Numerical Optimal Control
(Draft)

Sebastien Gros and Moritz Diehl

April 30, 2019






Contents

Preface

Introduction: Dynamic Systems and Optimization
1.1  Dynamic System Classes

1.2  Continuous Time Systems

1.3 Discrete Time Systems

1.4  Optimization Problem Classes

1.5 Overview, Exercises and Notation
Exercises

Root-Finding with Newton-Type Methods

2.1 Local Convergence Rates

2.2 AlLocal Contraction Theorem

2.3 Affine Invariance

2.4  Tight Conditions for Local Convergence
2.5 Globalization

Exercises

Nonlinear Optimization

3.1  Important Special Classes

3.2 First Order Optimality Conditions
3.3 Second Order Optimality Conditions
Exercises

Newton-Type Optimization Algorithms

4.1 Equality Constrained Optimization

4.2  Local Convergence of Newton-Type Methods
4.3  Inequality Constrained Optimization

4.4  Globalisation Strategies

Exercises

pagev

13
15
18
20

26
27
28
30
31
34
35

38
39
42
47
50

58
58
63
65
70
73



10

Contents

Calculating Derivatives

5.1 Algorithmic Diferentiation (AD)

5.2  The Forward Mode of AD

5.3  The Backward Mode of AD

5.4  Algorithmic Diferentiation Software
Exercises

Parameter Estimation

6.1 Parameter Estimation via Least-Squares Penalties
6.2  Alternative convex penalties

Exercises

Discrete Optimal Control

7.1  Optimal Control Problem (OCP) Formulations

7.2 Analysis of a Simplified Optimal Control Problem
7.3  Sparsity Structure of the Optimal Control Problem
Exercises

Dynamic Programming

8.1  Dynamic Programming in Discrete State Space
8.2  Linear Quadratic Problems

8.3  Infinite Horizon Problems

8.4  The Linear Quadratic Regulator

8.5 Robust and Stochastic Dynamic Programming
8.6 Interesting Properties of the DP Operator

8.7  The Gradient of the Value Function

8.8 A Discrete Time Minimum Principle

8.9 lIterative Dynamic Programming

8.10 Differential Dynamic Programming

Exercises

Continuous Time Optimal Control Problems
9.1 Formulation of Continuous Time OCP
9.2  Problem reformulation

9.3  Multi-stage Problems

9.4  Hybrid problems

9.5 whatelse?

9.6  Overview of Numerical Approaches
Exercises

Numerical Simulation
10.1 Numerical Integration: Explicit One-Step Methods
10.2 Stit Systems and Implicit Integrators

80
81
83
85
89
90

93
93
106
109

114
115
117

121

129

141
142
144
146
147
147
148
150
151
152
152
152

161
161
162
163
164
164
164
166

167
168
171



11

12

13

14

15

16

Contents iii

10.3 Orthogonal Collocation 173
10.4 Sensitivity Computation for Integration Methods 181
10.5 Second-order sensitivities 186
Exercises 190
The Hamilton-Jacobi-Bellman Equation 195
11.1 Dynamic Programming in Continuous Time 195
11.2 Linear Quadratic Control and Riccati Equation 197
11.3 Infinite Time Optimal Control 198
Exercises 199
Pontryagin and the Indirect Approach 200
12.1 The HJIB Equation along the Optimal Solution 201
12.2 Obtaining the Controls on Regular and on Singular Arcs03 2
12.3 Pontryagin with Path Constraints 205
12.4 Properties of the Hamiltonian System 207
12.5 Connection to the Calculus of Variations 209
12.6 Numerical Solution of the TPBVP 211
Exercises 224
Direct Approaches to Continuous Optimal Control 229
13.1 Direct Single Shooting 230
13.2 Direct Multiple Shooting 235
13.3 Direct Collocation method 239
13.4 A Classification of Direct Optimal Control Methods 244
13.5 Direct Methods for Singular Optimal Control Problems 452
Exercises 250
Optimal Control with Di fferential-Algebraic Equations 259
14.1 What are DAEs ? 260
14.2 Differential Index of DAEs 263
14.3 Index reduction 269
14.4 Direct Methods with Dferential-Algebraic Equations 273
Exercises 280
Model Predictive Control and Moving Horizon Estimation 281
15.1 NMPC Optimization Problem 283
15.2 Nominal Stability of NMPC 284
15.3 Online Initialization via Shift 285
15.4 Outline of Real-Time Optimization Strategies 286
Exercises 288
Parametric Nonlinear Optimization 289
16.1 Parametric Nonlinear Programming 289



17

Contents

16.2 Critical Regions and Online Active Set Strategies 310
Exercises 310
Moving Horizon Estimation 314
17.1 State and Parameter Estimation Problem Formulation 4 31
17.2 The Trajectory Estimation Problem 316
17.3 DP for the Trajectory Estimation Problem 319
17.4 Linear Quadratic Trajectory Estimation 320
17.5 Recursive Bayesian Estimation of the Last State 323
17.6 Last State for Linear Systems with Gaussian Noises 324
17.7 Kalman Filter and Extended Kalman Filter 325

References 327



Preface

Optimal control regards theptimizationof dynamic systemdhus, it bridges
two large and active research communities of applied madltiesy each with
their own journals and conferences. A scholar of nhumerigainzal control

has to acquire basic numerical knowledge within both figldsnumerical op-
timization on the one hand, and system theory and numericailation on

the other hand. Within this text, we start by rehearsingdasicepts from
both fields. Hereby, we give numerical optimization the éarggeight, as dyn-
amic system simulation is often covered rather well in eagiing and applied
mathematics curricula, and basic optimization concepth s1$ convexity or
optimality conditions and Lagrange multipliers play a ¢alicole in numerical

methods for optimal control. The course is intended foretitisi of engineering
and the exact sciences as well as for interested PhD stuaedtsesides the
abovementioned fields requires only knowledge of lineaglalg and numeri-
cal analysis. The course should be accompanied by comp@arises, and its
aim is to give an introduction into numerical methods forusioin of optimal

control problems, in order to prepare the students for uaimg) developing
these methods themselves for specific applications in seieand engineering.

The course is divided into four major parts.

Numerical Optimization [64, 22]

Discrete Time Optimal Control [10]
Continuous Time Optimal Control [25, 14]
Online Optimal Control [30]

This manuscript is based on lecture notes of courses on alptiomtrol that
the authors gave since 2011 at various universities (ETHtEUKU Leuven,
Trento, Freiburg, Trondheim, Linkoping and Chalmers Ursitg of Techno-
logy). It profited already from feedback by many students,ibstill work in



Vi Preface

progress and not yet error free. Special thanks go to SebaStger for in-
spiring discussions on how best to present optimal cordral, for suggesting
some of the quotes at the start of each chapter. Both authems tar thank

Jesus Lago Garcia who helped, during a student job contkétttthe Latex

editing of text and formulae, who suggested and implemevaddable chan-
ges in the organization of the chapters, and who in particcédected and
re-edited nearly all of the exercises of this book.

The present version of the manuscript is not yet completaw@iades a few
chapters we are still in the process of writing, and it is nettgroofread care-
fully. However, we decided to put the PDF already online s the can refer
to the manuscript in courses we teach and recommend it t@stesl persons.
Feedback is most welcome, in particular at this stage of tlittngy process!

Gothenburg and Freiburg éBastien Gros and Moritz Diehl
April 2017

Please send feedback and ideas for improvement to
grosse@chalmers.se.

and
moritz.diehl@imtek.uni-freiburg.de



1

Introduction: Dynamic Systems and
Optimization

Optimal control regards the optimization of dynamic systewile identify dy-
namic systems with processes that are evolving in time aatccdn be charac-
terized bystates xthat allow us to predict the future behavior of the system.
Often, the dynamic system can be controlled by a suitablécehaf inputs
that we denote asontrols uin this textbook. Typically, these controls shall
be chosen optimally in order to optimize sowlgective functiorand respect
someconstraints The process of finding the optimal control inputs requires
numerical methods, and these methods are the focus of tlike boo

As an example of an optimal control problem, we might thinkaofelectric
train where the state consists of the current position and velocity, and where
the controlu is the engine power that the train driver can choose at each mo
ment. We might regard the motion of the train on a time intgf¥ar'], and the
objective could be to minimize the consumed energy to drigenfStation A
to Station B, and one of the constraints would be that tha should arrive in
Station B at the fixed final timd;.

A typical property of a dynamic system is that knowledge ofratial state
Xo and acontrol input trajectory (t) for all t € [0, T] allows one to determine
the wholestate trajectory &) for t € [0, T]. 1 As the motion of a train can very
well be modelled by Newton’s laws of motion, the usual dggin of this
dynamic system is deterministic and in continuous time aitd @ontinuous
states.

But dynamic systems and their mathematical models can commauny va-
riants, and it is useful to properly define the names givenmaonty to diferent
dynamic system classes, which we do in the next sectionradtels, we will
discuss two important classes, continuous time and déstiree systems, in

1 For ease of notation, and without loss of generality, we insett= 0 as start antl= T as end
of most time intervals in this book.



2 Introduction: Dynamic Systems and Optimization

more mathematical detail, before we give an overview ofrogi@tion problem
classes and finally outline the contents of the book chaptehbpter.

1.1 Dynamic System Classes

In this section, let us go, one by one, through the many digidines in the
field of dynamic systems.

Continuous vs Discrete Time Systems

Any dynamic system evolves over time, but time can come invadants:
while the physical time is continuous and forms the natuedtirsg for most
technical and biological systems, other dynamic system®eat be modelled
in discrete time, such as digitally controlled sampledadatstems, or games.

We call a system aiscrete time systewhenever the time in which the
system evolves only takes values on a predefined time gridillysassumed
to be integers. If we have an interval of real numbers, liketfie physical
time, we call it acontinuous time systerm this book, we usually denote the
continuous time by the variablee R and write for example(t). In case of
discrete time systems, we use an index, usuadyN, and writex for the state
at time pointk.

Continuous vs Discrete State Spaces

Another crucial element of a dynamic system is its statghich often lives in
a continuous state space, like the position of the traincantalso be discrete,
like the position of the figures on a chess game. We definstdite spacé&l
to be the set of all values that the state vecstanay take. I1fX is a subset of a
real vector space such B8 or another dierentiable manifold, we speak of a
continuous state spack X is a finite or a countable set, we speak discrete
state spacelf the state of a system is described by a combination ofrelisc
and continuous variables we speak dfydorid state space

A multi-stage systeris the special case of a system with hybrid state space
that develops through a sequence of stages and where thegtate on each
stage is continuous. An example for a multi-stage systemai&ing, where
consecutive stages are characterized by the number oftfaetite on the
ground at a given moment. For multi-stage systems, the time@mt when
one stage ends and the next one starts can often be descyilaeslitching
function This function is positive on one and negative on the othegestand
assumes the value zero at the time instant that separatsates.

Another special case are systems that develop in a consnstate space



1.1 Dynamic System Classes 3

and in continuous time, but are sometimes subject to digagmis jumps,
such as bouncing billiard balls. These can often be modeltechulti-stage
systems with switching functions, plus so caljathp conditionghat describe
the discontinuous state evolution at the time instant betvtbe stages.

Finite vs Infinite Dimensional Continuous State Spaces
The class of continuous state spaces can be further subediuido the finite
dimensional ones, whose state can be characterized byead@atiof real num-
bers, and the infinite dimensional ones, which have a statdivbs in function
spaces. The evolution of finite dimensional systems in oootiis time is usu-
ally described byordinary diferential equations (ODEQr their generalizati-
ons, such adifferential algebraic equations (DAE)

Infinite dimensional systems are sometimes also caligtibuted parame-
ter systemsand in the continuous time case, their behaviour is tylyickds-
cribed bypartial differential equations (PDE)An example for a controlled
infinite dimensional system is the evolution of the airflovd &@mperature dis-
tribution in a building that is controlled by an air-condiing system.

Continuous vs Discrete Control Sets
We denote byU the set in which the controls live, and exactly as for the
states, we can divide the possible control sets@otatinuous control setand
discrete control setsA mixture of both is aybrid control setAn example for
a discrete control set is the set of gear choices for a canyswaitch that we
can can choose to be either on @, dut nothing in between.

In the systems and control community, the telgbrid systendenotes a
dynamic system which has either a hybrid state or hybridrobispace, or
both. Generally speaking, hybrid systems are mofiécdit to optimize than
systems with continuous control and state spaces.

However, an interesting and relevant class are hybrid systkeat have con-
tinuous time and continuous states, but discrete conffaksy might be called
hybrid systems withexternal switche®sr integer controlsand turn out to be
tremendously easier to optimize than other forms of hybyglesns, if treated
with the right numerical methods [69].

Time-Variant vs Time-Invariant Systems
A system whose dynamics depend on time is callddne-variant system
while a dynamic system is calldtme-invariantif its evolution does not de-
pend on the time and date when it is happening. As the laws ydigh are
time-invariant, most technical systems belong to thedattss, but for exam-
ple the temperature evolution of a house with hot days andl mights might



4 Introduction: Dynamic Systems and Optimization

best be described by a time-variant system model. While thesabf time-
variant systems trivially comprises all time-invarians®ms, it is an important
observation that also the other direction holds: each tiar@&nt system can be
modelled by a nonlinear time-invariant system if the statece is augmented
by an extra state that takes account of the advancement®fand which we
might call the “clock state”.

Linear vs Nonlinear Systems

If the state trajectory of a system depends linearly on tlitéainalue and
the control inputs, it is called knear systemlf the dependence idfine, one
should ideally speak of a@yfine systembut often the term linear is used here
as well. In all other cases, we speak ofanlinear system

A particularly important class of linear systems direar time invariant
(LTI) systems. An LTI system can be completely characterized ileast
three equivalent ways: first, by two matrices that are tyijiczalled A and
B; second, by itstep response functipand third, by itsfrequency response
function A large part of the research in the control community is destdo
the study of LTI systems.

Controlled vs Uncontrolled Dynamic Systems

While we are in this book mostly interesteddantrolled dynamic systenrise.
systems that have a control input that we can choose, it id gmoeemember
that there exist many systems that cannot be influenced, dtulthat only
evolve according to their intrinsic laws of motion. Theseontrolled systems
have an empty control sét] = 0. If a dynamic system is both uncontrolled
and time-invariant it is also called @utonomous system

Note that an autonomous system with discrete state spatcalsiodives in
discrete time is often called automaton

Within the class of controlled dynamic systems, of spediriest are the so
calledcontrollable systemavhich have the desirable property that their state
vectorx can be steered from any initial statgto any final stateg, in a finite
time with suitably chosen control input trajectories. Maontrolled systems
of interest are not completely controllable because somis pé their state
space cannot be influenced by the control inputs. If thesis pae stable, the
system is calledtabilizable

Stable vs Unstable Dynamic Systems
A dynamic system whose state trajectory remains boundeuabianded initial
values and controls is calledstable systeprand arunstable systemtherwise.
For autonomous systemstability of the system around a fixed point can be



1.1 Dynamic System Classes 5

defined rigorously: for any arbitrarily small neighborhds¥daround the fixed
point there exists a region so that all trajectories that stahis region remain

in N. Asymptotic stabilitys stronger and additionally requires that all consi-
dered trajectories eventually converge to the fixed poiot.aatonomous LTI
systems, stability can be computationally characterizethb eigenvalues of
the system matrix.

Deterministic vs Stochastic Systems
If the evolution of a system can be predicted when its inii@te and the
control inputs are known, it is calledd&terministic systenWhen its evolution
involves some random behaviour, we call gtachastic system

The movements of assets on the stockmarket are an examplstimchastic
system, whereas the motion of planets in the solar systerasuslly be assu-
med to be deterministic. An interesting special case ofrdetéstic systems
with continuous state space ateaotic system§hese systems are so sensitive
to their initial values that even knowing these to arbitydnigh, but finite, pre-
cisions does not allow one to predict the complete futurdhefdystem: only
the near future can be predicted. The partifiledential equations used in we-
ather forecast models have this property, and one well-kngvaotic system
of ODE, thelLorenz attractor was inspired by these.

Note that also games like chess can be interpreted as dysgst@ms. Here
the evolution is neither deterministic nor stochastic,dmiermined by the acti-
ons of an adverse player. If we assume that the adversarysbtmoses the
worst possible control action against us, we enter the fiéldamne theory
which in continuous state spaces and engineering apjplitsis often denoted
by robust optimal contral

Open-Loop vs Closed-Loop Controlled Systems
When choosing the inputs of a controlled dynamic system, ase\iiay is
decide in advance, before the process starts, which cattimn we want to
apply at which time instant. This is callegpen-loop controin the systems
and control community, and has the important property tmatcontrolu is a
function of time only and does not depend on the current systate.

