∆t
i−1∑

j=1

ai j f
(

sk, j , tk, j
)

,

...

sk,m := sk + ∆t
m−1∑

j=1

am j f
(

sk, j , tk, j
)

,

sk+1 := sk + ∆t
m∑

j=1

b j f
(

sk, j , tk, j
)

.

Each RK method is characterized by its so-called Butcher tableau of dimension
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m:

c1

c2 a21

c3 a31 a32
...

. . .
. . .

cm am1 · · · am,m−1

b1 b2 · · · bm

An integration order ofm≤ 4 is obtained from a Butcher tableau of dimension
m for an adequate choice ofa,b, c. It is however important to understand here
that this equivalence between the dimension of the tableau and the integration
order holds only form ≤ 4. In order to obtain an order of integration with
m≥ 5, tableaus of dimensionlarger than 5 are needed

The explicit Euler integrator usesm = 1, c1 = 0, b1 = 1. A more efficient
and widespread choice of Butcher tableau is

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

which yields a method of orderm = 4, often simply referred to as the RK4
integration scheme.

Note that practical RK methods also have stepsize control, i.e. they adapt
∆t depending on estimates of the local error, which are obtained by comparing
two RK steps of different orders. Particularly efficient adaptive methods are
theRunge-Kutta-Fehlbergmethods, which reuse as many evaluations off as
possible between the two RK steps.

Because of its simplicity, the Euler method may appear appealing in practice,
however it is strongly recommended to favor higher-order methods. To get an
intuitive idea of why it is so, let us assume that we want to simulate an ODE
on the interval [0,1] with an accuracy ofǫ = 10−3 and that a first-order method
gives an accuracyǫ = 10∆t. Then a time step of∆t = 10−4 is required, i.e.
N = 10000 steps are necessary in order to achieve the desired accuracy. If a
fourth-order method gives the accuracyǫ = 10(∆t)4, a time step of∆t = 0.1
is needed, i.e. onlyN = 10 steps are required for the same accuracy. Given
this enormous difference, the fourfold cost per RK step required to deploy
the fourth-order method is more than outweighed by the low number of steps
required, such that it is actually 250 times cheaper than thefirst-order Eu-
ler method. In practice, RK integrators with orders up to 8 are used, but the
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Figure 10.1 Numerical simulation of the first-order linear dynamics ẋ = −15x
using the explicit Euler method with∆t = 0.1, starting from the initial condition
x(0) = 10. The exact solution is displayed as a plain curve, while the numerical
solution is displayed using circles, connected by dotted lines. One can observe that
due to the steep state derivative ˙x in the early time of the integration, the explicit
Euler scheme, which essentially computes the next state on the time grid via the
tangent to the trajectory, significantly overshoots the exactsolution of the ODE.

Runge-Kutta-Fehlberg method of fourth order (with fifth-order evaluation for
error estimation and control) is the most popular one.

10.2 Stiff Systems and Implicit Integrators

When an explicit integrator is applied to a very stable system, its steps can
overshoot the actual trajectory of the ODE solution, resulting in an inaccu-
rate numerical integration, or even outright instability.The simple prototypical
first-order system is often used to discuss these issues:

ẋ = −λx.

It takes the explicit, exact solutionx(t) = x(t0)e−λ(t−t0). For a very largeλ ≫ 1
the ODE has a very fast stable mode decaying very quickly to zero. If we
now use an explicit Euler method with stepsize∆t, then the trajectories of the
discrete statesk are defined by the discrete-time dynamic system:

sk+1 = sk − ∆t λsk = (1− ∆t λ)sk, s0 = x(t0),
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which differs significantly from the exact trajectoriesx(t), see fig. 10.1 for an
illustration. This discrete system actually becomes unstable if ∆t > 2

λ
, which

might be very small whenλ is very large. Note that such a small stepsize is
not necessary to obtain a high accuracy, but is only necessary to render the
integrator stable.

It turns out that all explicit methods suffer from the fact that systems having
very fast modes necessitate excessively short step sizes. This becomes parti-
cularly problematic if a system has both slow and fast decaying modes, i.e.,
if some of the eigenvalues of the Jacobian∂ f

∂x have a small magnitude while
others are strongly negative, resulting in very quickly decaying dynamics. In
such a case, one typically needs to perform fairly long simulations in order to
capture the evolution of the slow dynamics, while very shortsteps are required
in order to guarantee the stability and accuracy of the numerical integration
due to the very fast modes. Such systems are called stiff systems.

Instead of using explicit integrators with very short stepsizes, stiff systems
can be much better treated by implicit integrators. The simplest of them is the
implicit Euler integrator, which in each integrator step solves the nonlinear
equation in the variablesk+1

sk+1 = sk + ∆t f (sk+1, tk+1).

One ought to observe the subtle yet crucial difference between this equation
and the one used for deploying an explicit Euler integrator.While explicit Eu-
ler requires implementing an explicit rule, the equation above providessk+1

implicitly. If applied to the fast, stable test system from above, for which this
equation can be solved explicitly because of the linear dynamics, the implicit
Euler scheme yields the discrete dynamics

sk+1 = sk − ∆t λsk+1 ⇔ sk+1 = sk/(1+ ∆t λ),

which are stable for any∆t > 0 and always converge to zero, like the true
solution of the ODE. Hence the implicit Euler scheme is always stable for this
example. This idea can be easily generalized to RK methods, which then yield
Butcher tableaus that are full squares and not only lower triangular, reflecting
the implicit nature of the integration scheme. An implicit RK method has to
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solve at each integration stepk the nonlinear system of equations

sk,1 = sk + ∆t
m∑

j=1

a1 j f
(

sk, j , tk, j
)

...

sk,i = sk + ∆t
m∑

j=1

ai j f
(

sk, j , tk, j
)

...

sk,m = sk + ∆t
m∑

j=1

am j f
(

sk, j , tk, j
)

and then sets the next step to

sk+1 := sk + ∆t
m∑

j=1

b j f
(

sk, j , tk, j
)

.

The nonlinear system needs typically to be solved by a Newtonmethod. Note
that the system is of sizem · nx, such that the computational complexity of
performing the Newton iterations “naively” on an implicit RK method is un-
fortunately in general of orderO(m3n3

x).

10.3 Orthogonal Collocation

Orthogonal collocationis a specific variant of implicit RK methods. The so-
lution x(t) on the collocation intervalt ∈ [tk, tk+1] ⊆ [t0, tf ] is approximated
by a dth-order polynomial, labelledp(t, vk) ∈ Rn in the following, where the
polynomial depends linearly on the coefficientsvk ∈ Rn(d+1).

Interpolation polynomial The polynomialspk (t, vk) used in orthogonal col-
location methods are typically built as Lagrange polynomials. The Lagrange
polynomial pk(t, vk) for a time interval [tk, tk+1] and a set of collocation times
tk,0 . . . , tk,d can be simply constructed using:

pk(t, vk) =
d∑

i=0

vk,iℓk,i(t), ℓk,i(t) =
d∏

j=0, j,i

t − tk, j
tk,i − tk, j

∈ R,

wherevk,i ∈ Rnx is a subset of the polynomial coefficientsvk having the size
of the state vector of the system, and the collocation times are chosen astk,i ∈
[tk, tk+1].
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Figure 10.2 Illustration of the Lagrange polynomialsℓk,i(t) on the interval
[tk, tk+1]. The property (10.1) is clearly visible here as each polynomial ℓk,i(t)
take a unitary value at the collocation timetk,i (black dots) and a zero at all other
timestk, j,i (white dots).

One can observe that the basis polynomialsℓk,i have by construction the
property:

ℓk,i

(

tk, j
)

=

{

1 if i = j
0 if i , j

(10.1)

which we illustrate in Figure 10.2 below. They have the additional property of
being orthogonal (though not orthonormal !), i.e.

∫ tk+1

tk

ℓk,i(t)ℓk, j(t) dt = 0, i , j (10.2)

Property (10.1) entails that the interpolation polynomialpk(tk,i , vk) “passes
through” the interpolation pointsvk,i , i.e.

pk(tk,i , vk) = vk,i , (10.3)

holds fori = 0, . . . ,d, see Figure 10.3 for an illustration.
We detail later in this section the selection of the collocation timestk,i . It

is, however, useful to anticipate here with specifying thatthe first collocation
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Figure 10.3 Illustration of the polynomialpk(t, vk) =
∑d

i=0 vk,iℓk,i(t) for d = 3
and for an arbitrary coefficient vectorvk ∈ R4, andvk,i ∈ R. One can observe the
property (10.3), i.e.pk(tk,i , vk) = vk,i .

time tk,0 is systematically chosen astk,0 = tk, such thatpk (tk, pk) = vk,0 readily
provides the initial value of the interpolation.

Collocation equations Using the polynomialpk (t, vk) the integration over the
time interval [tk, tk+1] is performed via selecting adequate collocation variables
vk ∈ Rnx(d+1). This selection occurs via solving a set of algebraic equations
that ensure that the polynomialpk (t, vk) is an accurate representation of the
trajectories of the state. Assuming we have the initial value sk at time tk, the
collocation equations for the simple ODE ˙x(t) = f (x(t), t) then enforce the
following nx(d + 1) conditions, see Figure 10.4:

(i) pk (tk, pk) = sk, i.e. the polynomialspk (t, vk) must meet the initial condition
at the beginning of the interval, i.e. at timetk = tk,0. It is worth observing
here that sincepk (tk, pk) = vk,0, satisfying the initial condition requires
simply vk,0 = sk to hold.

(ii) pk
(

tk,i , vk
)

must satisfy the model dynamics on the remaining collocation
timestk,1, . . . , tk,d, i.e.:

ṗk
(

tk,i , vk
)

= f (pk
(

tk,i , vk
)

︸      ︷︷      ︸

=vk,i

, tk,i) (10.4)
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Figure 10.4 The NLP variables in the direct collocation method for d = 3, and
for one specific time interval [tk, tk+1]. Here we illustrate the polynomialpk (t, vk)
(solid curve) vs. the actual state trajectories (dashed curve) when the collocation
equationsck

(

sk, vk, tk,i
)

= 0 are not yet satisfied.

The integration of the system dynamics over a time interval [tk, tk+1] is hence
performed via solving the collocation equations:

ck
(

vk, tk,i , sk
)

=





vk,0 − sk

ṗk
(

tk,1, vk
) − f (vk,1, tk,i)
...

ṗk
(

tk,d, vk
) − f (vk,d, tk,i)





= 0. (10.5)

The end state of the simulationx (tk+1) is then accurately approximated by
p(tk+1, vk). This principle is illustrated in Figure 10.5 for a single state.

We observe here that (10.5) is a system ofn(d + 1) equations in thevk ∈
R

n(d+1) variables. We additionally observe that

ṗk(t, vk) =
d∑

i=0

vk,i ℓ̇k,i(t),

such that, similarly topk
(

tk,i , vk
)

, the time derivatives of the polynomial, i.e.
ṗk

(

tk,i , vk
)

are linear invk. It can then be observed that for a linear dynamic
model f , (10.5) is a linear system of equations. However, in general, (10.5)
does not have an explicit solution.
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Figure 10.5 The NLP variables in the direct collocation method for d = 3, and
for one specific time interval [tk, tk+1]. Here we illustrate the polynomialpk (t, vk)
when the collocation equationsck

(

sk, vk, tk,i
)

= 0 are satisfied, such thatpk (t, vk)
captures accurately the system trajectory over the time interval [tk, tk+1]. The end
state of the simulationx(tk+1 is then accurately approximated byp(tk+1, vk).

Selection of the collocation timestk,i It is very important to point here that an
adequate choice of collocation points leads to very high orders of integration.
We can understand this point using the principle of Gauss-quadrature. Assu-
ming thatp(t, vk) is a polynomial of order 2d, the Gaussian quadrature formula
provides for anyvk the equality:

∫ tk+1

tk

ṗ(t, vk) dt = (tk+1 − tk) ·
m∑

i=1

ωi · ṗ(tk,i , vk), (10.6)

for an adequate choice of weightsωi and of collocation pointstk,i .
The adequate choice of collocation time, i.e. the one that yields the Gauss

quadrature formula (10.6) for polynomials of degree 2d, is obtained by choo-
sing the collocation pointstk,i as the zeros of orthogonal Legendre polynomials
on the corresponding interval [tk, tk+1]. This choice of collocation times is cal-
led Gauss-Legendre collocation. For the specific time interval [0, 1], the col-
location pointstk,i for i = 1, . . . ,4 are provided in Table 10.3 ford = 1, . . . ,4.
For an arbitrary time interval[tk, tk+1], the adequate collocation timestk,i can
be computed by identifyingξi = (tk,i − tk)/(tk+1 − tk) to the time pointsξi in
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d Gauss-Legendre collocationξ Gauss-Radau collocationξ

1 0.50000 1
2 0.21132 0.78867 0.33333 1
3 0.11270 0.50000 0.88729 0.15505 0.64494 1
4 0.06943 0.33000 0.66999 0.930560.08858 0.40946 0.78765 1

Table 10.1Collocation times tk,1, . . . tk,d for d = 1, ...,4 on the interval[0,1].

Table 10.3, i.e. by computing the collocation timestk,i as:

tk,i = tk + (tk+1 − tk)ξi ∈ [tk, tk+1]

An extra collocation pointtk,0 is systematically added to the collectiontk,1, . . . tk,d
in order to be able to enforce the initial value constraintsvk,0 = sk.

Note that the collocation pointstk,1, . . . tk,d are all in the interior of the collo-
cation interval and symmetric around the midpoint.

Let us then observe that the exact state trajectoryx(t) of the ODE ẋ(t) =
f (x(t), t) satisfies the equation

x(tk+1) = x(tk) +
∫ tk+1

tk

f (x(t), t) dt. (10.7)

Let us then assume that the trajectoryx(t) can be exactly captured on the
time interval[tk, tk+1] by the polynomialp (t, vk) of degree 2d. Using (10.5),
(10.6) and (10.7), we obtain the identity

p(tk+1, vk) = p(tk, vk) + (tk+1 − tk) ·
d∑

i=1

ωi f (p(tk,i , vk), tk,i)

such thatsk+1 = p(tk+1, vk) = x (tk+1) holds.
Using Gauss-Legendre collocation times, the integration is then exact iff

is a polynomial of up to degree 2d − 1. This implies that the collocation step
sk+1 − sk is exact if the exact solution has a derivative ˙x(t) that is a polynomial
of order 2d − 1, i.e., if the solutionx(t) is a polynomial of order 2d. Gauss-
Legendre collocation is the collocation method with the highest possible order
for a givend, i.e. 2d.

An alternative collocation setup sacrifices one order and chooses a set of
collocation points that includes the end point of the interval. It is calledGauss-
Radau collocationand has a desirable property for stiff systems calledstiff de-
cay. The relative collocation point locationsξi = (tk,i − tk)/(tk+1− tk) for Gauss-
Legendre and Gauss-Radau collocation are given in Table 10.3, see [14].

It is worth stressing here that the very high order of collocation methods
hinges on using the collocation times prescribed by Table 10.3, ideally with
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minimum rounding error. Indeed, numerical experiments show that using ap-
proximate collocation times can yield a fast loss of accuracy of collocation-
based integrators.

10.3.1 Linear Multistep Methods and Backward Differentiation
Formulae

A different approach to obtain a high order are the linear multistep methods that
use a linear combination of the pastM stepssk−M+1, . . . , sk and their function
values f (sk−M+1), . . . , f (sk) in order to obtain the next state,sk+1. They are
implicit, if they also use the function valuef (sk+1). A major issue with linear
multistep methods is stability, and their analysis needs toregard a dynamic
system with an enlarged state space consisting of allM past values.

A very popular and successful class of implicit multistep methods are cal-
led thebackward differentiation formulae (BDF)methods. In each step, an
implicit equation is formulated in the variablesk+1 by constructing the inter-
polation polynomialpk(t, sk+1) of orderM that interpolates the known values
sk−M+1, . . . , sk as well the unknownsk+1, and then equates the derivative of this
polynomial with the function value, i.e., solves the nonlinear equation

d
dt

pk(tk+1, sk+1) = f (sk+1, tk+1)

in the unknownsk+1. Note that the fact that only a nonlinear system of sizenx

needs to be solved in each step of the BDF method is in contrastto m-stage
implicit RK methods, which need to solve a system of sizem · nx. Still, the
convergence of the BDF method is of orderM. It is, however, not possible
to construct stable BDF methods of arbitrary orders, as their stability regions
shrink, i.e., they become unstable even for stable systems and very short step
lengths∆t. The highest possible order for a BDF method isM = 6, while
the BDF method withM = 7 is not stable anymore. If e.g. it is applied to
the test equation ˙x = −λx with λ > 0 it diverges even if an arbitrarily small
step size∆t is used. It is interesting to compare linear multistep methods with
the sequence of Fibonacci numbers that also use a linear combination of the
last two numbers in order to compute the next one (i.e.,M = 2). While the
Fibonacci numbers do not solve a differential equation, the analysis of their
growth is equivalent to the analysis of the stability of linear multistep methods.
For more details, the reader is referred to, e.g., [23, 24, 3].
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10.3.2 Solution Map and Sensitivities

In the context of optimal control, derivatives of the simulation of the system
dynamics with respect to the initial conditions and controlinputs need to be
provided to the numerical algorithms.

In order to discuss the issue of differentiating the solution of an ODE with
respect to its initial conditions and possibly other parameters, which in the
context of dynamic systems are often calledsensitivities. Let us now regard an
ODE with some parametersp ∈ Rnp that enter the functionf and assume that
f satisfies the assumptions of Theorem 10.1. We regard some valuesx̄0, p̄, T
such that the ODE

ẋ = f (x, p, t), t ∈ [0,T]

with p = p̄ andx(0) = x̄0 has a unique solution on the whole interval [0,T].
For small perturbations of the values ( ¯p, x̄0), due to continuity, we still have
a unique solution on the whole interval [0,T]. Let us restrict ourselves to a
neighborhoodN of (p̄, x̄0). For each fixedt ∈ [0,T], we can now regard the
well-defined and unique solution mapx(t, ·) : N → Rnx, (p, x0) 7→ x(t, p, x0).
This map gives the valuex(t, p, x0) of the unique solution trajectory at timet
for given parameterp and initial valuex0. A natural question to ask is whether
this map is differentiable. Fortunately, it is possible to show that iff is m-times
continuously differentiable with respect to bothx andp, then the solution map
x(t, ·) is alsom-times continuously differentiable.

Let us illustrate this sensitivity question for linear, continuous-time systems

ẋ = Ax+ Bp

hence withf (x, p, t) = Ax+ Bp, the mapx(t, p, x0) is explicitly given as

x(t, p, x0) = eAtx0 +

∫ t

0
eA(t−τ)Bpdτ,

wheree. is the matrix exponential function. Similarly to functionf , this map
is infinitely many times differentiable (and even well defined for all timest,
as linear systems can be unstable but cannot ”explode” in finite time). In this
simple case, having an explicit solution map, the sensitivities of the solution
can be explicitly computed, and read as:

∂

∂x0
x(t, p, x0) = eAt,

∂

∂p
x(t, p, x0) =

∫ t

0
eA(t−τ)Bdτ

In the general nonlinear case, the mapx(t, p, x0) can only be generated by a
numerical simulation algorithm. The computation of derivatives of this nume-
rically generated map is a delicate issue that we discuss in detail hereafter. To
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mention already the main difficulty, note that most practical numerical integra-
tion algorithms are adaptive, i.e. they might choose to do different numbers of
integration steps for different IVPs. This renders the numerical approximation
of the mapx(t, p, x0) typically non-differentiable as an infinitesimal perturba-
tion in p or x0 can trigger a discrete change in the number of integration steps.
This feature makes multiple calls of a black-box integratorand application of
finite differences problematic, as it often results in significantly wrong deriva-
tive approximations.

10.4 Sensitivity Computation for Integration Methods

Numerical optimal control methods require one to compute the derivatives of
the result of an ODE or DAE integration algorithm, on a given time inter-
val. Let us for notational simplicity regard just the autonomous ODE case
ẋ = f (x) on a time interval [0,T]. The case of constant control or other pa-
rameters on which this ODE depends as well as time dependencycan con-
ceptually be covered by state augmentation, i.e. one can e.g. rewrite the ODE
ẋ = f (x, p) , x (0) = x0 as:

[

ẋ
v̇

]

=

[

f (x, v)
0

]

,

[

x
v

]

(0) =

[

x0

p

]

Thus, we regard an initial conditionx0 and the evolution of the ODE

ẋ = f (x), t ∈ [0,T], x(0) = x0.

giving a solutionx(t, x0), t ∈ [0,T]. We are interested here in thesensitivity
matrix

G(t) =
∂x(t, x0)
∂x0

, t ∈ [0,T],

and in particular its terminal value. This matrixG(T) ∈ Rnx×nx can be computed
in many different ways, five of which we briefly sketch here.

(i) External Numerical Differentiation (END)
(ii) Solution of the Variational Differential Equations

(iii) Algorithmic Differentiation (AD) of the Integrator
(iv) Internal Algorithmic Differentiation within the Integrator
(v) Internal Numerical Differentiation (IND)

In all five methods we assume that the integrator to be differentiated is a state-
of-the-art integrator with inbuilt error control and adaptive stepsize selection.
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External Numerical Differentiation (END) The first approach,External Nu-
merical Differentiation (END), just treats the integrator as a black-box function
and uses finite differences. We perturbx0 by some quantityǫ > 0 in the di-
rection of the unit vectorsei and call the integrator several times in order to
compute directional derivatives by finite differences:

G(T)ei ≈
x(T, x0 + ǫei) − x(T, x0)

ǫ
. (10.8)

The cost of this approach to computeG(T) is (nx + 1) times the cost of a for-
ward simulation. The approach is very easy to implement, butsuffers from one
serious problem: due to integrator adaptivity, each call might have a different
discretization grid. This error control of each trajectorydoes not only create
an overhead, but worse, it might result in discontinuous perturbations even for
smallǫ, when a perturbationx0 + ǫei triggers a discrete adaptation of integra-
tor (e.g. a change in the number of steps). It is important to note that due to
adaptivity, the outputx(T, x0) is not a differentiable function inx0, but only
guaranteed to be close to the true solution within the integrator accuracy TOL.
Thus, we need to use, as a rule of thumb,ǫ =

√
TOL in order to make large-

enough perturbations. As finite differences always mean that we loose half the
digits of accuracy, we might easily end e.g. with a derivative that has only two
valid digits.

Variational Approach A completely different approach is to formulate and
solve thevariational differential equationsalong with the nominal trajectory.
In this context, we define a matrixG(t) with the property:

G(t) =
∂x(t, x0)
∂x0

where x(t, x0) is the solution map of the ODE. Clearly, sincex(0, x0) = x0

holds,G(0) = I. Moreover, we observe that:

Ġ(t) =
d
dt

(

∂

∂x0
x(t, x0)

)

=
∂ẋ(t, x0)
∂x0

=
∂

∂x0
f (x(t, x0)) =

∂ f
∂x

(x(t, x0))
∂x(t, x0)
∂x0

︸    ︷︷    ︸

G(t)

This entails that we can obtain the sensitivities of the solution of the ODE
by solving, together with ˙x = f (x), the additional matrix differential equation

d
dt

G(t) =
∂ f
∂x

(x(t))G(t), t ∈ [0,T], G(0) = I.

This approach is much more accurate than the previous one, ata similar com-
putational cost. However, analytic expressions for∂ f

∂x are required. Also, it is
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interesting to note that the computed sensitivityG(T) might not be identical to
the derivative of the (discretized) integrator resultx(T, x0).

External Algorithmic Di fferentiation (EAD) The last disadvantage mentio-
ned above is avoided in the third approach,Algorithmic Differentiation (AD)
of the Integratoror External AD. The approach requires that the time steps
and the order of the integrator are fixed at the current nominal trajectory. An
AD tool is then deployed on the whole integrator code to generate the sensi-
tivities. Up to machine precision, AD provides derivative that are identical to
the ones of the numerical solutionx(T, x0) for a given fixed discretization grid.
In a practical implementation, the integrator and right hand side functionf (x)
need to be in the same or in compatible computer languages that are treated by
the corresponding AD tool (e.g. C++ when using ADOL-C).

If External ADis deployed on an implicit integrator, it should be noted that
the underlying Newton iterations will be differentiated, which might create
considerable and avoidable overhead compared to the variational differential
equation approach.

Internal Algorithmic Di fferentiation (IAD) A fourth approach, labelledIn-
ternal Algorithmic Differentiation (AD) of the Integratoris a subtle variation
of External AD. Here, AD is applied independently to each step of the integra-
tor in a custom implementation of the integration algorithm, and care is taken
that only the components of the algorithm that need to be differentiated are
differentiated. The approach can be easily illustrated for an Euler scheme (in
this specific case it internal AD is identical to both the variational differential
equation and external AD). If the grid is given by{tk}Nk=0 and the Euler iterates

xk+1 = xk + (tk+1 − tk) f (xk), k = 0, . . . ,N − 1, x0 = s.

Then this approach generates matrices

Gk+1 = Gk + (tk+1 − tk)
∂ f
∂x

(xk) Gk, k = 0, . . . ,N − 1, G0 = I.

Internal AD can arguably be construed as a discrete variational equation
deployed on the integration algorithm.

This approach is usually the most computationally efficient of the exact dif-
ferentiation approaches but requires a custom implementation of an ODE/DAE
solver that is explicitly designed for the generation of sensitivities. Note that as
in the previous two approaches, dealing with black-box right hand side functi-
ons f (x) would require that the matrix∂ f

∂x (xk) must also be computed by finite
differences at every integration step.
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For the reader interested in implementing a rudimentary yetefficient inte-
gration scheme with sensitivity, we provide next the details of an efficient RK4
scheme with internal AD.

Algorithm 10.2. Input: x0, p
Output: fRK4 (x0, p) , ∂

∂x0
fRK4 (x0, p) , ∂

∂p fRK4 (x0, p)
Setx = x0, A = I , B = 0
for n = 0 : N do

k← F(x, p), ∆x← k
kx ← ∇xF(x, p), ∆xx ← kx

kp← ∇uF(x, p), ∆xp← kp

k← F(x+ ∆t
2N k, p), ∆x← ∆x+ 2k

kx ← ∇xF(x, p)
(

I + ∆t
2N kx

)

, ∆xx ← ∆xx + 2kx

kp← ∇uF(x, p) + ∇xF(x, p) ∆t
2N kp, ∆xp← ∆xp + 2kp

k← F(x+ ∆t
2N k, p), ∆x← ∆x+ 2k

kx ← ∇xF(x, p)
(

I + ∆t
2N kx

)

, ∆xx ← ∆xx + 2kx

kp← ∇uF(x, p) + ∇xF(x, p) ∆t
2N kp, ∆xp← ∆xp + 2kp

k← F(x+ ∆t
N k, p), ∆x← ∆x+ k

kx ← ∇xF(x, p)
(

I + ∆t
N kx

)

, ∆xx ← ∆xx + kx

kp← ∇u∇uF(x, p) + ∇xF(x, p)∆t
N kp, ∆xp← ∆xp + kp

x← x+ ∆t
6N∆x

A←
(

I + ∆t
6N∆xx

)

A

B←
(

I + ∆t
6N∆xx

)

B+ ∆t
6N∆xp

end for
Set fRK4 (x0, p) = x, ∂

∂x0
fRK4 (x0, p) = A, ∂

∂p fRK4 (x0, p) = B

Such an algorithm can e.g. be easily deployed in plain C and typically deli-
vers high computational performances for a large class of ODEs.

This last idea can be generalized to the concept ofInternal Numerical Dif-
ferentiation (IND)[21]. At first sight it is similar to END, but needs a cus-
tom implementation and differs in several respects. First, all trajectories are
computed simultaneously, only the nominal trajectory is adaptive, while the
perturbed trajectories use the nominal, frozen grid. In implicit methods, also
matrix factorizations etc. will be frozen. At the end of the interval, we use the
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finite difference formula (10.8) but with a much smaller perturbation,namely
ǫ =
√

PREC where PREC is the machine precision, typically 10−16 The deri-
vatives will have the accuracy

√
PREC, i.e. usually 10−8, which is much higher

than for END.
Again, we illustrate IND at hand of the explicit Euler integration scheme,

where each perturbed trajectory with indexi = 1, . . . ,nx just satisfies

xi
k+1 = xi

k + (tk+1 − tk) f (xi
k), k = 0, . . . ,N − 1, xi

0 = s+ ǫei .

Note that due to the fact that adaptivity and possible matrixfactorizations are
switched off for the perturbed trajectories, IND is not only more accurate, but
also cheaper than END.

10.4.1 Differentiation of Implicit Intergrators

Internal Numerical Differentiation adequately deployed on implicit integrators
is usually fairly simple and inexpensive as the Newton scheme used to solve
the implicit equations underlying the scheme contain already most of the infor-
mation required for computing the sensitivities. Implicitintegrators are based
on solving a set of equations defining on the time interval [tk, tk+1] the end-
state of the integratorxk+1 implicitly from the initial conditionxk and possible
parametersp. One can write an implicit integrator in the general form:

x (tk+1, xk) = φ(w), with g (w, xk, p) = 0

whereg captures implicitly the continuous dynamics of the system via an ad-
hoc implicit integration scheme,w is a set of intermediate variables supporting
the implicit integration andφ a function delivering the end state. The integra-
tion is the performed by running the following Newton iteration:

Algorithm 10.3. Input: xk, p, w
Output: xk+1, w
while ‖g (w, xk, p)‖ > tol do

w← w−
[
∂
∂wg (w, xk, p)

]−1
g (w, xk, p)

end while
Setxk+1 = φ (w)

The sensitivities can then be obtained using the implicit function theorem,
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by evaluating:

∂xk+1

∂xk
= −∂φ (w)

∂w

[

∂

∂w
g (w, xk, p)

]−1
∂

∂xk
g (w, xk, p) (10.9a)

∂xk+1

∂p
= −∂φ (w)

∂w

[

∂

∂w
g (w, xk, p)

]−1
∂

∂p
g (w, xk, p) (10.9b)

at the outputw of Algorithm 10.3. It is important here to observe that the
computation of the sensitivities (10.9) can re-use the latest factorisation of
∂
∂wg (w, xk, p) formed in Algorithm 10.3, so that they require only the evalu-

ation of ∂
∂xk

g (w, xk, p) , ∂
∂pg (w, xk, p), and ∂φ(w)

∂w and the matrix multiplications
required to evaluate (10.9). They can therefore be usually formed at a fairly
low computational complexity.

10.5 Second-order sensitivities

We have detailed so far efficient methods to compute the first-order sensitivi-
ties of integrators, both in the explicit and implicit case.For a give simulation
methodx(t, p, x0), these computation aim at delivering the derivatives

∂

∂x0
x(t, p, x0) and

∂

∂p
x(t, p, x0) (10.10)

which are essential in the context of numerical optimal control. However, nu-
merical methods tackling the NLP underlying optimal control problems can
also make use of the second-order information on the NLP, in the form of
the Hessian of the Lagrange function. While approximations can be used to
compute the exact Hessian, see Chapter??, providing the exact Hessian of the
Lagrange function to the NLP solver can lead to a significantly better conver-
gence of the NLP solver than when using Hessian approximations. As we will
see later in further details, computing the exact Hessian ofthe NLP resulting
from the discretization of a continuous optimal control problem will require the
computation of the second-order derivatives of the simulation in some specific
directions, i.e. we will be interested in computing:

∂2

∂2x0

(

µ⊤x(t, p, x0)
)

,
∂2

∂2p

(

µ⊤x(t, p, x0)
)

,
∂2

∂x0∂p

(

µ⊤x(t, p, x0)
)

(10.11)

for some specific vectorλ ∈ Rnx. We will present in the following some met-
hods to approach the problem of computing (10.11) efficiently.
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10.5.1 Second-order sensitivities for explicit integrators

In order to build a generic discussion here, let us describe explicit integrators
as a generic recursion:

Algorithm 10.4.
Input: x0, p
s0 = x0

for i = 1 : N do
si = ξ (si−1, p)

end for
Returnx (t, x0, p) = sN

We observe that this generic algorithm can represent any explicit integrator
takingN step in integrating the dynamics, depending on the choice offunction
ξ. E.g. a basic explicit Euler integrators would use the function ξ (si , p) = si +
t
N f (si , p).

Adjoint-mode sensitivities Let us then first consider the problem of com-
puting the sensitivities not of the simulationx (t, x0, p) but of somescalar
functionof the simulation, i.e. we are interested in computing:

∂

∂x0
ζ (x(t, p, x0)) and

∂

∂p
ζ (x(t, p, x0)) (10.12)

whereζ is a scalar function. Clearly, these sensitivities can be computed via a
chain-rule, using the classical sensitivities (10.10). However, for this specific
problem, the adjoint-mode offers a more straightforward approach. Let us
define:

λ⊤i =
∂ζ (sN)
∂si

(10.13)

the sensitivity of the outputsN of Algorithm (10.4) to some of it intermediate
statesi . We then observe that:

λ⊤N =
∂ζ (sN)
∂sN

(10.14a)

λ⊤i−1 =
∂ζ (sN)
∂si−1

=
∂ζ (sN)
∂si

︸  ︷︷  ︸

=λ⊤i

∂si

∂si−1
= λ⊤i

∂ξ (si−1, p)
∂si−1

(10.14b)

One can observe that (10.14) defines abackward recursionthat can be com-
puted provided that theforward state trajectoriess0,...,N are available, e.g. via
a deployment of Algorithm 10.4 with a storage of its intermediate values. The
adjoint-mode sensitivity computation then reads as:
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Algorithm 10.5.
Input: s0,...,N, p

λ← ∂ζ(sN)
∂sN

⊤

for i = N : 1 do
λ← ∂ξ(si−1,p)

∂si−1

⊤
λ

end for
Return ∂

∂x0
ζ (x(t, p, x0)) = λ⊤

If the sensitivities are needed only in the form (10.12) are needed, as oppo-
sed to the entire sensitivities (10.10), then it is typically more efficient to de-
ploy Algorithm 10.4 (forward sweep) and then Algorithm 10.5 (Adjoint mode
sensitivity) in order to compute (10.12) rather than to compute the entire state
sensitivities (10.10) to finally compute (10.12).