A second way to choose the controls incorporates our mosntdaow-
ledge about the system state which we might observe withahedf measu-
rements. This knowledge allows us to apply feedback to teesyby adapting
the control action according to the measurements. In thesgsand control
community, this is calledlosed-loop contrglbut also the more intuitive term
feedback controis used. It has the important property that the control actio
does depend on the current state. The map from the statedoritrel action is



6 Introduction: Dynamic Systems and Optimization

called afeedback control policyin case this policy optimizes our optimization
objective, it is called theptimal feedback control policy

Open-loop control can be compared to a cooking instructiahgays: cook
the potatos for 25 minutes in boiling water. A closed-loagfeedback control
of the same process would for example say: cook the potatosiling water
until they are so soft that they do not attach anymore to atf@kyou push into
them. The feedback control approach promises the bettelt,rbst requires
more work as we have to take the measurements.

This book is mainly concerned with numerical methods of howdmpute
optimal open-loop controls for given objective and coriatea But the last part
of the book is concerned with a powerful method to approxinthée optimal
feedback control policynonlinear model predictive contrah feedback control
technique that is based on the repeated solution of opgndptimal control
problems.

Focus of This Book: Deterministic Systems with Continuous tates
In this textbook we have a strong focus on deterministicesystwith conti-
nuous state and control spaces. In Chapters 7 and we conissdegte time
systems, and in Chapters 9 to 14 we discuss continuous tishensy.

The main reason for this focus on continuous state and desptages is that
the resulting optimal control problems caffigiently be treated by derivative-
based optimization methods. They are thus tremendousigreassolve than
most other classes, both in terms of the solvable systers aizé of compu-
tational speed. Also, these continuous optimal contrablerms comprise the
important class of convex optimal control problems, whidlbva us to find
a global solution reliably and fast. Convex optimal conpobblems are im-
portant in their own right, but also serve as an approximmatibnonconvex
optimal control problems within Newton-type optimizatiorethods.

1.2 Continuous Time Systems

Most systems of interest in science and engineering aregibdeddn form of
differential equations which live in continuous time. On theeothand, all
numerical simulation methods have to discretize the tinbervial of interest
in some form or the other and thuffectively generate discrete time systems.
We will thus only briefly sketch some relevant properties @fitinuous time
systems in this section, and sketch how they can be tranetbmto discrete
time systems. After this section, and throughout the firstparts of the book,



1.2 Continuous Time Systems 7

we will exclusively be concerned with discrete time systebefore we will
finally come back to the continuous time case in Chapter 9.

Ordinary Di fferential Equations
A controlled dynamic system in continuous time can in thepsast case be
described by an ordinary fiierential equation (ODE) on a time interval T
by
X(t) = f(x(t), u(t),t), te[0,T]

wheret € R is the time,u(t) € R™ are the controls, ang(t) € R™ is the state.
The functionf is a map from states, controls, and time to the rate of chahge o
the state, i.ef : R™ xR™ x [0, T] — R™. Due to the explicit time dependence
of the functionf, this is a time-variant system.

We are first interested in the question if thisteiential equation has a so-
lution if the initial valuex(0) is fixed and also the controigt) are fixed for
all t € [0, T]. In this context, the dependence bbn the fixed controlsi(t) is
equivalent to a a further time-dependenced pand we can redefine the ODE
asx = f(xt) with f(x,t) := f(x u(t),t). Thus, let us first leave away the de-
pendence of on the controls, and just regard the time-dependent urmtedr
ODE:

(1) = f(x(t),1), te[0,T]. (1.1)

Initial Value Problems
An initial value problem (IVP) is given by (1.1) and the imitivalue constraint
x(0) = Xo with some fixed parameteg. Existence of a solution to an IVP
is guaranteed under continuity éfwith respect to tax andt according to a
theorem from 1886 that is due to Giuseppe Peano. But existalone is of
limited interest as the solutions might be non-unique.

Example 1.1 (Non-Unique ODE Solution) The scalar ODE withf(x) =
VIX(®)] can stay for an undetermined duration in the point 0 before lea-
ving it at an arbitrary timey. It then follows a trajectory(t) = (t — tp)?/4 that
can be easily shown to satisfy the ODE (1.1). We note that DE nction f

is continuous, and thus existence of the solution is guaeahtnathematically.
However, at the origin, the derivative éfapproaches infinity. It turns out that
this is the reason which causes the non-uniqueness of thigosol

As we are only interested in systems with well-defined ane@rdahistic
solutions, we would like to formulate only ODE with uniqudigmns. Here
helps the following theorem by Charl&nile Picard (1890), and Ernst Leo-
nard Lindebf (1894).



8 Introduction: Dynamic Systems and Optimization

Theorem 1.2 (Existence and Unigueness of I\V/PRegard the initial value
problem(1.1) with x(0) = xg, and assume that f R™ x [0,T] —» R™ is

continuous with respect to x and t. Furthermore, assume thiatLipschitz
continuous with respect to x, i.e., that there exists a @idt such that for all
x,ye€ R and allte [0, T]

I (xt) = f(y. Il < LIIX=yll.
Then there exists a unique solution [0, T] — R™ of the IVP.

Lipschitz continuity off with respect tax is not easy to check. It is much
easier to verify if a function is dierentiable. It is therefore a helpful fact that
every functionf that is diferentiable with respect t& is also locally Lip-
schitz continuous, and one can prove the following corgltarthe Theorem
of Picard-Lindedf.

Corollary 1.3 (Local Existence and Uniquenesd$jegard the same initial va-
lue problem as in Theorem 1.2, but instead of global Lipgobimtinuity, as-
sume that f is continuouslyfiBrentiable with respect to x for all¢ [0, T].
Then there exists a possibly shortened, but non-emptyvait§d, T’] with
T’ € (0, T] on which the IVP has a unique solution.

Note that for nonlinear continuous time systems — in cottecediscrete time
systems — it is very easily possible even with innocenthkiog and smooth
functions f to obtain an “explosion”, i.e., a solution that tends to iit§irfor
finite times.

Example 1.4(Explosion of an ODE) Regard the scalar exampfgx) = x
with X = 1, and let us regard the interval,[0] with T = 10. The IVP has
the explicit solutionx(t) = 1/(1 — t), which is only defined on the half open
interval [Q 1), because it tends to infinity far— 1. Thus, we need to choose
someT’ < 1 in order to have a unique and finite solution to the IVP on the
shortened interval [OF']. The existence of this local solution is guaranteed by
the above corollary. Note that the explosion in finite timalige to the fact
that the functionf is not globally Lipschitz continuous, so Theorem 1.2 is not
applicable.

Discontinuities with Respect to Time
It is important to note that the above theorem and corollaryle extended to
the case that there are finitely many discontinuitie$ efith respect ta. In
this case the ODE solution can only be defined on each of thincmis time
intervals separately, while the derivativeofs not defined at the time points
at which the discontinuities df occur, at least not in the strong sense. But the



1.2 Continuous Time Systems 9

transition from one interval to the next can be determineddntinuity of the
state trajectory, i.e. we require that the end state of ongramous initial value
problem is the starting value of the next one.

The fact that unique solutions still exist in the case of dligmuities is im-
portant because, first, many optimal control problems h&@eodtinuous con-
trol trajectoriesu(t) in their solution, and, second, many algorithms disceetiz
the controls as piecewise constant functions which haveaguat the inter-
val boundaries. Fortunately, this does not causicdities for existence and
uniqueness of the IVPs.

Linear Time Invariant (LTI) Systems
A special class of tremendous importance are the linear itiwagiant (LTI)
systems. These are described by an ODE of the form

X = Ax+ Bu

with fixed matricesA € R™™ andB € R™ ", LTI systems are one of the
principal interests in the field of automatic control and stViéerature exists on
LTI systems. Note that the functiof(x, u) = Ax+ Buis Lipschitz continuous
with respect tax with Lipschitz constant. = ||Al|, so that the global solution
to any initial value problem with a piecewise continuoustecoininput can be
guaranteed.

Many important notions such asntrollability or stabilizability, and com-
putational results such as theep responser frequency response functican
be defined in terms of the matricésand B alone. Note that in the field of
linear system analysis and control, usually also outputggusy = Cx are
present, where the outpugsmay be the only physically relevant quantities.
Only the linear operator from to y - the input-output-behaviour - is of in-
terest, while the stat& is just an intermediate quantity. In that context, the
states are not even unique, becaudtedint state space realizations of the
same input-output behavior exist. In this book, howeveraveenot interested
in input-outputs-behaviours, but assume that the stateipttincipal quantity
of interest. Output equations are not part of the models imtbok. If one
wants to make the connection to the LTI literature, one mégh€ = I.

Zero Order Hold and Solution Map
In the age of digital control, the inputsare often generated by a computer
and implemented at the physical system as piecewise carsaneen two
sampling instants. This is callexkro order hold The grid size is typically
constant, say of fixed lengtht > 0, so that the sampling instants are given by
tx = k- At. If our original model is a dferentiable ODE model, but we have



10 Introduction: Dynamic Systems and Optimization

piecewise constant control inputs with fixed valugg = ux wtih ug € R™ on
each intervat € [ty, tx,1], we might want to regard the transition from the state
X(tx) to the statex(tx.1) as a discrete time system. This is indeed possible, as
the ODE solution exists and is unique on the interyglf, ] for each initial
valuex(ty) = Xo.

If the original ODE system is time-invariant, it is enoughrégard one initial
value problem with constant contra(t) = Ugonst

(1) = F(X(), Usons), te€[0,A, with X(0)= . (1.2)

The unique solutiox : [0, At] — R™ to this problem is a function of both, the
initial value xg and the controlons; SO We might denote the solution by

X(t; X0, Ugons), for te [0, At].

This map from &, Ucons) tO the state trajectory is called thelution mapThe
final value of this short trajectory piecg(At; Xo, Uconsy), IS Of major interest,
as it is the point where the next sampling interval starts.might define the
transition functionfgis : R™ x R™ — R™ by f4is(Xo, Ucons) = X(At; Xg, Uconsp-
This function allows us to define a discrete time system thafuely describes
the evolution of the system state at the sampling instants

X(tkr1) = Fais(X(te), Uk).

Solution Map of Linear Time Invariant Systems
Let us regard a simple and important example: for linearinapts time sys-
tems

X = AXx+ Bu
with initial value xg att = 0, and constant control inputons; the solution map
X(t; Xo, Ucons) IS explicitly given as

t
X(t; X0, Ucons) = EXPAL)Xo + f(; expA(t — 7)) BUeonsdr,

where exphg) is the matrix exponential. It is interesting to note thas imap

is well defined for all timeq € R, as linear systems cannot explode. The
corresponding discrete time system with sampling tiwds again a linear
time invariant system, and is given by

fais(Xc, Uk) = AdisXk + BuisUk
with
At
Agis = eXp(AAt) and Byis = f exp(A(At — 1)) Bdr.
0



1.2 Continuous Time Systems 11

Sensitivities
In the context of optimal control, derivatives of the dynamystem simulation
are needed for nearly all numerical algorithms. Followirfgedrem 1.2 and
Corollary 1.3 we know that the solution map to the IVP (1.2jsexon an
interval [Q At] and is unique under mild conditions even for general n@am
systems. But is it also fierentiable with respect to the initial value and control
input?

In order to discuss the issue of derivatives, which in theatlyic system
context are often calledensitivities let us first ask what happens if we call
the solution map with dierent inputs. For small perturbations of the values
(X0, Ugonsd, We still have a unique solutior(t; Xo, Uconsp ON the whole inter-
valt € [0, At]. Let us restrict ourselves to a neighborhdsdof fixed values
(X0, Ugonsp- For each fixed € [0, At], we can now regard the well defined and
unique solution magx(t; ) : N — R™, (Xg, Ucons) > X(t; Xo, Uconsp- A natu-
ral question to ask is if this map isftBrentiable. Fortunately, it is possible to
show that iff is mtimes continuously dierentiable with respect to bokand
u, then the solution maxg(t; -), for eacht € [0, At], is alsom-times continuously
differentiable with respect to{, Uconsp-

In the general nonlinear case, the solution Mépxo, Ucons) €an only be
generated by a numerical simulation routine. The companatf derivatives
of this numerically generated map is a delicate issue thalig@iss in detail
in the third part of the book. To mention already the maifficlilty, note that
most numerical integration routines are adaptive, i.eghtnéthoose to do flie-
rent numbers of integration steps foffdrent IVPs. This renders the numerical
approximation of the magi(t; Xo, Uconsp typically non-diferentiable in the in-
putsxo, Uconst Thus, multiple calls of a black-box integrator and appiaaof
finite differences might result in very wrong derivative approximagio

Numerical Integration Methods
A numerical simulation routine that approximates the sofutnap is often
called anintegrator. A simple but very crude way to generate an approximation
for x(t; X0, Ucons) fOr t € [0, At] is to perform a linear extrapolation based on
the time derivativex = f(x, u) at the initial time point;

X(t; X0, Ucons) = Xo + tf(Xo, Uconsy),  t € [0, At].

This is called onétuler integration stepFor very smallAt, this approximation
becomes very good. In fact, the erm(AL; Xo, Ucons) — X(At; Xg, Ucons) iS Of
second order irt. This motivated Leonhard Euler to perform several steps of
smaller size, and propose what is now calledEléer integration methaod/\e
subdivide the interval [AAt] into M subintervals each of length= At/M, and



12 Introduction: Dynamic Systems and Optimization
performM such linear extrapolation steps consecutively, starting & Xo:
)’Zj+l = )ﬁ(‘] +hf()’2j,uC0nSo, J :0,...,M _1

It can be proven that the Euler integration methodtable i.e. that the pro-
pagation of local errors is bounded with a constant thatdspendent of the
step sizeh. Therefore, the approximation becomes better and bettenwie
decrease the step sike since theconsistencyerror in each step is of order
h?, and the total number of steps is of ordeyh, the accumulated error in
the final step is of ordenAt. As this is linear in the step sizg we say that
the Euler method has tterder one Taking more steps is more accurate, but
also needs more computation time. One measure for the catiqnal dfort

of an integration method is the number of evaluation$,afhich for the Euler
method grows linearly with the desired accuracy.

In practice, the Euler integrator is rarely competitivezdngse other methods
exist that deliver the desired accuracy levels at much l@eerputational cost.
We discuss several numerical simulation methods latempiagent here alre-
ady one of the most widespread integrators,Roege-Kutta Method of Order
Four, which we will often abbreviate aRK4. One step of the RK4 method
needs four evaluations df and stores the results in four intermediate quan-
titieski € R™, i = 1,...,4. Like the Euler integration method, the RK4 also
generates a sequence of valugsj™= 0,..., M, with % = xo. At X;, and
using the constant control inpuons; One step of the RK4 method proceeds as
follows:

ki = f(Xj, Ucons)
. h
ko = f(Xj + > K1, Ucons)
. h
k3= (X + > K2, Ucons)
Ky = f(Xj + hks, Ucons)

Xjiai= X+ g(kl + 2ko + 2k3 + Kg).

One step of RK4 is thus as expensive as four steps of the Eeltronh. But it
can be shown that the accuracy of the final approximatjpis of orderh*At.
In practice, this means that the RK4 method usually needsindously fewer
function evaluations than the Euler method to obtain theesacauracy level.
From here on, and throughout the first part of the book, we ledle the
field of continuous time systems, and directly assume thatom&ol a discrete
time systemx1 = fqis(X«, Ux). Let us keep in mind, however, that the transition
map fgis(X, Ux) is usually not given as an explicit expression but can adbtee



1.3 Discrete Time Systems 13

a relatively involved computer code with several internagelguantities. In the
exercises of the first part of this book, we will usually dettze the occuring
ODE systems by using only one Euler or RK4 step per contretwat, i.e. use
M = 1 andh = At. The RK4 step often gives already dfstient approximation
at relatively low cost.

1.3 Discrete Time Systems

Let us now discuss in more detail the discrete time systemsate at the
basis of the control problems in Chapters 7 and 8 of this bbothe general
time-variant case, these systems are characterized byiaenics

Xk+1 = fk(Xk, Uk), k=0,1,...,N-1 (13)

on a time horizon of lengtN, with N control input vectorsi, ..., uy_1 € R™
and (N + 1) state vectors, ..., Xy € R™,

If we know the initial statexg and the controlsi, . . . , uy_1 we could recur-
sively call the functionsfy in order to obtain all other states, ..., xy. We
call this aforward simulationof the system dynamics.

Definition 1.5 (Forward simulation) Theforward simulationis the map

RNy R(N+1)nk

(Xo; Up, Uz, ..., UN-1) = (X0, X1, X2, ..., XN)

fsim :

that is defined by solving Equation (1.3) recursively forka# 0,1,...,N - 1.

The inputs of the forward simulation routine are the init/alue xy and
the controlau for k = 0,...,N — 1. In many practical problems we can only
choose the controls while the initial value is fixed. Thoughk ts a very natural
assumption, it is not the only possible one. In optimizatiae might have
very different requirements: We might, for example, have a freeainiilue
that we want to choose in an optimal way. Or we might have bofixeal
initial state and a fixed terminal state that we want to re&e¢h.might also
look for periodic sequences witly = xy, but do not knowx, beforehand. All
these desires on the initial and the terminal state can beees@d by suitable
constraints. For the purpose of this textbook it is impdrtannote that the
fundamental equation that is characterizing a dynamiaxapétion problem
are the system dynamics stated in Equation (1.3), but rialiaélue constraint,
which is optional.



14 Introduction: Dynamic Systems and Optimization

Linear Time Invariant (LTI) Systems
As discussed already for the continuous time case, linea itvariant (LTI)
systems are not only one of the simplest possible dynamiersyslasses,
but also have a rich and beautiful history. In the discreteetcase, they are
determined by the system equation

Xee1= A% +Bu, k=0,1,...,N-1.

with fixed matricesA € R™™ andB € R™™, An LTI system is stable if all
eigenvalues of the matri& are in the unit disc of the complex plane, i.e. have
a modulus smaller or equal to one, aasy/mptotically stablé all moduli are
strictly smaller than one. Itis easy to show that the forwandaulation map for
an LTI system on a horizon with lengtis given by

Xo Xo
X1 AXy + By
fsim(Xo; Uo, . - -, Un-1) = [ X2 | = A?Xo + ABL + Buy

XN ANXO + ZL\L—OI AN_l_kBu(

In order to check controllability, due to linearity, one migsk the question if
after N steps any terminal statq, can be reached fromy = 0 by a suitable
choice of control inputs. Because of

Uo

up

xNz[AN-lB AN-2B ... B] .
=Cn UN-1

this is possible if and only if the matri€y € R™N" has the rank,. In-
creasingN can only increase the rank, but one can show that the maximum
possible rank is already reached fdr= ny, so it is enough to check if the so
calledcontrollability matrix C, has the rankiy.

Affine Systems and Linearizations along Trajectories
An important generalization of linear systems affiétna time-varying systems
of the form

Xir1 = AkXe + Brug + ¢, k=0,1,...,N-1 (1.4)

These often appear as linearizations of nonlinear dynagstesis along a
given reference trajectory. To see this, let us regard ameenl dynamic system
and some given reference trajectory valxgs.”., xy_1 as well aslo, . . ., Uy_1.



1.4 Optimization Problem Classes 15

Then the Taylor expansion of each functifyat the reference valuey, uy) is
given by

_ of, — _ _ ofy — _ _ _ _
(et — Ker1) ~ a—j(xk, 0 (X — %) + a—uk(xk, Uk) (U — T) + (Fie( X k) — Xeo1)

thus resulting in fiine time-varying dynamics of the form (1.4). Note that even
for a time-invariant nonlinear system the linearized dyianbecomes time-
variant due to the dierent linearization points on the reference trajectory.

It is an important fact that the forward simulation map of &iine system
(1.4) is again an fiine function of the initial value and the controls. More
specifically, this ine map is for an\N € N given by:

N-1
X = (An-a-Ao)Xo+ ) (5L A)) (Bek + ).
k=0

1.4 Optimization Problem Classes

Mathematical optimization refers to finding the besipptimalsolution among

a set of possible decisions, where optimality is defined trighhelp of arob-
jective function Some solution candidates desasible others not, and it is
assumed thdeasibility of a solution candidate can be checked by evaluation
of someconstraint functionsghat need for example be equal to zero. Like the
field of dynamic systems, the field of mathematical optinicratcomprises
many diferent problem classes, which we will briefly try to classifythis
section.

Historically, optimization has been identified with prognaing, where a
program was understood as a deterministic plan, e.g., istlog. For this re-
ason, many of the optimization problem classes have beeam giames that
contain the wordgrogramor programming In this book we will often use
these names and their abbreviations, because they anidgly used. Thus,
we use e.g. the tertimear program (LP)as a synonym for &near optimiza-
tion problem It is interesting to note that the major society for mathtcaa
optimization, which had for decades the nav@hematical Programming So-
ciety (MPS) changed its name in 2011 kathematical Optimization Society
(MOS) while it decided not to change the name of its major jourthelt still
is calledMathematical Programmingn this book we chose a similarly prag-
matic approach to the naming conventions.



16 Introduction: Dynamic Systems and Optimization

Finite vs Infinite Dimensional Optimization

An important divididing line in the field of optimization ragds the dimension
of the space in which the decision variable, sais chosen. I can be repre-
sented by finitely many numbers, exge R" with somen € N, we speak of a
finite dimensional optimization problemtherwise, of arinfinite dimensional
optimization problemThe second might also be referred toggimization
in function spacesDiscrete time optimal control problems fall into the first,
continuous time optimal control problems into the secord<l

Besides the dimension of the decision variable, also thedsion of the
constraint functions can be finite or infinite. If an infinitamber of inequa-
lity constraints is present while the decision variablengdi dimensional, one
speaks of aemi-infinite optimization problenThis class naturally arises in
the context ofobust optimizationwhere one wants to find the best choice of
the decision variable that satisfies the constraints fgp@dkible values of an
unknown but bounded disturbance.

Continuous vs Integer Optimization

A second dividing line concerns the type of decision vagablThese can be
eithercontinuous like for example real valued vectokse R", or any other
elements of a smooth manifold. On the other hand, the decisidable can
be discrete or integer valuedi.e. we havez € Z", or, when a set of binary
choices has to be madeg {0, 1}". In this case one often also speaksofm-
binatorial optimization If an optimization problem has both, continuous and
integer variables, it is calledraixed-integer optimization problem

An important class of continuous optimization problems thie so called
nonlinear programs (NLR)They can be stated in the form

minimize f(X)
xeR"
subjectto g(x) =0,

h(x) < 0,

wheref : R" - R, g: R" - R%, andh : R" - R™ are assumed to be at
least once continuously fiiérentiable. Note that we use function and variable
names such aBandx with a very diferent meaning than before in the context
of dynamic systems. In Chapters 2 to 6 we discuss algoritlinsolve this
kind of optimization problems, and the discrete time optiozatrol problems
treated in Chapters 7 and 8 can also be regarded as a spstiadijured form

of NLPs. Two important subclasses of NLPs are lihear programs (LP)
which have &ine problem functions, g, h, and thequadratic programs (QR)



1.4 Optimization Problem Classes 17

which have #ine constraint functiong, h and a more general linear quadratic
objectivef(x) = c"x + %XTBXWith a symmetric matriB € R™".
A large class of mixed-integer optimization problems aeest callednixed
integer nonlinear programs (MINLPhich can be stated as
minimize f(x,2)

XeR"

zeZ™
subjectto g(x,2) =0, (1.5)

h(x,2) < 0.

Among the MINLPs, an important special case arises if thélpra functions
f, g, hare dfine in both variablesg andz, which is called anixed integer linear
program (MILP) If the objective is allowed to be linear quadratic, one &gea
of a mixed integer quadratic program (MIQP)f in an MILP only integer
variables are present, one usually just calls iraeger program (IP) The field
of (linear) integer programming is huge and has powerfudlgms available.
Most problems in logistics fall into this class, a famousrapée being the
travelling salesman problemvhich concerns the shortest closed path that one
can travel through a given number of towns, visiting eacmtexactly once.
An interesting class of mixed-integer optimization prabtearises in the
context of optimal control of hybrid dynamic systems, whintthe discrete
time case can be regarded a special case of MINLP. In contmtime, we
enter the field of infinite dimensional mixed-integer optiation, often also
calledMixed-integer optimal control problems (MIOCP)

Convex vs Nonconvex Optimization
Arguably the most important dividing line in the world of aptzation is bet-
ween convex and nonconvex optimization problems. Convérnigation pro-
blems are a subclass of the continuous optimization prabkemd arise if the
objective function is a convex function and the set of fdasilmints a convex
set. In this case one can show that éogal solution i.e. values for the deci-
sion variables that lead to the best possible objectivesviala neighborhood,
is also aglobal solution i.e. has the best possible objective value among all fe-
asible points. Practically very important is the fact thatexity of a function
or a set can be checked just by checking convexity of its mglblocks and if
they are constructed in a way that preserves convexity.

Several important subclasses of NLPs are convex, such a®\ld8sQPs are
convex if they have a convex objectife Another example ar®uadratically
Constrained Quadratic Programs (QCQRich have quadratic inequalities
and whose feasible set is the intersection of ellipsoidsi&ather optimization
problems are convex but do not form part of the NLP family. Widely used



18 Introduction: Dynamic Systems and Optimization

classes arsecond-order cone programs (SOC&#)d semi-definite programs
(SDP)which have linear objective functions but more involvedwmafeasible
sets: for SOCP, it is the set of vectors which have one compdhat is larger
than the Euclidean norm of all the other components and witishcalled
thesecond order conend for SDP it is the set of symmetric matrices that are
positive semi-definite, i.e. have all eigenvalues largantiero. SDPs are often
used when designing linear feedback control laws. Also itefidimensional
optimization problems such as optimal control problemsantimuous time
can be convex under fortunate circumstances.

In this context, it is interesting to note that affstient condition for con-
vexity of an optimal control problem is that the underlyingndmic system
is linear and that the objective and constraints are conveontrols and sta-
tes. On the other hand, optimal control problems with uryilegl nonlinear
dynamic systems, which are the focus of this book, are ysoaliconvex.

Optimization problems with integer variables can never tivex due to
the nonconvexity of the set of integers. However, it is ofagrgorithmic ad-
vantage if mixed-integer problems have a convex substreigtithe sense that
convex problems arise when the integer variables are afldoalso take real
values. These so callambnvex relaxationgre at the basis of nearly all com-
petitive algorithms for mixed-integer optimization. Fowaenple, linear integer
programs can be solved vertfieiently because their convex relaxations are
just linear programs, which are convex and can be solvedefBcjently.

1.5 Overview, Exercises and Notation

As said before, the book is divided into four major parts.ddelve list the
topics which are treated in each part.

e Numerical Optimization: Newton-type optimization metkdd many vari-
ants.

¢ Discrete Time Optimal Control: problem formulations, spgrstructure ex-
ploitation and dynamic programming.

e Continuous Time Optimal Control: numerical simulationjinect methods
and Hamilton-Jacobi-Bellman equation based approachies;t colloca-
tion, differential-algebraic equations.

¢ Online Optimal Control: parametric optimization, onlingegiratic and non-
linear programming, ficient initializations, real-time iterations.

The four parts build on each other, so it is advisable to readweork on them
in the order in which they are presented in the book.



1.5 Overview, Exercises and Notation 19

Exercises
At the end of each chapter there is a collection of exerciSeme of the exe-
rcises are solvable by pen and paper, but many exercisestiheade of a
computer. In this case, very often we require the use of thasfing software:

e MATLAB (www.mathworks.com) or the open-source alternative OCTAVE
(https://www.gnu.org/software/octave/).
e The open source packages:

— CasADi https://github.com/casadi/casadi/wiki).
— ACADO (http://acado.github.io/).
— qpOASES hittps://projects.coin-or.org/qpOASES).

Sometimes exercises can only be done with help of data orlaenfiles,
which can all be downloaded on the webpage that is accompgulyis book
(http://www.syscop.de/numericaloptimalcontrol).

Notation
Within this book we us® for the set of real numberR,, for the non-negative
ones andk ., for the positive one<Z for the set of integers, and for the set
of natural numbers including zero, i.e. we idenfify= Z,. The set of real-
valued vectors of dimensiomis denoted byR", andR™™ denotes the set of
matrices withn rows andm columns. By default, all vectors are assumed to
be column vectors, i.e. we identiB" = R™*. We usually use square brackets
when presenting vectors and matrices elementwise. Beagillsaften deal
with concatenations of several vectors, sag R" andy € R™, yielding a
vector inR™™M, we abbreviate this concatenation sometimesxag) (in the
text, instead of the correct but more clumsy equivalenttrmia [x",y"] " or

5

Square and round brackets are also used in a véigreint context, namely for
intervals inR, where for two real numbers < b the expressiond,b] ¢ R
denotes the closed interval containing both boundariasdb, while an open
boundary is denoted by a round bracket, eagb) denotes the open interval
and [, b) the half open interval containirgbut notb.

When dealing with norms of vectosse R", we denote byix|| an arbitrary
norm, and by{|x||, the Euclidean norm, i.e. we haugng = X"x. We denote a
weighted Euclidean norm with a positive definite weightingtrix Q € R™"
by IXllo, i.e. we hav¢|x||é = X" Qx ThelL, andL., norms are defined bjx||; =
> Ixland|Xleo = maxX|Xql, ..., [Xl}. Matrix norms are the induced operator


www.mathworks.com
https://www.gnu.org/software/octave/
https://github.com/casadi/casadi/wiki
http://acado.github.io/
https://projects.coin-or.org/qpOASES
http://www.syscop.de/numericaloptimalcontrol

20 Introduction: Dynamic Systems and Optimization

norms, if not stated otherwise, and the Frobenius npiir of a matrixA €
R™M is defined by|AlZ = trace@AT) = 3L, T, AjAj.

When we deal with derivatives of functiorfswith several real inputs and
several real outputs, i.e. functiorfs: R" — R™, x — f(x), we define the
Jacobian matri>(;—)f((x) as a matrix inR™", following standard conventions.
For scalar functions witm = 1, we denote the gradient vector@as(x) € R",

a column vector, also following standard conventions. [8ligless standard,
we generalize the gradient symbol to all functiohs R" — R™ even with
m> 1, i.e. we generally define in this book

of
Vf - T Rnxm.
(=70 €
Using this notation, the first order Taylor series is e.gtten as

FO) = (3 + VI(X) " (x = X)) + o(lIx = X])).

The second derivative, or Hessian matrix will only be defifeeccalar functi-
onsf : R" — R and be denoted by?f(x).

For square symmetric matrices of dimensiome sometimes use the symbol
Sn, i.6.Sp = {A € R™MA = AT}, For any symmetric matriA € S, we
write A>0 if it is a positive semi-definite matrix, i.e. all its eigexives are
larger or equal to zero, a0 if it is positive definite, i.e. all its eigenvalues
are positive. This notation is also used foatrix inequalitieghat allow us to
compare two symmetric matricés B € Sy, where we define for exampke=B
by A - B>0.

When using logical symbol#y = B is used when a propositiofh implies
a propositionB. In words the same is expressed by Alfthen B”. We write
A < Bfor “Aif and only if B", and we sometimes shorten this t4 fff B",
with a double “f”, following standard practice.

Exercises

1.1 Consider a linear model of some coutry population withdtate vector
x € R19 representing the population of each age group.4) mean
the number of people of ageuring yeak. For instancexs(2014) would
be the number of people who are 6 years old in year 2014. Eaath ye
babies (0-year-olds) are formed depending on a linear tth

99
Xo(k+1) = > £ix(K)
j=0



Exercises 21

Each year most of the population ages by one year, excepfriaction
who die according to mortality raje

Xir1(K+ 1) = x(K) —uix(k) i=0,...,98

(a) Download the fildirth_mortality_rates.mfrom the book web-
site to obtain the birth ratg and mortality rateu. Plot them as a
function of the population age.

(b) Write the discrete time model in the form of

x(k + 1) = AxK)

(c) Lord of the Flies: Setting an initial population of 10Qufeyear-olds,
and no other people, simulate the system for 150 years. M&kd a
plot of the population, with axelyear, age, populatign

(d) Eigen decomposition: Plot the eigenvalue#\dh the complex plane.
Plot the real part of the two eigenvectors Afwhich have largest
eigenvalue magnitude
Is this system stable? What is the significance of these eigtons
with large eigenvalues?

(e) Run two simulations: in each simulation, useX(®) the real part of
an eigenvector from the previous question. What is the signifie
of this result?