Forward over adjoints A classical approach to compute the second-order
sensitivity of a scalar function of the form (10.11) is to perform a forward sen-
sitivity computation over the adjoint-mode Algorithm 10.5, in order to com-
pute the sensitivities∂λ0

∂x0
. To that end, we labelHi =

∂λi

∂x0
∈ Rnx×nx, and we first

observe that:

HN =
∂λN

∂x0
=
∂λN

∂sN

∂sN

∂x0
=
∂2ζ (sN)
∂2sN

∂sN

∂x0
(10.15)

where ∂sN

∂x0
can be obtained via a standard forward sensitivity computation of

the explicit integrator. In the special case we consider here, where the scalar
functionζ is linear insN, we observe thatHN = 0. We then observe that:

Hi−1 =
∂λi−1

∂x0
=
∂λi−1

∂λi

∂λi

∂x0
+
∂λi−1

∂si−1

∂si−1

∂x0
(10.16)

=
∂

∂λi

(

∂ξ (si−1, p)
∂si−1

⊤
λi

)

Hi +
∂

∂si−1

(

∂ξ (si−1, p)
∂si−1

⊤
λi

)

∂si−1

∂x0
(10.17)

=
∂ξ (si−1, p)
∂si−1

⊤
Hi +

∂2

∂s2
i−1

(

λ⊤i ξ (si−1, p)
) ∂si−1

∂x0
, (10.18)

where, as before,∂si−1
∂x0

can be obtained via a standard forward sensitivity com-
putation of the explicit integrator. A prototype of algorithm that computes the
directional second-order sensitivities of an explicit integrator can then read as:

Algorithm 10.6.
Input: x0, p and directionµ
Forward pass:
s0 = x0, A0 = I
for i = 1 : N do
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Ai =
∂ξ(si−1,p)
∂si−1

Ai−1 Storage needed
si = ξ (si−1, p) Storage needed

end for
Adjoint+ Forward over adjoint:
λ← µ, H ← 0
for i = N : 1 do

H ← ∂ξ(si−1,p)
∂si−1

⊤
H + ∂2

∂s2
i−1

(

λ⊤ξ (si−1, p)
)

Ai−1

λ← ∂ξ(si−1,p)
∂si−1

⊤
λ

end for
Returnx(t, x0, p) = sN, ∂

∂x0
x(t, x0, p) = AN

and ∂
∂x0

(

µ⊤x(t, x0, p)
)

= λ, ∂2

∂x2
0

(

µ⊤x(t, x0, p)
)

= H

It is interesting to observe that this fairly simple algorithm generates a si-
mulation of the dynamics with first-order sensitivities, aswell as the first and
second-order sensitivities of the scalar functionµ⊤x(t, x0, p) of the simulation
x(t, x0, p) in the prescribed directionµ. However, it is important to underline
here that the intermediate stepssi and their sensitivitiesAi need to be stored
during the forward pass. In general, the storage requirements amounts to the
storage ofNn(n+ 1) floats, which can be, unfortunately, fairly large.

Symmetry-preserving sensitivities ?

10.5.2 Second-order sensitivities for implicit integrators

Second-order sensitivities of:

∂2

∂x2
k

(

µ⊤Tvk

)

(10.19)

wherevk is implicitly defined byck (vk, xk, pk) = 0.
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Exercises

10.1 Euler vs RK4: Consider a controlled harmonic oscillator described by:

d
dt

[

p(t)
v(t)

]

=

[

0 1
−1 0

] [

p(t)
v(t)

]

+

[

0
1

]

u(t), t ∈ [0,T].

We abbreviate this ODE as ˙x = f (x,u) with x = (p, v)⊤. We choose the
fixed initial valuex(0) = (10,0)⊤ andT = 10.

(a) We are interested in comparing the simulation results for u(t) = 0
that are obtained by two different integration schemes, namely the
(explicit) Euler integrator and a Runge-Kutta integrator of 4th order.
We regard in particular the valuep(10), and as the ODE is explicitly
solvable, we know it exactly, which is useful for comparisons. What
is the analytical expression forp(10)? Evaluate it numerically.

(b) Write a function named f usingdef f(x,u) that evaluates the right
hand side of the ODE. Then, implement an explicit Euler method with
N = 50 integrator steps, i.e. with a stepsize of∆t = 10/50= 0.2. The
central line in the Euler code reads

xk+1 = xk + ∆t · f (xk,uk) (10.20)

Plot your trajectories{(tk, xk)}N+1
1 for uk = 0.

(c) Now exchange in your Euler simulation code the line that generates
the step (10.20) by the following five lines:

k1 = f (xk,uk)

k2 = f (xk +
1
2
∆t · k1,uk)

k3 = f (xk +
1
2
∆t · k2,uk)

k4 = f (xk + ∆t · k3,uk)

xk+1 = xk + ∆t
1
6

(k1 + 2k2 + 2k3 + k4)

This is the classical Runge Kutta method of order four (RK4).Note
that each integrator step is four times as expensive as an Euler step.
What is the advantage of this extra effort? To get an idea, plot your
trajectories{(tk, xk)}N+1

1 for the same numberN of integrator steps.
(d) Make both pieces of your integrating code reusable by creating functi-

ons namedeuler andrk4 out them. Both should have argumentsx0,
T andN and return the state at the end point. Test your implementation
by comparing with the plots.
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(e) To make the comparison of Euler and RK4 quantitative, regard the
different approximations ofp(10) that you obtain for different stepsi-
zes, e.g.∆t = 10−k with k = 0, . . . ,5. We call these approximations
p̃(10;∆t). Compute the errors|p(10)− p̃(10;∆t)| and plot them doubly
logarithmic. Use the norm function to calculate the norm of vectors.
You should see a line for each integrator. Can you explain thediffe-
rent slopes?

10.2 Code a collocation-based integrator with sensitivities. We will use the
following setup:

• Legendre polynomials of orderK, using the time roots:

t = [0.0 0.06943184420297355 0.33000947820757187

0.6699905217924282 0.9305681557970262]

and build the Lagrange polynomials according to:

P j(τ) =
∏

i, j

τ − ti
t j − ti

(10.21)

• For the sake of simplicity, we will use a single finite elementper shoot-
ing interval. I.e. on the shooting interval[tk, tk+1], the state trajectories
are fully interpolated as:

x (θ, t) =
K∑

j=0

θ jP j

(

t − tk
tk+1 − tk

)

, ∀t ∈ [tk, tk+1] (10.22)

• The collocation equations then read as:

x (θ, tk) − xk = 0

∂

∂t
x (θ, t)

∣
∣
∣
∣
∣
t=t j

− F
(

x
(

θ, t j

)

,uk

)

= 0, j = 1, ...,K
(10.23)

where xk is the initial condition for the shooting interval[tk, tk+1].
Note thatx

(

θ, t j

)

= θ j .

Hints:

• define your collocation polynomials Pj(t) symbolically and compute
their time derivativesṖ j(t) by symbolic differentiation. Export them
via matlabFunction to build the interpolations you need (i.e. for ∂

∂t x (θ, t)
∣
∣
∣
t=t j

and x(θ, tk)).
• Build the collocation constraints(10.23)also symbolically so that you

can differentiate them automatically. Export all functions for thenu-
merical part.
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• Observe(10.21)and (10.22), and reflectcarefully on how and where
the duration of your shooting intervals∆t = tk+1 − tk needs to be
inserted. This is a classic source of error !

• Think also carefully of where/when to form the updates of your collo-
cation variables in your integrator, such that your sensitivities match
the collocation variables (and therefore the ”final state”)that your
integrator delivers.

• It can be advantageous to use LU decompositions in your integrator.
E.g. in Matlab you can form your factor using the function[L,U] =
lu

(∇g⊤
)

. The solution to∇g⊤x+y = 0 is then given by y= −U\ (L\x).
Observe that you can then re-use your factors for the sensitivity com-
putations.

Note: collocation-based integration is rather intensive coding-wise.
Make sure you think through your coding strategy before starting.

(a) Deploy a (full-step) Newton scheme to solve the collocation equati-
ons (10.23). Have an ”integrator tolerance” tolinteg variable to control
the accuracy of your Newton iterations.

(b) Introduce a computation of the integrator sensitivities.
(c) Validate your integrator by deploying it on an LTI. In this case, at

steady-state your sensitivities will match the zero-order-hold linear
discretisation of the dynamics (Matlab function ”c2d”) when tk+1 −
tk → 0.

(d) Deploy your integrator on the pendulum dynamics built bythe ”Wri-
teDynamics.m”.

(e) Introduce your collocation-based integrator in your multiple-shooting
code of the ”Shooting” assignment. Use a terminal constraint to force
your system to be atx = 0 at final time. You can build a ”smart”
initial guess for your integrators. Verify that your solverconverges
for moderate tolerances (try e.g. tol= 10−4)

(f) Test your solver at a tight tolerance (try e.g. tol= 10−10), and expe-
riment with the tolerance tolinteg you set in the integrator. You will
probably have to neutralise your line-search here, as it will become
the numerically very sensitive. Explain what you observe.

10.3 Adjoint-mode Differentiation Consider the discrete dynamics

xk+1 = f (xk,uk) , k = 0, ...,N − 1 (10.24)

(a) Consider the cost function

Φ = T (xN) (10.25)
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Prove the following statement:

∇x0Φ = λ0 (10.26)

whereλ0 is provided by the following recursion:

λk−1 = ∇xk f (xk,uk) λk with λN = ∇xNT (xN)

Hint: compute∇xkΦ by proceeding backward, starting from∇xNΦ and
making your way to∇x0Φ via chain-ruling the dynamics.

(b) We now consider a cost function made of a stage and terminal cost:

Φ = T (xN) +
N−1∑

k=0

L (xk,uk) (10.27)

Prove that (10.26) is still valid ifλ0 is provided by the following re-
cursion:

λk = ∇xkL (xk,uk, λk+1) λN = ∇xNT (xN)

with L (x,u, λ) = L (x,u) + λ⊤ f (x,u).

Hint: we use a similar strategy as in the previous question. However
we need to be very careful here about the implicit and explicit depen-
dencies of the functions on the variables. One way of handling this
problem is to clearly distinguish between partial and totalderivati-
ves.

(c) A problem with a cost function of the form (10.27) and dynamics
(10.24) can always be rewritten as:

Φ = T (xN) + xA
N

wherexA
N ∈ R arises from thestate augmentation:

x̄k+1 =

[

xk+1

xA
k+1

]

=

[

f (xk,uk)
xA

k + L (xk,uk)

]

= f̄ (x̄k,uk) .

Such a reformulation allows one to get rid of the stage cost inany
optimisation problem, and consider only problems with terminal cost
without loss of generality. Reconcile formally this reformulation with
the results established before. In particular, what happens to the mul-
tipliers of the formulation using a stage cost when switching to the
reformulation ?
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(d) Consider the discrete dynamics (10.24), and the cost function (10.25).
Prove the more generic statement:

∇pΦ = ∇px0 (p) λ0 +

N−1∑

k=0

∇pL (xk,uk (p) , λk+1)

for any variablep entering in the construction of the inputsuk an-
d/or initial conditionsx0, where theλk:s are given by the following
recursion:

λk = ∇xkL (xk,uk, λk+1) λN = ∇xNT (xN)

and withL (x,u, λ) = λ⊤ f (x,u).

Hint: this is a tricky one. You need to use theaugmented costfunction:

Φ = T (xN) +
N−1∑

k=0

λ⊤k+1
(

f (xk,uk) − xk+1
)

and take the Jacobian with respect top. You will have to make ad-hoc
simplifications and spot the telescopic sum (i.e. a sum whereeach
term cancels out with the subsequent one).
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The Hamilton-Jacobi-Bellman Equation

In this short chapter we give a very brief sketch of how the concept of dyna-
mic programming can be utilized in continuous time, leadingto the so called
Hamilton-Jacobi-Bellman (HJB) Equation. For this aim we regard the follo-
wing simplified optimal control problem:

minimize
x(·),u(·)

∫ ⊤

0
L(x(t),u(t)) dt + E (x(T))

subject to x(0)− x̄0 = 0 (fixed initial value),

ẋ(t) − f (x(t),u(t)) = 0, t ∈ [0,T] (ODE model).

Note that we might approximate all inequality constraints by differentiable
barrier functions that tend to infinity when the boundary of the feasible set is
reached.

11.1 Dynamic Programming in Continuous Time

In order to motivate the HJB equation, we start by an Euler discretization of
the above optimal control problem. Though we would in numerical practice
never employ an Euler discretization due to its low order, itis helpful for the
theoretical purposes we are aiming for here. We introduce a timesteph = T

N

195
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and then address the following discrete time OCP:

minimize
x,u

N−1∑

i=0

hL(xi ,ui) + E (xN)

subject to x0 − x̄0 = 0,

xi+1 = xi + h f(xi ,ui), i = 0, . . . ,N − 1.

Dynamic programming applied to this optimization problem yields:

Jk(x) = minimize
u

hL(x,u) + Jk+1(x+ h f(x,u)).

Replacing the indexk by time pointstk = kh and identifyingJk(x) = J(x, tk),
we obtain

Jk(x, tk) = minimize
u

hL(x,u) + J(x+ h f(x,u), tk + h).

Assuming the differentiability of J(x, t) in (x, t), its Taylor expansion yields

J(x, t) = minimize
u

hL(x,u) + J(x, t) + h∇xJ(x, t)⊤ f (x,u) + h
∂J
∂t

(x, t) +O(h2).

Finally, bringing all terms independent ofu to the left side of the equation
and dividing byh→ 0 we obtain already theHamilton-Jacobi-Bellman (HJB)
Equation:

−∂J
∂t

(x, t) = minimize
u

L(x,u) + ∇xJ(x, t)⊤ f (x,u).

This partial differential equation (PDE) describes the evolution of the value
function over time. We have to solve it backwards fort ∈ [0,T], starting at the
end of the horizon with

J(x,T) = E(x).

The optimal feedback control for the statex at timet is then obtained from

u∗feedback(x, t) = arg min
u

L(x,u) + ∇xJ(x, t)⊤ f (x,u).

One ought to observe that the optimal feedback control does not depend on
the absolute value, but only on the gradient of the value function,∇xJ(x, t). In-
troducing the variableλ ∈ Rnx as this gradient, one can define theHamiltonian
function

H(x, λ,u) := L(x,u) + λ⊤ f (x,u).
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Using the new notation and regardingλ as the relevant input of the Hamilto-
nian, the control can be expressed as an explicit function ofx andλ:

u∗explicit(x, λ) = arg min
u

H(x, λ,u).

Then we can explicitly compute the so calledtrue Hamiltonian

H∗(x, λ) := min
u

H(x, λ,u) = H(x, λ,u∗explicit(x, λ)),

where the control does not appear as input anymore. Using thetrue Hamilto-
nian, we can write the Hamilton-Jacobi-Bellman Equation compactly as:

−∂J
∂t

(x, t) = H∗(x,∇xJ(x, t)).

Like dynamic programming, the solution of the HJB Equation also suffers from
the “curse of dimensionality” and its numerical solution isvery expensive in
larger state dimensions, as the solution to a partial-differential equation having
a large state size needs to be computed. In addition, differentiability of the
value function is not always guaranteed such that even the existence of soluti-
ons is generally difficult to prove. However, some special cases exist that can
analytically be solved, most prominently, again, linear quadratic problems.

11.2 Linear Quadratic Control and Riccati Equation

Let us consider a linear quadratic optimal control problem of the following
form.

minimize
x(·),u(·)

∫ T

0

[

x
u

]⊤ [

Q(t) S(t)⊤

S(t) R(t)

] [

x
u

]

dt + x(T)⊤PTx(T)

subject to x(0)− x0 = 0, (fixed initial value),

ẋ−A(t)x− B(t)u = 0, t ∈ [0,T], (linear ODE model).

As in discrete time, the value function is quadratic for thistype of problem.
In order to verify this statement, let us first observe thatJ(x,T) = x⊤PTx
is quadratic. Let us assume for now thatJ(x, t) is quadratic for all time, i.e.
J(x, t) = x⊤P(t)x for some matrixP(t). Under this assumption, the HJB Equa-
tion reads as

−∂J
∂t

(x, t) = minimize
u

[

x
u

]⊤ [

Q(t) S(t)⊤

S(t) R(t)

] [

x
u

]

+ 2x⊤P(t)(A(t)x+ B(t)u).
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If symmetrized, the right reads as:

minimize
u

[

x
u

]⊤ [

Q+ PA+ A⊤P S⊤ + PB
S + B⊤P R

] [

x
u

]

.

By the Schur Complement Lemma 8.2, this yields

−∂J
∂t
= x⊤

(

Q+ PA+ A⊤P− (S⊤ + PB)R−1(S + B⊤P)
)

x,

which is again a quadratic term. Thus, asJ is quadratic at a timeT, it remains
quadratic throughout the backwards evolution. The resulting matrix differential
equation

−Ṗ = Q+ PA+ A⊤P− (S⊤ + PB)R−1(S + B⊤P)

with terminal condition

P(T) = PT

is called thedifferential Riccati equation. Integrating it backwards allows us
to compute the cost-to-go function for the above optimal control problem. The
corresponding feedback law is by the Schur complement lemmagiven as:

u∗feedback(x, t) = −R(t)−1(S(t) + B(t)⊤P(t))x.

11.3 Infinite Time Optimal Control

Let us now regard an infinite time optimal control problem, asfollows.

minimize
x(·),u(·)

∫ ∞

0
L(x(t),u(t)) dt

subject to x(0)− x0 = 0,

ẋ(t) − f (x(t),u(t)) = 0, t ∈ [0,∞].

The principle of optimality states that the value function of this problem, if
it is finite and it exists, must be stationary, i.e. independent of time. Setting
∂J
∂t (x, t) = 0 leads to the stationary HJB equation

0 = minimize
u

L(x,u) + ∇xJ(x)⊤ f (x,u)

with stationary optimal feedback control law

u∗feedback(x) = arg min
u

L(x,u) + ∇xJ(x)⊤ f (x,u).

This equation is easily solvable in the linear quadratic case, i.e., in the case of
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an infinite horizon linear quadratic optimal control with time independent cost
and system matrices. The solution is again quadratic and obtained by setting

Ṗ = 0

and solving

0 = Q+ PA+ A⊤P− (S⊤ + PB)R−1(S + B⊤P).

This equation is called thealgebraic Riccati equation in continuous time. Its
feedback law is a static linear gain:

u∗feedback(x) = −R−1(S + B⊤P)
︸           ︷︷           ︸

=K

x.

Exercises

11.1 . . .
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Pontryagin and the Indirect Approach

The indirect approach is an extremely elegant and compact way to characterize
and compute solutions to optimal control problems. Its origins date back to the
calculus of variations and the classical work by Euler and Lagrange. Howe-
ver, its full generality was only developed in 1950s and 1960s, starting with
the seminal work of Pontryagin and coworkers [68]. One of themajor achie-
vements of their approach compared to the previous work was the possibility
to treat inequality path constraints, which appear in most relevant applications
of optimal control, notably in time optimal problems.Pontryagin’s Maximum
Principle describes the necessary optimality conditions for optimalcontrol in
continuous time. Using these conditions in order to eliminate the controls from
the problem and then numerically solving a boundary value problem (BVP) is
called theindirect approachto optimal control. It was widely used when the
Sputnik and Apollo space missions where planned and executed, and is still
very popular in aerospace applications. The main drawbacksof the indirect
approach are the facts, (a) that it must be possible to eliminate the controls
from the problem by algebraic manipulations, which is not always straight-
forward or might even be impossible, (b) that the optimal controls might be a
discontinuous function ofx andλ, such that the BVP is possibly given by a
non-smooth differential equation, and (c) that the differential equation might
become very nonlinear and unstable and not suitable for a forward simulation.
All these issues of the indirect approach can partially be addressed, and most
important, it offers an exact and elegant characterization of the solution ofop-
timal control problems in continuous time.

200
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12.1 The HJB Equation along the Optimal Solution

In order to derive the necessary optimality conditions stated in Pontryagin’s
Maximum Principle, let us again regard the simplified optimal control pro-
blem:

minimize
x(·),u(·)

∫ T

0
L(x(t),u(t)) dt + E (x(T))

subject to x(0)− x̄0 = 0 (fixed initial value),

ẋ(t) − f (x(t),u(t)) = 0, t ∈ [0,T] (ODE model).

and let us recall that the Hamiltonian function was defined asH(x, λ,u) =
L(x,u)+ λ⊤ f (x,u) and the Hamilton-Jacobi-Bellman equation was formulated
as:− ∂J

∂t (x, t) = minu H(x,∇J(x, t),u) with terminal conditionJ(x,T) = E(x).
We already made the important observation that the optimal feedback con-
trols

u∗feedback(x, t) = arg min
u

H (x,∇xJ(x, t),u)

depend only on the gradient∇xJ(x, t), not onJ itself. Thus, we might introduce
the so calledadjoint variablesor costatesλ that we identify with this gradient.
If the statex∗(t) and costateλ∗(t) are known at a point on the optimal trajectory,
then we can obtain the optimal controlsu∗(t) from u∗(t) = u⋆exp(x

∗(t), λ∗(t))
where the explicit control law is defined again by

u⋆exp(x, λ) = arg min
u

H(x, λ,u).

For historical reasons, the characterization of the optimal controls resulting
from this pointwise minimum is calledPontryagin’s Maximum Principle, but
we might also refer to it as theminimum principlewhen convenient.

The problem of computing the optimal input is now reduced to the problem
of finding the optimal state and costate trajectoriesx∗(t) andλ∗(t). The idea is
to assume that the trajectory is known, and to differentiate the HJB Equation
along this optimal trajectory. Let us regard the HJB Equation

−∂J
∂t

(x, t) = minimize
u

H (x,∇xJ(x, t),u) = H
(

x,∇xJ(x, t),u⋆exp(x,∇xJ(x, t))
)

and differentiate it totally with respect tox. Note that the right-hand side de-
pends via∇xJ(x, t) andu⋆exp indirectly onx. Fortunately, we know that∂H

∂u (x∗, λ∗,u∗) =
0 due to the minimum principle. Moreover, it is useful to remember here that



DRAFT

202 Pontryagin and the Indirect Approach

λ(t) = ∇xJ(x(t), t), such that∂λ
∂x = ∇

2
xJ(x(t), t). We then obtain

− ∂
2J

∂x∂t
(x∗, t) =

∂H
∂x

(x∗, λ∗,u∗) +
∂H
∂λ

(x∗, λ∗,u∗)
︸           ︷︷           ︸

= f (x∗,u∗)⊤

∇2
xJ(x∗, t)

where we drop for notational convenience the time dependence for x∗(t), λ∗(t),
u∗(t). Using ẋ∗ = f (x∗,u∗) and reordering yields

∂

∂t
∇xJ(x∗, t) + ∇2

xJ(x∗, t) ẋ∗

︸                              ︷︷                              ︸

= d
dt∇xJ(x∗,t)

= λ̇∗ = −∇xH(x∗, λ∗,u∗).

This is a differential equation for the costateλ∗. Finally, we differentiateJ(x,T) =
E(x) and obtain the terminal boundary condition

λ(T) = ∇E(x(T)).

Thus, we have derived necessary conditions that the optimaltrajectory must
satisfy. We combine them with the constraints of the optimalcontrol problem
and summarize them as:

x∗(0) = x̄0, (initial value)
ẋ∗(t) = f (x∗(t),u∗(t)), t ∈ [0,T], (ODE model)
λ̇∗(t) = −∇xH(x∗(t), λ∗(t),u∗(t)), t ∈ [0,T], (adjoint equations)
u∗(t) = arg min

u
H(x∗(t), λ∗(t),u), t ∈ [0,T], (minimum principle)

λ∗(T) = ∇E(x∗(T)). (adjoint final value)

Due to the fact that boundary conditions are given both at thestart and the
end of the time horizon, these necessary optimality conditions form atwo-
point boundary value problem (TPBVP). These conditions can either be used
to check if a given trajectory can possibly be a solution; alternatively, and more
interestingly, we can solve the TPBVP numerically in order to obtain candidate
solutions to the optimal control problem. Note that this is possible due to the
fact that the number and type of the conditions matches the number and type
of the unknowns:u∗ is determined by the minimum principle, whilex∗ and
λ∗ are obtained by the ODE and the adjoint equations, i.e. an ODEin R2nx,
in combination with the corresponding number of boundary conditions,nx at
the start for the initial value andnx at the end for the adjoint final value. But
before we discuss how to numerically solve such a BVP we have to address
the question of how we can eliminate the controls from the BVP.
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12.2 Obtaining the Controls on Regular and on Singular
Arcs

Let us in this section discuss how to derive an explicit expression for the opti-
mal control that are formally given by

u⋆exp(x, λ) = arg min
u

H(x, λ,u).

In this section we discuss two cases, first the standard case,and second the
case of so calledsingular arcs.

In the less demanding standard case, the optimal controls are simply deter-
mined by the equation

∂H
∂u

(x, λ,u∗) = 0.

In this case, the controls appear explicitly in the analyticexpression of the
derivative. We can then solve the implicit function either and compute the con-
trol u⋆exp(x, λ) either numerically, or transform the equation in order to obtain it
explicitly. Let us illustrate this with an example.

Example 12.1(Linear Quadratic Control with Regular Cost). RegardL(x,u) =
1
2(x⊤Qx+ u⊤Ru) with positive definiteR and f (x,u) = Ax+ Bu. Then

H(x, λ,u) =
1
2

(x⊤Qx+ u⊤Ru) + λ⊤(Ax+ Bu)

and
∂H
∂u
= u⊤R+ λ⊤B.

Thus, ∂H
∂u = 0 implies that

u⋆exp(x, λ) = −R−1B⊤λ.

Note that the explicit expression only depends onλ here. For completeness,
let us also compute the derivative of the Hamiltonian with respect tox, which
yields

∂H
∂x
= x⊤Q+ λ⊤A,

so that the evolution of the costate is described by the adjoint equation

λ̇ = −∂H
∂x

⊤
= −A⊤λ − Qx.

If a fixed initial valuex̄0 is provided for the optimal control problem, and qua-
dratic terminal cost, i.e.E(x) = 1

2 x⊤Px is present, then the TPBVP that we
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need to solve is given by

x∗(0) = x̄0, (initial value)
ẋ∗(t) = Ax∗(t) − BR−1B⊤λ∗(t), t ∈ [0,T], (ODE model)
λ̇∗(t) = −A⊤λ∗(t) − Qx∗(t) t ∈ [0,T], (adjoint equations)
λ∗(T) = Px. (adjoint final value)

Note that this TPBVP is linear and therefore admits an explicit solution.

�

The second and more complicated case occurs in the caseu∗ is not provided
by the implicit function:

∂H
∂u

(x, λ,u∗) = 0

The implicit function theorem tells us that this occurs when∂2H
∂u2 (x, λ,u) is rank-

deficient (i.e. null in the single-input case). We then speakof a singular arc.
This e.g. occurs ifL(x,u) is independent ofu and f (x,u) is linear inu, as then
∂H
∂u does not depend explicitly onu. Roughly speaking, singular arcs are due
to the fact thatsingular perturbationsof the controls – that go up and down
infinitely fast – would not matter in the objective and yield exactly the same
optimal solution as the well-behaved piecewise continuouscontrol in which
we are usually interested. Note that the controls still influence the trajectory on
a singular arc, but that this influence occurs only indirectly, via the evolution
of the states.

This last fact points out to a possible remedy: if∂H
∂u is zero along the singular

arc, then also its total time derivative along the trajectory should be zero. Thus,
we differentiate the condition totally with respect to time

d
dt
∂H
∂u

(x(t), λ(t),u) = 0,

which yields

∂

∂x
∂H
∂u

ẋ
︸︷︷︸

= f (x,u)

+
∂

∂λ

∂H
∂u

λ̇
︸︷︷︸

=−∇xH

= 0.

We substitute the explicit expressions for ˙x andλ̇ into this equation and hope
that nowu appears explicitly. If this is still not the case, we differentiate even
further, until we have found ann > 1 such that the relation

(

d
dt

)n
∂H
∂u

(x(t), λ(t),u) = 0

explicitly depends onu. Then we can invert the relation and finally have an
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explicit equation foru∗. It is interesting to observe here that an explicit de-
pendence onu can occur only forn even. Let us illustrate this with another
example.

Example 12.2(Linear Quadratic Control with Singular Cost). RegardL(x,u) =
x⊤Qx and f (x,u) = Ax+ Bu. Then

H(x, λ,u) =
1
2

x⊤Qx+ λ⊤(Ax+ Bu)

and
∂H
∂u
= λ⊤B.

This expression does not depend explicitly onu and thusu∗ can not be directly
obtained from it. Therefore, we differentiate totally with respect to time:

d
dt
∂H
∂u
= λ̇⊤B = −∂H

∂x
B = −(x⊤Q+ λ⊤A)B.

This still does not explicitly depend onu. Once more differentiating yields:

d
dt

d
dt
∂H
∂u
= −ẋ⊤QB− λ̇⊤AB= −(Ax+ Bu)⊤QB+ (x⊤Q+ λ⊤A)AB.

Setting this to zero and transposing it, we obtain the equation

−B⊤QAx− B⊤QBu+ B⊤A⊤Qx+ B⊤A⊤A⊤λ = 0,

and inverting it with respect tou we finally obtain the desired explicit expres-
sion

u⋆exp(x, λ) = (B⊤QB)−1B⊤
(

A⊤Qx− QAx+ A⊤A⊤λ
)

.

12.3 Pontryagin with Path Constraints

Let us consider here OCPs with path constraints:

minimize
x(·),u(·)

∫ T

0
L(x(t),u(t)) dt + E (x(T))

subject to x(0)− x̄0 = 0 (States initial value),

ẋ(t) − f (x(t),u(t)) = 0, t ∈ [0,T] (ODE model),

h (x(t),u(t)) ≤ 0, t ∈ [0,T] (Path Constraints),
(12.1)

If path constraints of the formh(x(t),u(t)) ≤ 0 are to be satisfied by the so-
lution of the optimal control problem fort ∈ [0,T] the same formalism as
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developed before is still applicable. In this case, it can beshown that for given
x andλ, we need to determine the optimizingu from

u⋆exp(x, λ) = arg min
u

H(x, λ,u)

subject to h(x,u) ≤ 0.
(12.2)

This is simple to apply in the case of pure control constraints, i.e. if we have
only h(u) ≤ 0.

In the special case where the constraintsh (x,u), are not “fully controllable”
, a singular situation usually occurs. Higher-order derivatives of the state con-
straints ought then to be considered in order to describe thetrajectories along
the active state constraint at the solution; in the case of uncontrollable state
constraints, we will only have a single time point where the state trajectory
touches the constraint and the adjoints will typically jumpat this point. Let us
leave all complications away and illustrate in this sectiononly the nicest case,
the one of pure control constraints.

In the case of mixed constraints with regular solution of theabove optimi-
zation problem (12.2), a simple way to describe the optimal solution is via the
modified Hamiltonian function:

H (x,u, λ, µ) = L (x,u) + λ⊤ f (x,u) + µ⊤h (x,u) . (12.3)

One ought to note that this modification affects both the adjoint differential
equation and the Hamiltonian stationarity. Similarly to the KKT conditions,
the adjoint variablesµmust be positive at their solution, and a complementarity
slackness condition must hold at every timet ∈ [0, T]. The resulting conditions
of optimality can be written as:

x(0)− x̄0 = 0, (12.4a)

λ(T) − ∇E(x(T)) = 0, (12.4b)

ẋ(t) − ∇λH∗(x(t), λ(t), µ(t)) = 0, t ∈ [0,T], (12.4c)

λ̇(t) + ∇xH
∗(x(t), λ(t), µ(t)) = 0, t ∈ [0,T], (12.4d)

h⋆i (x (t) , λ (t) , µ (t)) · µi (t) = 0, t ∈ [0,T], (12.4e)

h⋆i (x (t) , λ (t) , µ (t)) ≤ 0, µ (t) ≥ 0 t ∈ [0,T], (12.4f)

where

H∗(x(t), λ(t), µ(t)) = H
(

x (t) ,u⋆exp(x (t) , λ (t) , µ (t)), λ (t) , µ (t)
)

(12.5)

h∗(x(t), λ(t), µ(t)) = h
(

x (t) ,u⋆exp(x (t) , λ (t) , µ (t))
)

(12.6)
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and

u⋆exp(x, λ, µ) = arg min
u

H(x, λ, µ,u).

is based on (12.3). We consider the problem of solving (12.4)numerically in
Section 12.6.4. Let us consider here simple special cases.

Example 12.3(Linear Quadratic Problem with Control Constraints). Let us
regard constraintsh(u) = Gu+b ≤ 0 and the HamiltonianH(x, λ,u) = 1

2 x⊤Qx+
u⊤Ru+ λ⊤(Ax+ Bu) with R invertible. Then

u⋆exp(x, λ) = arg min
u

H(x, λ,u)

subject to h(u) ≤ 0

is equal to

u⋆exp(x, λ) = arg min
u

1
2

u⊤Ru+ λ⊤Bu

subject to Gx+ b ≤ 0

which is a strictly convex parametric quadratic program (pQP) which has a
piecewise affine, continuous solution.

A special and more specific case of the above class is the following.

Example 12.4(Scalar Bounded Control). Regard scalaru and constraint|u| ≤
1, with Hamiltonian

H(x, λ,u) =
1
2

u2 + v(x, λ)u+ w(x, λ).

Then, with

ũ(x, λ) = −v(x, λ)

we have

u⋆exp(x, λ) = max{−1,min{1, ũ(x, λ)}}.

Attention: this simple “saturation” trick is only applicable in the case of one
dimensional QPs.

12.4 Properties of the Hamiltonian System

The combined forward and adjoint differential equations have a particular struc-
ture: they form aHamiltonian system. In order to see this, first note for nota-
tional simplicity that we can directly use the true Hamiltonian H∗(x, λ) in the
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differential equation, and second recall that

∇λH∗(x, λ) = f
(

x,u⋆exp(x, λ)
)

.

Thus,

d
dt

[

x
λ

]

=

[

∇λH∗(x, λ)
−∇xH∗(x, λ)

]

which is a Hamiltonian system. We might abbreviate the system dynamics as
ẏ = ϕ(y) with

y =

[

x
λ

]

, and ϕ(y) =

[

∇λH∗(x, λ)
−∇xH∗(x, λ)

]

. (12.7)

The implications of this specific structure are, first, that the Hamiltonian is
conserved. This can be easily seen by differentiatingH totally with respect to
time.

d
dt

H∗(x, λ) = ∇xH
∗(x, λ)⊤ ẋ+ ∇λH∗(x, λ)⊤λ̇

= ∇xH
∗(x, λ)⊤∇λH∗(x, λ) − ∇λH∗(x, λ)⊤∇xH

∗(x, λ) = 0.

Second, by Liouville’s Theorem, the fact that the system ˙y = ϕ(y) is a Hamil-
tonian system also means that the volume in the phase space ofy = (x, λ) is
preserved. The implication of this is that even if the dynamics of x are stable
and contracting fast, the dynamics ofλmust be expanding and therefore unsta-
ble. We illustrate this effect in Fig. 12.1 for the optimal control problem:

minimize
x(·),u(·)

1
2

∫ T

0
x(t)2 + u(t)2 dt

subject to x(0)− 1 = 0 (fixed initial value),

ẋ(t) + sinx(t) − u(t) = 0, t ∈ [0,T] (ODE model).

yielding the state-costate equations:

ẋ = −λ − sinx, λ̇ = λ cosx− x

This is an unfortunate fact for numerical approaches that solve the TPBVP
using a full simulation of the combined differential equation system, like single
shooting. If the system ˙x = f (x,u) has either somevery unstableor somevery
stablemodes, in both cases the forward simulation of the combined system
is an ill-posed problem. In general, the conservation of volume in the state-
costate space makes solving the TPBVP problem numerically very difficult
with single shooting techniques. The indirect approach is however applicable
using alternative numerical approaches, but it then loosessome of its appeal.
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Figure 12.1 Illustration of the volume conservation in the state-costate space.
Here an integration of the state-costate equations is displayed for a disc of ini-
tial conditionsx, λ at time t = 0. The evolution of this disc of initial conditions
is displayed for various time instants in the time interval [0,4]. The area of the
disc is preserved by the state-costate dynamics, such that a contraction of the area
along a dimension yields an expansion in others.

Different numerical approaches for solving the TPBVP are presented further
in Section 12.6.