1.2 Consider atwo-dimensional model of an airplane wittesta= [ px, Pz, Vx, Vz]
where positiong = [py, pz] and velocityV = [vy, v,] are vectors in the
x — z directions. We will use the standard aerospace convertiaxts
forward andz’is DOWN, so altitude is-p,. The system has one cont-
rol u = [a], wherea is the aerodynamic angle of attack in radians. The
system dynamics are:

Px Vx
d|p; | V2
dt{vx | |Fe/m

Vz Fz/m

wherem = 2.0 is the mass of the airplane. The foréésn the airplane
are

F= 'flift + Ifdrag"‘ 'fgravity
Lift force F is

1 ”
Firr = EPHVHZCL(Q’)Sref &



22 Introduction: Dynamic Systems and Optimization

where lift directione = [vz, —V«]/|IVll, and lift codficientC, = era}—g.
Sref is the wing aerodynamic reference area. The drag fs_'ape@ is

1 N
I:_'drag = Ep”v”zCD(a)Sref €p
Drag directionep = —V/||V]|, and drag coicientCp = 0.01+ AC—REﬂ. The
gravitational force is

Ifgravity = [07 m 9]
Use AR=10,p = 1.2, =9.81,S,¢; = 0.5.
(a) Write the continuous time model in the form of

d
E{X = f(x, u) (1.6)

(b) Simulate the system for 10 seconds usingtihet 5 MATLAB function.
Usea = 3°, and initial conditiongy = p, = v, = 0, vx = 10. Plotpy,
Pz, Vx, V7 VS. time, andpy vs. altitude.

(c) Convert the system to the discrete time form

X(k+1) = fa(x(k), u(k))

using a forward Euler integrator. Simulate this system amdpare
to ode45. Estimating the accuracy by eye, how small do you have
to make the time step so that results are similar accuraogdd5?
Using the MATLAB functionstic and toc, how much time does
ode45 take compared to forward Euler for similar accuracy?

(d) Re-do the previous item using 4th order Runge-Kutta (RKdtead
of forward Euler. Which is faster (for similar accuracy) argahe
three methods?

(e) Linearize the discrete time RK4 system to make an apprate sy-
stem of the form

x(k + 1) ~ f(% 0) + Z—)f((x, G)(x(K) — %) + Z—L(x 8)(u(k) — )

N’ e ——’
A B

using a first order Taylor expansion around the pgiat[10, 3,11, 5]",
0="5".
The Jacobian is given by

6f:(8f of ot af).

apx’ 9Pz Ok 0V,

You can approximate the Jacobian by doing small variationalli



1.3

Exercises 23

directions ofx andu (finite differences). For example, in the direction
of px the derivativeZ - is given by:

f()’.(’+ [69 09 09 O]T’ a) - f()?, CI)
S .

(f) Plot the Eigenvalues oA in the complex plane. Is the system stable?
Is this a problem?

of .
—(%,0) ~
Opx( )

Introduction to CasADi 1. CasADi is an open-source software tool for
solving optimization problems in general and optimal cohprroblems

in particular. In its most typical usage, it leaves it to tisento formulate
the problem as a standard form constrained optimizatiohleno of the
form:

minimize f(x)
X
subjectto x < x <X (1.7)
g<g(¥) <0,

wherex € R™ is the decision variablef : R™ — R is the objective
function, andg : R™ — R" is the constraint function. For equality
constraints, the upper and lower bounds are equal.

In this exercise,f is a convex quadratic function arglis a linear
function, in which case we refer to problem (13.14) as a (eghqua-
dratic program (QP). To solve a QP with CasADi, start by dngaa
struct containing expressions fey f andg:

e MATLAB:

x = SX.sym(’'x’,n);

f = (some expression of x)

g = (some expression of x)

prob = struct('x’,x,'f’ ,f,’9g’,9);
e Python:

X = SX.sym(’'x’',n)

f = (some expression of x)

g = (some expression of x)
prob = {"x':x,’'f':f,’g’:g }

This symbolic representation of the problem is then useatsituct
a QP solver as follows:



24

Introduction: Dynamic Systems and Optimization
o MATLAB:
solver = gpsol(’'solver’, ' qpoases’,prob);
e Python:

solver = gpsol('solver’, qpoases’,prob)

where the arguments are, respectively, dieplay nameof the solver
s, the solvemplugin — here the open-source QP solver qpOASES - and
and the above symbolic problem formulation. A set of aldwnitc op-
tions can be passed as an optional forth argument. Optimizadlvers
arefunctionsin CasADi that are evaluated to get the solution:

o MATLAB:

res = solver(’'x0’,x0, " 'lbx’,lbx, 'ubx’,ubx,
"Ibg’,Ibg, 'ubg’,ubg);

e Python:

res = solver(x0=0,lbx = lbx ,ubx=ubx,
Ibg=Ibg ,ubg=ubg)

Wherelbx, ubx, 1bg andubg are the bounds of andg(x) andx0 is
an initial guess foi (less important for convex QPs, since the solution
is unique).

Exercise example: Hanging Chainwe want to model a chain atta-
ched to two supports and hanging in between. Let us diserétizith
N mass points connected By — 1 springs. Each masgshas position
(Yi,z), i = 1,...,N. The equilibrium point of the system minimises the
potential energy. The potential energy of each spring is

i 1
Ve = éDi ((Yi - Yir)? + (z - Z+1)2)-
The gravitational potential energy of each mass is
Vgi; =mdoZ.

The total potential energy is thus given by:

N-1 N
Vorai%:2) = 5 D Di (0 = ¥i2)® + @ = 241)’) + Qo ), Mz, (1.8)
i=1

i=1

NI =

wherey = [y1, - ,yn]T andz=[z, - ,zn]".



Exercises 25

We wish to solve

minimize Venhain(Vs 2) (1.9)
Y.z

subject to constraints modeling the ground, to be introdumedow.

(a) Go to the CasADi website and locate the user guide. Malethe
version of the user guide matches the version of CasADi us#uki
book (3.0.0). Then, with a Python or MATLAB interpreter imfit of
you, read Chapter 3 as well as Sections 4.1-4.3 in Chaptertideof
user guide.

(b) From the course website, you will find solution scriptsPgthon and
MATLAB that solve the unconstrained problem usiNg= 40, m; =
40/N kg, D; = 70N N/m, go = 9.81 nys* with the first and last
mass point fixed to+2,1) and (21), respectively. Go through the
script and make sure you understand the steps.

(c) Introduce ground constraintg: > 0.5 andz — 0.1y, > 0.5, fori =
2,--- ,N-2. Solve your QP again, plot the result and compare it with
the previous one.


http://casadi.org

2
Root-Finding with Newton-Type Methods

Nature and nature’s laws lay hid in night;
God said “Let Newton be” and all was light.
— Alexander Pope

In this first part of the book we discuss several concepts franfield of nu-
merical analysis and mathematical optimization that aoirant for optimal
control. Our focus is on quickly arriving at a point where gpecific optimi-
zation methods for dynamic systems can be treated, whilsahree material
can be found in much greater detail in many excellent textbam numeri-
cal optimization such as [64]. The reason for keeping thi$ pa optimiza-
tion self-contained and without explicit reference to oyl control is that this
allows us to separate between the general concepts of reahanalysis and
optimization on the one hand, and those specific to optimattobon the other
hand. We slightly adapt the notation, however, in order &ppre the interface
to optimal control later.

In essence, optimization is about finding the inputs for spossibly nonli-
near function that make the output of the function achieweesdesired proper-
ties. In the simplest case, one demands that the functigrubshould have a
certain value, and assumes that the function has exactlpag mputs as it has
outputs. Many problems in numerical analysis — in particidaoptimization
— can be formulated as such root-finding problems. Newtoethod and its
variants are at the basis of virtually all methods for theluton. Throughout
this chapter, let us therefore consider a continuoudfieintiable function
R: R" - R", z » R(2, where our aim is to solve the nonlinear equation
system

R = 0.

Newton’s idea was to start with an initial guess and recursively generate a

26



2.1 Local Convergence Rates 27

sequence of iteratdg},” , by linearizing the nonlinear equation at the current
iterate:

R(z) + 8 (@)(z-20 = 0

We can explicitly compute the next iterate by solving thedinsystem:
R, \*
441 = % — (E(ZK)) R(z).

Note that we have to assume that the Jacobiay) := ‘;’9—'3(2) is invertible.
More general, we can use an invertible approximatinof the Jacobian

9R(z). The general Newton type iteration is

0z
Zi1 = % — MR@).

Depending on how closelil, approximatesl(z), the local convergence can
be fast or slow, or the sequence may even not converge.
Example 2.1. RegardR(?) = -2, whereZE(2) = 167'°. The Newton method
iterates:

Zier = 24— (162°) (20 - 2.
The iterates quickly converge to the solutipnwith R(z") = 0. In fact, the
convergence rate of Newton's methodjiguadratic Alternatively, we could

use a Jacobian approximation, e.g. the constant Wdlue 16 corresponding
to the true Jacobian at= 1. The resulting iteration would be

Zi1 = %~ (16) (2 - 2).

This approximate method might or might not converge. Thighthor might
not depend on the initial valug. If the method converges, what will be its
convergence rate? We investigate the condition&@), z and My that we
need to ensure local convergence in the following sections.

2.1 Local Convergence Rates

Definition 2.2 (Different types of convergence rate#ssumeze R", z, — Z.
Then the sequenceg B said to converge:

() Q-linearly &
lZcr1 — 2l < Cllzc - Z| with C< 1 (2.1)



28 Root-Finding with Newton-Type Methods

holds for all k> kg. The “Q” in Q-linearly means the “Q” of “quotient”.
Another equivalent definition is:

lim sugﬁmH <1

(i) Q-superlinearlys
1Z+1 — 2| < Cillz — 2l with C¢ — 0.
This is equivalent to:

lim Sun(_wow =

llz — 2|
(iii) Q-quadraticallye

1Ze1 — 2l < Cliz — Z* with C < o0
which is equivalent to:

. 1Zk+1 — 2|
||m Su o =5 <
R P T
Example 2.3(Convergence rates)Consider examples withk € R, zc — 0
andz=0.

() z= 2—1k converges q—Iinearly% = %

(i) z = 0.9% also converges q—Iinearl)% = 0.99. This example converges
very slowly toz In practice we desir€ in equation (2.1) be smaller than,
say, 3.

(iii) z = & converges Q-superlinearly, 4 = 3.

(iv) z = 2% converges Q-quadratically, becau&% = (:;—k)f

k=6,2= 2—%4 ~ 0, so in practice convergence up to machine precision is

reached after roughly 6 iterations.

=1 < . For

2.2 A Local Contraction Theorem

Theorem 2.4(Local Contraction) Regard a nonlinear gferentiable function
R : R" —» R" and a solution point’ze R" with Rz*) = 0, and the Newton
type iteration z,; = % — M;lR(zk) that is started at the initial valuegz The

sequencegzonverges to*zwith contraction rate

lZ1—Z 1 < (Kk+%||zk—z*||)||zk—z*u



2.2 A Local Contraction Theorem 29
if there existw < oo andk < 1 such that for all g and z holds
M2 (3() - I@)Il < wllz - 2 (Lipschitz, or "omega”, condition)
||M,;1(J(zk) - Ml < & <k (compatibility, or "kappa”, condition)

and ifliz - || is syficiently small, nameljfzo — z'|| < 2%,

Note:« = O for exact Newton.

Proof
Z1-7 =% -7 - M'R@)
=% -7 - M'(R@) - R@2))
= M (Mi(z - 7))
1
M [z + e~ 2~ 2)a
= MMy - I(@) @ - 7)
1
M [ [t +ia-2)-3@0] a2

Taking the norm of both sides:

Vo1 - 21| < kllz— 2]
1
+f wllZ + 1~ Z) - Zdldt 1z - 2]
0

1
= (b fo (L -t Iz - 1)1z - 2]

= (kc+ Sz Z )z~ Z1.

Convergence follows from the fact that the first contractiactor, (Ko +

%lizc - Z1l) is smaller thars := (x + 4|z - Z1l), and thats < 1 due to the
assumptior|zo — z|| < 2L%. This implies thatlz, — Z|| < dllz - Z'Il, and
recursively that all following contraction factors will l®unded bys, such
that we have the upper boutidy — z'|| < 6%||zp — Z’||. This means that we
have at least linear convergence with contraction §atef course, the local

contraction rate will typically be faster than this, depeigdon the values of

Kk. O

Remark: The above contraction theorem could work with slightly werak



30 Root-Finding with Newton-Type Methods

assumptions. First, we could restrict the validity of then&ga and kappa con-
ditions” to a norm ball around the soluti@, namely to the sgz| ||z—- Z'|| <
@}. Second, in the omega and kappa conditions, we could haweslige
htly weaker conditions, as follows:

IM M (320 - Iz + 1(Z - 2))(Z - 2l < whlz - Z | (weakerw cond.)
IMA(I(z) — Mi)(z — 21| < kllzc — 2]l (weakerk cond.)

The above weaker conditions turn out to be invariant unfiereatransformati-
ons of the variablezas well as under linear transformations of the root finding
residual function functiofk(2). For this reason, they are in general preferable
over the assumptions which we used the above theorem, whecbrdy in-
variant under linear transformations B{z), but simpler to write down and
to remember. Let us discuss the conceptftiha invariance in the following
section.

2.3 Affine Invariance

An iterative method to solve a root finding probldR@®) = O is called "af-
fine invariant” if &fine basis transformations of the equations or of the varia-
bles will not change the resulting iterations. This is anant@nt property in
practice. Regard, for example, the case where we woulddikenerate a met-
hod for finding an equilibrium temperature in a chemical tiscsystem. You
can formulate your equations measuring the temperaturelvirk in Celsius
or in Fahrenheit, which each will giveftierent numerical values denoting the
same physical temperature. Fortunately, the three valaede obtained by
affine transformations from each other. For example, to getdaheyn Kelvin
from the value in Celsius you just have to add the number B/2ud for the
transition from Celsius to Fahrenheit you have to multiglg Celsius value
with 1.8 and add 32 to it. Also, you might think of examples wéhgou indi-
cate distances using kilometers or nanometers, resplgctigsulting in very
different numerical values that are obtained by a multiplicatiodivision by
the factor 162, but have the same physical meaning. The fact that the choice
of units or coordinate system will result just in fiiae transformation, applies
to many other root finding problems in science and engingeliris not unre-
asonable to ask that a good numerical method should behagathe if it is
applied to problems formulated inftkrent units or coordinate systems. This
property we call "&ine invariance”.

More mathematically, given two invertible matricRsB € R™" and a vector



2.4 Tight Conditions for Local Convergence 31

b € R", we regard the following root finding problem
R(y) := AR(b + By) = 0.

Clearly, if we have a solutiog" with R(z") = 0, then we can easily construct
from it ay* such thatR(y*) = 0, by inverting the relatio* = b + By, i.e.

y* = BX(z' - b). Let us now regard an iterative method that, starting from a
initial guesszy, generates iterates, z;, . . . towards the solution oR(2) = 0.
The method is called fane invariant” if, when it is applied to the problem
R(y) = 0 and started with the initial guegs = B-(zo — b) (i.e. the same point
in the new coordinate system), it results in iteratgys, . . . that all satisfy the
relationy, = B1(z —b) fork=0,1,....

It turns out that the exact Newton method ffiree invariant, and many ot-
her Newton type optimization methods like the Gauss-Newtethod share
this property, but not all. Practically speaking, to comeko the conversion
from Celsius to Fahrenheit, Newton’s method would perfoxacly as well in
America as in Europe. In contrast to this, some other metHikasfor exam-
ple the gradient method, would depend on the chosen unitshaiscberform
different iterates in America than in Europe. More severely, thatethat is
not &fine invariant usually needs very careful scaling of the medelations
and decision variables in order to work well, while dfiree invariant method
works (usually) well, independent of the chosen scaling.

2.4 Tight Conditions for Local Convergence

The local contraction theorem of this chapter givefiisient conditions for
local convergence. Here, the omega condition is not réisgjdecause can
be arbitrarily large, and is satisfied on any compact setédfftinctionR is
twice continuously dterentiable ¢ is given by the maximum of the norm of
the second derivative tensor, a continuous function, orcdnepact set). Also,
we could start the iterations arbitrarily close to the dolutso the condition
K+ %|lz0 — Z'|| < 1 can always be met as long as< 1. Thus, the only really
restrictive condition is the condition that the iteratiomtmcesMy should be
similar enough to the true Jacobiad&), so that ak < 1 exists. Unfortuna-
tely, the similarity measure of the kappa-condition migbit Ine tight, so if we
cannot find such &, it is not clear if the iterations converge or not.