12.5 Connection to the Calculus of Variations

Calculus of variations are fundamental to optimal control in general, and to in-
direct methods in particular. It offers powerful insights into the mathematics of
optimal control, and also allows for explaining the behavior of direct methods
in some special cases. Consider a simple optimal control problems, which we
recast as a the functional:

J [u (.)] = φ (x (tf )) +
∫ tf

t0

L (x,u) dt

where: ẋ = f (x,u) , x (t0) = x0

that maps an input profileu (.) into the corresponding costJ [u (.)] ∈ R. We can
then defined the Ĝateaux derivative

δJ
[

u (.) , ξ (.)
]

= lim
τ→0

J
[

u (.) + τξ (.)
] − J [u (.)]

τ
.
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Note that Ĝateaux derivatives can be construed as the extension of directio-
nal derivatives to arbitrary vector spaces, including infinite-dimensional ones.
Here we differentiate the functionalJ [u (.)] in the ”direction”ξ(.). Optimality
then requires that

δJ
[

u⋆ (.) , ξ (.)
]

= 0, ∀ ξ (.) .

A useful interpretation of the stationarity ofH is provided by the fundamental
Lemma of Calculus of Variations:

δJ
[

u (.) , ξ (.)
]

=

∫ tf

0
Hu (x(t), λ (t) ,u (t)) · ξ (t) dt.

In particular, it follows that at the optimal solutionu⋆ (.)

δJ
[

u⋆ (.) , ξ (.)
]

=

∫ tf

0
Hu

(

x⋆(t), λ⋆ (t) ,u⋆ (t)
)

· ξ (t) dt = 0, ∀ ξ (t)

In the case the optimal inputu⋆(.) is free to move locally at any timet ∈ [0, tf ],
the perturbationξ (t) is unrestricted and the condition of optimality becomes:

Hu

(

x⋆(t), λ⋆ (t) ,u⋆ (t)
)

= 0

for all t, thus we recover the observations already made in the previous Secti-
ons. A special case of the observation above will be of interest in the follo-
wing. It stems from the restriction of the control profileu(.) to the Banach
space (i.e. loosely speaking the notion of vector space extended to functions)
of piecewise-constant functions. In such a case:

u (t) = uk, ξ (t) = ξk, ∀ t ∈ [tk, tk+1] .

This restriction allows one to discuss the zero-order hold discretization of the
control input commonly used in direct methods framing it in the context of the
Calculus of Variations. In this case, optimality requires:

δJ
[

u⋆ (.) , ξ (.)
]

=

∫ tf

0
Hu

(

x⋆(t), λ⋆ (t) ,u⋆ (t)
)

· ξ (t) dt

=

N−1∑

k=0

∫ tk+1

tk

Hu

(

x⋆(t), λ⋆ (t) ,u⋆k
)

· ξk dt = 0, ∀ξk.

Hence the optimality condition is:

∫ tk+1

tk

Hu

(

x⋆(t), λ⋆ (t) ,u⋆k
)

dt = 0, ∀k (12.8)
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For a problem with a bounded, scalar input, i.e. for an OCP of the form

J [u (.)] = φ (x (tf )) +
∫ tf

t0

L (x,u) dt

subject to: ˙x = f (x,u) , x (t0) = x0,

umin ≤ u ≤ umax

with u ∈ R, the condition (12.8) then must hold at the optimum for allk for
which umin < uk < umax. These observations will be useful in Section 13.5 to
discuss the numerical solutions to singular optimal control problems via direct
methods.

12.6 Numerical Solution of the TPBVP

In this section we address the question of how we can compute asolution of
the boundary value problem (BVP) in the indirect approach. The remarkable
observation is that the only non-trivial unknown is the initial value for the ad-
joints, λ(0). Once this value has been found, the complete optimal trajectory
can in principle be recovered by a forward simulation of the combined diffe-
rential equation. Let us first recall that the BVP that we wantto solve is given
as

r0 = x(0)− x̄0 = 0, (12.9a)

rT = λ(T) − ∇E(x(T)) = 0, (12.9b)

ẋ(t) − ∇λH∗(x(t), λ(t)) = 0, t ∈ [0,T], (12.9c)

λ̇(t) + ∇xH
∗(x(t), λ(t)) = 0, t ∈ [0,T]. (12.9d)

Using the shorthands (12.7) and

b (y(0), y(T), x̄0) =

[

r0 (y(0), x̄0)
rT (y(T))

]

,

the system of equations can be summarized as:

b (y(0), y(T), x̄0) = 0, (12.10a)

ẏ(t) − ϕ(y(t)) = 0, t ∈ [0,T]. (12.10b)

This BVP has the 2nx differential equations ˙y = ϕ, and the 2nx boundary condi-
tionsb and is therefore usually well-defined. We detail here three approaches
to solve this TPBVP numerically,single shooting, collocation, andmultiple
shooting.
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12.6.1 Single shooting

Single shootingstarts with the following idea: for any guess of the initial value
λ0, we can use a numerical integration routine in order to obtain the state-
costate trajectory as a function ofλ0, x̄0, i.e. y(t, λ0, x̄0) for all t ∈ [0,T]. This
is visualized in Figure 12.2. The result is that the differential equation (12.10b)
is by construction already satisfied, as well as the initial boundary condition
(12.9a). Thus, we only need to enforce the boundary condition (12.9b), which
we can do using the terminal trajectory valuey(T, λ0, x̄0):

rT (y(T, λ0, x̄0))
︸             ︷︷             ︸

=:RT (λ0)

= 0.

For nonlinear dynamicsϕ, this equation can generally not be solved explicitly.
We then use the Newton’s method, starting from an initial guessλ0, and itera-
ting to the solution, i.e. we iterate

λk+1
0 = λk

0 − tk

(

∂RT

∂λ0

(

λk
0

)
)−1

RT

(

λk
0

)

. (12.11)

for some adequate step-sizetk ∈]0, 1]. It is important to note that in order to
evaluate∂R

∂λ0

(

λk
0

)

we have to compute the ODE sensitivities∂y(T,y0)
∂λ0

.
In some cases, as said above, the forward simulation of the combined ODE

might be an ill-conditioned problem so that single shootingcannot be em-
ployed. Even if the forward simulation problem is well-defined, the region of
attraction of the Newton iteration onRT(λ0) = 0 can be very small, such that
a good guess forλ0 is often required. However, such a guess is typically una-
vailable. In the following example, we illustrate these observation on a simple
optimal control problem.

Example 12.5. We consider the optimal control problem:

minimize
x(.),u(.)

∫ T

0
x1(t)2 + 10x2(t)2 + u(t)2 dt

subject to ˙x1(t) = x1(t) x2(t) + u(t), x1(0) = 0,

ẋ2(t) = x1(t), x2(0) = 1

(12.12)

with T = 5. This example does not hold a terminal cost or constraints,such
that the terminal condition reads asRT(λ0) = λ (T, λ0, x̄0) = 0. The state-
costate trajectory at the solution are displayed in Figure 12.2. It is then inte-
resting to build the functionλ0 7→ λ (T, λ0, x̄0) for various values ofλ0, see
Figure 12.3. This function is very nonlinear, making it difficult for the Newton
iteration to find the co-states initial valueλ0 resulting inλ (T, λ0, x̄0). More spe-
cifically, the Newton iteration (full steps or reduced steps) converges only for
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Figure 12.3 Illustration of the mapλ0 7→ λ (T, λ0, x̄0), in the form of level curves
for T = 5. The black dot represents the solution of the TPBVP problem, where
RT (λ0) = λ(T, λ0, x̄0) = 0. One can observe that the map is very nonlinear, such
that the Newton method can struggle to converge to the solutionλ0 of the TPBVP,
unless a very good initial guess is provided.

a specific set of initial guessesλ0
0 provided to the iteration (12.11), see Figure

12.4.
A crucial observation that will motivate an alternative to the single-shooting

approach is illustrated in Figure 12.5, where the mapλ0 7→ λ (t, λ0, x̄0) is dis-
played for the integration timest = 3 andt = 4. The crucial observation here is
that the map is fairly linear up tot = 3, and becomes increasingly nonlinear for
larger integration times. This observation is general and motivates the chore
idea behind the alternatives to single shooting, namely that integration shall
never be performed over long time intervals, so as to avoid creating strongly
nonlinear functions in the TPBVP.
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Figure 12.4 Illustration of the region of convergence of the Newton iteration
(12.11) for problem (12.12) (in black, with full Newton stepson the left-hand side
graph and with reduced steps on the right-hand side graph). Here we noteλ0,1, λ0,2

the initial guess provided to the Newton iteration. The grey dots (at (3.22, 8.48))
depict the solution to the TPBVP. Only a fairly small, disconnected and highly
convoluted set of initial guess for the co-states initial conditions leads to a conver-
gence of the Newton iteration.

12.6.2 Multiple shooting

The nonlinearity of the integration mapλ0 7→ y (t, λ0, x̄0) for long integration
timest motivates the “breaking down” of the full integration in small pieces,
so as to avoid creating very nonlinear map in the TPBVP conditions. The idea
is originally due to Osborne [66], and is based on dividing the time interval
[0, T] into (typically uniform)shootingintervals [tk, tk+1] ⊂ [0, T], where the
most common choice istk = kT

N . Let us then frame the integration over a short
time interval [tk, tk+1] with initial value sk as the functionΦk (sk), defined as:

Φk (sk) = y (tk+1) where (12.13a)

ẏ(t) − ϕ(y(t)) = 0, t ∈ [tk, tk+1] and y (tk) = sk (12.13b)

for k = 0, . . . ,N − 1. We then rewrite the TPBVP conditions (12.10) as:

b (s0, sN, x̄0) = 0, (boundary conditions) (12.14a)

Φk (sk) − sk+1 = 0, k = 0, . . . ,N − 1. (continuity conditions) (12.14b)

One can then rewrite the conditions (12.14) altogether as the function:

RMS (s, x̄0) = 0 (12.15)
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Figure 12.5 Illustration of the mapλ0 7→ λ (t, λ0, x̄0), in the form of level curves
for different timest. The black dot represents the solution of the TPBVP problem,
whereλ(T, λ0, x̄0) = 0. One can observe that the map is close to linear for “small”
integration timest (upper graphs, wheret = 3), and becomes increasingly nonli-
near as the integration time increases (lower graph, wheret = 4), until it reaches
the final timeT = 5, see Figure 12.3. This observation is general, and holds for
most problems.

where we notes = (s0, . . . , sN). A Newton iteration can be then deployed on
(12.15) to find the variabless, it reads as:

sk+1 = sk − tk

(

∂RMS

∂s

(

sk, x̄0

)
)−1

RMS

(

sk, x̄0

)

. (12.16)

for some step-sizetk ∈]0, 1]. We illustrate the Multiple-Shooting approach in
the following example.

Example 12.6. We consider the optimal control problem (12.12) from Exam-
ple 12.5 withT = 5. If we denotesk = (xk, λk), the boundary conditions for
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Figure 12.6 Illustration of the state and co-state trajectories for problem (12.12)
during the multiple-shooting iterations (12.16), such that the conditions conditi-
onsΦk (sk)− sk+1 = 0 are not yet fulfilled. Here, the discrete timestk are depicted
as grey dashed lines, the discrete state-costatessk =

(

xk,1, xk,2, λk,1, λk,2
)

are de-
picted as black dots, and the resulting integrationsΦk =

(

Φx
k,1,Φ

x
k,2,Φ

λ
k,1,Φ

λ
k,2

)

are depicted as white dots. The black curves represent the state-costate trajecto-
ries on the various time intervals [tk, tk+1]. At the solution (12.14), the conditions
Φk (sk) = sk+1 are enforced fork = 1, . . . ,N − 1, such that the black and white
dots coincide on each discrete timetk.

this example then become:

x0 =

[

0
1

]

, λN = 0. (12.17)

We illustrate the Multiple-Shooting procedure (12.14) in Figure 12.6 forN =
5.

One ought to observe that the time intervals[tk, tk+1] are of sizeT
N , and

hence get shorter asN increases. Because one can “control” the length of the
time interval over which the integration is performed viaN, and because the
functionsΦk (sk)− sk+1 become less nonlinear as the length of the time interval
decreases, one can make them “arbitrarily” linear by increasing N. It follows
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Figure 12.7 Illustration of sparsity pattern of the Jacobian matrix ∂RMS
∂s in the

Newton iteration (12.16) for the optimal control problem (12.12) approached via
indirect multiple-shooting, for Example 12.6. Here we useN = 5. One can readily
observe that the Jacobian matrix is sparse and highly structured. This structure ari-
ses via organising the algebraic conditions (12.15) and the variabless in time (i.e.
in the orderk = 0, . . . ,N). Note that here the last variablessN where eliminated
using the equalitysN = ΦN−1 (sk−1). In the specific case of Example 12.6, the eli-
mination has no impact on the Newton iteration because the boundary conditions
b (s0, sN, x̄0) are linear.

that a sufficiently largeN typically allows one to solve the Multiple-Shooting
conditions (12.14) using a Newton iteration even if no good initial guess is
available.

It is important to observe that the set of algebraic conditions (12.15) holds a
large number of variabless, such that the Newton iteration (12.16) is deployed
using large Jacobian matrices∂RMS

∂s . However, these matrices are sparse, and if
the algebraic conditions and variables are adequately organised, they are highly
structured (see Figure 12.7), such that their factorisation can be performed
efficiently.

The second alternative to single-shooting is the object of the next Section,
and can be construed as an extreme case of Multiple-Shooting. We detail this
next.

12.6.3 Collocation & Pseudo-spectral methods

The second alternative approach to single shooting is to usesimultaneous col-
locationor Pseudo-spectral methods. As we will see next, the two approaches
are fairly similar. The key idea behind these methods is to introduceall the va-
riables involved in processing the integration of the dynamics, and the related
algebraic conditionsinto the set of algebraic equations to be processed. The
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most common implementation of this idea is based on the Orthogonal Collo-
cation method presented in Chapter 10, Section 10.3.

We consider the collocation-based integration of the state-costate dynamics
on a time interval[tk, tk+1] starting from the initial valuesk, as described in
equation (10.5). The integration is then based on solving a set of collocation
equations:

vk,0 = sk (12.18a)

ṗ
(

tk,i , vk
)

= ϕ(vk,i , tk,i), i = 1, . . . ,d (12.18b)

for k = 0, . . . ,N − 1, wheretk,i ∈ [tk, tk+1] for i = 0, . . . ,d, and the variables
vk ∈ R2nx·(d+1) hold the discretisation of the continuous state-costates dynamics.
The TPBVB discretised using orthogonal collocation then holds the variables
vk,i andsk for k = 0, . . . ,N − 1 andi = 1, . . . ,d, and the following constraints:

b (s0, sN, x̄0) = 0, (boundary condition), (12.19a)

p(tk+1, vk) − sk+1 = 0, (continuity condition), (12.19b)

vk,0 − sk = 0, (initial values), (12.19c)

ṗ
(

tk,i , vk
) − ϕ(vk,i , tk,i) = 0, (dynamics). (12.19d)

One can observe that equations (12.19b) and (12.19c) are linear, while equation
(12.19d) is nonlinear when the dynamics are nonlinear. One can also observe
that the variabless0,...,N−1 can actually be eliminated from (12.19), to yield a
slightly more compact set of equation, withk = 0, . . . ,N − 1 andi = 1, . . . ,d:

b
(

vk,0, vN,0, x̄0
)

= 0, (boundary condition), (12.20a)

p(tk+1, vk) − vk+1,0 = 0, (continuity condition), (12.20b)

ṗ
(

tk,i , vk
) − ϕ(vk,i , tk,i) = 0, (dynamics). (12.20c)

This elimination does not modify the behavior of the Newton iteration. We can
gather the algebraic conditions (12.20) and the variablessk, vk in the compact
form:

RIC (w, x̄0) = 0 (12.21)

wherew =
{

v0,0, . . . , v0,d, . . . , vN−1,0, . . . , vN−1,d, vN,0
}

. A Newton iteration can
be then deployed on (12.21) to find the variablesw, it reads as:

wk+1 = wk − tk

(

∂RIC

∂w

(

wk, x̄0

)
)−1

RIC

(

wk, x̄0

)

. (12.22)

for some step-sizetk ∈]0, 1]. We illustrate the indirect collocation approach in
the following example.
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Figure 12.8 Illustration of the state and co-state trajectories for problem (12.12)
using the orthogonal collocation approach withN = 20. The grey curves display
the state-costate trajectories after the first full Newton step of (12.22), while the
black curves report the state-costate trajectories at convergence. The discrete times
tk are depicted as grey dashed lines, the discrete state-costates onthe time gridtk,i
are depicted as dots. Note that the continuity conditions (12.19b) in the collocation
method are linear in the variablesw, such that the trajectories are continuous after
the first full Newton step (hence the grey curves are continuous,even though the
problem is not solved yet).

Example 12.7. We consider the optimal control problem (12.12) from Ex-
ample 12.5 withT = 5. We illustrate the Orthogonal Collocation procedure
(12.19) in Figure 12.8 forN = 10. The sparsity pattern of the Jacobian ma-
trix ∂RIC

∂w from the Newton iteration (12.22) is illustrated in Figure (12.9). The
variables and constraints were ordered with respect to time. Even though it is
large, the complexity of forming factorisations of the Jacobian matrix ∂RIC

∂w is
limited as it is sparse and highly structured.

Pseudo-spectral methodsdeploy a very similar approach to the one descri-
bed here, to the exception that they skip the division of the time interval[0, T]
into subintervals[tk, tk+1], and use a single set of basis functions spanning the
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Figure 12.9 Illustration of the sparsity structure for the Jacobian ∂RIC
∂w in the New-

ton iteration (12.22)

entire time interval[0, T]. Pseudo-spectral methods for the TPBVP problem
(12.10) can then be framed as:

b (p(0, v), p(T, v), x̄0) = 0, (12.23a)

ṗ (tk, v) − ϕ(p(tk, v), tk) = 0, i = k, . . . ,n (12.23b)

wheretk ∈ [0, T], and the variablesv ∈ Rnx·n hold the discretisation of the
continuous dynamics. Because they attempt to capture the state trajectories in a
single functionp(t, v), with t ∈ [0, T], the Newton iteration solving constraints
(12.23) generally holds a dense Jacobian matrix, for which structure-exploiting
linear algebra is generally inefficient.

12.6.4 Numerical solution of TPBVP with Path Constraints

In order to provide a fairly complete discussion on numerical solutions of the
TPBVP problem for optimal control, we ought to consider the case of mixed
path constraints arising in problem (12.1), resulting in a TPBVP of the form
(12.4). As hinted in Section 12.3, the treatment of mixed path constraints in
the context of indirect methods can be fairly involved.

The difficulty when solving the TPBVP (12.4) is very similar to the diffi-
culty of solving the KKT conditions in the presence of inequality constraints,
and stems from the non-smooth complementarity slackness condition (12.4e).
Similarly to solving the non-smooth KKT conditions, we can consider here an
approach similar to the Primal-Dual Interior-Point approach already detailed to
solve the KKT conditions in the presence of inequality constraints, see Section
4.3.1. The Interior-point idea deployed on (12.4) yields the relaxation of the
complementarity condition (12.4e) and the introduction ofslack variabless(t)
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such that the following relaxed PMP conditions are numerically solved:

x(0)− x̄0 = 0, (12.24a)

λ(T) − ∇E(x(T)) = 0, (12.24b)

ẋ(t) − ∇λH∗(x(t), λ(t), µ (t)) = 0, t ∈ [0,T], (12.24c)

λ̇(t) + ∇xH
∗(x(t), λ(t), µ (t)) = 0, t ∈ [0,T], (12.24d)

h
(

x(t),u⋆exp

)

+ s(t) = 0, t ∈ [0,T], (12.24e)

si (t) µi (t) − τ = 0, t ∈ [0,T], i = 1, . . . ,nh (12.24f)

with the addition of the positivity conditions:

s(t) ≥ 0, µ (t) ≥ 0 t ∈ [0,T]. (12.25)

One can observe that (12.24c)-(12.24f) is in fact an index-1DAE (see Chap-
ter 14), as the algebraic variabless(t) andµ(t) can be eliminated using (12.24e)
and (12.24f). In practice, problem (12.24) is best suited asit is for a numeri-
cal approach, as it allows to handle the positivity constraints (12.25) easily via
taking the adequate step lengths in the Newton iterations.

The differential-algebraic conditions (12.24c)-(12.24f) can then be handled
via a collocation method, yielding a large and sparse set of algebraic conditions
that are simply added to the boundary conditions (12.24a)-(12.24b) to yield an
algebraic system that we note as:

Rτ (w) = 0, (12.26)

wherew = (x, λ, µ, s) gathers the discrete statesx, costatesλ, slack varia-
bles s and multipliersµ, discretized on the collocation time gridtk,i for k =
0, . . . ,N − 1 and i = 0, . . . ,d. A prototype of interior-point algorithm then
reads as follows.

Algorithm 12.8 (IP method for TPBVP with path constraints).
Input: guessw, algorithmic parametersτ > 0, γ ∈]0,1[, ǫ ∈]0,1[, Tol > 0
while ‖Rτ (w) ‖ ≥ Tol do

∆w = − ∂Rτ(w)
∂w Rτ (w)

Updatew = w+ t∆w, wheret ∈]0,1] ensures

s+ t∆s≥ ǫs, µ + t∆µ ≥ ǫµ

if ‖Rτ (w) ‖X ≤ 1 then τ = γτ

end while
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whereX is an ad-hoc norm on the residualRτ. Let us consider the deploy-
ment of this Algorithm on the following example.

Example 12.9. We consider the optimal control problem (12.12) with the ad-
dition of simple mixed constraints in the form of state and input bounds:

minimize
x(.),u(.)

∫ 5

0
x1(t)2 + 10x2(t)2 + u(t)2 dt

subject to ˙x1(t) = x1(t) x2(t) + u(t), x1(0) = 0,

ẋ2(t) = x1(t), x2(0) = 1,

u(t) ≥ −1, x1(t) ≥ −0.6, t ∈ [0, T].

(12.27)

with T = 5, which is similar to the optimal control problem treated inthe
previous examples, to the addition of the path constraintx1(t) ≥ −0.6 and
u(t) ≥ −1. We treat this problem using Algorithm 12.8. The resultingstate-
costate trajectory at the solution are displayed in Figure 12.10. The resulting
optimal control inputu⋆exp(x, λ, µ), the slack variabless and the adjoint va-
riablesµ are displayed in Figure 12.11. The sparsity pattern of the Jacobian
matrix ∂Rτ(w)

∂w used in the Newton iterations in Algorithm 12.8 is illustrated in
Figure 12.12.

Remark on Indirect Multiple-Shooting vs. Indirect Collocat ion At first
sight multiple shooting seems to combine the disadvantagesof both single-
shooting and collocation. Like single shooting, it cannot handle strongly un-
stable systems as it relies on a forward integration, and like collocation, it
leads to a large scale equation system and needs sparse treatment of the linear
algebra. On the other hand, it also inherits the advantages of these two met-
hods: like single shooting, it can rely on existing forward solvers with inbuilt
adaptivity so that it avoids the question of numerical discretization errors: the
choiceN is much less important than in collocation and typically, one choo-
ses anN between 5 and 50 in multiple shooting. Also, multiple shooting can
be implemented in a way that allows one to perform in each Newton iteration
basically the same computational effort as in single shooting, by using a con-
densing technique. Finally, like collocation, it allows one to deal better with
unstable and nonlinear systems than single shooting. Theselast facts, namely
that alifted Newton methodcan solve the large “lifted” equation system (e.g.
of multiple shooting) at the same cost per Newton iteration as the small scale
nonlinear equation system (e.g. of single shooting) to which it is equivalent,
but with faster local convergence rates, is in detail investigated in [2] where
also a literature review on such lifted methods is given.
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Figure 12.12 Illustration of the sparsity structure for the Jacobian ∂Rτ
∂w in the New-

ton iteration deployed within Algorithm 12.8.

Exercises

12.1 In this exercise sheet, we regard the continuous time optimal control
problem defined by:

minimize
x(·),u(·)

∫ ⊤

0
u(t)2dt (12.28a)

subject to x(0) = x̄0, (12.28b)

ẋ(t) = f (x(t),u(t)), t ∈ [0,T], (12.28c)

X(T) = 0, (12.28d)

−umax ≤ u(t) ≤ umax, t ∈ [0,T]. (12.28e)

where the state isx = (x1, x2)⊤ and ẋ = f (x,u) is given by:

f (x,u) =

[

x2(t)
−C sin(x1(t)/C) + u(t)

]

.

with C := 180/π.
We choose the initial value ¯x0 = (10,0)⊤, T = 10, and at first, we will

leave away the control bound (12.28e) for first tasks.

(a) Considering that the Hamiltonian function for a generalOCP with in-
tegral costL(x,u) is defined to beH(x, λ,u) = L(x,u)+λ⊤ f (x,u), and
that in our caseL(x,u) = u2, write down explicitly the Hamiltonian
function of the above optimal control problem as a function of the
five variables (x1, x2, λ1, λ2,u).

(b) Next, let us recall that the indirect approach eliminates the controls to
obtain an explicit functionu∗(x, λ) that minimizes the Hamiltonian for
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a given (x, λ). This optimalu∗ can be computed by setting the gradient
of the Hamiltonian w.r.t.u to zero, i.e. it must hold∂H

∂u (x, λ,u∗) = 0.
Obtain an explicit expression foru∗(x, λ).

(c) We will also need the derivatives w.r.t.x, so also calculate∂H
∂x1

(x, λ,u)

and ∂H
∂x2

(x, λ,u).
(d) Recall that the indirect approach formulates the Euler-Lagrange dif-

ferential equations for the states and adjoints together. They are given
by ẋ = f (x,u∗(x, λ)) and byλ̇ = −∇xH(x, λ,u∗(x, λ)). For notatio-
nal convenience, we define the vectory = (x, λ) so that the Euler-
Lagrange equation can be briefly written as the ODE ˙y = f̃ (y).
Collect all data from above to define explicitly the ODE righthand
side f̃ as a function of the four components of the vectory = (x1, x2, λ1, λ2)

(e) The boundary value problem (BVP) that we now have to solveis
given by

x(0) = x̄0,

x(T) = 0,

ẏ(t) = f̃ (y(t)), t ∈ [0,T].

We will solve it by single shooting and a Newton procedure. The first
step is to write an ODE simulator that for a given initial value y0 =

(x0, λ0) simulates the ODE on the whole time horizon. Let us call the
resulting trajectoryy(t; y0), t ∈ [0,T], and denote its terminal value
by y(T; y0). Write a simulation routine that computes for giveny0 the
valueyN = y(T; y0). Use a RK4 integrator with step size∆t = 0.2 and
N = 50 time steps.

(f) Regard the initial valuey0 = (x0, λ0). As the initial value for the sta-
tes,x0, is fixed to x̄0, we only need to find the right initial value for
the adjoints,λ0, i.e. we will fix x0 = x̄0 and only keepλ0 ∈ R2 as
an unknown input to our simulator. Also, we have only to meet ater-
minal condition onx(T), namelyx(T) = 0, whileλ(T) is free. Thus,
we are only interested in the map fromλ0 to x(T), which we denote
by F(λ0). Note thatF : R2 → R2. Using your simulator, write a
MATLAB function [x_end]=F(lambda_start).

(g) Add to your function functionality for plotting the trajectories ofx1,
x2, λ1, λ2. To do so, extend the output of your MATLAB simualtor to
[x_end,ytraj]=F(lambda_start).
Forλ0 = 0, callF(λ0) and plot the states and adjoints of your system.
In this scenario, what is the numerical value of the final state x(T) =
F(0)?
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(h) The solution of the BVP is found if we have foundλ∗0 such that
F(λ∗0) = 0. This system can be solved by Newton’s method, that ite-
rates, starting with some guessλ[0]

0 (e.g. zero).

λ[k+1]
0 = λ[k]

0 −
(

∂F
∂λ0

(λ[k]
0 )

)−1

F(λ[k]
0 )

First write a routine that computes the JacobianJF(λ0) = ∂F
∂λ0

(λ0)
by finite differences using a perturbationδ = 10−4. Then implement
a (full-step) Newton method that stops when‖F(λ[k]

0 )‖ ≤ TOL with
TOL = 10−3.

(i) For your obtained solution, plot the resulting state trajectories and
verify by inspection thatx(T) = 0.

(j) Using your functionu∗(x, λ), also plot the corresponding control tra-
jectoriesu(t).

(k) Add the control bounds (12.28e) withumax = 3. The only part in
your whole algorithm that you need to change is the expression for
u∗(x, λ). The new constrained function

u∗con(x, λ) = arg min
u

H(x, λ,u) s.t. − umax ≤ u ≤ umax,

is simply given by the “clipped” or “saturated” version of your old
unconstrained functionu∗unc(x, λ), namely by

u∗con(x, λ) = max
{−umax,min{umax,u

∗
unc(x, λ)}}

Modify your differential equatioñf by using this new expression for
u∗ and run your algorithm again. We remark that strictly speaking,
the ODE right hand side is no longer differentiable so that the use of
a RK4 is questionable as well as the computation of the Jacobian of
F, but we cross our fingers and are happy that it works. For initia-
lization of the Newton procedure, choose the multiplierλ∗0 from the
unconstrained solution. In the solution, plot again the resulting tra-
jectories for states, adjoints, and foru(t), using of course your new
function.

12.2 Consider the following two-point boundary-value problem, describing a
person throwing a ball against a target:





ṗx

v̇x

ṗy

v̇y





=





vx

−α vx

√

v2
x + v2

y

vy

−α vy

√

v2
x + v2

y − g0










px(0) = 0, px(T) = d
vx(0) = vx,0, vx(T) = vx,T

py(0) = h, py(T) = 0
vy(0) = vy,0, vy(T) = vy,T
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The ball leaves the hand of the thrower with a velocity (vx,0, vy,0) a dis-
tanceh = 1.5 m above the ground. It then follows an unguided trajectory
determined by standard gravityg0 = 9.81 m/s2 and air frictionα = 0.02
hitting a target on the groundd = 20 m away afterT = 3 s. The problem
is to determine (vx,0, vy,0).

(a) Implement e RK4 integrator scheme with 20 steps to simulate the
trajectory of the ball assuming assumingvx,0 = vy,0 = 5[m/s].

(b) Rewrite the integrator in order to get a function that given v0 :=
(vx,0, vy,0) returnspT := (px,T , py,T).

(c) Compute the Jacobian∂pT

∂v0
by finite differences.

(d) Write a full-step Newton method with 10 iterations to solve the root-
finding problem:

pT = F(v0).

Verify the result by simulating the trajectory as in Task 4.1.

(e) Replace the quadratic friction termsα vx

√

v2
x + v2

y andα vy

√

v2
x + v2

y

with the linear termsα vx andα vy. How does this influence the num-
ber of Newton-iterations needed to solve the problem?

12.3 Regard again Exercise 8.7. We will solve now the modifiedversion of
that problem given by:

minimize
x,u

∫ ⊤

0
x1(t)2 + x2(t)2 + u(t)2 dt

subject to ˙x1 = (1− x2
2) x1 − x2 + u, x1(0) = 0,

ẋ2 = x1, x2(0) = 1,

−1 ≤ u(t) ≤ 1,

(12.29)

whereT = 10. Notice the lack of state path constraints since they are
difficult to handle with indirect methods.

(a) Introduce the costateλ(t) and write down the HamiltonianH(x, λ,u)
of (12.29):

(b) Use Pontryagin’s maximum principle to derive an expression for the
optimal controlu∗ as a function ofx andλ. Note:u(t) may only be
a piecewise smooth function. Tip: How doesu enter in the Hamilto-
nian?

(c) Derive the costate equations, i.e.λ̇(t) = . . .

(d) Derive the terminal conditions for the costate equations:
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(e) Augment the original equations with the costate equation to form a
two-point boundary-value problem (TPBVP) with four differential
equations:

(f) Casadi Part: Solve the TPBVP with single-shooting. Use [0,0] as
your initial guess for the initial costate. To integrate thesystem, our
best chance is to use a variable stepsize integrator for stiff systems,
such as the CVODES integrator from the SUNDIALS suite, available
in CasADi. Note that the system is only piecewise smooth, which
could potentially cause problems in the integrator, but we will ignore
this and hope for the best. The resulting nonlinear system ofequations
is also challenging to solve, and in CasADi, our best bet is touse
IPOPT with a dummy objective function (”minimize 0, subjectto
g(x) = 0”). We suggest allocating an instance of CVODES as follows:

• MATLAB

t f = SX . sym ( ’ t f ’ ) ;
dae = s t r u c t ( ’ x ’ , aug , ’ p ’ , t f , ’ ode ’ ,

t f ∗ augdo t ) ;
o p t s = s t r u c t ( ’ a b s t o l ’ , 1e−8 , ’ r e l t o l ’ ,

1e−8) ;
F = i n t e g r a t o r ( ’F ’ , ’ cvodes ’ , dae , o p t s ) ;

• Python

t f = SX . sym ( ’ t f ’ )
dae = { ’ x ’ : aug , ’ p ’ : t f , ’ ode ’ : t f ∗ augdo t}
o p t s = { ’ a b s t o l ’ : 1 e−8 , ’ r e l t o l ’ : 1 e−8}
F = i n t e g r a t o r ( ’F ’ , ’ cvodes ’ , dae , o p t s )

whereaug andaugdot are expressions for the augmented state and
augmented state derivative, respectively. We use a free parametertf
to scale the time horizon to [0, tf ] instead of the default [0,1].
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Direct Approaches to Continuous Optimal
Control

Direct methods to continuous optimal control finitely parameterize the infinite
dimensional decision variables, notably the controlsu(t), such that the original
problem is approximated by a finite dimensional nonlinear program (NLP).
This NLP can then be addressed by structure exploiting numerical NLP so-
lution methods. For this reason, the approach is often characterized as “First
discretize, then optimize.” The direct approach connects easily to all optimiza-
tion methods developed in the continuous optimization community, such as the
methods described in Chapter 3. Most successful direct methods even parame-
terize the problem such that the resulting NLP has the structure of a discrete
time optimal control problem, such that all the techniques and structures des-
cribed in Chapters 7 and 7.3 are applicable. For this reason,the current chapter
is kept relatively short; its major aim is to outline the major concepts and vo-
cabulary in the field.

We start by describingdirect single shooting, direct multiple shooting, and
direct collocationand a variantpseudospectral methods. We also discuss how
sensitivities are computed in the context of shooting methods. The optimiza-
tion problem formulation we address in this chapter typically read as (but are
not limited to):

minimize
x (.) ,u (.)

∫ T

0
L(x(t),u(t)) dt + E (x(T))

subject to x(0)− x0 = 0, (initial value),

ẋ(t) − f (x(t),u(t)) = 0, (system dynamics),

h(x(t),u(t)) ≤ 0, (path constraints),

r (x(T)) ≤ 0 (terminal constraints).

For many OCPs, the system state derivatives ˙x(t) are provided via an implicit
function, or even via a Differential-Algebraic Equation (DAE). The methods

229
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presented hereafter are applicable to all thee cases with some minor modifi-
cations. The direct methods differ in how they transcribe this problem into a
finite NLP. The optimal control problem above has a fixed initial value, which
simplifies in particular the single shooting method, but allconcepts can in a
straightforward way be generalized to other OCP formulations with free initial
values.

13.1 Direct Single Shooting

All shooting methods use an embedded ODE or DAE solver in order to elimi-
nate the continuous time dynamic system. They do so by first parameterizing
the control functionu(t), e.g. by polynomials, by piecewise constant functions,
or, more generally, by piecewise polynomials. We denote thefinite control
parameters by the vectorq, and the resulting control function byu(t,q). The
most widespread parameterization are piecewise constant controls, for which
we choose a fixed time grid 0= t0 < t1 < . . . < tN = T, andN parameters
qi ∈ Rnu, i = 0, . . . ,N − 1, and then we set

u(t,q) = qk for t ∈ [tk, tk+1].

Thus, the dimension of the vectorq =
[

q0, . . . ,qN−1
]

is of dimensionNnu.
Single shooting is asequential approachwhich has been earliest presented

in [48, 70]. In single shooting, we regard the statesx(t) on [0,T] as dependent
variables that are obtained by a forward integration of the dynamic system,
starting atx0 and using the controls inputu(t,q). We denote the resulting tra-
jectory asx(t,q). In order to discretize inequality path constraints, we choose
a grid, typically the same as for the control discretization, at which we check
the inequalities. Thus, in single shooting, we transcribe the optimal control
problem into the following NLP, that is visualized in Figure??.

minimize
q ∈ RNnu

∫ T

0
L(x(t,q),u(t,q)) dt + E (x(T,q))

subject to h(x(ti ,q),u(ti ,q)) ≤ 0, i = 0, . . . ,N − 1 (path constraints),

r (x(T,q)) ≤ 0 (terminal constraints).

NLP structure in single shooting As the only variable of this NLP is the
vectorq ∈ RNnu that influences nearly all problem functions, the above problem
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can usually be solved by a dense NLP solver in a black-box fashion. As the
problem functions and their derivatives are expensive to compute, while a small
QP is cheap to solve, often Sequential Quadratic Programming (SQP) is used,
e.g. the codes NPSOL or SNOPT. Let us first assume the Hessian needs not be
computed but can be obtained e.g. by BFGS updates.

The computation of the derivatives can be done in different ways with a dif-
ferent complexity: first, we can use forward derivatives, using finite differences
or algorithmic differentiation. Taking the computational cost of integratingone
time interval as one computational unit, this means that onecomplete forward
integration costsN units. Given that the vectorq hasNnu components, this
means that the computation of all derivatives costs (Nnu + 1)N units when im-
plemented in the most straightforward way. This number can still be reduced
by one half if we take into account that controls at the end of the horizon do
not influence the first part of the trajectory. We might call this way theredu-
ced derivative computationas it computes directly only the reduced quantities
needed in each reduced QP.

Second, if the number of output quantities such as objectiveand inequality
constraints is not big, we can use the principle of reverse automatic differentia-
tion in order to generate the derivatives. In the extreme case that no inequality
constraints are present and we only need the gradient of the objective, this
gradient can cheaply be computed by reverse AD, as done in theso calledgra-
dient methods. Note that in this case the same adjoint differential equations of
the indirect approach can be used for reverse computation ofthe gradient, but
that in contrast to the indirect method we do not eliminate the controls, and we
integrate the adjoint equations backwards in time. The complexity for one gra-
dient computation is only 4N computational units. However, each additional
state constraint necessitates a further backward sweep.

Third, in the case that we have chosen piecewise controls, ashere, we might
use the fact that after the piecewise control discretization we have basically
transformed the continuous time OCP into a discrete time OCP(see next section).
Then we can compute the derivatives with respect to bothsi andqi on each in-
terval separately, which costs (nx + nu + 1) units. This means a total derivative
computation cost ofN(nx + nu + 1) units. In contrast to the second (adjoint)
approach, this approach can handle an arbitrary number of path inequality con-
straints, like the first one. Note that it has the same complexity that we obtain
in the standard implementation of the multiple shooting approach, as explained
next. We remark here already that both shooting methods can each implement
all the above ways of derivative generation, but differ in one respect only, na-
mely that single shooting is a sequential and multiple shooting a simultaneous
approach.
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Example 13.1.Let us illustrate the single shooting method using the following
simple OCP:

minimize
x(.),u(.)

∫ 5

0
x1(t)2 + 10x2(t)2 + u(t)2 dt

subject to ˙x1(t) = x1(t) x2(t) + u(t), x1(0) = 0,

ẋ2(t) = x1(t), x2(0) = 1,

u(t) ≥ −1, x1(t) ≥ −0.6, t ∈ [0, T],

(13.1)

which we used already in Example 12.9 of Section 12.6.4.
The resulting solution is illustrated in Figure 13.1, together with the sparsity

patterns of the Jacobian of the inequality constraint function, i.e.

∂

∂q
h(x(ti ,q),u(ti ,q)),

and the one of the Hessian of the Lagrange function.

Nonlinearity propagation in direct single shooting Unfortunately, direct sin-
gle shooting often suffers from similar difficulties as the ones discussed in
Section 12.6.1 for indirect single shooting. More specifically, when deploying
single shooting in the context of direct optimal control a difficulty can arise
from the nonlinearity of the “simulation” functionx(t,q) with respect to the
control inputsq for a large simulation timet. We illustrate this problem using
the following example:

ẋ1 = 10(x2 − x1) (13.2a)

ẋ2 = x1 (q− x3) − x2 (13.2b)

ẋ3 = x1x2 − 3x3 (13.2c)

wherex =
[

x1 x2 x3

]⊤
∈ R3 andq ∈ R is a constant control input. Note

that the nonlinearities in this ODE result from apparently innocuous bilinear
expressions. We are then interested in the relationshipq→ x(t,q) for different
values oft. The initial conditions of the simulation were selected asx(0) =
[

0 0 0
]

and q ∈ [18, 38]. The resulting relationship is displayed in Fig.
13.2. One can observe that while the relationship is not verynonlinear for
small integration timest, it becomes extremely nonlinear for large timest, even
though the ODE under consideration here appears simple and mildly nonlinear.

This example ought to warn the reader that the functionx(t,q) resulting
from the simulation of nonlinear dynamics can be extremely nonlinear. As a
result, functions such as the constraints and cost functionin the NLP resulting
form the discretization of an optimal control problem via single-shooting can
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Figure 13.1 Solution to OCP (13.1) using a discretization basedon single shoot-
ing, with N = 20 and using a 4-steps Runge-Kutta integrator of order 4. The upper
graph reports the states and input trajectories. The lower graphs report the sparsity
pattern of the Jacobian of the inequality constraints in the resulting NLP and the
sparsity pattern of the Hessian of the Lagrange function.

be themselves extremely nonlinear functions of the input sequenceq. Because
most NLP solvers proceed to find a candidate solution via taking successive
linearization of the KKT conditions of the problem at hand, the presence of
very nonlinear functions in the NLP problem typically invalidates these ap-
proximations outside of a very small neighborhood of the linearization point,
see Chapter 4 for more technical details on this issue.

These observations entails that in practice, when using single-shooting, a
very good initial guess forq is often required. For many problems, such an
initial guess is very difficult to construct. As in the context of indirect methods,
these observations motivate the use of alternative transcription techniques.
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Figure 13.2 Illustration of the propagation of nonlinearities in the simple dyn-
amic system (13.2). One can observe that for a short integration time t = 0.25
(first row), the relationshipq→ x(t,q) is close to linear. However, as the integra-
tion time increases tot = 1.33, 2.41, 3.5, the relationshipq → x(t,q) becomes
extremely nonlinear. While the effect of integration time is not necessarily as dra-
matic as for this specific example, large integration times yieldstrong nonlinear
relationshipq→ x(t,q) for many nonlinear dynamics.
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13.2 Direct Multiple Shooting

The direct multiple shooting method was originally developed by Bock and
Plitt [20]. It follows similar ideas as the indirect multiple-shooting approach
discussed in Section 12.6.1, but recast in the direct optimazation framework,
where the input profile is also discretized and part of the decision variables.

The idea behind the direct multiple-shooting approach stems from the obser-
vation that performing long integration of dynamics can be counterproductive
for discretizing continuous optimal control problems intoNLPs, and tackles
the problem by limiting the integration over arbitrarily short time intervals.
Direct multiple-shooting performs first a finite-dimensional discretization of
the continuous control inputu(t), most commonly using a piecewise control
discretization on a chosen time grid, exacly as we did in single shooting, i.e.
we set

u(t) = qi for t ∈ [ti , ti+1].

In contrast to single shooting, it then solves the ODE separately on each inter-
val [ti , ti+1], starting with artificial initial valuessi :

ẋi(t, si ,qi) = f (xi(t, si ,qi),qi) , t ∈ [ti , ti+1],
xi(ti , si ,qi) = si .

See Figure 13.3 for an illustration. Thus, we obtain trajectory piecesxi(t, si ,qi).
Likewise, we numerically compute the integrals

l i(si ,qi) :=
∫ ti+1

ti

L (xi(ti , si ,qi),qi) dt.

The problem of piecing the trajectories together, i.e. ensuring the continuity
condition si+1 = xi(ti+1, si ,qi) is left to the NLP solver. Finally, we choose a
time grid on which the inequality path constraints are checked. It is common
to choose the same time grid as for the discretization of the controls as pie-
cewise constant, such that the constraints are checked based on the artificial
initial valuessi . However, a much finer sampling is possible as well, provided
that the numerical integrator building the simulations over the various time
intervals [tk, tk+1] report not only their final statexi(ti+1, si ,qi), but also inter-
mediate values. An integrator reporting the state (or some function of the state)
over a refined or arbitrary time grid is sometimes labelled ascontinuous-output
integrator.

The NLP arising from a discretization of an OCP based on multiple shooting
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typically reads as:

minimize
s,q

N−1∑

i=0

l i(si ,qi) + E (sN)

subject to x0 − s0 = 0, (initial value),

xi(ti+1, si ,qi) − si+1 = 0, i = 0, . . . ,N − 1 (continuity),

h(si ,qi) ≤ 0, i = 0, . . . ,N (path constraints),

r (sN) ≤ 0 (terminal constraints).
(13.3)

It is visualized in Figure 13.3. Let us illustrate the multiple shooting method
using the OCP (13.1). Here the ordering of the equality constraints and varia-
bles is important in order to get structured sparsity patterns. In this example,
the variables are ordered in time as:

s1,0, s2,0, q0, s1,1, s2,1, q1, . . . , qN−1, s1,N, s2,N

and the constraints are also ordered in time. The resulting solution is illustrated
in Figure 13.4, together with the sparsity patterns of the Jacobian of the equa-
lity constraint function, and the one of the Hessian of the Lagrange function.

Note that by definingfi(si ,qi) := xi(ti+1, si ,qi), the continuity conditions can
be interpreted a discrete time dynamic systemsi+1 = fi(si ,qi) and the above
optimal control problem has exactly the same structure as the discrete time op-
timal control problem (7.8) discussed in detail in Chapter 7.3. Most important,
the sparsity structure arising from a discretization basedon multiple-shooting
(see Figure 13.4 for an illustration) ought to be exploited in the NLP solver.

Example 13.2.Let us tackle the OCP (13.1) of Example 13.1 via direct multiple-
shooting. A 4-step RK4 integrator has been used here, deployed onN = 20
shooting intervals. The variables have been ordered as:

s0, q0, s1, q1, . . . , sN−1, uN−1, sN,

and the shooting constraints are also imposed time-wise.
The resulting solution is displayed in Figure 13.3, where one can observe

the discrete state trajectories (black dots) at the discrete time instantst0,...,N to-
gether with the simulations delivered by the integrators atthe solution. One
can also observe the very specific sparsity patterns of the Jacobian of the equa-
lity constraints and of the Hessian of the Lagrange functionthat arise from the
direct multiple-shooting approach.

Remark on Schl̈oder’s Reduction Trick: We point out here that the deriva-
tives of the condensed QP could also directly be computed, using the reduced
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Figure 13.3 Illustration of the direct multiple shooting method. A piecewise-
constant input profile parametrized byq0,...,N−1 is deployed on the time gridt0,...,N.
The discrete statess0,...,N act as ”checkpoints” on the continuous state trajectories
x(t) at all discrete time pointst0,...,N. Numerical integrators build the simulations
xi (t, si ,qi) over each time interval [ti , ti+1]. The state trajectory held in the NLP
solver becomes continuous only when the solution of the NLP is reached, where
the continuity conditionsxi (ti+1, si ,qi) − si+1 are enforced.

way, as explained as first variant in the context of single shooting. It exploits
the fact that the initial valuex0 is fixed in the NMPC problem, changing the
complexity of the derivative computations. It is only advantageous for large
state but small control dimensions as it has a complexity ofN2nu. It was ori-
ginally developed by Schlöder [73] in the context of Gauss-Newton methods
and generalized to general SQP shooting methods by [72]. A further generali-
zation of this approach to solve a “lifted” (larger, but equivalent) system with
the same computational cost per iteration is the so calledlifted Newton method
[2] where also an analysis of the benefits of lifting is made.

The main advantages of lifted Newton approaches such as multiple shooting
compared with single shooting are the facts that (a) we can also initialize the
state trajectory, and (b), that they show superior local convergence properties
in particular for unstable systems. An interesting remark is that if the original
system is linear, continuity is perfectly satisfied in all SQP iterations, and single
and multiple shooting would be identical. Also, it is interesting to recall that
the Lagrange multipliersλi for the continuity conditions are an approximation
of the adjoint variables, and that they indicate the costs ofcontinuity.

Finally, it is interesting to note that a direct multiple shooting algorithm can
be made a single shooting algorithm easily: we only have to overwrite, before
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Figure 13.4 Solution to OCP (13.1) using a discretization basedon multiple
shooting, withN = 20 and using a 4-steps Runge-Kutta integrator of order 4.
The upper graph reports the states and input trajectories at the solution, where
the continuity condition holds. The lower graphs report the sparsity pattern of the
Jacobian of the equality constraints in the resulting NLP and the sparsity pattern
of the Hessian of the Lagrange function. The Hessian of the Lagrange function
arising from multiple-shooting is block-diagonal, due to the separability of the
Lagrange function. The Jacobian of the inequality constraints is diagonal in this
example, and block-diagonal in general.

the derivative computation, the statess by the result of a forward simulation
using the controlsq obtained in the last Newton-type iteration. From this per-
spective, we can regard single shooting as a variant of multiple shooting where
we perturb the result of each iteration by a “feasibility improvement” that ma-
kes all continuity conditions feasible by the forward simulation, implicitly gi-
ving priority to the control guess over the state guess [76].
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13.3 Direct Collocation method

A third important class of direct methods are the so-called direct transcription
methods, most notablydirect collocation. The discretization method applied
here is directly inspired from the collocation-based simulation already discus-
sed in Chapter 10, Section 10.3, and very similar to the indirect collocation
method discussed in Section 12.6.3.

Here we discretize the infinite OCP in both controls and states on a fixed
and relatively fine gridtk, with k = 0, . . . ,N. We denote the discrete states on
the grid pointstk as sk. We choose a parameterization of the controls on the
same grid typically as piecewise constant, with control parametersqk, which
yields on each interval [tk, tk+1] a constant controlu(t) = qk.

On each collocation interval [tk, tk+1] a set of d collocation timestk,i ∈
[tk, tk+1] is chosen, withi = 0, . . . ,d. The trajectory of each state on the time
interval [tk, tk+1] is approximated by a polynomialpk(t, vk) ∈ Rn having the
coefficientsvk ∈ Rnx(d+1).

The collocation-based integration of the state dynamics ona time interval
[tk, tk+1] starting from the initial valuesk, as described in equation (10.5) hin-
ges on solving the collocation equation:

ck (vk, sk,qk) =





vk,0 − sk

ṗk
(

tk,1, vk
) − f (vk,1, tk,1,qk)

...

ṗk
(

tk,d, vk
) − f (vk,d, tk,d,qk)





= 0 (13.4)

for the variablesvk,i ∈ Rnx, with i = 0, . . . ,d.
We now turn to building the NLP based on direct collocation. In addition to

solving the collocation equations (13.4) fork = 0, . . . ,N − 1, we also require
continuity accross the interval boundaries, i.e. we require that

pk(tk+1, vk) − sk+1 = 0

holds fork = 0, . . . ,N.
One finally ought to approximate the integrals

∫ tk+1

tk
L(x,u)dt on the colloca-

tion intervals by a quadrature formula using the same collocation points, which
we denote by the a termlk(vk, sk,qk). Path constraints can be enforced on the
fine time gridtk,i , though it is common to enforce them only on the interval
boundariestk in order to reduce the amount of inequality constraints in the
resulting NLP.

It is interesting to observe, that an arbitrary sampling of the state dynamics
is possible by enforcing the path constraints at arbitrary time pointst via the
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interpolationpk (t, vk). However, it is important to point out that the high inte-
gration order of collocation schemes holds only at the the main time grid tk,
such that interpolations at finer time grids, including the grid tk,i , holds a lower
numerical accuracy. In the following formulations, we willenforce the path
constraints on the main time gridtk.

Direct Collocation yields a large scale but sparse NLP, which can typically
be written in the form:

minimize
v, s,q

E (sN) +
N−1∑

k=0

lk(vk, sk,qk)

subject to s0 − x0 = 0 (fixed initial value),

ck(vk, sk,qk) = 0, k = 0, . . . ,N − 1 (collocation conditions),

pk(tk+1, vk) − sk+1 = 0, k = 0, . . . ,N − 1 (continuity conditions),

h(sk,qk) ≤ 0, k = 0, . . . ,N − 1, (path constraints),

r (sN) ≤ 0 (terminal constraints).

One ought to observe that the discrete state variablessk or alternatively the
collocation variablesvk,0 can be eliminated via the first linear equality in each
collocation equationsck(vk,qk, sk) = 0. It is in fact common to formulate the
NLP arising from direct collocation without thesk and enforcing continuity
directly within the collocation equations. It then reads asfollows:

minimize
v,q

E
(

vN,0
)

+

N−1∑

k=0

lk(vk,qk)

subject to v0,0 − x0 = 0,

ṗk
(

tk,i , vk
) − f (vk,i ,qk) = 0, k = 0, . . . ,N − 1, i = 1, . . . ,d,

pk(tk+1, vk) − vk+1,0 = 0, k = 0, . . . ,N − 1,

h(vk,0,qk) ≤ 0, k = 0, . . . ,N − 1,

r
(

vN,0
) ≤ 0.

(13.5)
We illustrate the variables and constraints of NLP (13.5) inFigure 13.5.

The direct collocation method offers two ways of increasing the numerical
accuracy of the integration. We need to remember here that the integration
error of a Gauss-Legendre collocation scheme is ofO

(

(tk+1 − tk)
2d

)

(respecti-

vely O

(

(tk+1 − tk)
2d−1

)

for the Gauss-Radau collocation scheme). In order to
gain accuracy, one can therefore increased and thereby gain two orders in the
integration error. Alternatively, one can reduce the size of the time intervals
[tk, tk+1] by e.g. a factorξ and thereby reduce the order of the integration error
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Figure 13.5 Illustration of the variables and constraints of NLP (13.5) ford = 3,
and for one specific time interval [tk, tk+1] before the constraints are fulfilled (early
iteration). One can observe that the continuity conditionspk(tk+1, vk) − vk+1,0 = 0
are not (yet) satisfied.

by a factorξ2d (respectivelyξ2d−1 for the Gauss-Radau collocation scheme).
However, numerical experiments often show that the conditioning of the linear
algebra underlying the NLP resulting from direct collocation tends to wor-
sen asd increases beyond relatively small orders. In practice, it often appears
counterproductive to used > 4 for complex optimal control problems.

One ought to observe here that a discretizing an OCP using direct colloca-
tion allows for a fairly straightforward construction of the exact Hessian of the
NLP. Indeed, one can observe that the nonlinear contributions to the constraints
involved in the NLPs arising from a discretization based on direct collocation
are all explicitly given by the model continuous dynamics function f , the path
constraints functionh, and the terminal constraints functionr. These functions
are, in most OCPs, readily provided in their symbolic forms.It follows that
assembling the Lagrange function and computing its first andsecond-order de-
rivatives is fairly straightforward using any efficient symbolic computation tool
such as e.g. AMPL or casADi.

Example 13.3. Let us tackle the OCP (13.1) of Example 13.1 via direct col-
location. The direct collocation is implemented using a Gauss-Legendre direct
collocation scheme withd = 3. Here again, the ordering of the equality con-
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straints and variables is important in order to get structured sparsity patterns.
In this example, the variables are ordered in time as:

v0,0, . . . , v0,3, q0, . . . , vN−1,0, . . . , vN−1,3, qN−1

wherevk,i ∈ R2, and the constraints are also ordered in time. The resulting
solution is illustrated in Figure 13.6, together with the sparsity patterns of the
Jacobian of the equality constraint function, and the one ofthe Hessian of the
Lagrange function.

The resulting solution is displayed in Figure 13.3, where one can observe
the discrete state trajectories (black dots) at the discrete time instantst0,...,N to-
gether with the simulations delivered by the integrators atthe solution. One
can also observe the very specific sparsity patterns of the Jacobian of the equa-
lity constraints and of the Hessian of the Lagrange functionthat arise from the
direct multiple-shooting approach.

The large NLPs resulting from direct collocation need to be solved by struc-
ture exploiting solvers, and due to the fact that the problemfunctions are ty-
pically relatively cheap to evaluate compared to the cost ofthe linear algebra,
nonlinear interior point methods are often the most efficient approach here. A
widespread combination is to use collocation with IPOPT using the AMPL in-
terface, or the casADi tool. It is interesting to note that, like in direct multiple
shooting, the multipliers associated to the continuity conditions are again an
approximation of the adjoint variables.

An interesting variant of orthogonal collocation methods that is often called
thepseudo-spectral optimal control methoduses only one collocation interval
but on this interval it uses an extremely high order polynomial. State con-
straints are then typically enforced at all collocation points. Unfortunately, the
constraints Jacobian and Lagrange Hessian matrices arising from the pseudo-
spectral method are typically fairly dense and therefore more expensive to fac-
torize than the ones arising in direct collocation.

Alternative input parametrization We have discussed to far the use of a
piecewise-constant input parametrization in the context of direct methods. We
ought to stress here that, while this choice is simple and very popular, it is also
arbitrary. In fact, what qualifies direct methods is their use of a restriction of the
continuous (and therefore∞-dimensional) input profileu(t) to a space of finite
dimension, which can then be described via a finite set of numbers and the-
refore treated in the computer. In principle, any description of the continuous
input u(t) as a finite-dimensional object is possible, though some descriptions
are less favorable than others. Indeed, it can e.g. be counterproductive to adopt
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Figure 13.6 Solution to OCP (13.1) using a Gauss-Legendre direct collocation
discretization scheme withd = 3, andN = 20. The upper graph reports the
states and input trajectories. The collocated statesvk,i are reported as the dots.
The lower graphs report the sparsity pattern of the Jacobian of the equality con-
straints in the resulting NLP and the sparsity pattern of the Hessian of the La-
grange function. Observe that the Hessian is block diagonal, while the Jacobian
has a block-diagonal pattern with some elements off the blocks corresponding to
the continuity conditions. The Jacobian of the inequality constraints is diagonal in
this example, and block-diagonal in general.

an input descritization that destroys or degrades the sparsity patterns arising
in the linear algebra of the various direct methods presented above. For this
reason, it is typically preferable to adopt input discretizations that are “local”
in time. Indeed, the sparsity patterns specific to the structure arising both in
multiple-shooting and direct collocation hinge on the division of the overall
time interval [t0, tN] into the subintervals [tk, tk+1], and the fact that the varia-
bles specific to one intervalk, e.g.vk,qk in the direct collocation method have
an impact only on the neighboring intervals (k−1 andk+1) via the continuity
conditions. It would then be unwise to destroy this feature by using a discreti-
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zation of the continuous inputu(t) where the input parametersq influence the
input profile globally (i.e. at e.g. all time instants) such that an input parameter
qk would influence all intervals. This observation rules out the use of “global”
input parametrizations such as e.g. parametrizing the inputs via a finite Fourier
series or a polynomial basis over the whole interval [t0, tN].

In the context of direct collocation, a fairly natural refinement of the conti-
nuous input parametrization consists in providing as many degrees of freedom
as the discretization of the optimal control problem allows. More specifically,
one can readily observe that the standard piecewise input parametrization is
enforced by construction of the collocation equations (13.4), where a single
input valueqk is used on each collocation interval [tk, tk+1]. More degrees of
freedom in the discretized input can, however, be readily added by allowing
a different inputqk,i at every collocation time pointtk,i , for i = 1, . . . ,d. The
collocation equations for each intervalk = 0, . . . ,N − 1 then read as:

ck (vk, sk,qk) =





vk,0 − sk

ṗk
(

tk,i , vk
) − f (vk,i , tk,i ,qk,i)

...

ṗk
(

tk,d, vk
) − f (vk,d, tk,d,qk,d)





= 0. (13.6)

and the NLP receives the decision variables

w =
{

v0,0, v0,1,q0,1, . . . v0,d,q0,d, v1,0, v1,1,q1,1, . . . , v1,d,q1,d, . . .
}

.

It is important to observe here that the input is parametrized asqk,i with
k = 0, . . . ,N − 1 andi = 1, . . . ,d, i.e. no degree of freedom qk,0 ought to be
attributed to the discrete input on the first collocation times tk,0, as only the
continuity of the state trajectory is enforced on that collocation time.

13.4 A Classification of Direct Optimal Control Methods

It is an interesting exercise to try to classify Newton type optimal control al-
gorithms, where we follow the presentation given in [34]. Let us have a look
at how nonlinear optimal control algorithms perform their major algorithmic
components, each of which comes in several variants:

(a) Treatment of Inequalities: Nonlinear IP vs. SQP.
(b) Nonlinear Iterations: Simultaneous vs. Sequential.
(c) Derivative Computations: Full vs. Reduced.
(d) Linear Algebra: Banded vs. Condensing.

In the last two of these categories, we observe that the first variants each exploit
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the specific structures of the simultaneous approach, whilethe second variant
reduces the variable space to the one of the sequential approach. Note that re-
duced derivatives imply condensed linear algebra, so the combination [Redu-
ced,Banded] is excluded. In the first category, we might sometimes distinguish
two variants of SQP methods, depending on how they solve their underlying
QP problems, via active set QP solvers (SQP-AS) or via interior point methods
(SQP-IP).

Based on these four categories, each with two alternatives,and one combi-
nation excluded, we obtain 12 possible combinations. In these categories, the
classical single shooting method [70] could be classified as[SQP,Sequential,Reduced]
or as [SQP,Sequential,Full,Condensing] because some variants compute di-
rectly the reduced derivatives̄Ru in (??), while others compute first the stage-
wise derivative matricesAi andBi and condense then. Tenny’s feasibility per-
turbed SQP method [76] could be classified as [SQP,Sequential,Full,Banded],
and Bock’s multiple shooting [20] as well as the classical reduced SQP collo-
cation methods [77, 13, 12] as [SQP,Simultaneous,Full,Condensing]. The band
structure exploiting SQP variants from Steinbach [75] and Franke [42] are clas-
sified as [SQP-IP,Simultaneous,Full,Banded], while the widely used interior
point direct collocation method in conjunction with IPOPT by Biegler and
Wächter [? ] as [IP,Simultaneous,Full,Banded]. The reduced Gauss-Newton
method of Schl̈oder [73] would here be classified as [SQP,Simultaneous,Reduced].

13.5 Direct Methods for Singular Optimal Control Problems

In this section, we want to discuss the implications of solving a singular OCP,
as introduced in Section 12 using classical techniques fromnumerical optimal
control. We will focus here on the classic choice of a piecewise constant input
parametrization using a uniform, fixed time grid.

For the sake of simplicity, we will consider OCPs having a scalar inputu ∈ R
with only input bounds:

minimize
x,u

φ(x(tf )) +
∫ tf

t0

L (x (t) ,u (t)) dt

subject to ˙x = f (x,u) , x (t0) = x0,

umin ≤ u ≤ umax.
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We will moreover consider dynamics that are affine in the inputu:

ẋ = ϕ (x) + g (x) u (13.7)

and a Lagrange termL that is either affine in inputu. The Hamiltonian function
reads as

H (x, λ, µ,u) = L (x,u) + λ⊤ f (x,u) .

The PMP equations then read as:

u⋆ (x, λ) = argmin
umin≤u≤umax

L (x,u) + λ⊤ f (x,u)

ẋ = f
(

x,u⋆
)

, x(t0) = x0,

λ̇ = −∇xH
(

x,u⋆, λ
)

, λ(tf ) = ∇xφ (x (tf )) .

In particular, if L is a function ofx only, Hu (x,u, λ) = λ⊤g (x) such that the
input profile reads as:

u⋆(x, λ) =






umax if λ⊤g (x) < 0
umin if λ⊤g (x) > 0

using (x, λ) if λ⊤g (x) = 0
. (13.8)

As detailed in Section 12.2, the inputusing (x, λ) is obtained via the time de-
rivatives ofHu. For the simple case os a scaler input, it is interesting to note
that for systems of the form (13.7), the time derivatives ofHu, up to where the
dependence on the control input appears, are provided by theLie derivatives
over the vector fieldsf , g, i.e.:

dk

dtk
Hu = λ

⊤
L

k
f g, k < 2σ

d2σ

dt2σ
Hu = λ

⊤
L

2σ
f g+ λ⊤

[

g,L2σ−1
f g

]

u

whereσ is the degree of singularity of the OCP, and the Lie derivative operator
L is defined in terms of the Lie bracket[., .], i.e.L f g =

[

f ,g
]

. HereLk stands
for k applications of the Lie derivative operator on itself. The inputu appearing
at the differentiation 2σ can then be construed as a lack of commutativity of
the vector fieldg with thekth-order Lie derivative of the vector fieldsf , g. The
singular inputusing is provided by:

using (x, λ) = −
λ⊤Lk

f g

λ⊤Lk
gg
.

An interesting special case occurs when 2σ + 1 equates the number of states
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present in the dynamics, then:
[

Hu
d
dt Hu ... d2σ

dt2σ Hu

]

= λ⊤
[

g L f g ... L
(2σ)
f g+

[

g,L2σ
f g

]

u
]

= 0

uniquely defines the singular inputusing via the condition:

det
([

g L f g ... L
(2σ)
f g+

[

g,L2σ−1
f g

]

using

])

= 0.

The singular input then becomes a function of the states only, i.e. using =

using (x), and therefore becomes a pure feedback law. We turn next to analysing
the impact of using a piecewise-constant parametrization of the input profile
u(.).

13.5.1 Oscillations in singular optimal control solutions

It is important to observe here that the restriction of the input profile to a
piecewise-constant input parametrization with a fixed timegrid generally pre-
vents the input profile from accurately capturing the switching times occur-
ring in the optimal input profileu⋆(.) given by (13.8). The optimal piecewise-
constant input profile will then compensate for not switching at the exact time
instant by ”oscillating” around the singular arc. This phenomenon is argua-
bly best explained in the light of the fundamental Lemma of the Calculus of
Variations introduced in Section 12.5. For a piecewise-constant input parame-
trization, it states that the piecewise-constant optimal input profile

u⋆(t) = u⋆k ∀t ∈ [tk, tk+1]

satisfies:
∫ tk+1

tk

Hu

(

x⋆(t), λ⋆(t)
)

dt = 0, ∀ k such that umin < u⋆k < umax. (13.9)

For singular problems,Hu is ”controlled” byu via H(2σ)
u , i.e. a chain of 2σ in-

tegrators. The optimal inputu⋆k , when it is not in its bounds, is then determined
by the initial conditions of this chain attk, i.e. by

Hu

(

x⋆(tk), λ
⋆(tk)

)

, . . . , H(2σ−1)
u

(

x⋆(tk), λ
⋆(tk)

)

.

via condition (13.9). Let us then define:

v̇ =





Hu

H(1)
u
...

H(2σ)
u





= Av+ BH(2σ)
u (x, λ,u)
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where

A =





0 1 0 ... 0
0 0 1 ... 0

...

0 0 ... 0 1
0 0 ... 0 0





, B =





0
0
...

0
1





.

Wheneverumin < u⋆k < umax, the discrete optimal control inputu⋆k on [tk, tk+1]
then enforces:

∫ tk+1

tk

Hu (x, λ) dτ = C (v (tk+1) − v (tk)) = 0 (13.10)

whereC =
[

1 ... 0 0
]

. We have that:

v (tk+1) = eA(tk+1−tk)v(tk) +
∫ tk+1

tk

eA(tk+1−τ)BH(2σ)
u (x, λ,u) dτ

such that:

C (v (tk+1) − v (tk)) = C
(

eA(tk+1−tk) − I
)

v(tk) (13.11)

+

∫ tk+1

tk

CeA(tk+1−τ)BH(2σ)
u (x, λ,u) dτ = 0.

Let us consider for the sake of simplicity thatH(2σ)
u = u⋆k . In this special case,

(13.11) defines the piecewise-constant optimal input in terms of a constant
linear feedback law:

u⋆k = −Kv (tk)

such that the discrete dynamics ofv is given by a constant transition matrixΦ

v (tk+1) = Φv (tk) .

It can be verified thatΦ takesσ real, stable eigenvalues in [−1, 0], which de-
pend only on the degree of singularityσ of the OCP. These eigenvalues then
yield a damped ”oscillatory” trajectory forv (tk) in the direction of the corre-
sponding eigenvectors. These oscillations translate directly into corresponding
oscillations in the sequence of optimal control inputsu⋆k . The oscillations ob-
served in the piecewise-constant optimal inputu⋆k when discretizing and sol-
ving a singular problem numerically is therefore not a numerical artefact, but
a fundamental property of the piecewise-constant input parametrization of the
input profile.

We illustrate these observations in the following example.
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Example 13.4. Consider the linear-quadratic singular optimal control pro-
blem:

minimize
x (.) ,u (.)

1
2

∫ 1

0
x2

1 dt

subject to ˙x =

[

0 1
0 0

]

x+

[

0
1

]

u, x (0) =

[

0
1

]

,

− 5 ≤ u ≤ 5.

(13.12)

It can be verified that

Hu = λ2,
d
dt

Hu = −λ1,
d2

dt2
Hu = x1,

d3

dt3
Hu = x2,

d4

dt4
Hu = u.

The optimal input profile then reads as:

u⋆ (t) =






umin if λ⋆2 (t) > 0
umax if λ⋆2 (t) < 0

0 if x = λ = 0

i.e. the solution is bang-bang until the states and co-states reach the zero ma-
nifold. We are interested in studying the solution to problem (13.12) when
the optimal input profileu⋆(t) is approximated by a piecewise-constant pro-
file u⋆0 , ...,u

⋆
N−1. Direct collocation was used to tackle (13.12), using Legendre

polynomials with an integration order of 10. The NLP was solved using an
interior-point method converged to machine precision.

The resulting optimal control solutionu⋆k is reported in Fig. 13.7, together
with the continuous optimal input profileu⋆ (.). One can observe oscillations
in the piecewise-constant input after the last switching time at 0.578 s, which
is typical of singular optimal control problems. The corresponding state trajec-
tories are reported in Figure 13.8. The trajectories ofv(t) for this problem are
reported in Figure 13.9, for both the continuous optimal input profileu⋆(.) and
its piecewise-constant input parametrizationu⋆k . One can observe in the upper-
left graph that the optimality condition (13.9) is satisfiedby the solutionu⋆k ,
which requires an oscillation inv(tk). Indeed, the stable eigenvalues of matrix
Φ for problem (13.12) read as−0.0431,−0.4306. The oscillation ofv(tk) in
turn require a corresponding oscillation inu⋆k . These oscillations are also ob-
served in the states and co-states trajectories, which for problem (13.12) match
Hu and its time derivatives.
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Figure 13.7 Optimal input profile (in grey) and piecewise-constant input profile
obtained via direct collocation (in black) for problem (13.12), where the input is
discretized as piecewise-constant overN = 100 uniform time intervals. The ver-
tical dotted lines report the optimal switching times betweenu = umin, u = umax

andu = 0. The ”oscillation” of the optimal piecewise-constant input issympto-
matic of singular problems when the discretization of the input profile does not
allow for capturing arbitrary switching times.
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Figure 13.8 Optimal state trajectories for problem (13.12). Even though the opti-
mal input obtained from direct collocation is significantly different from the opti-
mal one, the respective resulting state trajectories are indistinguishable.