In this section we want to formulate afSaient condition for local conver-
gence that is tight, and even find a necessary condition &l lmonvergence
of Newton-type methods. For this aim, we only have to makeams&imption,



32 Root-Finding with Newton-Type Methods

namely that the iteration matricdd, are given by a continuously fiiérentia-
ble matrix valued functio : R" — R™", i.e. that we havéMy = M(z). This

is for example the case for an exact Newton method, as wedrasfy method
with fixed iteration matrixM (the function is just constant in this case). It is
also the case for the Gauss-Newton method for nonlineardgasres optimi-
zation. We need to use a classical result from nonlineaesystheory, which
we will not prove here.

Lemma 2.5(Linear Stability Analysis) Regard an iteration of the formz =
G(z) with G a continuously dgferentiable function in a neighborhood of a fixed
point (z*) = z. If all Eigenvalues of the Jacobia%%(z*) have a modulus

smaller than one, i.e. if the spectral radip@—g‘(z*)) is smaller than one, then
the fixed point is asymptotically stable and the iteratesveaye to 7 with a
Q-linear convergence rate with asymptotic contractiontcﬁacp(%—f(z*)). On
the other hand, if one of the Eigenvalues has a modulus laftgar one, i.e.
if p(%—f(z*)) > 1, then the fixed point is unstable and the iterations can move

away from Zz even if we have an initial guesgthat is arbitrarily close to z

Here, we use the definition of the spectral ragi(®) of a square matri,
as follows:

p(A) := max|4| | A is Eigenvalue ofA}.

We will not prove the lemma here, but only give some intuitiBar this aim
regard the Taylor series & at the fixed point*, which yields

L1 —Z :G(Zk)_Z*
=6()+ D) a-7)+ Olla- 21 -2

G
= = (@)@~ 2) + Oz - Z1).

Thus, up to first order, the nonlinear system dynamicgof = G(z) are
determined by the Jacobi#dn:= %—f(z*). A recursive application of the relation
(Zi1—2Z) ~ A-(z—Z) yields @& —Z") = AX- (20— ") + O(|zo — Z[|?). Now, the
matrix productAX shrinks to zero with increasirgif p(A) < 1, and it grows to
infinity if p(A) > 1.

When we apply the lemma to the continouslyfelientiable mas(2) =
z—- M(2)71R(2), then we can establish the following theorem, which is tiagnm
result of this section.

Theorem 2.6 (Suficient and Necessary Conditions for Local Newton Type
Convergence)Regard a Newton type iteration of the forgiz= z—M(z) *R(z),
where R2) is twice continuously gerentiable with Jacobian (2) and M(2)



2.4 Tight Conditions for Local Convergence 33

once continuously gerentiable and invertible in a neighborhood of a solu-
tion z with R(z*) = 0. If all Eigenvalues of the matrix+ M(z")1J(z*) have a
modulus smaller than one, i.e. if the spectral radius

kexact:= p (1 = M(2)13(2))

is smaller than one, then this fixed point is asymptoticatjpke and the ite-
rates converge to*zwith a Q-linear convergence rate with asymptotic con-
traction factorkexace On the other hand, iexact > 1, then the fixed point‘as
unstable.

Proof We prove the theorem based on the lemma, applied to the3(@p=
z- M2 'R(2). We first check that indeed = G(z*), due to the fact that
R(z") = 0. Second, we need to compute the Jacobiga afz":

(M)
0z

@) =1- (Z*)Ef?—'\/'(f) 5@

=1 - M) 1@2).
[m}

In summary, the spectral radius of the matrix M(z)"*J(z) is a tight
criterion for local convergence. If it is larger than oneg ttewton type method
diverges, if it is smaller than one, the method converges.

Remark: The local contraction rate.,c directly depends on the fiierence
between the exact and the approximate Jacobian, due taviaérratrix iden-
tity

I - M@)1(2) = MEZ) {M(Z) - IZ)).

For Newton’s method itself, the two matrices are identib#z) = J(z*), and
the linear contraction rate is zemQyact = 0. This should be expected due to the
fact that Newton’s method converges quadratically. For tdevtype methods
with nonzerokexacy the convergence will be linear only, but it can be very fast
linear convergence if the approximate Jacobian is closhdg@kact one and
Kexact < 1. On the other hand, if the fiérence between the two matrices is
too large, the spectral radiugsact might become larger than one, making the
Newton-type method divergent.



34 Root-Finding with Newton-Type Methods
2.5 Globalization

When the initial guesg, for starting a Newton-type iteration is too far from
the solution, the iterates usually do not converge. In otdédre able to reach
the region of local convergence, most Newton-type methedsaform of glo-
balization for ensuringlobal convergence.e., convergence from any starting
point. Here, we only give one example for a globalizatiorhtéque for an
exact Newton method, one that is based on line search.

Globalization by Armijo backtracking line search. To design a simple glo-
balization procedure for a Newton method to soR(@) = 0, we regard the
function V(2) = (1/2)|IR(2)|* as the merit function. Because its gradient is
given by VV(2) = J(2’R(2), the exact Newton step(z) = —J(2)"*R(2) is a
descent direction for any point wifR(z) # 0, as can be seen by computing the
scalar produc¥V(2)’ p(2 = -R(2)’J@)I(2)R@) = -|IR@)I? < 0. This me-
ans that there exists a step lengtk (0, 1] such thatvV(z+ ap(2) < V(2). To
ensure sfiicient decrease of the merit function in each iteration, weeaen
impose the strongekrmijo conditionthat requires

V(z+ap(2) = V(@ +ayVV(@)'p (2.2)

for some fixedy € (0,1/2), e.g.,y = 0.01. By choosing any step lengththat
satisfies the Armijo condition, one can prevent the iter&@® jumping bet-
ween points of nearly equal merit-function value withouking progress. To
prevent the steps from becoming infinitely small, one cartlhisdacktracking
algorithm. First, one checks if the step length- 1 satisfies the Armijo con-
dition. If not, one reducea by a constant factor, i.e., one redueeso Ba
with a fixed values € (0,1), e.g.,8 = 0.8, and checks the Armijo condition
again. If it is satisfied, one accepts the step length; if oog reduces the va-
lue of a further, each time by the constant fagoi-or descent directions and
continuously diferentiable merit functions, the backtracking algorithmaats
terminates and delivers a step length larger than zeroctnifalelivers the lar-
gest valuer € {1,,82, ...} that satisfies the Armijo condition (2.2). We denote
the selected step length yz) in order to express its implicit dependence on
z

In summary, the globalized Newton’s method iterates agogrtb the sy-
stem dynamicg® = f(2) with f(2) = z+ a(2)p(2). Note that while the merit
functionV(2) is continuous and evenfiirentiable, the discrete time systém
is not continuous due to the state dependent switches irattigriacking pro-
cedure. Under mild assumptions on the functi{@), one can ensure global
convergence of the damped Newton procedure to a statioanyqf the me-



Exercises 35

rit function, i.e., to a poing* with VV(z*) = 0, which can either be a solution
with R(z*) = 0 or a point wherel(z*) is singular.

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Exercises

Sketch the root finding residual functiB1 R — R, R(2) := z° - 2 and
its tangent a¥y = 1, and locate the first Newton iteratgin the graph.
For the root finding problem above, regard a Newton-typthod with
fixed iteration matrixM := 20 and locate the first Newton-type iterate in
the graph. Also draw the corresponding Taylor-type appnation that
is given by the linear functioR(2) := zp + M(z - 2).

Define the iteration ma@(2) := z- MR for R(2) := 716 -2
with two different choices foM: first, with Myewtor(2 = J(2) (exact
Newton), and second, withl;xeq := 20 (fixed Jacobian approximation).
Draw both iteration maps on the positive orthant. Also driagvdiagonal
line corresponding to the identity map, and sketch the firgte Newton-
type iterates for both methods.

As above, plot the iteration map for the fixed Jacobiarhogitbut now
for different values oMsixeq. FOr which values oMixeq do You expect
divergence? How would you justify your expectation anabfiy, and
how can it be interpreted visually?

Write a computer program for Newton-type optimizationRih, that
takes as inputs a functio(z), a Jacobian approximatiod(z), and a
starting pointzp € R", and which outputs the first 20 Newton type itera-
tions. Test your program witR(z) = z!® — 2 and exact Jacobian starting
at different positive initial guesses. How many iterations do ypically
need in order to obtain a solution that is exact up to machieeigion?
An equivalent problem tat® — 2 = 0 can be obtained blfting it to a
higher dimensional space [2], as follows:

Zn — Z%
R(@2) = Z - 2
2 - Z

4

Implement Newton’s method for this lifted problem and stast 7 =
[1,1,1,1]". Also implement the Newton method for the unlifted pro-
blem, and compare the convergence of the two algorithms.

Consider the root finding probleR(z) = OwithR: R —» R,R(2) :=
tanhf) - % Convergence of Newton’s method will be sensitive to the



36

2.8

2.9

2.10

211

2.12

Root-Finding with Newton-Type Methods

chosen initial valuez. Plot R(z) and observe the non-linearity. Imple-
ment Newton’s method (with full steps) and test if it conves@r not for
different initial valuesy.

Regard the problem of finding a solution to the nonlinepra¢ion sy-
stemx = € andx* + y¥* = 4 in the two variablex,y € R. Sketch
the solution sets to the two individual equations as curmé®’iand lo-
cate the intersection points. Now regard the solution & $igstem with
Newton’s method, initialized at the poirt= y = 2. Based on the system
linearization at this initial guess, sketch the solutiots s& the two li-
near equations that define the first Newton iterate, andédbé iterate
graphically.

Regard the two dimensional root finding problem from @oas2.8
above and solve it with your implementation of Newton’s noettfirom
Question 2.5, using fferent initial guesses. Does it always converge,
and if it converges, does it always converge to the sameigpfut
Consider the following optimization problem:

minimize  (1- Z)+100 & - Z)?
=:f(2

where the objectivé : R? — R is the famous Rosenbrock function. A
solution to this problenz‘ can be obtained by solution of the nonlinear
systemVf(z) = 0. Compute the gradient of the Rosenbrock function,
R(2) := Vf(2 and the Jacobian &R (i.e. the Hessian matrix of) on
paper. Implement Newton’s method. Start witlffelient initial guesses
and observe the convergence.

Solve the previous exercise with the a simple Newtpe-tyethod, where

you use a fixed Jacobian approximation that is giveivby [280 28(]
A hanging chain can be modeled as a s& bflls (each with mass)
connected byN — 1 massless rods ( each of lendth We assume that
the two endpoints of the chain are fixed, and are interestéukeirequi-
librium positions of all balls in between. In this exercises compute
these positions by using the equilibrium of forces and Neistmethod.

Applying the equilibrium conditions to each ball produche follo-
wing set of equations, far=1,...,N — 1.

O,k (2.3)

whereg is the gravitational acceleration afigl € R? is defined as the
force between the balisandi + 1. On the other hand, considering the



Exercises 37

geometry of the chain, the following relation between thi jpasitions
pi can be obtained:

Fi
.1 = Pi +L . 2.4
Pi+1 = Pi = (2.4)

Here,p; € R? represents the position of the balAssume thalN = 15,
Li =1 [m] andm = 5 [kq].

1
and using Equations (2.3) and (2.4), we can create a forwapdand
compute all the forceB; and positiong;. Implement a function that
uses as inpuE; and outputs the positiorns, . . ., p1s of every mass.

(a) Fixing the position of the first mags to [ 00], knowing the force;

(b) Now we want to fix also the position of the last mgss to Eg}

The function from the previous task genergpesas a function of the

initial force F;. Form a root finding probler®(z) = 0, withz := F;
10

andR(2) := p1s(2) - [ 10].

(c) In order to apply Newton's method ®(z), we have to compute its
derivative. Finite dferences provide an easy method for this. Defi-
ning the Jacobian d®(2) at a pointzasJ(2), finite differences use the
fact that:

R(z+ ep) - R(2)

€

J2p~

and thenp =

where we can use e.g.= 107°. If using firstp = é

m the Jacobian can be computed after three calz)f Implement

the computation of the Jacobiand{) at an arbitrary point by finite
differences.

(d) Implement Newton’s method to obtain th¢ that satisfies the equili-
brium of forces and solves the root finding problem. Use tiedod
map computed on the first task and plot the position of evergsma
under equilibrium conditions.

(e) Can you formulate and solve an equivalent "lifted” roatfng pro-
blem for computing the rest position of the chain?



3
Nonlinear Optimization

The great watershed in optimization is not
between linearity and nonlinearity, but con-
vexity and nonconvexity.
—R. Tyrrell Rockafellar

The optimization problem with which we are concerned in #rid the fol-
lowing chapters is the standaiMbnlinear Program (NLPYhat was already
stated in the introduction:

minimize f(w)
weR"

subjectto g(w) =0, (3.1)
h(w) <0,
wheref : R" - R, g : R" - R%, andh : R" —» R™ are assumed to be
twice continuously dferentiable. Functiorf is called theobjective function
functiong is the vector ofequality constraintsandh the vector ofinequality

constraints We start with some fundamental definitions. First, we ablbdl
points that satisfy the constraints in one set.

Definition 3.1 (Feasible set) Thefeasible sef is the set
Q:={weR"|gw) =0, h(w) <0}.

The points of interest in optimization are those feasibi@fsdhat minimize
the objective, and they come in twdi@irent variants.

Definition 3.2 (Global minimum) The pointw* € R" is aglobal minimizerf
and only if (iff) w* € Qandvwe Q : f(w) > f(w*). The valuef(w*) is the
global minimum

38



3.1 Important Special Classes 39

Unfortunately, the global minimum is usuallyfiicult to find, and most al-
gorithms allow us to only findbcal minimizersand to verify optimality only
locally.

Definition 3.3 (Local minimum) The pointw* € R" is alocal minimizeriff
w* € Q and there exists a neighborhodidf w* (e.g., an open ball aroumwd)
sothattwe QNN : f(w) > f(w*). The valuef (w*) is alocal minimum

In order to be able to state the optimality conditions thiawvalus to check if
a candidate point* is a local minimizer or not, we need to describe the feasi-
ble set in the neighborhood wf. It turns out that not all inequality constraints
need to be considered locally, but only thetiveones.

Definition 3.4 (Active Constraints and Active SetAn inequality constraint
hi(w) < 0 is calledactiveatw* € Q iff hj(w*) = 0 and otherwisénactive The
index setA(wW*) c {1,...,ny} of active inequality constraint indices is called
the "active set”.

Often, the namactive sefalso comprises all equality constraint indices, as
equalities could be considered to be always active.

Problem (3.1) is very generic. In Section 3.1 we review sopeeial cases,
which still yield large classes of optimization problems.drder to choose
the right algorithm for a practical problem, we should knoowtto classify it
and which mathematical structures can be exploited. Rieygja inadequate
algorithm by a suitable one can reduce solution times byreroemagnitude.
E.g., an important structure is convexity. It allows us tdinal global minima
by searching for local minima only.

For the general case we review the first and second ordertamsiof opti-
mality in Sections 3.2 and 3.3, respectively.

3.1 Important Special Classes

Linear Optimization
An obvious special case occurs when the functibng, andh in (3.1) are
linear, resulting in a linear optimization problem (or LawdProgram, LP)

minimize c'w
weR"
subjectto Aw-b =0,

Cw-d<O.



40 Nonlinear Optimization

Here, the problem data ace= R", A€ R"", b e R",C € R™", andd € R™.

It is easy to show that one optimal solution of any LP — if the dd®s
have a solution and is not unbounded — has to be a vertex ofollyope of
feasible points. Vertices can be represented and caldutgteneans of basis
solution vectors, with a basis aftive inequality constraintsThus, there are
only finitely many vertices, giving rise to Simplex algorits that compare
all possible solutions in a clever way. However, natural§oahe optimality
conditions of Section 3.2 are valid and can be used for algus, in particular
interior point methods.

Quadratic Optimization
If in the general NLP formulation (3.1) the constraigt$ are dfine, and the
objective is a linear-quadratic function, we call the réagl problem a Qua-
dratic Optimization Problem or Quadratic Program (QP). Aayal QP can be
formulated as follows.

L 1
minimize c¢'w+ =w'Bw
weR" 2

subjectto Aw-b=0,
Cw-d<0.

(3.2)

Here, the problem data apee R",A € R"" b € R",C € R™" d € R™,
as well as the “Hessian matri® € R™". Its name stems from the fact that
v2f(w) = Bfor f(w) = c"w+ 2w"Bw.

The eigenvalues d8 decide on convexity or non-convexity of a QP, i.e., the
possibility to solve it in polynomial time to global optinig, or not. If B0
we speak of a convex QP, andBf-0 we speak of a strictly convex QP. The
latter class has the property that it always has unique niieirs.