Exercises

13.1 Let’s regard again the OCP defined in Exercises 12.3 and 8.7:

minimize
x,u

∫ ⊤

0
x1(t)2 + x2(t)2 + u(t)2 dt

subject to ˙x1 = (1− x2
2) x1 − x2 + u, x1(0) = 0,

ẋ2 = x1, x2(0) = 1,

−1 ≤ u(t) ≤ 1,

(13.13)
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Figure 13.9
∫

Hudτ and its time derivatives in the time interval [0.5725, 0.63].
The ”oscillations” in the input profile obtained from direct collocation can be ea-
sily understood in the light of condition (13.10). The piecewise-constant optimal
inputsu⋆k enforce

∫ tk+1

tk
Hudτ for all k where the input bounds are not active (see

upper-left graph), which yield damped oscillations inH(k)
u

(

x⋆ (tk) , λ⋆ (tk)
)

.

whereT = 10 as earlier.

(a) Implement a RK4 integrator for the system dynamics.

(b) Use the integrator to create a functionx(x0,u,T) that simulates the
system in a time intervalT, and wherex0 is the initial state andu a



DRAFT

252 Direct Approaches to Continuous Optimal Control

set of piecewise constant controls defined in a time grid withconstant
step size∆t.

(c) Use the previous function to solve the OCP using single shooting and
N = 101. Approximate the cost function using the trapezoidal rule
between the nodes whereu is defined. Usefminconfrom MATLAB
to solve the NLP.

(d) Modify the script to solve the same problem using direct multiple
shooting. The control parametrization and the definition ofthe inte-
grator can remain the same.

(e) How did the change from direct single shooting to direct multiple
shooting influence the following features?

• The number of iterations.
• The number of nonzeros in the Jacobian of the constraints.
• The number of nonzeros in the Hessian of the Lagrangian.
• The total solution time.

13.2 In the previous problem, we solved the NLP usingf mincon. In the fol-
lowing, we will write our own simple SQP code to solve (13.13). As a
quick reminder, SQP employs a sequence of quadratic approximations
to solve the NLP and solves these with a QP solver. For an NLP ofthe
form:

minimize
x

f (x)

subject to xlb ≤ x,

xub ≥ x,

g(x) = 0,

these quadratic approximations take the form:

minimize
∆x

1
2
∆x⊤ ∇2

xL(x(k), λ(k))∆x+ ∇x f (x(k))⊤ ∆x

subject to xlb − x(k) ≤ ∆x,

xub − x(k) ≥ ∆x,

g(x(k)) +
∂g
∂x

(x(k))∆x = 0.

(13.14)

where (x(k), λ(k)) is a guess of the primal-dual solution to (13.14) and
L(x, λ) = f (x)+λ⊤ g(x) is the Lagrangian. The solution of this QP gives
the step in∆x and a new approximation of the multipliersλ.
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(a) For problems with a quadratic objective functionf (x) = 1
2 ‖F(x)‖22,

like the NLPs arrising from both direct single shooting and direct
multiple shooting transcription of (13.13), a popular variant is to use
aGauss-Newtonapproximation of the Hessian of the Lagrangian:

∇2
xL

(

x(k), λ(k)
)

≈ ∂F
∂x

(

x(k)
)⊤ ∂F

∂x

(

x(k)
)

and∇x f (x) = ∂F
∂x

(

x(k)
)⊤

F
(

x(k)
)

.

What are the main advantages and disadvantages of such an approxi-
mation?

(b) Implement a Gauss-Newton method to solve the problem. Use algo-
rithmic differentiation or finite differences to calculate∂F

∂x and ∂g
∂x and

solve the QP subproblem using thequadprog tool from MATLAB.

13.3 Jebediah Kerman is an astronaut that has gone for an aerospace walk
and lost track of time. He can’t remember when atmospheric re-entry is
scheduled, but he believes it is very soon. He needs to get back to his
spaceship as quickly as possible. He has mass 30kg includingspace suit
but not including fuel. He is currently carrying 10kg of fuel. He is 50m
away from his ship, with zero relative velocity. He wants to return to
the ship as quickly as possible (to have equal position and zero relative
velocity), while still conserving 4kg of fuel for emergencies.

Jebediah ca be modeled as having three states: positionp, velocityv,
and fuel massmF . Moreover, the space suit has a rocket booster (control
u) which can fire forwards or reverse. As a result, the equationof motion
of his body are:

d
dt





p
v

mF





=





v
u/ (30+mF)
−u2





(13.15)

(a) Write down the continuous time optimal control problem with a mi-
nimum time objectiveT.

(b) Discretize this problem using direct multiple shooting, and write down
the NLP. Use the shooting functionxk+1 = frk4(xk,uk,∆t) with ∆t = T

N
being an optimization variable, so your vector of optimization varia-
bles isy = [x0,u0, . . . ,uN−1, xN,∆t]⊤.

(c) Using an RK4 integrator, implement this NLP withfmincon and
solve it. UseN = 40 as the number of control intervals and think
of a proper initialization. Plotp, v, mF , andu versus time.
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(d) Make a sketch of the Hessian of the Lagrange function. Youwill see
that the Hessian is sparse but not block diagonal. Can you finda pro-
blem reformulation with a block diagonal Hessian? Make a sketch of
the new Hessian.
Hint: Introduce multiple copies of you timestep∆t and make it a
pseudo state.

13.4 CasADi Exercise:Consider the following continuous-time infinite di-
mensional problem:

minimize
x,u

∫ T

0
x(t)2 + u(t)2 dt

subject to ˙x = (1+ x) x+ u,

|u(t)| ≤ 0.075,

x(0) = x̄0,

x(T) = 0,

whereu ∈ R is the control input andx ∈ R is the state of the system,
T = 3 and x̄0 = 0.05. The above formulation can be discretized by
integrating the dynamics of the system over a fixed grid withN+1 nodes
leading to the finite-dimensional discrete-time problem

minimize
x0,··· ,xN

u0,··· ,uN−1

h
N−1∑

i=0

(x2
i + u2

i ) + x2
N

subject to xi+1 = f (xi ,ui), i = 0, · · · ,N − 1,

|ui | ≤ 0.075, i = 0, · · · ,N − 1,

x0 = x̄0,

xN = 0

where f describes the discretized dynamics obtained using an integra-
tion scheme,h := T

N , xi andui refer to the evaluation of state and control
trajectories respectively. Furthermore, we can transformthe above dis-
crete OCP into the single shooting scheme as:

minimize
u

Φ(u)

subject to |ui | ≤ 0.075, i = 0, · · · ,N − 1,

xN(u) = 0

whereΦ(u) := h(x̄2
0 + u2

0 + f (x̄0,u0)2 + u2
1 + · · · ).
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(a) Implement a CasADiFunction f that takes as argument the statesx
and inputu and returns the ODE right-hand-side ˙x.

(b) Divide the time horizon intoN = 30 equidistant control intervals,
then use the RK4 scheme to define the discrete-time dynamics as a
CasADi function. This function should takex(ti) andui as inputs and
return x(ti+1). The key lines of the integrator implementation could
look like this:

ou t = f ( {X,U } ) ;
k1 = ou t { 1 } ;
% . . .
X = X + h /6∗ ( k1 + 2∗k2 + 2∗k3 + k4 ) ;

(c) Formulate the direct single shooting NLP and solve it with IPOPT.
Note that the NLP should haveN degrees of freedom, so start by
defining a variableu ∈ RN:

u = SX . sym ( ’ u ’ ,N ) ;

The key lines of the NLP formulation could look like this:

X = X0 ;
f o r i = 1 :N

ou t = F ( {X, v ( i ) } ) ;
X = ou t { 1 } ;
J = J + X( 1 ) ˆ 2 + u ( i ) ˆ 2 ;

end

(d) Modify the script to so that it implements the direct multiple shooting
method. The control parametrization and the definition of the integra-
tor can remain the same. Tip: Start by replacing the line:

nv = N

with

nv = 1*N + 2*(N+1)

Make sure that you get the same solution.
(e) Compare the IPOPT output for both scripts. How did the change from

direct single shooting to direct multiple shooting influence:

• The number of iterations
• The number of nonzeros in the Jacobian of the constraints
• The number of nonzeros in the Hessian of the Lagrangian
• The total solution time
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(f) Introduce the additional path constraintsxi ≥ 0.05, i = 15, · · · ,17.
Change your scripts to solve the modified problem.

(g) Replace the dynamics in the NLP from the previous task with their
linearization at the originx0 = 0. Compute the optimal solution and
apply it to the original system. Are the path constraints satisfied? Is
there a neighborhood of the origin where this linearized optimal con-
trol problem will provide a feasible solution?

13.5 CasADi Exercise:Consider the following simple OCP for controlling a
Van-der-Pol oscillator:

minimize
x,u

∫ T

0
x1(t)2 + x2(t)2 + u(t)2 dt

subject to ˙x1 = (1− x2
2) x1 − x2 + u, x1(0) = 0,

ẋ2 = x1, x2(0) = 1,

− 1 ≤ u(t) ≤ 1

whereT = 10.

(a) Implement a CasADiFunction f : R2 × R → R2 × R that takes the
statesx and inputu and returns the ODE right-hand-side ˙x and the
Lagrange objective termL.

(b) Divide the time horizon intoN = 20 equidistant intervals, [tk, tk+1],
k = 0, . . . ,N − 1 and assume a constant controluk on each interval.
Then takeM = 4 steps with a RK4 scheme to define the discrete-
time dynamics as aFunction F : R2 × R → R2 × R. F should take
x(tk) anduk and returnx(tk+1) andJk =

∫ tk+1

tk
L(x,uk), the contribution

to the objective from intervalk. Evaluate the integrator withx(tk) =
[0.2,0.3] anduk = 0.4.

(c) Formulate the direct single shooting NLP and solve it with IPOPT.
Construct the NLP variables step-by-step starting with empty list:

w = [ ]
lbw = [ ]
ubw = [ ]

Plot the results.
(d) Modify the script to so that it implements the direct multiple shooting

method. The control parametrization and the definition of the integra-
tor should remain the same. Introduce NLP variables corresponding
to the state for all discrete time points, includingk = 0.

(e) Compare the IPOPT output for both scripts. How did the change from
direct single shooting to direct multiple shooting influence:
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• The number of iterations
• The number of nonzeros in the Jacobian of the constraints
• The number of nonzeros in the Hessian of the Lagrangian

(f) Introduce the additional constraintx1(t) ≥ −0.25. You only need to
enforce this path constraint at the end of each control interval. Mo-
dify your scripts to solve the modified problem with direct multiple
shooting (easy) and direct single shooting (more tricky).

13.6 CasADi Exercise:Collocation, in its most basic sense, refers to a way of
solving initial-value problems by approximating the statetrajectory with
piecewise polynomials. For each step of the integrator, corresponding
to an interval of time, we choose the coefficients of these polynomials
to ensure that the ODE becomes exactly satisfied at a given setof time
points. The time points, in turn, are chosen to get the highest possible
acuracy and, possibly, to make sure that the dynamics be satisfied at
the beginning and/or end of the time interval. In the following, we will
choose theLegendre pointsof orderd = 3:

τ = [0,0.112702,0.500000,0.887298] (13.16)

where we have assumed that the time interval is [0,1].
Using these time points, we define a Lagrangian polynomial basis for

our polynomials:

L j(τ) =
d∏

r=0, r, j

τ − τr

τ j − τr
(13.17)

Introducing a uniform time gridtk = k h, k = 0, . . . ,N with the corre-
sponding state valuesxk := x(tk), we can approximate the state trajectory
approximation inside each interval [xk, xk+1] as a linear combination of
these basis functions:

x̃k(t) =
d∑

r=0

Lr

( t − tk
h

)

xk,r (13.18)

By differentiation, we get an approximation of the time derivativeat
each collocation point:

˜̇xk(tk, j) =
1
h

d∑

r=0

L̇r (τ j) xk,r :=
1
h

d∑

r=0

Cr, j xk,r (13.19)

We can also get an expression for the state at the end of the interval:

x̃k+1,0 =

d∑

r=0

Lr (1) xk,r :=
d∑

r=0

Dr xk,r (13.20)
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We can also integrate our approximation over the interval, giving a
formula forquadratures:

∫ tk+1

tk

x̃k(t) dt = h
d∑

r=0

∫ 1

0
Lr (t) dt xk,r := h

d∑

r=1

Br xk,r (13.21)

(a) Downloadcollocation.m (MATLAB) or collocation.py (Py-
thon) from the course website containing an implementationof the
above collocation scheme. Go through the code and make sure you
understand it well. Use the code to to reproduce the result from the
second task of Exercise 13.5.

(b) Replace the RK4 integrator in the direct multiple shooting implemen-
tation from Exercise 13.5 with the above collocation integrator. Make
sure that you get the same results as before.

(c) Instead of letting the rootfinder solve the collocation equations, aug-
ment the NLP variable and constraint vectors with additional degrees
of freedom corresponding to the state at the collocation points and
let the NLP solver also solve the integration problem. For simplicity,
only consider a single collocation finite element per control interval.
Compare the solution time and number of nonzeros in the Jacobian
and Hessian matrices with the direct multiple shooting method.

(d) Form the Jacobian of the constraints and inspect the sparsity pattern
using MATLAB’s or SciPy’sspy command. Repeat the same for the
Hessian of the Lagrangian functionL(x, λ) = J(x) + λT g(x).
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Optimal Control with Differential-Algebraic
Equations

So far we have regarded optimal control problems based on model dynamics
in their simplest explicit-ODE form:

ẋ(t) = f (x(t),u(t)) .

This form of model for dynamic systems tend to arise naturally from the first-
principle modelling approaches standardly taught and usedby engineers. As a
result, most continuous dynamic systems are described via explicit ODEs. It
is a common but less widespread knowledge that for a large number of appli-
cations, building a dynamic model in the form of explicit ODEs can be signi-
ficantly more involved and yield dramatically more complex model equations
than via alternative model forms. Before laying down some theory, let us start
with a simple illustrative example that we will use throughout this chapter.

Consider a massm attached to a fixed point via a rigid link of lengthL for
which one wants to develop a dynamic model. A classic modelling approach is
to describe the mass via two angles (azimuth and elevation ofthe mass), which
yields an explicit ODE. The alternative model constructionwe will consider
here describes the system via the cartesian coordinatesp ∈ R3 of the mass in a
fixed, inertial reference frameE positioned at the attachment point of the mass,
see Figure 14.1. The rod maintains the mass at a distanceL of its attachment
point by applying a force on the mass along its axis, i.e. having the support
vectorp. We will then describe the force of the rod asFrod = −zp, wherez ∈ R
is a variable that adjusts the force magnitude to maintain the mass on a sphere
of radiusL, i.e. such that the conditionp⊤p − L2 = 0 holds at all time. The
model of the system can then takes a very simple form:

mp̈ = u− zp+mgE3,
1
2

(

p⊤p− L2
)

= 0. (14.1)

whereE⊤3 =
[

0 0 1
]

. One can readily observe here that the model equation

259
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Figure 14.1 Illustration of the example considered in this chapter. The system is
described via the cartesian position of the massp ∈ R3 in the fixed frameE. The
mass is subject to the gravity force−mgE3 and to a force−zpfrom the rod, which
ensures that the mass remains at a distanceL from its attachment point. Here the
scalarz is a variable in the dynamics that scales this force adequately.

(14.1) is not a simple explicit ODE. Indeed, while the scalarvariablez is in-
trinsically part of the model, its time derivative does not appear in the model
equation. Hence, variablez is of a different nature than variablep. A variable
that is intrinsic to the model equation (i.e. excluding possibly time-varying pa-
rameters and inputs) but that is not time differentiated in the model equation
is labelled analgebraic state. A differential equation holding such variables is
called aDifferential Algebraic Equation(DAE).

Following up on this example, we will now provide a more formal view on
the concept of Differential-Algebraic Equations.

14.1 What are DAEs ?

Let us consider a differential equation in a very generic form:

f (ẋ(t), x(t),u(t)) = 0. (14.2)
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Such a differential equation is labelledimplicit as the state derivative ˙x(t) is not
provided via an explicit function of the statex(t) and inputu(t), but implicitly
as the solution of (14.2). The Implicit Function Theorem guarantees that ˙x(t)
can be seen as a locally unique and continuously differentiable function ofx(t)
andu(t) if the Jacobian off with respect to ˙x(t), i.e. ∂ f

∂ẋ , is full rank. Under
this condition, one is guaranteed that for a given statex(t) and inputu(t), the
state time derivative ˙x(t) can be computed, either explicitly or numerically e.g.
via a Newton iteration. Then (14.2) is anOrdinary Differential Equation, since
ẋ(t) can be computed at every time instant, and the model can in principle be
treated as a classic explicit ODE.

Formally, Differential-Algebraic Equations are equations in the form (14.2)
for which the above rank condition fails. Let us formalise that in the following
definition.

Definition 14.1. f (ẋ(t), x(t),u(t)) = 0 is a DAE if ∂ f
∂ẋ is rank deficient.

It is admittedly not straightforward to relate Definition 14.1 to the earlier ex-
ample (14.1). Before making this relationship clear, let usillustrate Definition
14.1 on a simple example.

Example 14.2. Let us consider the following implicit differential equation,
having the form (14.2):

f (ẋ, x,u) =

[

x1 − ẋ1 + 1
ẋ1x2 + 2u

]

= 0, (14.3)

then the Jacobian off with respect to the state derivatives ˙x reads as:

∂ f
∂ẋ
=

[

−1 0
x2 0

]

,

and is rank-deficient, entailing that (14.3) is, by Definition 14.1, a DAE.
Alternatively, one can also simply observe that ˙x2 does not appear time-

differentiated in (14.3), such that one can assess by simple inspection that it is
a DAE. In order to gain some further intuition in this example, consider solving
the first equation in (14.3) for ˙x1, giving

ẋ1 = x1 + 1

Upon inserting the expression for ˙x1 in the second equation, one can then write
(14.3) as

ẋ1 = x1 + 1,

0 = (x1 + 1) x2 + 2.
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We observe here that the second equation is in fact purely algebraic, such that
the model can be written as a mixture of an explicit differential equation and of
an algebraic equation. This form of DAE is actually the most commonly used
in practice. It is referred to as a semi-explicit DAE.

The above example can mislead one to believe that DAEs are fairly simple
objects. To dispel that impression, let us provide a simple example of a DAE
that possess fairly exotic properties.

Example 14.3. Let us consider the following differential equation

ẋ1 + x1 − u = 0,

(x1 − x2) ẋ2 + x1 − x2 = 0,

having the Jacobian

∂ f
∂ẋ
=

[

1 0
0 x1 − x2

]

which is rank-deficient forx1 = x2. Hence for the initial conditions:

x1(0) = x2(0)

our equation is a DAE and its solution obeys:

ẋ1 = u− x1

0 = x2 − x1,

otherwise it is an ODE. The fact that some differential equation can switch
between being DAEs and ODEs betrays the fact that DAEs are notnecessarily
simple to handle and analyse. However, in the context of numerical optimal
control, simple DAEs are typically favoured.

As observed before, DAEs often simply arise from the fact that some states
in the state vectorx do not appear time-differentiated in the model equations,
yielding a column of zeros in the Jacobian∂ f

∂ẋ , as e.g. in example (14.2). In such
a case, it is very useful to make an explicit distinction in the implicit differential
equation (14.2) between thedifferential variables, i.e. the variables whose time
derivative appear inf , typically labelledx, and thealgebraic variables, i.e. the
variables whose time derivative do not appear inf , typically labelledz. One
can then rewrite (14.2) as:

f (ẋ, z, x,u) = 0. (14.4)

A DAE in the form (14.4) is called a fully-implicit DAE. The application of
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definition 14.1 to (14.4) must then be understood in the sensethat

det
(

∂ f
∂ẋ

∂ f
∂ż

)

= det
(

∂ f
∂ẋ 0

)

= 0 (14.5)

is always rank deficient. The differential equation (14.4) is therefore always a
DAE.

As mentioned in example 14.2, a common form of DAE often used in practice
is the so-calledsemi-explicitform. It consists in explicitly splitting the DAE
between an explicit differential equation and an implicit algebraic one. It reads
as:

ẋ = f (x, z,u) ,

0 = g (x, z,u) .

The semi-explicit form is the most commonly used form of DAEsin optimal
control. We turn next to a very important notion in the world of Differential-
Algebraic Equations, both in theory and in practice.

14.2 Differential Index of DAEs

Before introducing the notion of differential index for DAE, it will be useful
to take a brief and early tour into the problem of solving DAEs. Consider the
semi-explicit DAE:

ẋ = f (x, z,u) , (14.6a)

0 = g (x, z,u) , (14.6b)

and suppose that one can construct (possibly via a numericalalgorithm such
as a Newton iteration) a functionξ (x,u) such that:

g (x, ξ (x,u) ,u) = 0, ∀x, u.

That is, functionξ (x,u) delivers the algebraic statez for any differential state
x and inputu. One can then proceed with eliminating the algebraic statez in
(14.6), such that the DAE reads as:

ẋ = f (x, ξ (x,u) ,u) , (14.7a)

z= ξ (x,u) . (14.7b)

One can observe that (14.7a) is then an explicit ODE, and can therefore be
handled via any classical numerical integration method. Moreover, (14.7b) pro-
vides the algebraic states explicitly. When such an elimination of the algebraic
states is possible, one can consider the DAE (14.6) as ”easy”to solve. It is then
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natural to ask when such an elimination is possible. The Implicit Function The-
orem (IFT) provides here a straightforward answer, namely the functionξ (x,u)
exists (locally) if the Jacobian

∂

∂z
g (x, z,u) (14.8)

is full rank along the trajectoriesx,u, z of the system. The full-rankness of the
Jacobian (14.8) additionally guarantees that the Newton iteration:

z← z− ∂g (x, z,u)
∂z

−1

g (x, z,u) (14.9)

converges locally to the solutionz of (14.6b). In that sense, (14.9) can be seen
as a numerical procedure for constructing the implicit function ξ (x,u).

These notions easily extend to fully-implicit DAEs in the distinct form (14.4).
More specifically, suppose that there exists two functionsξẋ (x,u) andξz (x,u)
that satisfy the fully implicit DAE (14.4), i.e.

f (ξẋ (x,u) , ξz (x,u) , x,u) = 0, ∀ x, u.

Then one can rewrite (14.4) as:

ẋ = ξẋ (x,u) (14.10a)

z= ξz (x,u) . (14.10b)

Similarly to (14.7), one can treat (14.10a) as a simple ODE, while (14.10b)
delivers the algebraic statesz explicitly. The existence of functionsξẋ (x,u)
andξz (x,u) can then again be guaranteed by invoking the IFT, namely if for
(14.4) the Jacobian matrix

[
∂ f
∂ẋ

∂ f
∂z

]

(14.11)

is full rank, then functionsξẋ (x,u) and ξz (x,u) exist locally. The attentive
reader will want to observe the important distinction between (14.5) which
always hold for (14.4), and (14.11) whose full-rankness guarantees the local
existence of the implicit functionsξẋ (x,u) andξz (x,u).

Let us consider two examples to illustrate these notions.

Example 14.4. Consider again the fully-implicit DAE of Example 14.2, i.e.:

f (ẋ, z, x,u) =

[

x− ẋ+ 1
ẋz+ 2

]

= 0.

We observe that
[
∂ f
∂ẋ

∂ f
∂z

]

=

[

−1 0
z ẋ

]
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is full rank whenever ˙x , 0, such that the implicit functionsξẋ (x,u) and
ξz (x,u) are guaranteed to exist when ˙x , 0. In this simple case, they can
actually be computed explicitly. Indeed, we observe that:

ẋ = ξẋ (x,u) = x+ 1, z= ξz (x,u) = − 2
x+ 1

solve f (ẋ, z, x,u) whenever ˙x = x+ 1 , 0.

This simple example needs to be pitted against a more problematic one.

Example 14.5. Consider the fully-implicit DAE:

f (ẋ, z, x,u) =





ẋ1 − z
ẋ2 − x1

x2 − u





= 0.

We observe that:

[
∂ f
∂ẋ

∂ f
∂z

]

=





1 0 −1
0 1 0
0 0 0





is always rank-deficient, such that the differential state ˙x and algebraic statez
cannot be uniquely obtained (even numerically) from solving f (ẋ, z, x,u) = 0
alone.

The topic of this section is the notion of differential index of DAEs. As we
will see next, the loose idea of ”easy” DAEs presented above is directly related
to it. Let us introduce now the notion of differential index for DAEs.

Definition 14.6. The differential index of a DAE is the number of times it must
be time-differentiated before an explicit ODE is obtained.

For the specific case of a semi-explicit DAE, the above definition also reads
as follows.

Definition 14.7. The differential index of the semi-explicit DAE (14.6) is the
number of times its algebraic part (14.6b) must be time-differentiated before
an explicit ODE is obtained.

In order to clarify these definitions, let us make a simple example.

Example 14.8. Let us calculate the differential index of the DAE proposed in
Example 14.2, i.e.:

f (ẋ, z, x) =

[

x− ẋ+ 1
ẋz+ 2

]

= 0.
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We then consider the time derivative off , i.e.:

ḟ (ẍ, ẋ, x, ż, z) =

[

ẋ− ẍ
ẍz+ ẋż

]

= 0. (14.12)

For the sake of clarity, we labelv =





x
z
ẋ





and rewrite (14.12) in the equivalent

form:

ζ (v̇, v) =





v̇1 − v3

v3 − v̇3

v̇3v2 + v3v̇2





= 0.

The Jacobian

∂ζ̇ (v̇, v)
∂v̇

=





1 0 0
0 0 −1
0 v3 v2





is then full rank, such thatζ is an ODE forv according to Definition 14.1. Since
a single time-differentiation has converted the original DAE of this example
into an ODE, we can conclude that the original DAE is of index 1.

Let us contrast this example with a DAE having a higher differential index.

Example 14.9. Let us calculate the differential index of our illustrative exam-
ple (14.1). Usingv = ṗ, and defining the differential state vector

x =

[

p
v

]

one can easily verify that the DAE (14.1) can be written as a semi-explicit
DAE:

ṗ = v, (14.13a)

v̇ = m−1u−m−1zp+ gE3, (14.13b)

0 =
1
2

(

p⊤p− L2
)

︸          ︷︷          ︸

=g(x,z,u)

. (14.13c)

We observe that for a givenz, (14.13a)-(14.13b) are already ODEs inv andp.
As per Definition 14.7, we need to differentiate the algebraic equation (14.13c)
until (14.13) becomes an ODE. The two first time derivatives read as:

ġ (x, z,u) = p⊤v = 0, and g̈ (ẋ, x, z,u) = p⊤v̇+ v⊤v = 0
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One can then use (14.13b) in ¨g (ẋ, x, z,u) to obtain

g̈ (ẋ, x, z,u) = p⊤
(

u−m−1zp+ gE3

)

+ v⊤v = 0,

As z now appears explicitly in ¨g (ẋ, x, z,u), an extra time-differentiation yields
a differential equation from which ˙z can be computed ifp⊤p , 0. We observe
that 3 time-differentiations of (14.13c) were necessary to turn (14.13) into an
ODE. It follows that (14.13) is an index-3 DAE.

Now we ought to relate the notion of ”easy” DAEs to the notion of differen-
tial index. More specifically, we shall see next that index-1DAEs are ”easy”
DAEs in the sense detailed previously. This observation canbe formally des-
cribed in the following Lemma.

Lemma 14.10. For any fully-implicit index-1 DAE

f (ẋ, z, x,u) = 0,

there exists implicit functionsξẋ (x,u) andξz (x,u) that satisfy:

f (ξẋ (x,u) , ξz (x,u) , x,u) = 0, ∀ x, u.

Proof We observe that iff is of index 1, then a single time-differentiation:

ḟ =
∂ f
∂ẋ

ẍ+
∂ f
∂z

ż+
∂ f
∂x

ẋ+
∂ f
∂u

u̇ = 0

yields a pure ODE. For the sake of clarity, we labelv =

[

ẋ
z

]

and write:

ḟ =
[
∂ f
∂ẋ

∂ f
∂z

]

v̇+
∂ f
∂x

ẋ+
∂ f
∂u

u̇ = 0. (14.14)

By assumption, (14.14) can be written as an explicit ODE, hence
[
∂ f
∂ẋ

∂ f
∂z

]

must be full rank, such that:

v̇ = −
[
∂ f
∂ẋ

∂ f
∂z

]−1
(

∂ f
∂x

ẋ+
∂ f
∂u

u̇

)

holds on the DAE trajectories. The IFT then guarantees the existence of the
implicit functionsξẋ (x,u) andξz (x,u) in a neighborhood of the trajectories of
the DAE. �

A similar result can clearly be established for any index-1 semi-explicit
DAEs on the existence of an implicit functionξz (x,u) that solves the algebraic
equation, i.e. such that

g (x, ξz (x,u) ,u) = 0, ∀ x, u
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The crucial practical consequence of these observations isthat index-1 DAEs
can be in principle solved numerically (or sometimes even explicitly) without
difficulties, as for any state and inputx(t) and u(t), the state derivative ˙x(t)
and algebraic statez(t) can be computed, and the simulation of the dynamics
performed. In practice, implicit integration methods are the most efficient ap-
proach to perform the simulations of index-1 DAEs (see Section 14.4 below
for some details on this question), while DAEs of index higher than 1 require
specially-tailored integrators.

A non-trivial but important point needs to be stressed here.DAEs of index
higher than 1, often labelledhigh-index DAEs, present a pitfall to uninformed
users of numerical methods. Indeed, one deploying a classical implicit inte-
gration method on a high-index DAE may observe that the implicit integration
method converges reliably and be mislead into believing that simulations of
the DAE model can be reliably computed. In order to clarify this issue, let us
consider the following example, based on a linear, high-index DAE.

Example 14.11. In this example, we are interested to observe the result of
”naively” deploying a classical implicit integration scheme on a high-index
DAE. We consider again the fully-implicit DAE of Example 14.5, i.e.

f (ẋ, z, x,u) =





ẋ1 − z
ẋ2 − x1

x2 − u





. (14.15)

The reader can easily verify that (14.15) is not an index-1 DAE. We observe
that we can rewrite (14.15) in the linear formEv̇ = Av+ Bu, where

v =

[

x
z

]

, E =





1 0 0
0 1 0
0 0 0





, A =





0 0 1
1 0 0
0 −1 0





, B =





0
0
1





.

We are interested now in naively deploying an implicit Eulerscheme of step
lengthh on this DAE, yielding the steps:

1
h

E (v+ − v (t)) = Av+ + Bu(t + h)

wherev+ is an approximation of the state at timev (t + h), i.e.v+ ≈ v (t + h). It
can be verified that the true trajectoriesv (t + h) satisfy:

E

[

1
h

(v (t + h) − v (t)) +
h
2

ẍ(τ)

]

= Av(t + h) + Bu(t + h)

for someτ ∈ [t, t + h]. We can then consider the one-step integration error
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e+ = v+ − v (t + h) given by:

e+ =
h2

2
(E − Ah)−1 Eẍ(τ).

For DAE (14.15), matrixh2

2 (E − Ah)−1 E reads as:

h2

2
(E − Ah)−1 E =

1
2





0 h 0
0 0 0
h 1 0





,

such that the integration error is of orderO (1), i.e. much worse than the inte-
gration error expected from the implicit Euler method, which is of orderO

(

h2
)

.

This simple example reveals that, even though a classic implicit integration
scheme deployed on high-index DAEs (14.15) can in some casesreliably deli-
ver state trajectories, their lousy numerical accuracy typically makes them ac-
tually meaningless as simulations of the DAE model. The difficulty with DAE
(14.15) stems from its index larger than 1. These observations must be taken as
a warning that while one can sometimes deploy a classical implicit integration
scheme on a high-index DAE without observing notable numerical difficul-
ties, the resulting trajectories are typically nonetheless senseless. Hence, good
practice in numerical optimization dictates that the indexof a DAE ought to be
systematically checked before tackling it via classical integration methods.

Because index-1 DAEs are significantly easier to treat than high-index DAEs,
it is common in numerical optimal control to avoid DAEs of index larger than
1. Unfortunately, the index of a DAE stems from the nature of the physical
system it models and cannot be decided. However, a treatmentof high-index
DAEs generally allows one to ultimately treat them as index-1 DAEs. We will
cover this question next.

14.3 Index reduction

As detailed in the previous Section, index-1 DAEs are simpler to treat numeri-
cally than high-index DAEs, as index-1 DAEs can be approached using stan-
dard implicit integration methods. This observation motivates the deployment
of procedures for reducing the index of an arbitrary high-index DAE into an
index-1 DAE, a procedure labelledindex reduction. Index-reduction proceeds
very similarly to the procedure leading to assess the index of a DAE, i.e. via
time-differentiation of the DAE (or of some parts of the DAE) until a DAE
of index 1 is obtained. In order to explain this further, let us detail it on our
illustrative example (14.1).
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Example 14.12.We consider again the semi-explicit DAE (14.13), i.e.

ṗ = v, (14.16a)

v̇ = u−m−1zp+ gE3, (14.16b)

0 =
1
2

(

p⊤p− L2
)

︸          ︷︷          ︸

=g(x,z,u)

, (14.16c)

which is in a semi-explicit form. Similarly to the index evaluation presented in
Example 14.9, i.e. we consider the time-derivatives of the algebraic equation
(14.16c)

ġ (x, z,u) = p⊤v = 0, and g̈ (ẋ, x, z,u) = p⊤v̇+ v⊤v = 0

One can then easily verify that the new DAE:

ṗ = v, (14.17a)

mv̇ = u− zp+mgE3, (14.17b)

0 = p⊤v̇+ v⊤v
︸      ︷︷      ︸

=g̈(ẋ,x,z,u)

, (14.17c)

is of index 1. Alternatively, it is useful to put (14.17) in a more implicit form:

ṗ = v, (14.18a)
[

m p
p⊤ 0

] [

v̇
z

]

=

[

u+mgE3

−v⊤v

]

, (14.18b)

which shows unambiguously that the state derivatives ˙v and ṗ as well as the
algebraic statezcan be computed for any statev, p and inputu as long asp , 0.
This observation tells us without further investigation that (14.18) is an ”easy”
DAE, i.e. of index 1.

Index-reduction procedures can be fairly intricate to deploy on very complex
models. For the sake of completeness, let us report here a recipe proposed in
[14] for performing the index-reduction on any semi-explicit DAE:

ẋ = f (x, z,u)

0 = g (x, z,u)

(i) Check if the DAE system is index 1 (i.e.∂g
∂z full rank). If yes, stop.

(ii) Identify a subset of algebraic equations that can be solved for a subset of
algebraic variables.

(iii) Perform a time-differentiation on the remaining algebraic equations that
contain (some of) the differential variablesx. Termsẋ will appear in these
differentiated equations.
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(iv) Substitute the ˙x with their corresponding symbolic expressionsf (x, z,u).
This generates new algebraic equations.

(v) With this new DAE system, go to step 1.

Our discussion on index reduction would not complete if we omit the que-
stion of consistency conditions. To understand this issue,consider the index-
reduced DAE developed in Example 14.12, which takes the form:

ẋ = f (x, z,u) (14.19a)

0 = g̈ (ẋ, x, z,u) (14.19b)

One needs to observe here that while a solution to the original DAE (14.16) in
the form

ẋ = f (x, z,u) (14.20a)

0 = g (x, z,u) (14.20b)

is obviously also a solution for the index-reduced DAE (14.19), the converse is
not necessarily true, i.e. a solution of the index-reduced DAE (14.19) is not ne-
cessarily a solution to the original DAE (14.20). To understand this statement,
one simply ought to imagine a trajectory that is solution of (14.19a), and for
which

g (x(t), z(t),u(t)) = g (x(0), z(0),u(0)) + tġ (x(0), z(0),u(0)) = 0 (14.21)

holds. This trajectory clearly satisfies (14.19b) but not (14.20b). Equation (14.21)
additionally reveals that the issue is not related the DAEs themselves, but rat-
her to the initial conditions chosen for the simulation of the DAEs. Indeed,
simply selecting the initial conditionsx(0) such that

g (x(0), z(0),u(0)) = 0, and ġ (x(0), z(0),u(0)) = 0 (14.22)

ensures that the trajectories of the index-reduced DAE are solution of the ori-
ginal one. More generally, enforcing

g (x(t0), z(t0),u(t0)) = 0, and ġ (x(t0), z(t0),u(t0)) (14.23)

at any timet0 on the trajectory guarantees a simulation run with the index-
reduced DAE is a valid simulation of the original DAE. Conditions that gua-
rantees the validity of the simulation performed on the index-reduced DAE,
such as (14.23), are labelledconsistency conditions.

In the context of optimal control based on an index-reduced DAE, consis-
tency conditions are crucial when the trajectories of the differential states of sy-
stem do not have (fully) prescribed initial or terminal values. In such a case, the
consistency conditions must be adequately enforced withinthe optimal control
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problem. E.g. an optimal control problem involving our index-reduced DAE
(14.18) having free initial or terminal states can e.g. be written as:

minimize
v, p, z,u

∫ T

0
L(v, p, z,u) dt

subject to ˙p = v (Differential equ.),

mv̇ = u− zp+mgE3 (Differential equ.),

0 = p⊤v̇+ v⊤v (Algebraic equ.),

0 = p(t0)⊤v(t0) (Consistency cond.),

0 = p(t0)⊤v̇(t0) + v(t0)⊤v(t0) (Consistency cond.)

(14.24)

for anyt0 ∈ [0, T].
It ought to be underlined here that imposingsomeconstraints on the initial

and/or terminal state trajectories in conjunction with imposing the consistency
conditions must be done with great care in order to avoid generating a redun-
dant set of constraints in the OCP. As a trivial example of this difficulty, impo-
sing e.g. the initial states in (14.24) in addition to the consistency conditions
with t0 = 0 would clearly over-constrain the initial state valuesp(0), v(0). This
issue can become significantly more involved in less obviousscenarios, such
as e.g. in periodic OCPs, where the initial and terminal states are free but must
satisfy a periodicity constraint of the formx(0) = x(T). Handling the consis-
tency conditions and the periodicity constraints togetherin the OCP without
generating an over-constrained problem can then become fairly involved.

The consistency conditions can in principle be enforced at any time t0 in
the time span considered by the OCP. However, in some cases the selection of
the timet0 for imposing the consistency condition is not arbitrary. Indeed, one
ought to observe that the combination of the index-reduced algebraic constraint
and of the consistency conditions, i.e.

g̈ (x(t), z(t),u(t)) = 0 (14.25)

ġ (x(t0), z(t0),u(t0)) = 0 (14.26)

g (x(t0), z(t0),u(t0)) = 0 (14.27)

(14.28)

ensure mathematically that

g (x(t), z(t),u(t)) = g (x(t0), z(t0),u(t0)) + (t − t0)ġ (x(t0), z(t0),u(t0)) = 0

holds at any timet. However, when the DAE dynamics are handled via nu-
merical integration, numerical errors tend to accumulate over time such that
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g (x(t), z(t),u(t)) = 0 can be less accurately enforced at times that are distant
from t0. From this observation one ought to conclude that if the solution to an
OCP is e.g. more important at the beginning of the time span the OCP covers,
say [0, T], then the consistency conditions ought to be enforced in the begin-
ning of the time span, i.e.t0 = 0. This situation occurs in Nonlinear Model
Predictive Control (NMPC), where the first control inputq0 delivered by the
OCP provides the control input to be deployed on the real system, such that
the accuracy of the solution in the beginning of the time interval it covers is
the more important than later in the horizon.

Conversely, if the OCP implements a Moving Horizon Estimation (MHE)
scheme, then the differential state obtained at the very end of the time span
covered by the OCP delivers a state estimation to e.g. an NMPCscheme. In
such a case, the accuracy is most important at the very end of the time interval,
such that the consistency conditions are best imposed att0 = T. These ideas
are detailed in [].

14.4 Direct Methods with Differential-Algebraic Equations

We will now turn to discussing the deployment of direct optimal control met-
hods on OCPs involving DAEs. For the reasons detailed previously, we will fo-
cus on OCPs involving index-1 DAEs, possibly arising from anindex-reduction
of a high-index DAE.

14.4.1 Numerical Solution of Differential-Algebraic Equations

In this Section, we will briefly discuss the numerical solution of DAEs. As
hinted above, index-1 DAEs are significantly simpler to treat numerically than
high-index ones, and are therefore often preferred in optimal control. In this
Section, we will focus in the index-1 case.

Though low-order methods generally offer a poor ratio between accuracy
and computational complexity and higher-order integrators should be prefer-
red, let use nonetheless start here with a simplem-step implicit Euler scheme
for the sake of illustration. For e.g. a semi-explicit DAE

ẋ = f (x, z,u) ,

0 = g (x, z,u) ,

them-step implicit Euler scheme computes a numerical simulation x(tk+1, sk,qk)
of the model dynamics over a time interval [tk, tk+1] from the initial statesk and
the constant inputqk via the following algorithm.
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Algorithm 14.13 (Implicit Euler integrator).
Input: initial valuesk, inputqk and timestk, tk+1

Setv = qk, andh = (tk+1 − tk)/m
for i = 0 tom− 1 do

Solve
x+ = v+ h f (x+, z+,qk)

0 = g (x+, z+,qk)

for x+, z+ via a Newton iteration, setv← x+.
end for
Output: x(tk+1, sk,qk) = v

A similar approach can be deployed using any implicit integration method,
see Chapter 10, such as an IRK4 integrator.

A fairly efficient and useful type of implicit integrator already introduced in
Chapter 10 and further detailed in Section 13.3 is the orthogonal collocation
approach. Let us consider the building of the collocation equations for DAEs
in a generic implicit form

f (ẋ, x, z,u) = 0 (14.29)

on a time interval [tk, tk+1], with initial value sk and a constant inputqk. The
differential states are, as in the ODE case described via polynomials p (t, vk),
with t ∈ [tk, tk+1] linearly parametrized invk ∈ such that:

• the polynomial interpolation meets the initial value, i.e.:

p (tk, vk)
︸   ︷︷   ︸

=vk,0

= sk (14.30)

• the DAE is satisfied in the collocation timestk,i for i = 1, . . . ,d, i.e.:

f (ṗk
(

tk,i , vk
)

, pk
(

tk,i , vk
)

︸      ︷︷      ︸

=vk,i

, zk,i ,qk) = 0, i = 1, . . . ,d (14.31)

We can gather these requirements in the compact implicit equation:

ck (vk, zk,qk, sk) =





vk,0 − sk

f (ṗk
(

tk,1, vk
)

, vk,1, zk,1,qk)
...

f (ṗk
(

tk,d, vk
)

, vk,d, zk,d,qk)





= 0. (14.32)

The same observations as for the semi-explicit case hold forthe general case.
One ought to observe that the discretized algebraic stateszk,i appear only

for the indicesi = 1, . . . ,d in the collocation equations, while the discretized



DRAFT

14.4 Direct Methods with Differential-Algebraic Equations 275

differential statesvk,i appear for the indicesi = 0, . . . ,d. I.e. the discrete al-
gebraic stateszk haveone degree of freedom lessthat the discrete differential
statesvk. The extra degree of freedom granted to the differential state is actu-
ally required in order to be able to meet the initial valuesk of the differential
state trajectories, while the initial value of algebraic state trajectories cannot
be assigned as they are already defined implicitly by the DAE,subject to the
imposed state initial valuesk and inputqk. This observation is most obvious in
the semi-explicit case, where for a given state initial value sk and inputqk, the
initial value for the algebraic state is implicitly given byg (sk, z(tk) ,qk) = 0.

For the sake of completeness, let us provide the algorithm for a collocation-
based integrator for index-1 DAEs.

Algorithm 14.14 (Collocation-based integrator).
Input: initial valuesk input qk, initial guessvk, zk and timestk, tk+1

Solve

ck (vk, zk,qk, sk) = 0 (14.33)

for vk, zk via a Newton iteration
Output: x(tk+1, sk,qk) = pk (tk+1, vk)

It is interesting to observe here that while the algorithm ought to receive an
initial guess for the discrete algebraic stateszk, it receives an initial valuesk

only for the differential state. It is also important to notice that the algebraic
stateszk can in principle be entirely hidden inside the integrator (even though
they can be, of course, reported).

Sensitivities of the integrators The computation of the sensitivities of an im-
plicit integrator such as (14.14) can be done as detailed in Section 10.4. More

specifically, if we labelwk =

[

vk

zk

]

, the collocation equation (14.36) in algorithm

14.14 is typically solved using a (often full-step) Newton iteration:

wk = wk −
∂ck (wk,qk, sk)

∂wk

−1

ck (wk,qk, sk) (14.34)

The sensitivities are then provided at the solutionck (wk,qk, sk) = 0 by:

∂wk

∂qk
= −∂ck (wk,qk, sk)

∂wk

−1∂ck (wk,qk, sk)
∂qk

, (14.35a)

∂wk

∂sk
= −∂ck (wk,qk, sk)

∂wk

−1∂ck (wk,qk, sk)
∂sk

. (14.35b)
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It is important to note here that a factorization of the Jacobian matrix∂ck(wk,qk,sk)
∂wk

is already computed for the Newton iterations (14.34) and the last factorization
can be readily reused at the end of the iteration to form the sensitivities (14.35).
The computational complexity of obtaining the sensitivities consists then only
of the computation of the matrices∂ck(wk,qk,sk)

∂sk
and ∂ck(wk,qk,sk)

∂qk
and the matrix

products in (14.35). A collocation-based integrator with sensitivities then reads
as:

Algorithm 14.15 (Collocation-based integrator with Sensitivities).
Input: initial valuesk input qk, initial guessvk, zk and timestk, tk+1

Solve

ck (vk, zk,qk, sk) = 0 (14.36)

for vk, zk via a Newton iteration
Compute (14.35)
Form:

∂x(tk+1, sk,qk)
∂sk

=
∂pk (tk+1, vk)

∂vk

∂vk

∂wk

∂wk

∂sk
(14.37)

∂x(tk+1, sk,qk)
∂qk

=
∂pk (tk+1, vk)

∂vk

∂vk

∂wk

∂wk

∂qk
(14.38)

Output: x(tk+1, sk,qk) = pk (tk+1, vk), and ∂x(tk+1,sk,qk)
∂sk

,
∂x(tk+1,sk,qk)

∂qk

where ∂vk

∂wk
=

[

I 0
]

is constant.
We can now turn to the deployment of Multiple-Shooting on DAE-based

optimal control problems.

14.4.2 Direct Multiple-Shooting with Differential-Algebraic
Equations

In the context of Multiple-Shooting for DAE-based optimal control problems,
the implicit numerical integration schemes detailed aboveare interacting with
the NLP solver tackling the NLP resulting from the Multiple-Shooting discre-
tization. We illustrate this interaction in Figure 14.4.2.The NLP solver is then
responsible for closing the shooting gaps, i.e. enforcing the continuity conditi-
ons:

x(tk+1, sk,qk) − sk+1 = 0

for k = 0, . . . ,N − 1, and solving the set of algebraic equations that capture
the conditions of optimality. It is interesting to observe here that the overall
process can be then construed as a “two-level Newton scheme”, where the
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. . . . . .

PSfrag replacements

NLP solver

solves
KKT conditions

Integrator on [t0, t1] solves

Implicit equations (e.g. alg. 14.15) Implicit equations (e.g. alg. 14.15)

for [t0, t1], with sensitivities

Integrator on [tk, tk+1] solves

for [tk, tk+1], with sensitivities

s0, q0 sk, qk

{s0, q0, . . . , sN−1, qN−1, sN}

Simulationx(t1, s0,q0) Simulationx(tk+1, sk,qk)

upper level solve the KKT conditions (e.g. using the relaxedKKT obtained in
the primal-dual interior-point approach, or using SQP iterations) and the lower
level solves the equations underlying the numerical integration (e.g. (14.36)).
The NLP solver passes the discrete states and inputssk, qk, which become
inputs to the numerical integration algorithms (e.g. 14.14), while the numerical
integration algorithms report to the NLP solver the end states of the simulations
x(tk+1, sk,qk) and their sensitivities.

One ought to observe here that the algebraic state dynamics can in principle
be totally “hidden” inside the integrator scheme, and not reported at all to the
NLP solver. In that sense, implicit integrators in general perform an elimination
of the algebraic variables present in the dynamics, and hidetheir existence to
the NLP solver.

Another crucial observation to make here is that no continuity condition
nor initial condition is enforced on the algebraic state trajectoriesz(t). Indeed,
for a given differential state trajectoryx(t) and input profileu(t), the algebraic
state trajectoriesz(t) are entirely defined via the DAE (e.g. byg (x, z,u) = 0
in the semi-explicit case), such that an extra continuity condition imposed on
z(t) would yield an over-constrained problem. As a matter of fact, if a dis-
continuous input parametrization is used (such as e.g. piecewise-constant), the
algebraic state trajectoriesz(t) can be discontinuous at the time instantstk cor-
responding to the multiple-shooting time grid. E.g. in the semi-explicit case
and if the algebraic equationg (x, z,u) = 0 depends onu, at the time instants
tk, a discontinuous input typically requiresz(t) to also be discontinuous.
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As mentioned previously, the integrator can hide the algebraic variables
from the NLP solvers and keep them as purely internal. However, one may
want to use these variables in the cost function of the OCP, orimpose some
inequality constraints on them. In such a case, the algebraic states ought to be
reported to the NLP solver, where they are regarded as functions of the decision
variablessk,qk.

As illustrated in Figure 14.4.2, Multiple-Shooting with implicit integrators
can be viewed as a two-level Newton scheme, where algebraic conditions are
solved at two different levels. A natural alternative to this setup is then clearly
to introduce the algebraic conditions underlying the numerical integrators into
the NLP, and leave them to be solved by the NLP solver. Doing soleads us
back to the Direct Collocation scheme, which we revisit nextin the context of
DAE-based optimal control problems.

14.4.3 Direct Collocation with Differential-Algebraic Equations

We will focus now on the deployment of the Direct Collocationmethod on such
DAE-based optimal control problems. The principle here is extremely similar
to those detailed in Section 13.3. However, there are a few important additio-
nal specific details arising from the presence of algebraic states and equations
that need to be properly covered here. Let us briefly recall here the core prin-
ciples of the direct collocation method. As detailed earlier in Section 13.3 and
briefly recalled in Section 14.4.1 above, the differential state trajectories are
approximated on each time intervals [tk, tk+1] via the polynomialspk (t, vk) li-
nearly parametrized by the set of variablesvk ∈ Rn(d+1). For an explicit ODE
ẋ = f (x,u), the collocation equations then enforce:

• the continuity conditions of the differential states at the timestk for k =
0, . . . ,N − 1

pk (tk+1, vk) − vk+1,0 = 0, (14.39)

• the state dynamics at the timestk,i for k = 0, . . . ,N − 1 andi = 1, . . . ,d

ṗk
(

tk,i , vk
)

= f (vk,i ,qk).

Additional conditions are typically added as boundary conditions, e.g.v0,0 −
x0 = 0 to enforce the initial condition of the state trajectories.

The extension of the collocation equations for a semi-explicit DAE

ẋ = f (x, z,u)

0 = g (x, z,u)
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follow the exact same philosophy, namely the collocation equations enforce:

• the continuity conditions of the differential states via (14.39) at the times
t0,...,N−1.

• the state dynamics at the timestk,i for k = 0, . . . ,N − 1 andi = 1, . . . ,d via

ṗk
(

tk,i , vk
)

= f (vk,i , zk,i ,qk) (14.40a)

0 = g
(

vk,i , zk,i ,qk
)

(14.40b)

The collocation equations for a semi-implicit DAE therefore read as:

ck (vk, zk,qk, vk+1) =





ṗk
(

tk,1, vk
) − f (vk,1,qk)

g
(

vk,1, zk,1,qk
)

...

ṗk
(

tk,d, vk
) − f (vk,d,qk)

g
(

vk,d, zk,d,qk
)

pk (tk+1, vk) − vk+1,0





= 0. (14.41)

for k = 0, . . . ,N − 1.
A few details ought to be properly stressed here. First, similarly to the ob-

servations made in Section 14.4.2, no continuity conditionis enforced on the
algebraic states, hence (14.39) applies to the differential state trajectories al-
one. Secondly, one ought to observe that the discretized algebraic stateszk,i

appear only for the indicesi = 1, . . . ,d in the collocation equations, i.e. the
discrete algebraic states haveone degree of freedom lessthat the discrete diffe-
rential statesvk,i which appear with the indicesi = 0, . . . ,d in the collocation
equations. The extra degree of freedom granted to the differential state is ac-
tually required in order to be able to impose the continuity of the differential
state trajectories, while the algebraic state trajectories are not required to be
continuous. When building the NLP arising from a discretization of a DAE-
based OCP using direct collocation, one ought to make sure that the adequate
number of discrete algebraic states and discrete differential states are declared
to the NLP solver. Indeed, e.g. introducing by mistake the unnecessary extra
variableszk,0 can create numerical difficulties in the solver, as these variables
would be ”free” in the NLP and their values not clearly fixed bythe problem.

Building the collocation equations for DAEs in a generic implicit form

f (ẋ, x, z,u) = 0 (14.42)

is a natural generalization of the constraints used in the case of a semi-explicit
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DAE. In the general case, the collocation equations simply read as:

ck (vk, zk,qk, vk+1) =





f (ṗk
(

tk,1, vk
)

, vk,1, zk,1,qk)
...

f (ṗk
(

tk,d, vk
)

, vk,d, zk,1,qk)
pk (tk+1, vk) − vk+1,0





= 0. (14.43)

for k = 0, . . . ,N − 1. The same observations as for the semi-explicit case hold
for the general case.

Exercises

14.1 . . .
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Model Predictive Control and Moving Horizon
Estimation

So far, we have regarded one single optimal control problem and focussed on
ways to numerically solve this problem. Once we have computed such a solu-
tion, we might try to control the corresponding real processwith the obtained
control trajectory. This approach to use a precomputed control trajectory is
calledopen-loop control. Unfortunately, the result will most probably be very
dissatisfying, as the real process will typically not coincide completely with
the model that we have used for optimization. If we wanted forexample move
a robot arm to a terminal point, the robot arm might end at a very different lo-
cation than the model predicted. This is due to the difference of the model with
the reality, sometimes calledmodel-plant-mismatch. This mismatch might be
due to modelling errors or external, unforeseen disturbances.

On the other hand, we might be able to observe the real processduring its
time development, and notice, for example, that the robot arm moves diffe-
rently than predicted. This will allow us to correct the control inputs online in
order to get a better performance; this procedure is calledfeedback controlor
closed-loop control. Feedback allows us to improve the practical performance
of optimal control enormously. In its most basic form, we could use ad-hoc
implementations of feedback that react to deviations from the planned state
trajectory by basic control schemes such as aproportional-integral (PI)con-
troller. On the other hand, we might use again optimal control techniques in
order to react to disturbances of the state, by usingoptimal feedback control,
which we had outlined in the Chapters 8 and 11 on dynamic programming
(DP) and the HJB Equation. In the case of the moving robot arm this would
result in the following behaviour: if during its motion the robot arm is strongly
pushed by an external disturbance, it will not try to come back to its planned
trajectory but instead adapt to the new situation and followthe new optimal
trajectory. This is straightforward in the case of DP or HJB,where we have
the optimal feedback control precomputed for all possible states. But as said,

281
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these approaches are impossible to use for nontrivial statedimensions, i.e. sy-
stems with more than, say, 3-8 states. Thus, typically we cannot precompute
the optimal feedback control in advance.

A possible remedy is to compute the optimal feedback controlin real-time,
or online, during the runtime of the process. In the case of the robot arm this
means that after the disturbance, we would call our optimization solver again
in order to quickly compute the new optimal trajectory. If wecould solve this
problem exactly and infinitely fast, we would get exactly thesame feedback
as in optimal feedback control. In reality, we have to work with approxima-
tions: first, we might simplify the optimal control problem in order to allow
faster computation, e.g. by predicting only a limited amount of time into the
future, and second, we might adapt our algorithms to the new task, namely that
we have to solve optimization problems again and again. Thistask is called
real-time optimizationor embedded optimization, due to the fact that in many
cases, the numerical optimization will be carried out onembedded hardware,
i.e. processors that reside not in a desktop computer but e.g. in a feedback
control system.

While this idea ofoptimal feedback control via real-time optimizationsounds
challenging or even impossible for the fast motion of robot arms, it is since
decades industrial practice in the process control industry under the name of
Model Predictive Control (MPC). There, time scales are often in the range of
minutes and allow ample time for each optimization. The mainstream imple-
mentation of MPC can in discrete time roughly be formulated as follows: (1)
observe the current state of the system ¯x0, (2) predict and optimize the future
behaviour of the process on a limited time window ofN steps by solving an
open-loop optimization problem starting at the state ¯x0, (3) implement the first
control actionu∗0 at the real process, (4) move the optimization horizon one
time step forward and repeat the procedure. MPC is sometimesalso calledre-
ceding horizon controldue to this movement of theprediction horizon. The
namenonlinear MPC, shortNMPC, is reserved for the special case of MPC
with underlying nonlinear dynamic systems, while linear MPC refers to MPC
with linear system models. Note that NMPC leads typically tonon-convex op-
timization problems while nearly all linear MPC formulations use convex cost
and constraints.

Note that in the case of a time-invariant system and cost, thesubsequent
optimization problems differ only by the initial value ¯x0 and nothing else, and
thus, the MPC feedback is time-invariant as well. If we wouldbe able to solve
the problem with an infinite prediction horizon, we would obtain the stationary
optimal feedback control. The limitation of the horizon to afinite lengthN
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allows us to solve the problem numerically. If we chooseN large enough, it
will be a good approximation to the infinite horizon problem.

In this script, we do not focus on the different ways to formulate the MPC
problem, but on its numerical solution by suitable real-time optimization met-
hods. This and the next chapter follows the presentation given in [34] and [30]
and focusses on the MPC optimal control problem.

15.1 NMPC Optimization Problem

Let us in this chapter regard the following simplified optimal control problem
in discrete time augmented with algebraic equations.

minimize
x, z,u

N−1∑

i=0

L(xi , zi ,ui) + E (xN) (15.1a)

subject to x0 − x̄0 = 0, (15.1b)

xi+1 − f (xi , zi ,ui) = 0, i = 0, . . . ,N − 1, (15.1c)

g(xi , zi ,ui) = 0, i = 0, . . . ,N − 1, (15.1d)

h(xi , zi ,ui) ≤ 0, i = 0, . . . ,N − 1, (15.1e)

r (xN) ≤ 0. (15.1f)

Here,xi ∈ Rnx is the differential state,zi ∈ Rnz the algebraic state, andui ∈ Rnu

is the control. Functionsf and g are assumed twice differentiable and map
intoRnx andRnz, respectively. The algebraic statezi is uniquely determined by
(15.1d) whenxi andui are fixed, as we assume that∂g

∂z is invertible everywhere.
We choose to regard this difference-algebraic system form because it covers

several parametrization schemes for continuous time dynamic systems in dif-
ferential algebraic equation (DAE) form, in particular direct multiple shooting
with DAE relaxation [55] and direct collocation [77, 13]. Note that in the case
of collocation, all collocation equations on a collocationinterval would be col-
lected within the functiong and the collocation node values in the variableszi ,
see the formulation in formula (??).

Here, the free variables are the differential state vectorx =

(x⊤0 , x
⊤
1 . . . , x

⊤
N−1, x

⊤
N)⊤ at all considered time points and the algebraic and

control vector on all but the last time points:z = (z⊤0 , z
⊤
1 . . . , z

⊤
N−1)⊤ and

u = (u⊤0 ,u
⊤
1 . . . ,u

⊤
N−1)⊤.

The task in real-time optimization for NMPC is now the following: for a
given value of ¯x0, we need to approximately solve the above optimization pro-
blem as fast as possible, and of the obtained solution, it is the optimal value
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u0 that we need fastest in order to provide the NMPC feedback. Wemight
call the exact solutionu∗0(x̄0) in order to express its dependence on the initial
value x̄0. The only reason why we formulate and optimize the large optimiza-
tion problem is because it delivers us this mapu∗0 : Rnx → Rnu, which is an
approximation to the optimal feedback control.

Remark on fixed and free parameters: In most NMPC applications there
are someconstantparameters ¯p that are assumed constant for the NMPC op-
timization, but that change for different problems, like ¯x0. We do not regard
them here for notational convenience, but note that they canbe treated by state
augmentation, i.e. regarded as constant system states withfixed initial valuep̄.

15.2 Nominal Stability of NMPC

Very often, one is interested in stabilizing the nonlinear dynamic system at a
given set point for states and controls, which we might without loss of genera-
lity set to zero here. This steady state, that satisfiesf (0,0,0) = 0, g(0,0,0) = 0
must be assumed to be feasible, i.e.h(0,0,0) ≤ 0. One then often uses as stage
cost the quadratic deviation from this set point, i.e.,L(x,u) = x⊤Qx+ u⊤Ru
with positive definite matricesQ,R. It is important to note that this function is
positive definite, i.e.,L(0,0) = 0 andL(x,u) > 0 other wise. In this case, one
would ideally like to solve the infinite horizon problem withN = ∞ in order to
obtain the true stationary optimal feedback control; this would automatically
ensure stability, as the value functionJ(x) can be shown to decrease along the
trajectory of the nominal system in each time step by−L(x0,u∗(x0)) and can
thus serve as a Lyapunov function. But as we have in practice to choose a finite
N, the question arises how we can ensure nominal stability of NMPC nevert-
heless. One way due to [52, 61] is to impose azero terminal constrainti.e. to
requirexN = 0 as terminal boundary condition (15.1f) in the NMPC problem
and to employ no terminal cost, i.e.E(xN) = 0.

In this case of a zero terminal constraint, it can be shown that the value
function J0 of the finite horizon problem is a Lyapunov function that decre-
ases by at least−L(x̄0,u∗(x̄0)) in each time step. To prove this, let us assume
that (x∗0, z

∗
0,u
∗
0, x
∗
1, z
∗
1,u
∗
1, . . . , x

∗
N) is the solution of the NMPC problem (15.1a)-

(15.1f) starting with initial value ¯x0. After application of this feedback to the
nominal system, i.e. without model-plant-mismatch, the system will evolve
exactly as predicted, and for the next NMPC problem the initial valuex̄′0 will
be given by ¯x′0 = x∗1. For this problem, theshiftedversion of the previous
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solution (x∗1, z
∗
1,u
∗
1, . . . , x

∗
N,0,0,0) is a feasible point, and due to the zero va-

lues at the end, no additional cost arises at the end of the horizon. However,
because the first stage cost term moved out of the horizon, we have that the
cost of this feasible point of the next NMPC problem is reduced by exactly
−L(x̄0,u∗(x̄0)). After further optimization, the cost can only be furtherredu-
ced. Thus, we have proven that the value functionJ0 is reduced along the
trajectory, i.e.J0(x̄′0) ≤ J0(x̄0) − L(x̄0,u∗(x̄0)). More generally, one can relax
the zero terminal constraint and construct combinations ofterminal costE(xN)
and terminal inequalitiesr(xN) ≤ 0 that have the same property but are less
restrictive, cf. e.g. [27, 29, 62].

15.3 Online Initialization via Shift

For exploiting the fact that NMPC requires the solution of a whole sequence of
neighboring NLPs and not just a number of stand-alone problems, we have first
the possibility toinitialize subsequent problems efficiently based on previous
information.

A first and obvious way to transfer solution information fromone sol-
ved NMPC problem to the initialization of the next one is employing the
shift that we used already in the proof of nominal stability above. It is mo-
tivated by the principle of optimality of subarcs, which, inour context, sta-
tes the following: Let us assume we have computed an optimal solution
(x∗0, z

∗
0,u
∗
0, x
∗
1, z
∗
1,u
∗
1, . . . , x

∗
N) of the NMPC problem (15.1a)-(15.1f) starting

with initial value x̄0. If we regard a shortened NMPC problem without the
first interval, which starts with the initial value ¯x1 chosen to bex∗1, then for this
shortened problem the vector (x∗1, z

∗
1,u
∗
1, . . . , x

∗
N) is the optimal solution.

Based on the expectation that the measured or observed true initial value for
the shortened NMPC problem differs not much fromx∗1 – i.e. we believe our
prediction model and expect no disturbances – this “shrinking” horizon initi-
alization is canonical, and it is used in MPC of batch or finitetime processes,
see e.g. [47, 32].

However, in the case of moving horizon problems, the horizonis not only
shortened by removing the first interval, but also prolongedat the end by ap-
pending a new terminal interval – i.e. the horizon is moved forward in time. In
the moving horizon case, the principle of optimality is thusnot strictly appli-
cable, and we have to think about how to initialize the appended new variables
zN,uN, xN+1. Often, they are obtained by settinguN := uN−1 or settinguN as
the steady state control. The stateszN andxN+1 are then obtained by forward
simulation. In the case that zero is the steady state and we had a zero terminal
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constraint, this would just result in zero values to be appended, as in the proof
in the previous section. In any case, this transformation ofthe variables from
one problem to the next is called “shift initialization”. Itis not as canonical as
the “shrinking horizon” case, because the shifted solutionis not optimal for the
new undisturbed problem. However, in the case of long horizon lengthsN we
can expect the shifted solution to be a good initial guess forthe new solution.
Moreover, for most NMPC schemes with stability guarantee (for an overview
see e.g. [62]) there exists a canonical choice ofuN that implies feasibility (but
not optimality) of the shifted solution for the new, undisturbed problem. The
shift initialization is very often used e.g. in [58, 15, 63, 38].

A comparison of shifted vs. non-shifted initializations was performed in [19]
with the result that for autonomous NMPC problems that shallregulate a sy-
stem to steady state, there is usually no advantage of a shiftinitialization com-
pared to the “primitive” warm start initialization that leaves the variables at
the previous solution. In the extreme case of short horizon lengths, it turns
out to be even advantageous NOT to shift the previous solution, as subsequent
solutions are less dominated by the initial values than by the terminal conditi-
ons. On the other hand, shift initialization are a crucial prerequisite in periodic
tracking applications [38] and whenever the system or cost function are not
autonomous.

15.4 Outline of Real-Time Optimization Strategies

In NMPC we would dream to have the solution to a new optimal control pro-
blem instantly, which is impossible due to computational delays. Several ideas
help us to deal with this issue.

Offline precomputations:As consecutive NMPC problems are similar, some
computations can be done once and for all before the controller starts. In the
extreme case, this leads to an explict precomputation of theNMPC control
law that has raised much interest in the linear MPC community[6], or a solu-
tion of the Hamilton-Jacobi-Bellman Equation, both of which are prohibitive
for state and parameter dimensions above ten. But also when online optimiza-
tion is used, code optimization for the model routines is often essential, and it
is in some cases even possible to precompute and factorize Hessians or even
Jacobians in Newton type Optimization routines, in particular in the case of
neighboring feedback control along reference trajectories [53, 26]. Also, pre-
optimized compilable computer code can be auto-generated that is specific to
the family of optimization problems, which is e.g. in convexoptimization pur-
sued in [60].
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Delay compensation by prediction:When we know how long our computa-
tions for solving an NMPC problem will take, it is a good ideanot to address
a problem starting at the current state but to simulate at which state the system
will be when we will have solved the problem. This can be done using the
NMPC system model and the open-loop control inputs that we will apply in
the meantime [41]. This feature is used in many practical NMPC schemes with
non-negligible computation time.

Division into preparation and feedback phase:A third ingredient of several
NMPC algorithms is to divide the computations in each sampling time into a
preparation phase and a feedback phase [33]. The more CPU intensive pre-
paration phase (a) is performed with an old predicted state ¯x0 before the new
state estimate, say ¯x′0, is available, while the feedback phase (b) then delivers
quickly anapproximatesolution to the optimization problem for ¯x′0. Often, this
approximation is based on one of the tangential predictors discussed in the next
chapter.

Iterating while the problem changes:A fourth important ingredient of some
NMPC algorithms is the idea to work on the optimization problem while it
changes, i.e., to never iterate the Newton type procedure toconvergence for
an NMPC problem getting older and older during the iterations, but to rather
work with the most current information in each new iteration. This idea is used
in [58, 33, 65].

As a historical note, one of the first true online algorithms for nonlinear
MPC was theNewton-Type Controller of Li and Biegler[57]. It is based on a
sequential optimal control formulation, thus it iterates in the space of controls
u = (u0,u1, . . . ,uN−1) only. It uses an SQP type procedure with Gauss-Newton
Hessian and line search, and in each sampling time, only one SQP iteration
is performed. The transition from one problem to the next uses a shift of the
controlsunew = (u1, . . . ,uN−1,unew

N ). The result of each SQP iterate is used to
give an approximate feedback to the plant. As a sequential scheme without
tangential predictor, it seems to have had sometimes problems with nonlinear
convergence, though closed-loop stability was proven for open-loop stable pro-
cesses [58].

In the next chapter, we will discuss several other real-timeoptimization al-
gorithms in more detail that are all based on ideas from the field of parametric
nonlinear optimization.
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Exercises

15.1 In nonlinear model predictive control (NMPC), we repeatedly solve an
optimal control problem (OCP) with changing data in order toderive an
optimal feedback strategy for a controller. Since solving an NLP is an
expensive operation, there is often a tradeoff between finding a better
solution to the NLP or returning feedback to the system more frequently.
In the most extreme case, we just do one iteration of the NLP solver for
every feedback time. In the case of an SQP solver, this means solving a
single QP.

Regard once again the simple OCP from Exercises 13.1, 13.2, 12.3
and 8.7.

minimize
x,u

∫ ⊤

0
x1(t)2 + x2(t)2 + u(t)2 dt

subject to ˙x1 = (1− x2
2) x1 − x2 + u, x1(0) = 0,

ẋ2 = x1, x2(0) = 1,

−1 ≤ u(t) ≤ 1,

(15.2)

whereT = 10 as earlier.

(a) In Exercise 13.2, you have implemented an SQP method to solve
15.2. Use this code as an inspiration for implementing a NMPCcon-
troller that uses a SQP solver. Remember that now the Gauss-Newton
SQP only needs to make a single iteration, so in contrast to Exercise
13.2, you should allocate a QP solver instance just once and then call
it multiple times.