Convex Optimization
Roughly speaking, a set is convex, if all connecting linesrside the set:
Definition 3.5 (Convex Set) A setQ c R" is convex if
Vx,yeQ,te[0,1]: x+tly—x) € Q.
A function is convey, if all secants are above the graph:

Definition 3.6 (Convex Function) A function f : Q — R is convex, ifQ is
convex and if

¥x,yeQtef0,1]: f(x+tly—x) < f(x) +t(f(y) - f(X).



3.1 Important Special Classes 41

Note that this definition is equivalent to saying that thedegph off, i.e.,
the set{(x,s) e R" x R|x € Q, s> f(X)}, is a convex set.

Definition 3.7 (Concave Function)A function f : Q — R is called “concave”
if (—f) is convex.

Note that the feasible s€ of an optimization problem (3.1) is convex if
the functiong is afine and the functionk; are convex, as supported by the
following theorem.

Theorem 3.8(Convexity of Sublevel Sets)The sublevel s¢k € Q | h(x) < 0}
of a convex function hQ — R is convex.

Definition 3.9 (Convex Optimization Problem)An optimization problem with
convex feasible s& and convex objective functioh: Q — R is called acon-
vex optimization problem

Theorem 3.10(Local Implies Global Optimality for Convex Problemdjor
a convex optimization problem, every local minimum is algtobal one.

We leave the proofs of Theorems 3.8 and 3.10 as an exercise.

There exists a whole algebra of operations that preserweegiin of functi-
ons and sets, which is excellently explained in the text bawkconvex opti-
mization [8, 22]. Here we only mention an important fact tisatelated to the
positive curvature of a function. Before we proceed, wepidtice an important
definition often used in this book.

Definition 3.11 (Generalized Inequality for Symmetric Matricesjle write

for a symmetric matrixB = BT, B € R™" that “B>0" if and only if B is

positive semi-definitee., if Yze R" : z"Bz > 0, or, equivalently, if all (real)
eigenvalues of the symmetric matiiare non-negative:

B>0 < mineig(B) > 0.

We write for two such symmetric matrices thad*B” iff A — B>0, and
“A<B" iff B=A. We sayB>0 iff B is positive definitei.e., if Yz € R"\ {0} :
z"Bz> 0, or, equivalently, if all eigenvalues &are positive

B>0 < mineigB) > 0.

Theorem 3.12(Convexity forC? Functions) Assume that f Q — R is twice
continuously dferentiable and? convex and open. Then f is convex if and
only if for all x € Q the Hessian is positive semi-definite, i.e.,

VxeQ: V2f(x)=O0.



42 Nonlinear Optimization

Again, we leave the proof as an exercise. As an example, thérgtic ob-
jective functionf(x) = c"x + %XTBX of (3.2) is convex if and only iB>0,
because&/x € R" : V2f(x) = B.

3.2 First Order Optimality Conditions

An important question in continuous optimization is if adéde pointw* € Q
satisfies necessary first order optimality conditions. dfdes not satisfy these
conditions,w* cannot be a local minimizer. If it does satisfy these condii

it is a hot candidate for a local minimizer. If the problem imngex, these
conditions are evenyficientto guarantee that it is a global optimizer. Thus,
most algorithms for nonlinear optimization search for spoints. The first
order condition can only be formulated if a technical “coastt qualification”

is satisfied, which in its simplest and numerically mostzattive variant coms
in the following form.

Definition 3.13(LICQ). Thelinear independence constraint qualificatiiiCQ)
holds atw* € Q iff all vectorsvgi(w*) for i € {1,...,ng} and Vhj(w*) for
i € A(w*) are linearly independent.

To give further meaning to the LICQ condition, let us combalkeactive
inequalities with all equalities in a mapdefined by stacking all functions on
top of each other in a colum vector as follows:

a0 = e

hw)(i € Aw) | (33)

LICQ is then equivalent to full row rank of the Jacobian maQ%(w*).

The Karush-Kuhn-Tucker Optimality Conditions
This condition allows us to formulate the famous KKT cortits that are due
to Karush [51] and Kuhn and Tucker [54].

Theorem 3.14(KKT Conditions) If w* is a local minimizer of the NLIP3.1)
and LICQ holds at wthen there exist so called multiplier vectors R™ and
u € R™ with

VW) + VgW)A* + Vhw)* = 0 (3.4a)
gw) =0 (3.4b)
hw*) <0 (3.4c)

u =0 (3.4d)

LW =0, i=1,....m. (3.4¢)



3.2 First Order Optimality Conditions 43

Regarding the notation used in the first line above, pleasereb that in this
script we use the gradient symb@lalso for functiongg, h with multiple out-
puts, not only for scalar functions like While V f is a column vector, i¥g we
collect the gradient vectors of all output components in &imahich is the
transpose of the Jacobian, i.Eg(w) := g—vgv(w)T. Note: The KKT conditions
are the First order necessary conditions for optimality XD for constrained
optimization, and are thus the equivalentb(w*) = 0 in unconstrained opti-
mization. In the special case of convex problems, the KKTditans are not
only necessaryor alocal minimizer, but evesyficientfor aglobal minimizer.
In fact, the following extremely important statement holds

Theorem 3.15. Regard a convex NLP and a point w&t which LICQ holds.
Then:

w* is a global minimizek= 34, u so that the KKT conditions hold.

The Lagrangian Function
Definition 3.16 (Lagrangian Function)We define the so called “Lagrangian
function” to be

L(w, A, 1) = F(W) + AT g(w) + " h(w).

Here, we have used again the so called “Lagrange multipleerdual va-
riables”A € R" andu € R™. The Lagrangian function plays a crucial role in
both convex and general nonlinear optimization, not onlg gsactical short-
hand within the KKT conditions: using the definition of thedrangian, we
have (3.4a}> V, L(W*, 2%, u*) = 0.

Remark 1:In the absence of inequalities, the KKT conditions simptify
VuwL(w, 1) = 0, g(w) = 0, a formulation that is due to Lagrange and was much
earlier known than the KKT conditions.

Remark 2:The KKT conditions require the inequality multipliersto be
positive,u > 0, while the sign of the equality multipliets is arbitrary. An
interesting observation is that for a convex problem witand allh; convex
andg affine, and foru > 0, the Lagrangian function is a convex function in
w. This often allows us to explicitly find the unconstrainechimum of the
Lagrangian for any giveld andu > 0, which is called the Lagrange dual
function, and which can be shown to be an underestimatoreofrtimimum.
Maximizing this underestimator over allandu > O leads to the concepts of
weak and strong duality.



44 Nonlinear Optimization

Complementarity
The last three KKT conditions (3.4c)-(3.4e) are called tbenplementarity
conditions. For each indax they define an L-shaped set in th®, [;) space.
This set is not a smooth manifold but has a noffiedentiability at the origin,
i.e.,ifhj(w*) = 0and alsq; = 0. This case is called a weakly active constraint.
Often we want to exclude this case. On the other hand, areamdivstraint with
u; > O'is called strictly active.

Definition 3.17. Regard a KKT point\{#, 2*, u*). We say thastrict comple-
mentarityholds at this KKT pointff all active constraints are strictly active.

Strict complementarity is a favourable condition becatsgether with a
second order condition, it implies that the active set iblstagainst small
perturbations. It also makes many theorems easier to fataaind to prove,
and is also required to prove convergence of some numeriegiouds.

3.2.1 Interpretation of the KKT conditions

It is extremely useful to equip ourselves with an interpietaof the KKT
conditions (3.4). We present here thhysicalinterpretation, where we see
the KKT conditions as éorce balancébetween the objective function and the
constraints. It is easiest to construct this interpretatio a two-dimensional
problem. The objective function can then be seen as a lapdsith hills and
depressions, and the optimal solution can be seen as a tb#iiig towards
the lowest point in that landscape. The force exerted by disé feinction on
the solution corresponds to tepeof the cost function, i.e.:

VT W).

In this picture, equality constraints can be seen as a "(ailas a surface in
dimensions higher than two) along which the "ball” is for¢ednove. Inequa-
lity constraints can be seen as "barriers” that divide tinelégape and contain
the "ball” in a restrained domain. The constraints then efaeces on the ball,
maintaining it on the rail and on the correct side of the leasri

Equality constraints, the rail in our landscape, are dbsdrby the manifold
g(w) = 0. The "ball” is free to move along the rail but cannot leavé tie rail
then exerts a force on the "ball” only in directions orthogbto the rail. Such
directions are readily described Big(w). The KKT condition (3.4a) for pure
equality constraints reads as:

V(W) + VgWw") 2" =0

and prescribes that at the solutieh 1%, the force exerted by the cost function



3.2 First Order Optimality Conditions 45

1= —0.63446 1= 0.14645

-

—vg(w) *

Wy

Figure 3.1 lllustration of the KKT conditions for an equalitpnstrained NLP.
The "slope” of the cost functior-Vf (w) pushes the "ball” towards its lowest
point. The "ball” is maintained on the "rail”, i.e. the equglconstraintg (w) = 0,
via the force-Vg(w) 4, but is free to move along the rail. At the solutiof, 1*,
the forces exerted by the rail and the cost function even out.

-V f (w") and the force exerted by the rail i-.eVg(w*) A* are in balance. The
rail will exert whatever force (in the orthogonal directjas required to main-
tain the "ball” on the rail, hence the role of the Lagrange tipliers 1* is
to adjust the force of the rail in order to balance out the igratdof the cost
function. This interpretation is illustrated in Figure 3.1

Similarly, inequality constraints, the barriers in ourdanape, are described
by the manifoldh(w) < 0, and can exert a force on the "ball” only in directi-
ons orthogonal to the barrier, i.€h(w), andonly towards the interior of the
feasible domain. The sign constraint (3.4b) on the Lagramgjéipliersu asso-
ciated to the inequality constraints is then needed to ertbat the barrier can
only "push” the "ball” into the feasible domain, but cannotde it to remain
in contact with the barrier. The complementarity slackroesglition (3.4€) es-
sentially means that the barrier can exert a force on thdibahd only if the
"ball” is in contact with the barrier. This interpretatios iilustrated in Figure
3.2.

Finally the LICQ condition also has a physical interpretatiln the two-
dimensional case, when the LICQ fails, some constraints éxees that are
collinear at the solution, resulting in infinite forces. $terpretation is illus-
trated in Figure 3.3.



Nonlinear Optimization

1= —0.63446

Wq

Figure 3.2 lllustration of the KKT conditions for an inequgdconstrained NLP.
The "slope” of the cost function-Vf (w) pushes the solution towards its lo-
west point. The solution contained by the "barrier”, i.e. thequality constraints
h(w) < 0 to remain within the feasible domain via the fore€h (w) y, but is free
to move along the barrier and towards the interior of the féasibmain. At the
solutionw*, u*, the forces exerted by the barrier and the cost function euén o
If the solution is in contact with the barrier, then the fors@on-zero and pushes
towards the interior of the feasible domain, itéw*) = 0, u > 0 (left graph).
Otherwise, the barrier exerts no force on the solutionh{®:) < 0, u = 0 (right

graph).
vhy
1 (W) <\0
-Vfw)
> <0

he

W

8

Wy

Figure 3.3 Failure of the LICQ condition. The optimal solutisnnot a KKT
point. In this case, the forces exerted by the constrai{ts) andh,(w) are colli-
near, and cannot balance the slope of the cost funet¥h(w), even though the
constraints prevent the solution from moving further towaelriinimum of the
cost function.



3.3 Second Order Optimality Conditions a7
3.3 Second Order Optimality Conditions

In case of strict complementarity at a KKT poimt*( A*, u*), the optimization
problem can locally be regarded to be a problem with equaditystraints only,
namely those within the functiog defined in Equation (3.3). Though more
complex second order conditions can be formulated that gpécable even
when strict complementarity does not hold, we restrict ekres here to this
special case.

Theorem 3.18(Second Order Optimality Conditions).et us regard a point
w* at which LICQ holds together with multipliers, u* so that the KKT con-
ditions (3.4a}(3.4e)are satisfied and let strict complementarity hold. Regard
a basis matrix Ze R™"%) of the null space O&G(V\f‘) € R"" j.e., Z has full
column rank anc}vgv(w*)z =0.

Then the following two statements hold:

(@) If w* is a local minimizer, then Zv2,L(w*, A*, u*)Z>O0.
(Second Order Necessary Condition, short : SONC)

(b) If ZTV2L(w*, A%, u*)Z>0, then w is a local minimizer.
This minimizer is unique in its neighborhood, i.e., a sttattal minimizer,
and stable against small fierentiable perturbations of the problem data.
(Second Order Sficient Condition, short: SOSC)

The matrix V2 £(w*, 2, u*) plays an important role in optimization algo-
rithms and is called thelessian of the Lagrangiamwhile its projection on the
null space of the Jacobiaf, V2L (w*, 1*, u*)Z, is called theeduced Hessian

Quadratic Problems with Equality Constraints
To illustrate the above optimality conditions, let us rebarQP with equality
constraints only.

A 1
minimize c¢'w+ =w'Bw
weR" 2

subjectto Aw+b=0.

We assume tha# has full row rank i.e., LICQ holds. The Lagrangian is
L(w,2) = c"wW + 3w"Bw + AT(Aw + b) and the KKT conditions have the
explicit form

c + Bw+ A2 = 0
b + Aw = 0.



48 Nonlinear Optimization

This is a linear equation system in the varialMe{) and can be solved if the
so calledKKT matrix
B AT
%%

is invertible. In order to assess if the unique solutian, @*) of this linear
system is a minimizer, we need first to construct a hasithe null space oA,
e.g., by a full QR factorization &A™ = QRwith Q = (Y|Z) square orthonormal
andR = (RT|0)". Then we can check if the reduced Hessian mafiBZ is
positive semidefinite. If it is not, the objective functioasinegative curvature
in at least one of the feasible directions avidcannot be a minimizer. If on the
other handZ™BZ>0 thenw* is a strict local minimizer. Due to convexity this
would also be the global solution of the QP.

Invertibility of the KKT Matrix and Stability under Perturba tions
An important fact is the following. If the second ordeffstient conditions for
optimality of Theorem 3.18 (b) hold, then it can be shown thatKKT-matrix

VEL(W, A1) sa(w)T
G )
is invertible. This implies that the solution is stable agaiperturbations. To
see why, let us regard a perturbed variant of the optimingiroblem (3.1)

minimize f(w) + §fw
weR"
subjectto g(w) + &g = 0, (3.5)
h(w) + 6, <0,

with small vectorsit, §g, o of appropriate dimensions that we summarize as
6 = (01, dg, 0n). If @ solution exists fov = 0, the question arises if a solution
exists also for smal # 0, and how this solution depends on the perturbation
6. This is is answered by the following theorem.

Theorem 3.19(SOSC implies Stability of Solutions)Regard the family of
perturbed optimization problem#8.5) and assume that faf = 0 exists a lo-
cal solution(w*(0), 2*(0), *(0)) that satisfies LICQ, the KKT condition, strict
complementarity, and the second ordeyfisient condition of Theorem 3.18
(b). Then there exists an > 0 so that for all||6]] < € exists a unique local
solution(w*(8), 1*(6), u*(6)) that depends dierentiably ons. This local solu-
tion has the same active set as the nominal one, i.e., itgiiaconstraint
multipliers remain zero and the active constraint mulépdi remain positive.



3.3 Second Order Optimality Conditions 49

The solution does not depend on the inactive constrainupeations. If§
is the combined vector of equalities and active inequaljtand and 5, the
corresponding vectors of multipliers and constraint pdpations, then the de-
rivative of the solutiorfw* (5), 1*(5)) with respect tds1, 6,) is given by
d [w*(é)]
d(61,62) | 4°(6)
This differentiability formula follows from dferentiation of the necessary

optimality conditions of the parametrized optimizatiomipliems with respect
to (5]_, 52)

& -1
~ _[V@Lg\!\f*,/l*,p*) 2 (w)T
- 9

520 (W)

aw

V(W () + g—vgv(w*m +61=0
GW'(6)) + 52 =0

Invertibility of the KKT matrix and stability of the solutiounder perturbations
are very useful facts for the applicability of Newton-tygaimization methods
that are discussed in the next chapter.