(b) When just solving a single QP per NMPC iteration, it often make
sense to divide the solution code into apreparation phaseand afeed-
back phase. The preparation phase contains the part of the algorithm
that can be calculated before we obtain measurements for thestate
of the system (i.e. the initial conditions of the ODE). This allows the
controller to return feedback to the system faster. What partof the
algorithm can be made part of preparation phase?

(c) Modify the solution to take more than one SQP iteration per NMPC
iteration. Does it improve the controller?
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Parametric Nonlinear Optimization

In the shift initialization discussed in the previous chapter we did assume that
the new initial value corresponds to the model prediction. This is of course
never the case, because exactly the fact that the initial state is subject to distur-
bances motivates the use of MPC. By far the most important changes from one
optimization problem to the next one are thus the unpredictable changes in the
initial value x̄0. Is there anything we can do about this in the initializationof a
new problem? It turns out that the concept ofparametric sensitivitieshelps us
here. In order to understand this concept, in this chapter wewill regard the task
of real-time optimization from a different perspective than before, namely from
the point of view ofparametric optimization, which is a subfield of nonlinear
optimization [4, 46].

16.1 Parametric Nonlinear Programming

Let us come back to our original NLP (3.1), with the addition of an ”exoge-
nous” parameters to the problem:

w⋆ (p) = arg minimize
w

f (w, p)

subject to g(w, p) = 0,

h(w, p) ≤ 0.

(16.1)

One should observe here that the parameterp is fixed in the NLP (16.4),
such that a givenp yields a corresponding solutionw⋆ (if it exists). In that
sense, a parametric NLP defines animplicit function w⋆(p) that associates to
each parameterp a solutionw⋆. The domain of this implicit function then
matches the set ofp for which the NLP (16.4) has a well-defined solution.

289
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Figure 16.1 Illustration of ...

Very powerful tools can then be derived from understanding the properties of
the implicit functionw⋆ (p).

In the following, we will make the simplifying assumptions that the functi-
ons f , g andh are at leastC2, such that the Hessian of the Lagrange function
is guaranteed to be continuous. Let us then first state very useful results on the
continuity and differentiability of the implicit functionw⋆ (p). For notational
simplicity, let us introduce the variabley = (w, λ, µ) that gathers the primal and
dual variables of our NLP.

Theorem 16.1. the implicit function f⋆ (p) is continuous. Moreover, if the
parametric NLP(16.4)satisfies LICQ and (strict) SOSC at a solution y⋆ (p) for
a given p, then the implicit function f⋆ (p) is differentiable in a neighborhood
of p.

Theorem 16.2. if the parametric NLP(16.4)satisfies LICQ and (strict) SOSC
at a solution y⋆ (p) for a given p, then the implicit function w⋆ (p) is continuous
in a neighborhood of p. Moreover, if no inequality constraint is weakly active,
then the implicit function y⋆ (p) is differentiable in a neighbourhood of p.

The parametric solutionw⋆ (p) of an NLP can havebifurcations, i.e. it can
divide into several branches at a given parameter value. Oneought to observe
that at such a bifurcation, the parametric solutionw⋆ (p) cannot be differenti-
able as it is locally non-unique. At such a point, the assumptions of Theorem
16.2 must fail. We provide next a simple example of such a bifurcation.

Example 16.3. We consider the parametric NLP withp ∈ R:

w⋆ (p) = arg minimize
w

1
2

(w1 − 2+ p)2 +
1
2

w2
2

subject to w2
1 + 2w2

2 ≥ 1,
(16.2)
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and report the resulting parametric primal solution pathw⋆ (p) in Figure 16.3.
This parametric NLP is interesting insofar as a bifurcationoccurs in the

solution path forp = 1.5, i.e. for parameter values less thanp > 1.5, the
problem holds two solutions forw⋆

2 (p). In our example, the occurrence of the
bifurcation in the solution path occurs as the Hessian of theLagrange function
of the problem becomes (at least point-wise) rank-deficient. One can observe
the bifurcation occurring atp = 1.5 in Figure 16.3, where the lowest eigenvalue
of the Hessian of the Lagrange function drops to zero.

Example 16.4. We consider the parametric NLP:

w⋆ (p) = arg minimize
w

1
2
‖w− p‖2

subject to w1 − w2
2 ≤ p2

1,

‖w‖2 ≤ ‖p‖2,
w2 − w2

1 ≤ p4
2

(16.3)

and chart in Figure 16.4 the different regions in the parameter spacep ∈ R2

corresponding to different active setsA. Because the constraints are nonlinear
(and some non-convex), the different regions are not polytopes but “curved”
regions.

We should first recall a well-known but very useful result from parametric
optimization. Let us then consider the parametric optimal cost, defined as:

f ⋆ (p) = minimize
w

f (w, p)

subject to g(w, p) = 0,

h(w, p) ≤ 0.

(16.4)

In the context of parametric optimization, it is often useful to consider the
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Figure 16.3 Illustration of the solution path of the parametricNLP (16.2). The up-
per graphs report the parametric primal solution paths, the lower-left graph reports
the dual parametric solution path and the lower-right graph reports the lowest ei-
genvalue of the Hessian of the Lagrange function of problem (16.2). A bifurcation
occurs atp = 1.5 in the solution path when the Hessian of the problem becomes
rank-deficient.

sensitivity of the parametric optimal costf ⋆ (p) to the parametersp. Fortu-
nately, the sensitivity of the optimal cost to the parameters is computationally
inexpensive answer:

∇p f ⋆ (p) = ∇pL
∣
∣
∣
y=y⋆(p),p

. (16.5)

A less common, but equally useful result provides the second-order derivative
of the cost function via a simple application of the chain rule, given by:

∇2
pp f ⋆ (p) =

(

∇2
ppL + ∇2

pyL
∂y⋆ (p)
∂p

)

y=y⋆(p),p

(16.6)

The existence of a derivative∂y⋆(p)
∂p discussed in Theorem 16.2 will allow us

to build linear predictors for the solution of parametric NLPs. Before discus-
sing these predictors, we ought to discuss the computationsof such derivati-
ves. To that end, we should consider the algebraic conditions that describe a
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(possibly local) solution of the parametric NLP (16.4). I.e. using the Lagrange
function:

L (y, p) = f (w, p) + λ⊤g(w, p) + µ⊤h(w, p),

with the Lagrange multipliersλ andµ of adequate dimensions, the parametric
KKT conditions read as:

∇wL (y, p) = 0,

g (w, p) = 0,

h (w, p) ≤ 0, µ ≥ 0,

µihi (w, p) = 0, i = 1, . . . ,nh.

At a solution having no weakly active constraint, one can divide the index-set
of h between the set of indices corresponding to strictly activeconstraintsA
and the set of indices corresponding to strictly inactive constraintsĀ, i.e.

hA(w⋆, p) = 0, and hĀ(w⋆, p) < 0,

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1PSfrag replacements

p1

p 2

Figure 16.4 Regions with different active sets for the parametric NLP (16.3). The
nonlinear constraints result in regions that are not polytopes, but complex “round-
shaped” sets inR2.
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and the KKT conditions can be re-stated as

RA (y, p) =





∇wL (y, p)
g (w, p)
hA(w, p)
µĀ





= 0, (16.8a)

hĀ(w, p) < 0, µA > 0. (16.8b)

Splitting the (strictly) active and inactive inequality constraints allows one to
regard (16.8a) as a set of differentiable algebraic equations locally describing
the implicit functiony⋆(p), and (16.8b) as non-smooth algebraic conditions
that are locally irrelevant for the solution.

We can then deploy the Implicit Function Theorem (IFT) on thesmooth con-
ditions (16.8a) in order to compute the sensitivity∂

∂py⋆ (p). In order to make
this development clear, let us observe that the implicit functiony⋆ (p) satisfy

RA
(

y⋆ (p) , p
)

= 0,

for any p in a neighbourhood of a given ¯p andw⋆ (p̄) satisfying all the condi-
tions of Theorem 16.2. It follows that

∂

∂y
RA

(

y⋆(p), p
)
∣
∣
∣
∣
∣
p=p̄
= 0.

A simple chain rule deployed on the above equation then provides:

∂RA
∂y

∂y⋆

∂p
+
∂RA
∂p
= 0,

where all expressions are evaluated at ¯p andy⋆ (p̄). The above equation for the
sensitivities can be explicitly stated as:





∇2
wwL ∇wg ∇whA
∇wg⊤ 0 0
∇wh⊤

A
0 0





∂y⋆A
∂p
+

∂

∂p





∇wL

g
hA





= 0, (16.9a)

∂µ⋆
Ā

∂p
= 0, (16.9b)

wherey⋆A =
(

w⋆, λ⋆, µ⋆
A

)

and where all expressions are evaluated at ¯p and

y⋆ (p̄). Equation (16.9) is linear in the sensitivities∂y⋆

∂p which are then trivial to
compute at a solutiony⋆ (p̄).

Note that the Jacobian matrix in (16.9a) is nothing else thanthe matrix that
we called theKKT matrix in Chapter 3, and that it is invertible whenever the
second order sufficient optimality conditions of Theorem 3.18 hold.
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Figure 16.5 Illustration of the solution manifold of the parametric NLP (16.10)

(grey curves), and of its linearization∂y⋆(p)
∂p

∣
∣
∣
∣
p=p̄

(dashed lines) using (16.9).

Example 16.5. In order to illustrate the sensitivity computations detailed
above, let us consider the (convex) parametric NLP withp ∈ R:

w⋆ (p) = arg minimize
w

1
2

(w1 − 1)2 +
1
2

(w2 − 2)2

subject to 4w2
1 + w2

2 − p2 ≤ 0,
(16.10)

and we consider the linearization of the parametric solution manifoldy⋆ (p)
at a pointp̄, computed via (16.9). The outcome is illustrated in Figure 16.5.

One can observe how the sensitivity∂y⋆(p)
∂p

∣
∣
∣
∣
p=p̄

builds the tangent space to the

solution manifoldy⋆ (p) at p̄.

The discussion would be incomplete without discussing the outcome of en-
countering a weakly active constraint at the solutiony⋆ (p). Weakly active in-
equality constraints typically occur at the parameter value for which (but not
necessarily when) an inequality constraint at the solutionof the parametric
NLP changes from being active to being inactive. At such a point

h
(

w⋆(p), p
)

= 0 and µ⋆(p) = 0 (16.11)

holds and the solution manifoldw⋆(p) can be discontinuous.
Figure 16.5 readily provides a first illustration of the effect of a change of

active set on the solution manifoldw⋆ (p), namely that the solution manifold
typically becomes non-differentiable when the active set changes, hence the
“corner” in w⋆ (p) in Figure 16.5. In the neighborhood of that corner, though,
the derivatives∂y⋆(p)

∂p of the solution manifold are well-defined. In that sense,
while the derivative of the solution manifoldw⋆ (p) does not necessarily exist
at a change of active set, itssubderivative(defined as the set between the limits
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for p1 ∈ [0, 0.5] and p2 ∈]0, 0.5]. One can clearly observe the “edge” in the
solution manifoldw⋆

2 (p).

to the left and to the right of the classical derivatives ofw⋆ (p) in the case
p ∈ R) generally does.

The same holds on the higher-dimensional casep ∈ Rnp, to the difference
that the “corner” can then become an “edge” in the manifold, of dimension
np − 1. The notion ofsubgradientis then generally applicable. We illustrate
this in the following example.

Example 16.6. In order to illustrate the sensitivity computations detailed
above, let us consider the (convex) parametric NLP withp ∈ R:

w⋆ (p) = arg minimize
w

1
2

(w1 − p1)2 +
1
2

(w2 − p1)2 +
1
2

w1w2

subject to w2
1 + 5w2

2 − p2 ≤ 0,
(16.12)

The resulting solution manifold is illustrated in Figure 16.6.

16.1.1 Linear Predictors

The tangent space to the solution manifoldy⋆ (p) generated by the sensitivi-
ties allows one to build first-order predictor for the solution, via the first-order
Taylor expansion of the solution manifold at a given point ¯p:

∆yL (p, p̄) = yL (p, p̄) − y⋆ (p̄) =
∂y⋆ (p)
∂p

∣
∣
∣
∣
∣
∣
p=p̄

(p− p̄) (16.13)
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Let us split hereaftery into yA = (w, λ, µA) andµ
Ā
, and split∆yL (p, p̄) simi-

larly. Using the equation for the primal-dual sensitivities (16.9), we observe
that:





H ∇wg ∇whA
∇wg⊤ 0 0
∇wh⊤

A
0 0





∆yL
A +

∂

∂p





∇wL

g
hA





(p− p̄) = 0, (16.14a)

µL
Ā
− µ⋆
Ā

(p̄) = 0. (16.14b)

whereH = ∇2
wwL and all functions are evaluated at ¯p, y⋆ (p̄). The linear pre-

dictor yL (p, p̄) resulting from (16.13) or equivalently (16.14) generates the
tangent space to the solution manifoldy⋆ (p) at a given point ¯p. However, it
does not capture changes of active sets, which often result in ”corners” i.e.
non-smooth points in the solution manifold, see Example 16.5. This issue can
be addressed by considering a QP-based first-order predictor, resulting in a
piecewise-linear prediction manifold. We detail this approach hereafter.

First we observe that the dual solution at ¯p satisfies the following system:




H ∇wg ∇whA
∇wg⊤ 0 0
∇wh⊤

A
0 0









0
λ⋆ (p̄)
µ⋆
A

(p̄)





+





∇w f
g

hA





= 0, (16.15a)

µ⋆
Ā

(p̄) = 0. (16.15b)

We then consider the addition of (16.15) to (16.14), resulting in the following
equality:





H ∇wg ∇whA
∇wg⊤ 0 0
∇wh⊤

A
0 0









∆wL
A (p, p̄)

λL (p, p̄)
µL
A

(p, p̄)





+
∂

∂p





∇w f
g
hA





(p− p̄) +





∇wL

g
hA





= 0,

(16.16)

µL
Ā

(p, p̄) = 0.

When no constraint is weakly active, one can verify that forp in a neighbour-
hood of p̄, equation (16.16) formulate the KKT conditions of the parametric
QP:

∆wQP (p, p̄) = arg min
∆w

1
2
∆w⊤H∆w+ ∇w f⊤∆w+ (p− p̄)⊤ ∇2

pwL∆w

s.t. g+ ∇wg⊤∆w+ ∇pg⊤ (p− p̄) = 0

h+ ∇wh⊤∆w+ ∇ph⊤ (p− p̄) ≤ 0 (16.17)

where all the termsH, ∇w f , ∇2
wpL, ∇wg, ∇wh, ∇pg, ∇ph are evaluated at ¯p

andy⋆ (p̄). Indeed, forp in a neighbourhood of ¯p, the active set of (16.17)
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matches the one of the original NLP (16.4) such that the KKT conditions of
the parametric QP (16.17) are locally given by equations (16.16).

As a consequence, the solution delivered by the parametric QP (16.17)

yQP (p, p̄) =
(

w⋆ (p̄) + ∆wQP (p, p̄) , λQP (p, p̄) , µQP (p, p̄)
)

whereλQP (p, p̄) , µQP (p, p̄) are the multipliers associated to the linear con-
straints in the parametric QP (16.17), delivers local predictions of the primal-
dual solution as:

yQP (p, p̄) = yL (p, p̄) (16.18)

holds forp in a neighbourhood of ¯p.
However, the main interest of the parametric QP (16.17) appears whenp is

sufficiently far from p such that the active set of the parametric QP (16.17)
no longer matches the one of the parametric NLP (16.4) at ¯p. One can then
observer that the manifoldyQP (p, p̄) built by the parametric QP (16.17) is a
piecewise-linear approximation of the solution manifold of the original NLP
(16.4). Let us consider the following illustrative exampleto explain this state-
ment.

Example 16.7. We consider again the (convex) parametric NLP (16.10) with
p ∈ R proposed in Example 16.5 and we consider the manifoldswpred(p, p̄),
µpred(p, p̄) built by the QP (16.17) at different points ¯p for the parametric NLP
(16.10). The manifold of the parametric NLP (16.10) and its first-order ap-
proximation computed via the parametric QP (16.17) are illustrated in Figure
16.7.

16.1.2 Predictor-Correct methods for Online Path Following

In this section, we will consider an important practical problem in parametric
optimization, and one that is central to real-time optimal control. Let us ima-
gine a path in the parameter space, i.e. e.g.p = p(t) for t ∈ [0,T], which
has a corresponding path in the solution spacey⋆ (p(t)). Clearly, for every va-
lue t, one could construct the corresponding parametric solution y⋆ (p(t)) and
therefore build the solution path.

However, an important question arises when attempting sucha construction
if t is a path parameter that evolves outside of our control, suchas e.g. if it is
a physical time upon which we have no authority. In such a case, the iterative
construction of the solutiony⋆ (p(t̄)) at a givent̄ require a certain amount of
time, during which the actualt will keep evolving. By the time the iterative
procedure producing an accuratey⋆ (p(t̄)) is finished, the solution obtained,
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Figure 16.7 Illustration of the solution manifoldw⋆(p̄), µ⋆(p̄) of the parame-
tric NLP (16.10) (grey curves), and of piecewise linear approximationwQP (p, p̄),
λQP (p, p̄), andµQP (p, p̄) (dashed lines) delivered by the parametric QP (16.17) at
various points ¯p (dotted lines).

even though it may be highly accurate, will be outdated ast , t̄. This simple
observation motivates the devising of path-following methods that produce an
adequately accurate approximations ofy⋆ (p(t̄)) for a givent in a minimum
amount of computational time.

The philosophy behind efficient path-following methods is to exploit the
expected similarity between neighbouring solutions, i.e.to use the fact that
y⋆ (p (t + ∆t)) ≈ y⋆ (p (t)), so as to minimise the work required to compute
y⋆ (p (t + ∆t)) for p (t + ∆t) using the information available at the solution
y⋆ (p (t)) computed atp (t). Methods aimed at performing the task of tracking
as accurately as possibley⋆ (p (t)) are referred to as path-following methods.
Predictor-correctors play a central role in these methods.

To approach the question of efficient path-following methods, let us recon-



DRAFT

300 Parametric Nonlinear Optimization

sider the following parametric QP

wpred−corr (p, p̄, ȳ) =

arg min
w

1
2

(w− w̄)⊤ H (w− w̄) + ∇w f⊤∆w+ (p− p̄)⊤ ∇2
pwL (w− w̄)

s.t. g+ ∇wg⊤ (w− w̄) + ∇pg⊤ (p− p̄) = 0

h+ ∇wh⊤ (w− w̄) + ∇ph⊤ (p− p̄) ≤ 0, (16.19)

which is identical to the parametric QP (16.17), to the exception that all the
termsH, ∇w f , ∇2

wpL, ∇wg, ∇wh, ∇pg and∇ph are evaluated at thearbitrary

primal-dual point ¯y =
(

w̄, λ̄, µ̄
)

provided as an argument.
We can easily see that the parametric QP (16.19) is strictly identical to our

previous parametric QP (16.17) if ¯y = y⋆ (p). However, here we are interested
in the behaviour of (16.19) when the equality does not necessarily hold, i.e.
whenȳ ≈ y⋆ (p). We ought to make the following observations:

• If ȳ = y⋆ (p̄) andp ≈ p̄, then (16.19) delivers a piecewise linearprediction
of the solution of the parametric NLP (16.4) for a parameter valuep, using
the information formed at the parameter value ¯p.

• If ȳ ≈ y⋆ (p̄) and p = p̄, then (16.19) delivers a full SQPcorrectionstep
towards the solution of the parametric NLP (16.4) for the parameter value
p = p̄.

These observations allow us to construe the parametric QP (16.19) as holding
both predictivecapabilities (forp ≈ p̄) andcorrectivecapabilities (for ¯y ≈
y⋆ (p̄)). Clearly, the case ¯y ≈ y⋆ (p̄), p ≈ p̄ can be treated by the parametric QP
(16.19), resulting in both a predictive and corrective action. The parametric QP
(16.19) is therefore often referred to as apredictor-corrector. For notational
simplicity, let us label

D (y, p) =
{

H, ∇2
pwL, ∇w f g, ∇wg, ∇ph, h, ∇wh, ∇ph

}

the linearization data of the problem at a pointy, p.
We now aim at devising anonlinepath-following algorithm, with the speci-

fic purpose of ”beating” the physical evolution of the parametersp over time.
In that sense, for a givenp(t), we aim at delivering a primal-dual solution up-
date being as close as possible to the solution pathy⋆ (p (t)) in a minimum
amount of time, exploiting the predictor-corrector effect based on the previ-
ously obtained solution at a previous parameter value ¯p. Such a path-following
algorithm can be devised as follows.

Algorithm 16.8 (Path-following predictor-corrector).
Input: p andȳ, p̄, with D (ȳ, p̄)
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Take predictor-corrector step based onD (ȳ, p̄):

arg min
∆w

1
2
∆w⊤H∆w+ ∇w f⊤∆w+ (p− p̄)⊤ ∇2

pwL∆w

subject to g+ ∇wg⊤∆w+ ∇pg⊤ (p− p̄) = 0,

h+ ∇wh⊤∆w+ ∇ph⊤ (p− p̄) ≤ 0.

(16.20)

Updatey =
(

ȳ+ ∆w, λQP, µQP
)

, deploy the solution on the system
FormD (y, p)
Output: y, p andD (y, p)

We should underline here theonlineflavour of Algorithm (16.8). One ought
to observe that the operations performed between getting a new parameter
p and delivering a primal-dual solution updatey boils down to solving the
predictor-corrector QP (16.20), while the production of a new linearization
D (y, p) is performed afterwards. It follows that, as underlined in bold in Algo-
rithm (16.8), one can deploy the solution updatey on the real physical system
beforecomputing the linearization, hence minimising the time between obtai-
ning a new parameterp and updating the solutiony.

We illustrate the behaviour of Algorithm 16.8 in the following example.

Example 16.9. We consider again the (convex) parametric NLP (16.10) with
p ∈ R proposed in Example 16.5 and we consider the tracking of the solution
manifold w⋆ (p) using the predictor-corrector path-following Algorithm 16.8
with discrete steps in the parameterp of 0.39. The resulting path-following
performance is illustrated in Figure 16.9.

The predictor-corrector path-following algorithm 16.8 isintrinsically an
active-set approach, as the non-smooth KKT conditions are handled within
the algorithm. An Interior-point path following method canbe devised using a
similar philosophy. We detail this alternative next.

The algebraic conditions solved by IP methods read as:

Rτ (z, p) =





∇wL (y, p)
g (w, p)

h (w, p) + s
µi si − τ





= 0 (16.21)

with the additional non-smooth conditionss, µ > 0 which are enforced separa-
tely. Let us denotezτ (p) the parametric solution implicitly defined by (16.21)
for a givenτ. A predictor-corrector Interior-point path-following method can
then be devised as follows.
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Figure 16.8 Illustration of the predictor-corrector path-following Algorithm 16.8.
The solution manifold of the parametric NLP (16.10)w⋆(p̄), µ⋆(p̄) is reported
as the grey curves. The upper-graphs report the behaviour of the path-following
Algorithm 16.8without using the predictor effect, i.e. settingp − p̄ = 0 in the
predictor-corrector QP (16.20). The lower graphs report the behaviour of the path-
following Algorithm 16.8, implemented as described. The predictor effect allows
Algorithm 16.8 to track the solution path more accurately. Theaccuracy of the
tracking of the solution path by Algorithm 16.8 increases as the length of the
steps in the parameter spacep decreases.

Algorithm 16.10 (IP Path-following predictor-corrector).
Input: p andz̄, p̄, with Rτ (z̄, p̄) and∇Rτ (z̄, p̄) andτ.

Take predictor-corrector step based onRτ (z̄, p̄) and∇Rτ (z̄, p̄), i.e.:

∆z= −∂Rτ

∂z

−1 (

R+
∂Rτ

∂p
(p− p̄)

)

(16.22)

Updatez= z+ t∆z, wheret ∈]0,1] ensuress+ t∆s≥ ǫs, µ + t∆µ ≥ ǫµ
Deploy updated solutionzon the system
FormRτ (z, p) and∇Rτ (z, p)
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Figure 16.9 Illustration of the predictor-corrector path-following Algorithm
16.10. The smoothened solution manifolds of the parametric NLP (16.10)wτ⋆(p̄),
µ⋆τ (p̄) for various values ofτ is reported as the grey curves. The upper-graphs
report the behaviour of the path-following Algorithm 16.8withoutusing the pre-
dictor effect, i.e. settingp− p̄ = 0 in the predictor-corrector (16.22). The middle
graphs report the behaviour of the path-following Algorithm 16.8, implemented
as described forτ = 0.03. The predictor effect allows Algorithm 16.8 to track
the solution path more accurately. The lower graphs report thebehaviour of the
path-following Algorithm 16.8, implemented as described forτ = 10−4, showing
the difficulty of the predictor-corrector algorithm to follow the solution manifold
for small values ofτ. A value ofǫ = 10−1 was selected here.

Output: zandRτ (z, p), ∇Rτ (z, p)

A difficulty often observed using the Interior-Point following approach de-
tailed in Algorithm 16.10, is the highly nonlinear complementarity slackness
conditionsµi si − τ = 0 for small values ofτ. Indeed, for low values ofτ, the
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parametric solution pathzτ (p) corresponding to a path in the parameter space
can have a very sharp curvature when changes of active set occur. The path-
following method then struggles to follow properly these parts of the solution
path. This is especially true for a very low parameterǫ, which letsµ or s re-
ach values very close to zero, making it difficult for the predictor-corrector to
recover the manifoldµi si − τ = 0.

There is then a trade-off between being able to follow the manifold ef-
fectively with the predictor-corrector algorithm 16.10, and using an accurate
smoothened manifoldzτ (p). Indeed, for a low value ofτ, the smoothened ma-
nifold is accurate i.e.zτ (p) ≈ z⋆ (p), but the predictor-corrector algorithm
may struggle following the manifold. For a larger value ofτ, the predictor-
corrector algorithm will follow the manifold the manifoldzτ (p) accurately,
but the manifold will be a less accurate approximation of thegenuine solution
manifoldz⋆ (p). It is however important to understand that solving the linear
system (16.22) is typically computationally significantlycheaper than solving
the predictor-corrector QP (16.20).

16.1.3 Predictor-Corrector Path-Following for real-time Optimal
Control and NMPC

The methods detailed above are typically the cornerstone toreal-time Optimal
Control and real-time NMPC. In this context, the parametricNLP (16.4) is
typically a standard transcription of a continuous optimalcontrol problem via
e.g. the multiple-shooting or direct-collocation approaches. In that context, the
parametersp are the initial value of the optimal control problem, which –in
a real-time context – are estimated online and then used to compute a new
optimal control solution for the system. E.g. a multiple-shooting transcription
of the form (13.3) recalled here

w⋆ (x0) = arg min
s,q

N−1∑

i=0

l i(si ,qi) + E (sN)

subject to x0 − s0 = 0,

xi(ti+1, si ,qi) − si+1 = 0, i = 0, . . . ,N − 1,

h(si ,qi) ≤ 0, i = 0, . . . ,N,

r (sN) ≤ 0

(16.23)

wherew = (s0,u0, . . . , sN−1,uN−1, sN) and the initial value assigned to the NLP
x0 acts as a parameter. Additional parameters can be present inthe problem
when e.g. preview information is available for the optimal control problem
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or NMPC scheme. The methods detailed above can be readily applied to this
specific form of parametric NLP (16.23).

Due to the fact that the parameterx0 enters linearly in the constraints of
(16.23), the Jacobian of∇wg and thus also the Lagrange gradient∇wL and
the Hessian∇2

wwL and derivative∇2
wpL do not depend onx0. Moreover, the

gradient∇wg becomes a constant matrix.
The fact that all derivatives are independent of the parameter x0 makes the

description of the path-following algorithms for optimal control problems de-
pending on initial values easier. E.g. the predictor-corrector QP (16.20) at the
core of the predictor-corrector path-following algorithm16.8 then reads as:

arg min
∆w

1
2
∆w⊤H∆w+ ∇w f

subject to g+ ∇wg⊤∆w+ ∇x0g
⊤ (x0 − x̄0) = 0,

h+ ∇wh⊤∆w ≤ 0.

(16.24)

wherex̄0 is the initial value corresponding to the solution where thelineariza-
tion is formed, arising from the optimal control problem solved at theprevious
sampling time, andx0 the one valid at the current sampling time. Let us split
the equality constraints in the parametric QP (16.24) as:

g (w, x0) =

[

gE (w, x0)
gDyn (w, x0)

]

(16.25)

wheregDyn holds the shooting constraints andgE = x0−s0. It is interesting then
to observe here that the linearized equality constraint in (16.24) corresponding
to the initial value embedding can be written as:

(

gE + ∇wg⊤E∆w+ ∇x0g
⊤
E (x0 − x̄0)

)

x̄0,w̄
= x̄0 − s̄0 − ∆s0 + (x0 − x̄0)

= x0 − s̄0 − ∆s0 (16.26)

or equivalently
(

gE + ∇wg⊤E∆w+ ∇x0g
⊤
E (x0 − x̄0)

)

x̄0,w̄
=

(

gE + ∇wg⊤E∆w
)

x0,w̄
(16.27)

It follows that the parametric QP (16.24) can be equivalently written as

arg min
∆w

1
2
∆w⊤H∆w+ ∇w f

subject to g+ ∇wg⊤∆w = 0,

h+ ∇wh⊤∆w ≤ 0.

(16.28)

where all linearization terms are evaluated at ¯w and x0 (as opposed to ¯x0 in
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(16.24)). Hence, the special form of parametric NLP (16.23)results in the ”ba-
sic” QP (16.28) to be a predictor-corrector without the adjunction of the cor-
rection terms used in the classical predictor-corrector QP(16.19).

Note that this interesting effect stems from the fact that the parameters enter
linearly in the parametric NLP (16.23). This particular formulation of the pa-
rameter dependence can be achieved in all parametric NLPs byintroducing in
the NLP a set of variables, e.g.v, corresponding to the parameterp and con-
straining them to match the parametersp by a constraintp− v = 0, as we have
done in (16.23). We call this in the general case aparameter embedding. In the
context of MPC, like here, we speak of theinitial value embedding[30].

The Continuation/GMRES Method of Ohtsuka [65]: The Continuati-
on/GMRES method performs one predictor-corrector Newton typeiteration
at each parameter update, and is based on a sequential formulation. It is based
on an IP treatment of the inequalities with fixed path parameterτ > 0, using an
exact Hessian, and the iterative GMRES method for solving the linear system
in each Newton step. Most important, it makes use of the tangential predictor
described in Eq. (??). This features seems to allow it to follow the nonlinear IP
solution manifold well – which is strongly curved at active set changes. For a
visualization, see Fig. 16.10(a). In each sampling time, only one linear system
is built and solved by the GMRES method, leading to a predictor-corrector
pathfollowing method. The closed-loop stability of the method is in principle
covered by the stability analysis for the real-time iterations without shift given
in [35]. A variant of the method is given in [74], which uses a simultanous
approach and condensing and leads to improved accuracy and lower computa-
tional cost in each Newton type iteration.

Advanced Step Controller by Zavala and Biegler [82]: In order to avoid the
convergence issues of predictor-corrector pathfollowingmethods, in the “ad-
vanced step controller” of Zavala and Biegler a more conservative choice is
made. At each update of the parametersp, a complete Newton type IP pro-
cedure is iterated to convergence (withτ → 0). In this respect, it is identical
to solving the NLP offline using an Interior-Point method. However, two fea-
tures qualify it as an online algorithm: first, it takes computational delay into
account by solving an “advanced” problem with the expected state x̄0 as ini-
tial value – similar as in the real-time iterations with shift – and (b), it applies
the obtained solution not directly, but computes first the tangential predictor
which is correcting for the differences between expected state ¯x0 and the ac-
tual state ¯x′0, as described in Eq. (??) with R(W, x̄0) = 0. Note that in contrast
to the other online algorithms, several Newton iterations are performed in part
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(a) of each sampling time, the “preparation phase”. The tangential predictor
(b) is computed in the “feedback phase” by only one linear system solve ba-
sed on the last Newton iteration’s matrix factorization. Asin the C/GMRES
method, the IP predictor cannot “jump over” active set changes as easily as
the SQP based predictor of the real-time iteration. Roughlyspeaking, the ad-
vanced step controller gives lower priority to sudden active set changes than
to system nonlinearity. As the advanced step controller solves each expected
problem exactly, classical NMPC stability theory [62] can relatively easily be
extended to this scheme [82].

The Real-Time Iteration Scheme [33]: Based on the above ideas, the real-
time iteration scheme presented in [30, 33] performs one SQPtype iteration
with Gauss-Newton Hessian per sampling time. However, it employs a simul-
taneous NLP parameterization, Bock’s direct multiple shooting method, with
full derivatives and condensing. Moreover, it uses the generalized tangential
predictor of the “initial value embedding” to correct for the mismatch between
the expected state ¯x0 and the actual state ¯x′0. In contrast to the C/GMRES met-
hod by Ohtsuka, where the predictor is based on one linear system solve from
Eq. (??), here an inequality constrained QP is solved. The computations in
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Figure 16.10 Subsequent solution approximations.
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each iteration are divided into a long “preparation phase” (a), in which the
system linearization and condensing are performed, and a much shorter “feed-
back phase” (b), see the visualization in Fig. 16.11. The feedback phase solves
just one condensed QP (??)–(??). Depending on the application, the feedback
phase can be several orders of magnitude shorter than the feedback phase. The
iterates of the scheme are visualized in Fig. 16.12(a). The same iterates are
obtained with a variant of the scheme that uses Schlöder’s trick for reducing
the costs of the preparation phase in the case of large state dimensions [71].
Note that only one system linearization and one QP solution are performed in
each sampling time, and that the QP corresponds to a linear MPC feedback
along a time varying trajectory. In contrast to IP formulations, the real-time
iteration scheme gives priority to active set changes and works well when the
active set changes faster than the linearized system matrices. In the limiting
case of a linear system model it gives the same feedback as linear MPC. Er-
ror bounds and closed loop stability of the scheme have been established for
shrinking horizon problems in [32] and for NMPC with shiftedand non-shifted
initializations in [36] and [35].

✲ time

preparation

feedback

s

tk−1

preparation

feedback

s
x0(tk)

u0 (x0(tk))

tk

s

tk+1

s

Figure 16.11 Division of one real-time iteration into preparation and feedback
phase.

Adjoint-Based Multi-Level Real-Time Iterations [18]: A variant of real-
time iterations was presented in [18], where even cheaper calculations are per-
formed in each sampling time than one Newton or Gauss-Newtonstep usually
requires. Within theAdjoint-Based Multi-Level Real-Time Iterations, at the lo-
west level (A), only one condensed QP (??)–(??) is solved, for the most current
initial value x̄0. This provides a form of linear MPC at the base level, taking
at least active set changes into account with a very high sampling frequency.
On the next two intermediate levels, that are performed lessoften than every
sampling time, only the nonlinear constraint residuals areevaluated (B), al-
lowing for feasibility improvement, cf. also [26], or the Lagrange gradient is
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evaluated (C), allowing for optimality improvement. This level C is based on
the following QP with inexact matrices

minimize
Y

Fk
adjQP(Y)

subject to G(x̄′0,Y
k) + B⊤k (Y− Yk) = 0,

subject to H(Yk) +C⊤k (Y− Yk) ≤ 0.

with the QP objective

Fk
adjQP(Y) = Y⊤

(

∇YL(Yk, λk, µk) − Bkλ
k −Ckµ

k
)

︸                                    ︷︷                                    ︸

”modified gradient”

+
1
2

(Y− Yk)⊤Ak(Y− Yk).