Multipliers as Shadow Costs of the Constraints
One immediate consequence of the above sensitivity resthiat the gradient
of the objective functiorf (w*(5) with respect to the perturbation parameter
is due to the chain rule given by

y [vmwam B ]‘1[vwf<w*>] (5]
6:0_ L

d
Q) 8 ) 0

The last equality can be derived by noting that the KKT maiiivertible,
thus the solution unique, and that the gradient of the Lagjeamis zero at the
solution. The interpretation of the result is twofold: firdue to the leading
zeros, it can be seen that the objective val(&*(5) is completely insensitive
against perturbationg; in the gradient of the objective, or more general, in
perturbations of the objective function. This remarkaliisarvation is a conse-
guence of the fact that the minimizer is in a flat region of #uced objective,
thus feasible changeswi(§) do not change the objective up to first order. The
second interpretation is equally interesting: the appearaf the multipliers

in the gradient means that changgdo the constraints lead directly to an in-
crease or decrease in the cdétv*(5). Thus, for positive multipliers, the cost
increases for positive perturbations of the constraintd, the increase in the
cost is directly given by the multiplier valudsNote that this is consistent with
the fact that the inequality multipliers are restricted ¢opmsitive: an increase
in 6, will tighten the inequality constraint, i.e., reduce thadible set, such



50 Nonlinear Optimization

that the objective function can only increase. Also note the physical units
of the multipliers are given by the objective unit dividedthg corresponding
constraint units, i.e., for an objective in Euro and a caistrthat restricts
some distance in meter, the multiplier would have the unibfoeter. This is
the famous interpretation of multipliers as "shadow cosfghe constraints.

Software: An excellent tool to formulate and solve convex optimizatayo-
blems in a MATLAB environment is CVX, which is available asempsource
code and easy to install.

Software for solving a QP Problem: MATLAB: quadprog. Commercial: CPLEX,
MOSEK. Open-source: CVX, qpOASES.

For anyone not really familiar with the concepts of nonlineptimization
that are only very briefly outlined here, itis highly recommded to have a look
at the excellent Springer text book “Numerical Optimizatiby Jorge Noce-
dal and Steve Wright [64]. Who likes to know more about conveinaigation
than the much too brief outline given in this script is recoemtied to have a
look at the equally excellent Cambridge University Press b@ok “Convex
Optimization” by Stephen Boyd and Lieven Vandenberghe,[@Ppse PDF is
freely available.

Exercises

3.1 Consider the following NLP:

A
minimize =w'w
we RN

subjectto N-w'w< 0.

What is the solution of the above problem? Is it a KKT point ?tIs i
regular ? Does it fulfil the SOSC ? Justify and explain.
3.2 Solve the same questions of the previous tasks on thefistbtiLP:

N 1.
minimize —-w'w
w e R?
subjectto wyw, —1=0,

2-w'w<0.



Exercises 51

3.3 Acolleague of yours wants to solve the following problem

minimize wyg + W», (3.6a)
w e R?
subjectto Wy + Wy = awé + bws + ¢ (3.6b)

with a,b > 0. He observes the equality constraint (3.6b) and the cost
(3.6a) and concludes that solving (3.6) is equivalent teisgl

minimize aw? + bwz + ¢
w e R?
which takes the trivial solutior, y = 0. He then realizes that something
is wrong with his approach, but he cannot explain what goesgurHelp
him.
3.4 Prove that the unconstrained optimization problem

minimize f(x)
xeR"

with f : R" — R a continuous, coercive function, has a global minimum
point.
Hint: Use the Weierstrass Theorem and the following dediniti

Definition (Coercive functions). A continuous functiof(x) that is
defined orR" is coercive if

lim f(X) = +c0

[IX][—00

or equivalently, ifY M AR ||X|| > R= || f(X)]| > M.
3.5 Determine and explain whether the following functions eonvex or
not:

(@) f(x) = cTx+ XTATAX
(b) f(X) = —C"x — XTATAX

() f(x) =log(c’x) +expb™X)
(d) f(x) = -log(c"x) - expb’x)

(&) f(X1, %) = 1/(X1%2) ONR2, .



52 Nonlinear Optimization

(f) f(X]_, X2) = X1/% 0On R3+.

3.6 Determine and explain whether the following sets are@oor not:
(@ Q={xeR"|Xx"B"Bx< c"x}

(b) Aball, i.e., a set of the form:
B(Xe, 1) = (X1 l1X = Xell < 1) = {X] (X = %) T (X = %) < r?)
(c) Acone,i.e., aset of the form:
C={xtllIxl<t}
(d) A wedge, i.e., a set of the form:
{xeR"|ajx < by, a] x < by}
(e) A polyhedra:
{xeR"|Ax< b, Cx=d}
(f) The set of points closer to one set than another:
C = {x e R"|dist(x, 8) < dist(x, T)},
with dist(x, 8) := inf{||[x— 2|2 | z€ 8}
3.7 Consider the followingnixed-integer quadratic progra@IQP):
)r(nén{ig’lilz}g X" Qx+q'x
subjectto Ax>b

where the optimization variablegare restricted to take values({ioy 1}.
Solving mixed-integer problems is in general a challendgask, thus it
is common practice to reformulate them as the following:
T . .
)r(nén{|(r)rj|lz}§ X' Qx+q x
subject to AXx > b,
x(l-x)=0 i=0,---,n-1

(a) Is this reformulation continuous?

(b) Is this reformulation convex?

(c) Is this reformulation a QP problem?

(d) Compute the Lagrangian functidi(x, 4, ).



Exercises 53

(e) Derive the first and second order optimality conditicmsthis speci-
fic problem.
3.8 Regard, first just on paper, the following NLP:

minimize X
x € R?
subjectto X2 + 4x3 < 4,
X1 > -2,
X1=1

(@) How many degrees of freedom, how many equality, and homyma
inequality constraints does this problem have?
(b) Sketch the feasible s&X of this problem. What is the optimal solu-
tion?
(c) Bring this problem into the NLP standard form
minimize f(X)
xeR"
subjectto g(x) =0,
h(x) <0

by defining the dimension and the functiond, g, h along with their

dimensions appropriately.

(d) Now formulate three MATLAB functiond, g, h for the above NLP,
choose an initial guess fo, and solve the problem usinpincon.
Check that the output corresponds to what you expected.

3.9 We want to model a chain attached to two supports and hamgibet-
ween. Let us discretise it with mass points connected bi~ 1 springs.

Each mass has positiony, z), i = 1,..., N. The equilibrium point of
the system minimises the potential energy. We know that titerpial

energy of each spring is given by

Vg = %Di ((Yi — Y1)’ + (@ - Z’rl)z)’

el —

and that the gravitational potential energy of each mass by

Vy =M goz.



54

Nonlinear Optimization

As a result, the total potential energy is given by:

NI

N-1 N
Venaiy2) = 5 ) Di (0 = Yie2)? + (& = 242)%) + do ) M Z,
i=1

i-1
Consideringy = [y1, -+ ,yn] T andz = [z, - - ,zy]7, the problem that
we wish to solve is given by:

minimize  Vehain, 2),
v,z

with optional additional inequality constraints which nebd plane that
the chain can not touch. This problem can be formulated by aQP
ni : 1 T T
m|n|)£n|ze EX Hx+ g X
subjectto Xjp < X < Xyp,

ap < AX< agp

wherex = [y1,z,...,Yn, 2] 7. Inthis representation, you get an equality

. . q K
constraint by having upper and lower bound equal,d®. = a® for
somek.

(a) Formulate the problem usidyy= 40, m = 4/N kg, Dj = 70N N/m, go =
9.81 nys? with the first and last mass point fixed teQ, 1) and (21),
respectively.

(b) Solve the problem using the functigmadprogfrom MATLAB.

(c) Visualize the solution by plotting/(2).

(d) Introduce ground constraintg:> 0.5 andz —0.1y; > 0.5. Solve your
QP again and plot the result. Compare the result with theiquev
one.

(e) What would happen if you add instead of the piecewise tigezund
constraints, the nonlinear ground constramts yi2 to your problem?
The resulting problem is no longer a QP, but is it convex?

() What would happen if you add instead the nonlinear groum- c
straintsz > —yi2 to your problem? Is the problem convex?

(9) Introduction to CasADi 2: Based on the template solution of Exe-
rcise 1.3, implement the above problem in CasaADi using POP
instead of qpOASES. To do that, call the functigipsol instead of
gpsol and leave the rest identical:

o MATLAB



Exercises 55

solver = nlpsol(’'solver’,’ipopt’,prob);
e Python
solver = nlpsol(’'solver’,’ipopt’,prob)

3.10 The following function has multiple local minima in themain -1, 1]x
[-1,1]:

f(xy) = expx2 — y?) sin(4 X+ y + X * y?))

(a) Plot and visualize the function irL, 1] x [-1,1].

(b) Find the unconstrained minimizer of the function staytat diferent
initial points, e.g. [00], [0.9,0, 9], [-0.9, -0, 9]. Use the functiofimi-
nuncfrom MATLAB. What do you see?

3.11 Using the same aircraft model from Exercise 1.2, weigeoa set of real
measurements of an aircraft's flight. This data set confaasition me-
asurementyx and g, but not velocity. Since it's possible to measure
some aircraft parameters with a scale and ruler, you knowntiass is
2.5,Sqreris 0.7, and aspect ratio AR is 14. You don't know the angle of
attacka or initial statexy so they need to be estimated.

(a) Dowload the fileflight_data.m from the book website to obtain
the dataset. Plot the noisy measurements as a function efctmsi-
dering that the measurements were recorded during a tireaiof
20s.

(b) For Exercise 1.2, you wrote a simulation function whiauycan
think of as taking initial state; and angle of attack as inputs, and
returning the simulated states over the trajeciQry [ Pyl PzxlVxklVzk], k =
0...N -1 as outputs:

[YO’ )?17 cee )?N—l] = f5|m(X07 a/)

Estimate angle of attackand initial state by solving the following
NLP:
N-1
min > (B0, @) ~ P + (Pek(0. @) — Pei)”
k=0

Use the RK4 fixed-step integrator from Exercise 1.2. You megth
to adjust the initial guess in order to find the correct localimum.

A good way to tweak the initial guess is to simulate and plet th
simulated trajectory against the data. You may also neethjovth
bounds on your design variables.



56 Nonlinear Optimization

(c) Plot the final estimated trajectory against the noisp.dat

3.12 Introduction to CasADi 3: Recalling the Rosenbrock problem from
Exercise 2.10:

(a) Formulate and solve the following version:
minimize X2 + 100x3
X
subjectto X3+ (1-X1)? =% =0

Using IPOPT and = [2.5,3.0,0.75] as a starting point. How many
iterations does the solver need to converge to the solufimes it
change if we instruct IPOPT to use a limited-memory BFGS axipr
mation? This can be done by passing the following optiortatiary
as the forth argument tolpsol:

o MATLAB
opts = struct;
opts.ipopt.hessiampproximation= 'limited —-memory’;
e Python
opts = {’ipopt.hessianapproximation’:’'limited—-memory’}

(b) Manually eliminatex; from the problem formulation using the con-
straint equation and resolve the now unconstrained probligmonly
two variables. How does the number of iterations change?

(c) Nonlinear root-finding problems in CasADi A special case of an
NLP is a root-finding problem. We will write them in the form:

0o(Z X1, %, ..., %) =0
01(Z X1, X2, ..., %) =V1
R(Z X1, %2, ..., %) =VY2

Om(Z X1, X2, ..., %) = Ym,

where the first equation uniquely defireas a function ok, ..., X,
by theimplicit function theorenand the remaining equations define
the auxiliary outputys, ..., ym. Given a functiorg for evaluatinggo,

.., Om, We can use CasADi to automatically formulate dftien-
tiable) functionG : {zgyess X1, X2, ..., %n} = {ZY1,¥2,...,Ym}. This
function includes a guess farto handle the case when the solution
is non-unique. The syntax for this, assummg m= 1, is:



Exercises 57

o MATLAB
z = SX.sym(’'x’,nz);
X = SX.sym(’'x',nx);
g0 = (some expression of x and z)
gl = (some expression of x and z)
g = Function('g’, {z, x}, {g0, gl});
G = rootfinder('G’, 'newton’, g);
e Python
z = SX.sym('x’',nz)
X = SX.sym(’'x’,nx)
g0 = (some expression of x & z)

gl = (some expression of x & z)
Function(’g’, [z, x], [g0, g1])
G = rootfinder ('G’, ’'newton’, Q)

(o]
Il

where therootfinder function, similar tonlpsol andgpsol, ex-
pects a display name, the name of a solver plugin (here asifulpl
step Newton method) and the problem formulation, here eggcas

a residual function.

Starting with the unconstrained version of the Rosenbraoklpm
use CasADi'giradient function to get a new expression for the gra-
dient of the objective function. According to the first orehercessary
conditions for optimality, this gradient must be zero. Folate and
solve this as a root-finding problem in CasADi. Use the sarii@in
condition as before.



4
Newton-Type Optimization Algorithms

It can be programmed in an afternoon if one
has a quadratic programing subroutine avai-
lable [...]

— Michael J. D. Powell (1936-2015), [33]

4.1 Equality Constrained Optimization
Let us first regard an optimization problem with only eqyadibnstraints,

minimize f(w)
weR"
subjectto g(w) =0,

wheref : R" - R andg : R" — R" are both smooth functions. The idea
of the Newton-type optimization methods is to apply a variaihNewton’s
method to solve the nonlinear KKT conditions

Vwlw, )= 0
gw) = 0.
In order to simplify notation, we define
w \Y L(W,/l)]
z:= andF(2) :=| "
2| 2MF@ = g

with z € R™"%, F : R™"% — R™M% so that we can compactly formulate the
above nonlinear root finding problem as

F( =0.

58



4.1 Equality Constrained Optimization 59

Starting from an initial guesz,, Newton’s method generates a sequence of
iterates{z, , by linearizing the nonlinear equation at the current ierat

Fl=
F(z) + a(zk)(Z— z)=0 (4.1)

and obtaining the next iterate as its solution, i.e.

oF
=7 — — F(z).
Zer1 = % P (20 F(z)

For equality constrained optimization, the linear systdm)(has the specific
form!
[VWL (Wk, /lk)] 4 [V%L(Wk, /lk) Vg(Wk)
g(wi) Vo(wi)" 0

KKT-matrix

W—Wg|
o

Using the definition
VL (Wi, Ak) = V(W) + Vg(Wi) Ak

we see that the contributions depending on the old multipliecancel each
other, so that the above system is equivalent to

[Vf(Wk)] . [V@L(Wk, A Vg(Wk)} [W— Wk} 0
9(wi) Vg(wi) " 0 Z '

This formulation shows that the data of the linear systeny dejpend oniy

via the Hessian matrix. We need not use the exact Hessiarnxmiatt can
approximate it with diferent methods. This leads to the more general class
of Newton-type optimization methods. Using any such apipnation By ~

V2L (w, ), we finally obtain the Newton-type iteration as

_ M _[ By vQ(wk)r
Vg (W) 0

v (w)
gw) |

The generaNewton-type methoid summarized in Algorithm 4.1. If we use
Bk = V2,L(Wk, Ak), we recover thexact Newton method

4.2)

Wic+1
0

/lk+l

Algorithm 4.1 (Equality constrained full step Newton-type method)
Choose:initial guessesv, 1o, and a tolerance
Set:tk=0

while ||[V.L (W, Ak)|| > € or [lg(wi)l| = € do

1 Recall that in this script we use the conventiag(w) := z—gl(W)T that is consistent with the
definition of the gradien¥ f (w) of a scalar functiorf being a column vector.



60 Newton-Type Optimization Algorithms

obtain a Hessian approximatidy
getwy, 1, A1 from (4.2)
k=k+1

end while

4.1.1 Quadratic Model Interpretation

It is easy to show thaty,; andAy,1 from (4.2) can equivalently be obtained
from the solution of a QP:

minimize Vf(wi)" (W - wi) + %(W — W) " Br(wW — W)

weR" (4.3)

subject to g(wk) + Vg(wi) T (w — wy) = 0.

So we can interpret the Newton-type optimization method &Seguential
Quadratic Programming” (SQP) method, where we find in eamfation the
solutionw®F and 197 of the above QP and take it as the next NLP solution
guess and linearization poimt,; and Ax.1. This interpretation will turn out
to be crucial when we treat inequality constraints. But kefitst discuss what
methods exist for the choice of the Hessian approximasion

4.1.2 The Exact Newton Method

The first and obvious way to obtaB is to use the exact Newton method and
just set

By = V\%,,C(Wk, AK).

But how can this matrix be computed? Manyfeient ways for computing
this second derivative exist. The most straightforward isayfinite diference
approximation where we perturb the evaluationvef in the direction of all
unit vectorge}? ; by a small quantity > 0. This yields each time one column
of the Hessian matrix, as

VL (Wi + 66, A) — VL (W, Ak)
0
Unfortunately, the evaluation of the numerator of this gt sufers from
numerical cancellation, so thatcannot be chosen arbitrarily small, and the
maximum attainable accuracy for the derivativeisif € is the accuracy with
which the gradienv,,£ can be obtained. Thus, we loose half the valid digits.
If VWL was itself already approximated by finiteférences, this means that
we have lost three quarters of the originally valid digitsore accurate and

V2L (Wi, )€ = +0(). (44)



4.1 Equality Constrained Optimization 61

also faster ways to obtain derivatives of arbitrary orddklvé presented in the
chapter on algorithmic éierentiation.