(16.29)
A crucial ingredient of this level is the fact that the Lagrange gradient can be
evaluated efficiently by the reverse mode of automatic differentiation. Note that
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(a) Real-Time Iteration scheme
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Figure 16.12 Subsequent solution approximations (left), and critical regions
(right).
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in all three levels A, B, and C mentioned so far, no new QP matrices are com-
puted and that even system factorizations can be reused again and again. Level
C iterations are still considerably cheaper than one full SQP iteration [80], but
also for them optimality and NMPC closed-loop stability canbe guaranteed
by the results in [35] – as long as the system matrices are accurate enough to
guarantee Newton type contraction. Only when this is not thecase anymore,
an iteration on the highest level, D, has to be performed, which includes a full
system linearization and is as costly as a usual Newton type iteration.

16.2 Critical Regions and Online Active Set Strategies

It is interesting to have a look at the parameter space ¯x0 visualized in
Fig.16.12(b). The picture shows the “critical regions” on each of which the
active set in the solution is stable. It also shows three consecutive problems
on a line that correspond to the scenario used in Figures 16.10(a), 16.12(a),
and 16.10(b). Between problem 1 and 2 there is one active set change, while
problems 2 and 3 have the same active set, i.e., are in the samecritical region.
The C/GMRES method and Advanced Step Controller exploit the smoothness
on each critical region in order to obtain the conventional Newton predictor
that, however, looses validity when a region boundary is crossed. The real-time
iteration basically “linearizes” the critical regions which then become polyto-
pic, by using the more accurate, but also more expensive QP predictor.

As the QP cost can become non-negligible for fast MPC applications, a so-
called online active set strategy was proposed in [39]. Thisstrategy goes on
a straight line in the space of linearized regions from the old to the new QP
problem. As long as one stays within one critical region, theQP solution de-
pends affinely on x̄0 – exactly as the conventional Newton predictor. Only if
the homotopy crosses boundaries of critical regions, the active set is updated
accordingly. The online active set strategy is available inthe open-source QP
package qpOASES [40], and is particularly suitable in combination with real-
time iterations of level A, B, and C, where the QP matrices do not change,
see [81].

Exercises

16.1 Recall Exercise 7.6 where we solve the following OCP:
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minimize
x0,u0,x1,...,

uN−1,xN

N−1∑

k=0

‖uk‖22

subject to ¯x0 − x0 = 0,

Φ(xk,uk) − xk+1 = 0, k = 0, . . . ,N − 1,

xN = 0,

−xmax ≤ xk ≤ xmax, k = 0, . . . ,N − 1,

−umax ≤ uk ≤ umax, k = 0, . . . ,N − 1

with C = 180/π/10 and where now ¯x0 is treated as a parameter. In this
problem, we will regard the simultaneous Gauss-Newton algorithm de-
veloped in Exercise 7.6. In particular, we will modify this algorithm to
perform real-time iterations for different values of ¯x0, so that we can use
this algorithm to perform closed-loop NMPC simulations forstabiliza-
tion of the nonlinear pendulum.

(a) Summarizing the variables of this problem in a vectorw =

(x0,u0, . . . ,uN−1, xN) ∈ Rn of dimensionn = 152, we note that the
problem can be summarized as a parametric NLP of the form:

pNLP(x̄0) : minimize
w ∈ R152

w⊤Hw

subject to G(x̄0,w) = 0,

−wmax ≤ w ≤ wmax.

Modify the functionG from Exercise 7.6 so that it accepts as argu-
ment also the parameter ¯x0.

(b) The Gauss-Newton real-time iteration solves, for varying values of
x̄0, a linearized version of this problem in each iteration. More speci-
fic, if the last iterate was ¯w, and we want to solve a problem with the
parameter ¯x′0, the next iteratew′ is determined as the solution of the
following QP:
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pQP(x̄′0, w̄) : minimize
w ∈ R152

w⊤Hw

subject to G(x̄′0, w̄) + JG(w̄)(w− w̄) = 0,

−wmax ≤ w ≤ wmax.

Modify the functionGNStep from Exercise 7.6 so that it accepts
the parameter ¯x0 as a second input, i.e. write a function
[wplus]=GNRTIStep(xprime,w) that performs one SQP-Gauss-
Newton real-time iteration by solving pQP( ¯x′0,w).

(c) In order to visualize the generalized tangential predictor, fix the vari-
able vectorw at zero and call your functionGNRTIStepwith different
values for ¯x0. Use linear interpolation of 100 points between zero and
the value (10,0)⊤, i.e. set ¯x0 = λ(10,0)⊤ for λ ∈ [0,1]. Plot the first
controlu0 as a function ofλ and keep your plot.

(d) In order to compute the exact solution manifold with relatively high
accuracy, perform now the same procedure for the same 100 incre-
asing values ofλ, but this time perform in each iteration the Gauss-
Newton step, i.e. setw to the output of the last real-time iteration. Plot
the obtained values foru0 and compare with the tangential predictor
by plotting them in the same plot.

(e) In order to see how the real-time iterations work in a morerealistic
setting, let the values ofλ jump faster from 0 to 1, e.g. by doing only
10 steps, and plot the result again into the same plot.

(f) Modify the previous algorithm as follows: after each change ofλ by
0.1 keep it for 9 iterations constant, before you do the next jump.
This will result in about 100 consecutive real-time iterations. Interpret
what you see.

(g) Now we do the firstclosed-loop simulation: set the value of ¯x′0 to
(10,0)⊤ and initializew at zero, and perform the first real-time ite-
ration by solving pQP( ¯x′0,w). This iteration yields the new solution
guessw′ and corresponding controlu′0. Use this control at the “real
plant”, i.e., generate the next value of ¯x0, say x̄′′0 , by calling the one
step simulation function, ¯x′′0 := Φ(x̄′0,u

′
0). Close the loop by solving

now pQP( ¯x′′0 ,w
′), etc., and perform 100 iterations. For better observa-

tion, plot after each real-time iteration the control and state variables
on the whole prediction horizon. (It is interesting to note that the state
trajectory is not necessarily feasible).
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Also observe what happens with the states ¯x0 during the scenario, and
plot them in another plot the sequence against the time index. Do they
converge, and if yes, to what value?

(h) We make our problem more difficult now by treating the swing-up of
the pendulum. This is simply done by changing the sign in front of
the sine in the differential equation, i.e. our model is now

f (x,u) =

[

v(t)
C sin(p(t)/C)

]

+

[

0
1

]

u(t). (16.30)

Start your real-time iterations again atw = 0 and set ¯x′0 to (10,0)⊤,
and perform the same closed-loop simulation as before. Observe what
happens. You might useC = 180/π to avoid too strong nonlinearities.
Also, you might add to the cost the terms

∑N
k=0 ‖xk‖22, i.e. chooseH as

a unit matrix, in order to penalize all deviations of the state from zero
stronger.



DRAFT

17

Moving Horizon Estimation

In order to predict and optimize the future behaviour of a dynamic system,
one needs to know the state and possibly some unknown parameters of the
system. Aim of this chapter is to present methods that estimate the current
state and system parameters from a series of measurements inthe past. It turns
out that many estimation formulations naturally lead to optimization problems
that have nearly the same structure as the optimal control problems treated
earlier in this course. One powerful method for online stateand parameter
estimation uses the measurements on a moving time window in the past, and
is called moving horizon estimation. It is the main topic of this chapter, and a
technology often combined with nonlinear model predictivecontrol (NMPC),
with which its optimization problems share many characteristics.

17.1 State and Parameter Estimation Problem Formulation

Throughout this chapter we regard a dynamic system of the following form

xk+1 = fk(xk,wk),

yk = gk(xk,wk) + vk, k = 0, . . . ,N − 1.
(17.1)

Here, fk describes the time varying system dynamics,gk models the measure-
ment process,xk are the unknown system states, andwk are unknown distur-
bances. The measurement noise is also unknown and given byvk, while the
only quantities that we know are the measurementsyk. We assume that we
have some important other piece of information, namely someknowledge - or
an educated guess - on the probability density functions (PDF) for the noises
vk and disturbanceswk for k = 0, . . . ,N − 1, as well as for the initial statex0.

For ease of notation, we sloppily denote byP(x) the PDF of a random vari-
ableX at the pointx, i.e. we haveP(x) ≥ 0,

∫

P(x)dx = 1, and the expectation

314
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of variableX is computed asE{X} =
∫

xP(x)dx. Without loss of generality, we
assume the following form of PDFs:

P(vk) = exp(−Φk(vk)) · const, k = 0, . . . ,N − 1,

P(wk) = exp(−βk(wk)) · const, k = 0, . . . ,N − 1, and

P(x0) = exp(−α0(x0)) · const,

where the constants are just for normalization and will later not be of further
interest. Note that any PDF can be brought into this form by taking the negative
logarithm, and that a zero value of the PDF corresponds to a value+∞ for the
negative logarithm.

Remark: Note that if (x0,w0,w1, . . . ,wN−1) would be known, they would uni-
quely determine all states (x1, . . . , xN). The reason why we like to give a-priori
PDFs for all variables (x0,w0,w1, . . . ,wN−1) is that this helps us to ensure that
a unique optimal solution exists for the resulting estimation problems, inde-
pendent of the observability properties of the system. If additional a-priori in-
formation would be known, e.g. for some of the states (x1, . . . , xN), it could be
added easily to the estimation problem formulations that follow.

17.1.1 Generality of the Considered Dynamic System Class

Though the dynamic system setting in Eqs. (17.1) is a rather compact formu-
lation, it comprises many estimation settings of practicalinterest. We discuss
a few of them.

Systems with known inputs
If we would have a system described byxk+1 = f̃ (xk,uk,wk) with known inputs
uk, we can bring it into the form (17.1) by defining

fk(xk,wk) := f̃ (xk,uk,wk),

i.e. the dependence of the system on the known controls makesthe system time
variant.

Systems with measured inputs
How could we deal with a system described byxk+1 = f̃ (xk,uk, w̃k) with inputs
uk that we do not know exactly, but for which we have measurements ũk? If
the measurement noise on the input measurements is denoted by ṽk, we define
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a disturbance vectorwk = (w̃k, ṽk) and bring the system into the form (17.1) by
setting

fk(xk,wk) := f̃ (xk, ũk + ṽk, w̃k).

Systems with unknown parameters
Very often we do not only want to know the system states but also some pa-
rameters that are unknown, but constant in time. If the original system state
would be given by ˜xk and the original dynamics by ˜xk+1 = f̃ (x̃k, p), we can
proceed as follows to bring the system into the form (17.1). First, we introduce
an individual parameter valuepk for each time interval. Second, we define the
augmented system statexk = (x̃k, pk). Third, we define the augmented dyna-
mical system (17.1) as

fk(xk,wk) :=

[

f̃ (x̃k, pk)
pk

]

,

such that the second part of the system dynamics equation,pk+1 = pk, ensures
that the “parameter state”pk remains constant over time.

17.2 The Trajectory Estimation Problem

A first question one might want to answer is the following: given the measure-
mentsy = (y0, . . . , yN−1), what are the most probable state and disturbance
trajectoriesx = (x0, . . . , xN) and w = (w0, . . . ,wN−1)? We decide to work
in a Bayesian estimation framework, and our aim is to find the maximum a-
posteriori (MAP) estimate that maximizes the conditional PDF P(x,w|y) of the
trajectory, given the measurements. Using Bayes’ formula,this PDF is given
by

P(x,w|y) =
P(x,w, y)

P(y)

=
P(y|x,w) · P(x,w)

P(y)

= P(y|x,w) · P(x,w) · const.

Instead of maximizing the conditional PDF, one can equivalently minimize the
negative logarithm of the PDF. Thus, the MAP estimate is given by

arg min
x,w

− logP(x,w) − logP(y|x,w).
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Fortunately, we can find explicit expressions for both terms. First, we note that

P(x,w) = P(x0, . . . , xN,w0, . . . ,wN−1)

=

{

0, if not xk+1 = fk(xk,wk) for all k = 0, . . . ,N − 1,
P(x0)P(w0) · · ·P(wN−1), else.

This means that

− logP(x,w) =

{

∞, if not xk+1 = fk(xk,wk) for all k = 0, . . . ,N − 1,
α0(x0) +

∑N−1
k=0 βk(wk) + const, else.

For the other term, we use the fact that the conditional probability P(yk|x,w)
to obtain a measurementyk only depends on the statexk and disturbancewk

at the same time time point. Because ofyk = gk(xk,wk) + vk, it is given by
P(yk|xk,wk) = P(vk), with vk = yk − gk(xk,wk). Thus, the following identities
hold:

P(y|x,w) = P(y0, . . . , yN−1|x0, . . . , xN,w0, . . . ,wN−1)

=

N−1∏

k=0

P(yk|xk,wk)

=

N−1∏

k=0

P(vk), with vk = yk − gk(xk,wk) for k = 0, . . . ,N − 1

=

N−1∏

k=0

exp(−Φk(yk − gk(xk,wk))) · const.

Therefore, we obtain the compact expression

− logP(y|x,w) =
N−1∑

k=0

Φk(yk − gk(xk,wk)).

Taking both expressions together, we obtain the MAP estimate as solution of
the following minimization problem, where we exclude the infinite objective
values by the corresponding constraints:

minimize
x,w

α0(x0) +

N−1∑

k=0

[

Φk(yk − gk(xk,wk)) + βk(wk)
]

subject to xk+1 − fk(xk,wk) = 0, k = 0, . . . ,N−1.

(17.2)

We will often call the termα0(x0) the “arrival cost”, as it measures the “cost”
for arriving atx0. For notational convenience, we also define the shorthand

ϕk(xk,wk) := Φk(yk − gk(xk,wk)) + βk(wk)
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and call this term, as in the previous chapters, the “stage cost”. Note that the
optimization problem (17.2) is of exactly the same form as the optimal control
problems discussed previously in this lecture.

17.2.1 Examples for the stage and arrival costs

Very often the cost termsα0(x0), βk(wk) andΦk(vk) are chosen as quadratic
penalties. For notational convenience we define‖x‖2P := x⊤Px for positive
definite matricesP ≻ 0. Note that quadratic penalties correspond to weighted
ℓ2-norms, as‖x‖2P = ‖P

1
2 x‖22, whereP

1
2 is the unique symmetric matrix square

root such thatP
1
2 · P1

2 = P. A typical choice for the arrival cost isα0(x0) =
‖x0 − x̄0‖2P, wherex̄0 is an a-priori guess for the initial state, andP an inverse
covariance matrix expressing the confidence we have for thisguess. For the
disturbances, a penaltyβk(wk) = ‖wk‖2R expresses how unlikely we expect them
to be. For the measurement errors, the quadratic penaltyΦk(vk) = ‖vk‖2Q is
often used, whereQ−1 is the covariance matrix we expect for the measurement
errors.

Instead of quadratic penalties, that correspond to the assumption of Gaus-
sian distributions, other choices are possible as well. Mostly, one uses con-
vex functions, because of their beneficial properties for optimization. Two
other popular convex penalty functions are the (possibly weighted) ℓ1-norm
‖v‖1 =

∑nv

i=1 |vi |, which corresponds to a Laplace distribution, and the Huber
penalty, that is for a scalar inputv ∈ R defined as

ΦHuber,σ(v) =

{

v2 if |v| < σ,
2σ|v| − σ2 else.

The Huber penalty corresponds to a distribution that looks like a Gaussian in
the neighborhood of zero, but which has “fatter tails” than aGaussian. These
fat tails can express our expectation that outliers might appear, i.e. that we
expect that large residuals have a higher probability than anormal distribution
would suggest. From the penalty function perspective, boththe ℓ1- and the
Huber-penalty have the property that they penalize large error residuals less
than a quadratic penalty would do. Thus, usingℓ1- or Huber-penalties for the
measurement error functionsΦk(vk) allows one to design estimators that are
more robust against outliers than the usualℓ2-norm based estimators.

Remark on parameter jumps: An interesting other application of theℓ1-
norm arises in the case when we want to detect jumps in some parameterp,
but we expect these jumps to occur only rarely. In addition tothe usual system
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dynamics and measurement equation, one can then model the parameter dyna-
mics bypk+1 = pk+wk and penalize the parameter jumps with anℓ1-norm, i.e.
chooseβk(wk) := ‖wk‖1. This discourages changes inpk, and nonzero values
for wk, i.e. changes inpk, will only occur in the optimal solution if there is a
significant benefit in terms of the other optimization objective terms.

17.3 Dynamic Programming for the Trajectory Estimation
Problem

Because the trajectory estimation problem is an optimal control problem, it
can also be solved by dynamic programming. In this context, it is interesting to
observe that dynamic programming can in principle be performed in forward as
well as in backwards direction. In estimation problems, in contrast to standard
optimal control problems, one usually chooses to go in forward direction. The
reason is that dynamic programming then allows us to “forgetthe past” and to
just summarize the contribution of the past in one function,which we call the
“arrival cost”. The arrival cost is the equivalent to the “cost-to-go” in the usual
backwards dynamic programming recursion. We define the arrival costαn(xn)
for anyn ≤ N as the cost to arrive aftern steps at statexn:

αn(xn) := minimize
x0,w0,...,
xn−1,wn−1

α0(x0) +
n−1∑

k=0

ϕk(xk,wk)

subject to xk+1 = fk(xk,wk), k = 0, . . . ,n− 1.

Note thatxn is not a variable, but a fixed parameter for the optimization pro-
blem. By the dynamic programming principle, one can computethe arrival cost
recursively, using the fact that the only connection between timen andn + 1
is via the statexn+1. The dynamic programming recursion proceeds as follows,
for n = 0, . . . ,N − 1:

αn+1(xn+1) = minimize
xn,wn

αn(xn) + ϕn(xn,wn)

subject to xn+1 = fn(xn,wn).
(17.3)

Again, note thatxn+1 is a fixed parameter to the optimization problem. To use
dynamic programming to solve the trajectory estimation problem, one pro-
ceeds as follows:

(i) Start with the given arrival costα0(·).
(ii) Compute α1(·) up to αN(·), using the dynamic programming recur-

sion (17.3)
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(iii) Computex∗N = arg min
xN

αN(xN).

(iv) For n = N − 1, . . . ,0, compute (x∗n,w
∗
n) = arg min

xn,wn

αn(xn) +

ϕn(xn,wn) s.t. x∗n+1= fn(xn,wn).

Note that very often one is only interested in the estimate for the last state,
x∗N, which is already obtained after Step 3. Thus, Step 4 is optional, and only
needed if one wants to know an estimate of the complete trajectory. However,
if one is really only interested in the last statexN, why should one first try
to maximize the MAPP(x,w|y) of the complete trajectory? In this case, one
should rather maximize directly the PDFP(xN|y) of the last state, as we will
do in Section 17.5. It will later turn out that both estimation formulations, the
trajectory estimation and the direct estimation of the laststate, lead to the same
results for linear quadratic estimation problems.

17.4 Linear Quadratic Trajectory Estimation

Let us specialize the trajectory estimation problem to the special case of linear
dynamic systems with quadratic costs, i.e. with underlyingGaussian PDFs for
disturbances and measurement errors. In this case we deal with the following
quantities.

fk(xk,wk) = Akxk + bk + wk,

gk(xk,wk) = Ckxk,

βk(wk) =
1
2
‖wk‖2R,

Φk(vk) =
1
2
‖vk‖2Q, for k = 0, . . . ,N − 1, and

α0(x0) =
1
2
‖x0 − x̄0‖2P0

.

(17.4)

Note that we have chosen a formulation for the system dynamics in which the
disturbances affect every state directly. This will allow us to simplify somelater
expressions. The optimal control problem resulting from this linear quadratic
estimation setup is the following.

minimize
x,w

1
2
‖x0 − x̄0‖2P0

+

N−1∑

k=0

[

1
2
‖yk −Ckxk‖2Q +

1
2
‖wk‖2R

]

subject to xk+1 − Akxk − bk − wk = 0, k = 0, . . . ,N − 1.

(17.5)
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One can easily eliminate allwk using the equality constraints, and then one
obtains the following unconstrained quadratic optimization problem.

minimize
x

1
2
‖x0 − x̄0‖2P0

+

N−1∑

k=0

[

1
2
‖yk −Ckxk‖2Q +

1
2
‖xk+1 − Akxk − bk‖2R

]

.

To solve it, one might just differentiate the objective function with respect tox
and set the gradient to zero, which results in a sparse linearequation system for
the optimal state trajectoryx∗. On the other hand, one could also use dynamic
programming to solve it. To formulate the dynamic programming recursion,
we first state a useful lemma and corollary.

Lemma 17.1(Schur Complement Lemma). If R ≻ 0, the following identity
holds

[

x
u

]⊤ [

Q S⊤

S R

] [

x
u

]

= x⊤(Q− S⊤R−1S) x + ‖R−1S x+ u‖2R.

In particular,

min
u

[

x
u

]⊤ [

Q S⊤

S R

] [

x
u

]

= x⊤(Q− S⊤R−1S) x.

If in addition

[

Q S⊤

S R

]

≻ 0, then also Q− S⊤R−1S ≻ 0.

The proof of the lemma uses the matrix decomposition
[

Q S⊤

S R

]

=

[

Q− S⊤R−1S 0
0 0

]

+

[

S⊤R−1S S⊤

S R

]

and the fact that the second term can be expressed as

[

x
u

]⊤ [

S⊤R−1S S⊤

S R

] [

x
u

]

= x⊤S⊤R−1S x+ 2u⊤S x+ u⊤Ru= ‖R−1S x+ u‖2R.

From this we also obtain the following corollary.

Corollary 17.2 (Summarizing Linear Quadratic Costs). If R ≻ 0 then





1
x
u





⊤


c q⊤ s⊤

q Q S⊤

s S R









1
x
u





=c− s⊤R−1s+ 2x⊤(q− S⊤R−1s)

+ x⊤(Q− S⊤R−1S)x+ ‖R−1(s+ S x) + u‖2R.
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The proof of the corollary uses the previous lemma withS̃ = [s|S], Q̃ =
[

c q⊤

q Q

]

and x̃ =

[

1
x

]

, and the fact that

Q̃− S̃⊤R−1S̃ =

[

c q⊤

q Q

]

−
[

s⊤R−1s s⊤R−1S
S⊤R−1s S⊤R−1S

]

.

To formulate the dynamic programming recursion, we assume thatαk(xk) =
1
2‖xk − x̄k‖2Pk

and eliminatewk, which results in the following formula.

αk+1(xk+1) = minimize
xk

1
2
‖xk − x̄k‖2Pk

+
1
2
‖yk −Ckxk‖2Q +

1
2
‖xk+1 − Akxk − bk‖2R.

(17.6)
Using the above corollary, we know that the solution is a quadratic function.

We use the identity

‖xk − x̄k‖2Pk
+ ‖yk −Ckxk‖2Q + ‖xk+1 − Akxk − bk‖2R

= const+





1
xk+1

xk





⊤ 



const (−Rbk)⊤ s̃⊤

(−Rbk) R (−A⊤k R)⊤

s̃ (−A⊤k R) R̃









1
xk+1

xk





,

with R̃ := Pk +C⊤k QCk + A⊤k RAk ands̃ := (Pkx̄k −C⊤k Qyk + A⊤k Rbk). Based on
the corollary, withũ = xk, the quadratic function is explicitly given by

αk+1(xk+1) = const+
1
2

x⊤k+1

(

R− (A⊤k R)⊤R̃−1A⊤k R
)

xk+1+x⊤k+1

(

−Rbk + (A⊤k R)⊤R̃−1s̃
)

.

We define the matrixPk+1 :=
(

R− (A⊤k R)⊤R̃−1A⊤k R
)

, which is positive de-
finite due to the fact that the original quadratic function was positive defi-
nite in (xk, xk+1). To bring αk+1(xk+1) into a more compact form, we define
x̄k+1 = −P−1

k+1

(

−Rbk + (A⊤k R)⊤R̃−1s̃
)

. We can then show that

αk+1(xk+1) =
1
2
‖xk+1−x̄k+1‖2Pk+1

+ const

as an immediate consequence of the following basic lemma.

Lemma 17.3. If P ≻ 0 and x̄ = −P−1g then1
2 x⊤Px+ g⊤x = ‖x− x̄‖2P + const.

Disregarding the constants, we have described an algorithmto generate the
dataPk+1 and x̄k+1 that are necessary to represent the negative logarithm of
the PDFP(xn|y), i.e.αk+1(xk+1). The only inputs to the algorithm are the data
describing the negative logarithm of the PDF of the prior information,Pk and
x̄k, as well as the measurementyk.
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17.5 Recursive Bayesian Estimation of the Last State

Very often, one is only interested in estimating the last state xN , not in the
whole trajectory. For this aim, a technique that is very similar to dynamic pro-
gramming can be used that is calledRecursive Bayesian Estimation. The idea
is to recursively compute the conditional PDF of the statexn+1 given all mea-
surementsy0, . . . , yn. We note that the only memory of the system is the state
xn, and that the latest measurementyn helps us to learn more about the PDF of
xn. For these reasons, one can derive the following identity.

P(xn+1|y0, . . . , yn) =
∫

P(xn+1|xn)P(xn|y0, . . . , yn) dxn

=

∫

P(xn+1|xn,wn)P(xn,wn|y0, . . . , yn) dxndwn

=

∫

fn(xn,wn)=xn+1

P(xn,wn|y0, . . . , yn) dxndwn

=

∫

fn(xn,wn)=xn+1

P(xn,wn|y0, . . . , yn−1)P(yn|xn,wn)
P(yn|y0, . . . , yn−1)

dxndwn

= const·
∫

fn(xn,wn)=xn+1

P(xn,wn|y0, . . . , yn−1)P(yn|xn,wn) dxndwn

= const·
∫

fn(xn,wn)=xn+1

P(wn)P(xn|y0, . . . , yn−1)P(yn|xn,wn) dxndwn

= const·
∫

fn(xn,wn)=xn+1

e−βn(wn)P(xn|y0, . . . , yn−1)e−Φ(yn−gn(xn,wn)) dxndwn.

(17.7)
The result is a recursive formula to computeP(xn+1|y0, . . . , yn) from the last
measurementyn and fromP(xn|y0, . . . , yn−1). There are many ways to repre-
sent the probability densityP(xn|y0, . . . , yn−1). One way would be to use a
fine grid in state space which creates many rectangular volumes, each of
which represents a constant probability density. Another way would be to use
“Gaussian-Mixtures”, i.e. to representP(xn|y0, . . . , yn−1) by a sum of Gaussian
PDFs. Yet another way would be to sample the PDFs ofxn andwn by using
“particles” each possibly with some weight, and then propagate the particles
through the system dynamics and to modify their weights according to the fac-
tor e−Φ(yn−gn(xn,wn)) that depends on how compatible each particle is to the actual
measurement. Particle resampling allows one to let very unprobable particles
“die” and save computation speed.

The problem of all approaches mentioned above is that they suffer, like dy-
namic programming, from the “curse of dimensionality”, i.e. they are difficult
to apply for state spaces of nontrivial dimensions (not higher than e.g.nx = 6).
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For this reason, very often one chooses to approximate the conditional PDF
with a single Gaussian, and to use some form of linearizationto propagate
the PDF through the system dynamics. This approach leads to the Extended
Kalman Filter (EKF), that is a generalization of the Kalman Filter equations
to nonlinear systems. An approach that is very closely related to the EKF, but
which uses a very specific form of sampling instead of the system linearization,
is called the Unscented Kalman Filter (UKF).

17.6 Estimation of Last State for Linear Systems with
Gaussian Noises

One interesting special case is, again, the linear system with Gaussian measu-
rement and state noises. We regard the same setup as before inEqs. (17.4), but
instead of solving the trajectory estimation problem givenall measurementsy,
which was equivalent to the QP (17.5), we now want to propagate the PDFs
P(xn|y0, . . . , yn−1) for the current state given only the previous measurements.
For this we use the Bayesian estimation framework (17.7), and apply it to the
special case where we start with a Gaussian distribution, i.e. we assume that

P(xn|y0, . . . , yn−1) = const· exp

(

−1
2
‖xn − x̄n‖2Pn

)

where the two data items ¯xn andPn describe the Gaussian PDF completely, up
to a constant. We deliberately use the same names for these two quantities like
before in the dynamic programming solution of the linear quadratic trajectory
estimation problem, because they will turn out to obey the same propagation
rule, i.e. they are identical. The recursion formula

P(xn+1|y0, . . . , yn) = const·
∫

fn(xn,wn)=xn+1

P(wn)P(xn|y0, . . . , yn−1)P(yn|xn,wn) dxndwn

becomes in this special case the following expression:

P(xn+1|y0, . . . , yn) = const·
∫

Anxn+bn+wn=xn+1

e−
1
2 ‖wn‖2Re−

1
2 ‖xn−x̄n‖2Pn e−

1
2 ‖yn−Cxn‖2Q dxndwn

= const·
∫

e−
1
2 ‖Anxn+bn−xn+1‖2Re−

1
2 ‖xn−x̄n‖2Pn e−

1
2 ‖yn−Cxn‖2Q dxn

= const·
∫

e−
1
2 (‖Anxn+bn−xn+1‖2R+‖xn−x̄n‖2Pn

+‖yn−Cxn‖2Q) dxn.
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The exponent in the last line is the same expression as we had before in
Eq. (17.6), and can therefore, following Corollary 17.2, bewritten as

‖Anxn+bn − xn+1‖2R + ‖xn − x̄n‖2Pn
+ ‖yn −Cxn‖2Q

= const+ ‖xn+1 − x̄n+1‖2Pn+1
+ ‖m+Mxn+1 + xn‖2R̃

using the same definitions ofPn+1 and x̄n+1 andR̃ as before, and wherem and
M are a constant vector and matrix of suitable dimensions thatwe could, but
do not want to write down in detail here, as their values are not relevant. Using
this identity and the fact that a sum of exponentials translates into a product,
we can further simplify the integral above to obtain the following expressions.

P(xn+1|y0, . . . , yn) = const· e−
1
2 ‖xn+1−x̄n+1‖2Pn+1

∫

e−
1
2 ‖m+Mxn+1+xn‖2R̃ dxn

︸                       ︷︷                       ︸

=const

= const· e−
1
2 ‖xn+1−x̄n+1‖2Pn+1 .

Here, we have used the fact that the integral is constant because it is the integral
over a Gaussian distribution with variable mean value but constant covariance
matrix. The value of such an integral is indeed independent of the location of
the mean, and therefore independent ofxn+1. This simple fact is the reason
why the recursive Bayesian estimation of the last state gives exactly the same
result – up to a constant – as the arrival-cost computation via dynamic pro-
gramming. We remark that this identity is only true for linear systems with
Gaussian measurement noise and state disturbances. An interesting subject for
future research is to investigate the general nonlinear or non-Gaussian case
and to compare the PDF that is implied by the dynamic programming compu-
tation of the arrival cost with the PDF resulting from the recursive Bayesian
estimation of the last state.

17.7 The Kalman Filter and the Extended Kalman Filter
Equations

Let us summarize again, from a user perspective, the recursive algorithm to
compute the arrival cost – or, equivalently, the negative logarithm of the condi-
tional PDF – for linear systems with Gaussian noises. This algorithm was first
derived by Rudolf E. Kalman and is therefore called the Kalman filter.

Input data: An initial meanx̄n and inverse covariancePn, a measurementyn

with inverse measurement noise covarianceQ of noisevk and matrixCn in the
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measurement modelyn = Cnxn + vn, the matrixAn and drift termbn in the
propagation modelxn+1 = Anxn + bn + wn, and an inverse covarianceR of the
state noisewk. We note that we might have chosenQ andR to depend onn
without changing the algorithm. The following set of real valued vectors and
matrices forms thus the input of the algorithm:

(x̄n,Pn,Q,Cn,An,bn,R).

Computational steps: Compute the intermediate quantities

R̃ := Pn +C⊤n QCn + A⊤n RAn and s̃ := (Pnx̄n −C⊤n Qyn + A⊤n Rbn),

as well as the result

Pn+1 :=
(

R− (A⊤n R)⊤R̃−1A⊤n R
)

and x̄n+1 = −P−1
n+1

(

−Rbn + (A⊤n R)⊤R̃−1s̃
)

.

Output data: A mean x̄n+1 and inverse covariancePn+1 that represent the
conditional PDFP(xn+1|y0, . . . , yn), or, alternatively, the arrival-costαn+1(xn+1).

The Extended Kalman Filter

The Extended Kalman Filter (EKF) applies the same algorithmto nonlinear
systems of the form

xn+1 = f (xn) + wn and y′n = g(xn) + vn

by linearizing the nonlinear functionsf andg at the currently most probable
value, namely at ¯xn. This means that we use the following linear models:

xn+1 = f (x̄n) +
∂ f
∂x

(x̄n)(xn − x̄n) + wn

and

y′n = g(x̄n) +
∂g
∂x

(x̄n)(xn − x̄n) + vn.

To bring the data into exactly the same format as the above Kalman filter equa-
tions require, we define the corresponding Kalman filter input data as follows:

An :=
∂ f
∂x

(x̄n) and bn := f (x̄n) − Anx̄n

as well as

Cn :=
∂g
∂x

(x̄n) and yn := y′n − g(x̄n) +Cnx̄n.

After the Kalman filter computations, the new mean value ¯xn+1 is obtained, and
can be used as the linearization point for the next step of theEKF.
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[26] C. Büskens and H. Maurer. SQP-methods for solving optimal control problems

with control and state constraints: adjoint variables, sensitivity analysis and real-
time control.Journal of Computational and Applied Mathematics, 120(1–2):85–
108, 2000.

[27] H. Chen and F. Allg̈ower. A quasi-infinite horizon nonlinear model predictive
control scheme with guaranteed stability.Automatica, 34(10):1205–1218, 1998.

[28] G. B. Dantzig.Linear Programming and Extensions. Princeton University Press,
1963.

[29] G. De Nicolao, L. Magni, and R. Scattolini. Stability and Robustness of Nonli-
near Receding Horizon Control. In F. Allgöwer and A. Zheng, editors,Nonlinear
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F. Allgöwer, editors,Nonlinear model predictive control, volume 384 ofLecture
Notes in Control and Information Sciences, pages 391–417. Springer, 2009.

[35] M. Diehl, R. Findeisen, and F. Allg̈ower. A stabilizing real-time implementation
of nonlinear model predictive control. In L. Biegler, O. Ghattas, M. Heinken-
schloss, D. Keyes, and B. van Bloemen Waanders, editors,Real-Time and Online
PDE-Constrained Optimization, pages 23–52. SIAM, 2007.

[36] M. Diehl, R. Findeisen, F. Allg̈ower, H. G. Bock, and J. P. Schlöder. Nominal
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[76] M.J. Tenny, S.J. Wright, and J.B. Rawlings. Nonlinear model predictive cont-
rol via feasibility-perturbed sequential quadratic programming.Computational
Optimization and Applications, 28(1):87–121, April 2004.

[77] T.H. Tsang, D.M. Himmelblau, and T.F. Edgar. Optimal control via colloca-
tion and non-linear programming.International Journal on Control, 21:763–768,
1975.
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