Local convergence rate:The exact Newton method hasjaadratic con-
vergence ratén a neighbourhood of the optimal solutiah i.e. ||z, — Z°|| <
||z« — Z'||I> whenz is suficiently close taz'. This means that the number of
accurate digits doubles in each iteration. As a rule of thuomze a Newton
method is in its area of quadratic convergence, it needs =inmoian 6 iterati-
ons to reach the highest possible precision.

4.1.3 The Constrained Gauss-Newton Method

Let us regard the special case that the objecti@) has a nonlinear least-
squares form, i.ef (w) = %HR(W)H% with some functiorR : R" — R™, In this
case we can use a very powerful Newton-type method whichoappates the
HessianBy using only first order derivatives. It is called ti&@auss-Newton
method To see how it works, let us thus regard the nonlinear leqsties
problem

1
minimize Z||RW)|3
weR" 2 2
subjectto g(w) = 0.

The idea of the Gauss-Newton method is to linearize at a gieestewy both
problem functiondR andg, in order to obtain the following approximation of
the original problem.

N 1
minimize =||RW) + VR(W) ™ (W — Wk)||§ (4.5a)
weR" 2

subjectto g(w) + Vg(wi) " (w—wy) = 0. (4.5b)

This is a convex QP which can easily be seen by noting thatijeetive (4.5a)
is equal to

L R RO+ (W) TROMIRW) + = (W)™ TROMVRIWG) T (W)
2 _ 2 —_—
=V f(w) =B
which is convex becaudg=0. Note that the constant term does not influence
the solution and can be dropped. Thus, the Gauss-Newtonahlbm (4.5)

is identical to the SQP subproblem (4.3) with a special ahoicthe Hessian
approximation, namely

By := VR(Wk)VR(Wk)-r = ZR VRi(Wk)VRi(Wk)T.
i=1



62 Newton-Type Optimization Algorithms

Note that the multipliersl, are not needed in order to compute the Gauss-
Newton Hessian approximatidsk. In order to assess the quality of the Gauss-
Newton Hessian approximation, let us compare it with thecekgssian, that

is given by

V2 L (W, )

DUVRMIVRW)T  + > RMWTVPRM) + ) 4VG(w)
i=1 i=1 i=1
= Bx +  O(lIRWi)I) + ol

One can show that in the solution of a problem hdllttgl = O(/|R(W*)||). Thus,
in the vicinity of the solution, the dlierence between the exact Hessian and the
the Gauss-Newton approximati@j is of orderO(||R(w*)])).

Local convergence rate:The Gauss-Newton method converdieearly,
lze1 — Z|| < kllzx — Z°|| with a contraction rate = O(||R(w")||) in a neig-
hbourhood of the solutios’. Thus, it converges fast if the residu&dgw*) are
small, or equivalently, if the objective is close to zero,iethis our desire in
least-squares problems. In estimation problems, a lowctitagecorresponds to
a “good fit". Thus the Gauss-Newton method is only attractetbbal minima
with a small function value, a favourable feature in prastic

4.1.4 Hessian Approximation by Quasi-Newton BFGS Updates

Besides the exact Hessian and the Gauss-Newton Hessianxapation, there

is another widely used way to obtain a Hessian approximajowithin the
Newton-type framework. It is based on the observation thatetvaluation of
VwL at different points can deliver curvature information that carp hed
to estimateV2 £, similar as it can be done by finite fiirences, cf. Equa-
tion (4.4), but without any extraffort per iteration besides the evaluation
of Vf(wx) and Vg(wi) that we need anyway in order to compute the next
step. Quasi-Newton Hessian update methods use the preMiessan ap-
proximation By, the stepsc := wk;1 — Wk and the gradient elierenceyy =
Vil (Wi 1, A1) — VwL (Wi, Aks1) in order to obtain the next Hessian approxi-
mationBy, 1. As in the finite diference formula (4.4), this approximation shall
satisfy thesecant condition

Br+1Sk = Yk

but because we only have one single directgrthis condition does not uni-
quely determineBy,;. Thus, among all matrices that satisfy the secant condi-
tion, we search for the ones that minimize the distance tolth8,, measured

in some suitable norm. The most widely used Quasi-Newtoratgpfbrmula



4.2 Local Convergence of Newton-Type Methods 63

is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) updatedan be shown to
minimize a weighted Frobenius norm. It is given by the expfarmula:
BrskS Bk YkYx
Bk+1=Bk_T—Sk+ Tk-
S Bk sk
Local convergence rate:lt can be shown thaB, — V2£(w*, 1*) in the
relevant directions, so thatiperlinear convergende obtained with the BFGS
method in a neighbourhood of the solut@ni.e.||z.1 — Z|| < x|z — Z*|| with
Kk — 0.

(4.6)

4.2 Local Convergence of Newton-Type Methods

We have seen three examples for Newton-type optimizatiothads which
have diterent rates of local convergence if they are started cloaestiution.
They are all covered by the following theorem that exactiyest the conditions
that are necessary in order to obtain local convergence.

Theorem 4.2(Newton-Type ConvergenceRegard the root finding problem
F@=0 F:R">R"

with z a local solution satisfying fz) = 0 and a Newton-type iterationz =
Z — M;lF(zk) with M, € R™™ invertible for all k. Let us assume a Lipschitz
condition on the Jacobian(d) := %—';(z) as follows:

IM(3(z) - I < wliz - ZI.

Let us also assume a bound on the distance of approximatjdinokh the true
Jacobian Jz):

IM () = M < ki

wherekx < « with x < 1. Finally, we assume that the initial guessiz suyfi-
ciently close to the solutiorf z

2
1zo - Z|l < —(1-«).
w
Then z — z* with the following linear contraction in each iteration:
w y
lzwa-21 < (act Slz-Z1) -« la-ZI

If kk — 0, this results in a superlinear convergence rate, ang & 0 quadratic
convergence results.



64 Newton-Type Optimization Algorithms

Noting that in Newton-type optimization we have

[ VAL (wi, A) %?V(WK)T}
() = 29 (wi) 0
| Be Zw)T
Mk__g—é’v(wk) ’ 0 ]
[ 2 o) —_
362 - = | QB

the above theorem directly implies the three convergentss rhat we had
already mentioned.

Corollary 4.3. Newton-type optimization methods converge

e quadratically if B = V2L (w, Ax) (exact Newton),
e superlinearly if B — V2,L(w, ) (BFGS),
e linearly if || By — V2L (W, 4|l is small (Gauss-Newton).

Proof of Theorem 4.2
We will show that||z,1 — Z|| < 6kllzx — Z*|| with 6y := (Kk + 31z - Z*II) and
that for allk holdsék < 1. For this aim let us regard

Z1-7 = -7 - MF(2)
= z -7 - M (F(z) - F(2))

1
MM 20) = Mt [ 3@ + o= )= 2
M (M - V21 (20) (2 - 7)

1
- M;lfo [V2H(z + t(@ - 7)) - V*f(2)](z - Z2)dt

Taking the norm of both sides:
1
1z = Z1 < kdlz = Z°11 + fo wllZ + 4z - Z') - zdldt |z - Z'||

1
= (e + wfo (1~ tdtliz - Z )iz~ 2|l

= (ke + Sl = 1) Iz~ 21

—_—
=0k



4.3 Inequality Constrained Optimization 65

The proof that for alk we have thaty < 1 proceeds inductively: a% < 1 by

the assumptions of Theorem 4.2, we can concludg|thatz’|| < ||Zo—Z||. This

in turn implies that; < §o. The same reasoning can be made for each of the
following steps, implying that aldy < 1. Thus, the proof is nearly complete.
To obtain the specific convergence rates, we distinguigetbases depending
on the value ok respectivelyky:

() Nz =70 < Sllz - Z'|1?, Q-quadratic convergencexif= 0,

(i) 1zt — 211 < (ki + %uzk ~ Z1) Il - Z1l, Q-superlinear ik — O,

—_—
-0

w . .
(i) ||z — 2| < w+ E”Zk - Z)llz — Z'|l, Q-linear ifx do not converge
<1 T
to zero.

4.3 Inequality Constrained Optimization

When a nonlinear optimization problem with inequality coastts shall be
solved, two big families of methods exist, first, nonlineaterior point (1P),
and second, sequential quadratic programming (SQP) metiBmth aim at
solving the KKT conditions (3.4) which include the non-srttooomplemen-
tarity conditions, but have fierent ways to deal with this non-smoothness.

4.3.1 Interior Point Methods

The basic idea of an interior point method is to replace the-smaooth L-
shaped set resulting from the complementarity conditioitls & smooth ap-
proximation, typically a hyberbola. Thus, a smoothing ¢ansr > 0 is in-

troduced and the KKT conditions are replaced by the smoathtsn system

V(W) + VgW)A* + Vh(w")u* = 0 (4.7a)
gw*) = 0 (4.7b)
LhW)+7t=0, i=1...,Mm. (4.7¢)

Note that the last equation ensures thig{w") andy;" are both strictly positive
and on a hyperbolaFor r very small, the L-shaped set is very closely approx-
imated by the hyperbola, but the nonlinearity is increa¥éithin an interior

2 |n the numerical solution algorithms for this system, we havertsure that the iterates do not

jump to a second hyperbola of infeasible shadow solutionshioytening steps if necessary to
keep the iterates in the correct quadrant.



66 Newton-Type Optimization Algorithms

B
8
Q
24
0 5
h; (W) not active
-1.5 -1 0

h (W)-O'5

Figure 4.1 Relaxation of the complementarity slackness camditiVe display
here the manifolgy;h (W) + = = 0 for various values ot. The original non-
smooth manifolguih; (W) = 0 arising in the KKT conditions is displayed as the
thick lines.

point method, we usually start with a large valueradnd solve the resulting
nonlinear equation system by a Newton method, and theriiteliradecrease
7, always using the previously obtained solution as initiiion for the next
one.

One way to interpret the above smoothened KKT-conditiots ise the last
condition to eliminatgs = _W and to insert this expression into the first
equation, and to note that, (log(-h;(w))) = ﬁVhi(w)). Thus, the above
smooth form of the KKT conditions is nothing else than th&roptity condi-
tions of abarrier problem

mvE/nem]l]Qi%e f(w) — T; log (—hi(w)) 4.8)

subjectto g(w) = 0.

Note that the objective function of this problem tends tait§iwhenh; (w) —

0. Thus, even for very small > 0, the barrier term in the objective function
will prevent the inequalities to be violated. Tipeimal barrier methodjust
solves the above barrier problem with a Newton-type optatidn method for
equality constrained optimization for each value-oDne can observe that the
barrier problem (4.8) and the primal-dual (4.7) deliver aene solutiorw,

for any given value of-. It is also important to know that the error between



4.3 Inequality Constrained Optimization 67

10°

R [}
10
0 0.5 1 10° 10" 10
W T

Figure 4.2 lllustration of the primal barrier method presentei8). The left
graph displays an illustrative cost functid(w) (thick curve), and simple bounds
0 < w < 1. The various objective functions with barrigfw) — Zi":l log (—hi(w))
are displayed for various values of alongside their respective minima. The
right graph displays the error between the actual solutiohegtoblemw*, and
the solutionsv; obtained from the barrier problem (4.8) for various valuks.o

the solution delivered by Interior-Point methods and thacésolution of the
original problem is of the orde® (7), i.e. the error introduced by the Interior-
Point methods decreases linearly with

Though easy to implement and to interpret, Interior-Poiethnds are not
necessarily the best in terms of numerical treatment, anotimgy because its
KKT matrices become very ill-conditioned for smallThis is not the case for
theprimal-dual IP methodhat solves the full nonlinear equation system (4.7)
including the dual variables.

For convex problems, very strong complexity results exiat are based on
self-concordancef the barrier functions and give upper bounds on the total
number of Newton iterations that are needed in order to ot#anumerical
approximation of the global solution with a given precisi@hen an IP met-
hod is applied to a general NLP that might be non-convex, weofaourse
only expect to find a local solution, but convergence to KKThpocan still be
proven, and thesaonlinear IP methodperform very well in practice.

Most IP solvers treat the relaxed complementarity conaiti@#.7c) using a
slack formulation, where a set of "artificial” atackvariabless, i = 1, ..., n,



68 Newton-Type Optimization Algorithms

is added to the problem in order to reformulate it. The edaiasystem:

VW) + Vgw*)A* + Vh(w*)u* =0 (4.9a)
gw) =0 (4.9b)

ws—-7=0, i=1...,n (4.9¢)

hiw)+s =0, i=1...,n, (4.9d)

is solved instead of (4.7). Though the form (4.9) is equnale (4.7) and
delivers the same solution, iffers several advantages over (4.7), in particular:

e the Newton iteration on system (4.9) can be started with dialiguessw
that is infeasible with respect to the inequality constsgine. hj(w) > 0
for somei, as long as the slack variablgsare initiated and kept positive
throughout the iterations. Hence one does not need to @avidasible ini-
tial guess. In the course of the Newton iterations, the iaétyuconstraints
are brought to feasibility via the equality constraint9¢}.

e when a Newton iteration is deployed on system (4.7), one ensire that
h(w) < 0 thoughout the iterations, which requires a careful backing,
i.e. a reduction of the size of the step provided by the Neuttmation (see
Section 4.4 for more details) unti{w) < 0 is ensured. Wheh(w) is ex-
pensive to evaluate, such backtracking can be time congunnircontrast,
ensuring thats > 0, u > 0 is trivial to do when the form (4.9) is used.
The step-size ensuring the positivityséndu then provides an inexpensive
upper-bound to the actual step-size that ought to be used.

Software: A very widespread and successful implementation of theineat
IP method is the open-source code IPOPT [79, 78]. Though TP€R be ap-
plied to convex problems and will yield the global solutidedicated IP met-
hods for diferent classes of convex optimization problems can exploitem
problem structure and will solve these problems faster amemreliably. Most
commercial LP and QP solution packages such as CPLEX or MOSElke
use of IP methods, as well as many open-source implememsagiech as the
sparsity exploiting QP solver OOQP.

4.3.2 Sequential Quadratic Programming (SQP) Methods

Another approach to address NLPs with inequalities is nespbby the qua-

dratic model interpretation that we gave before for Newtigre methods. It is

called Sequential Quadratic Programming (SQ&)d solves in each iteration
an inequality constrained QP that is obtained by lineagizive objective and

constraint functions:



4.3 Inequality Constrained Optimization 69

minimize V(W)™ (w—w) + }(W — W) " Br(wW — W)
weR" 2

subject to g(wk) + Vg(wi) T (w — w) = 0,
h(wi) + Vh(we) T (w — wg) < 0.

Note that the active set is automatically discovered by tRes@lver and can
change from iteration to iteration. However, under striminplementarity, it
will be the same as in the true NLP solutiationce the SQP iterateg are in
the neighborhood of*.

As before for equality constrained problems, the Hes#aran be cho-
sen in diferent ways. First, in thexact Hessian SQP methede useBy =
V2 L (Wi, A 1), and it can be shown that under the second ordéficgnt
conditions (SOSC) of Theorem 3.18 (b), this method has lpcaladratic
convergence. Second, in the case of a least-squares vbjbgt) = %||R(w)||§,
we can use the Gauss-Newton Hessian approximdioa VR(w)VR(Wi) T,
yielding linear convergence with a contraction rate= O(||R(w")||). Third,
guasi-Newton updates such as BFGS can directly be applgwdg the La-
grange gradient dfierencey = VL (Wi, s 1, 151 = VL (Wi, Aar, 114
in formula (4.6).

Note that in each iteration of an SQP method, an inequalitysitained
QP needs to be solved, but that we did not mention yet how tlosld be
done. One way would be to apply an IP method tailored to QPlenah This
is indeed done, in particular within SQP methods for largaersp problems.
Another way is to use a QP solver that is based omaaive set methqdas
sketched in the next subsection.

Software: A successful and sparsity exploiting SQP code is SNOPT [43].
Many optimal control packages such as MUSCOD-II [56] or themssource
package ACADO [49, 1] contain at their basis structure eitiplp SQP met-
hods. Also the MATLAB solverfmincon is based on an SQP algorithm.

4.3.3 Active Set Methods

Another class of algorithms to address optimization pnuoisievith inequa-
lities, theactive set methodsre based on the following observation: if we
would know the active set, then we could solve directly anadiguconstrai-
ned optimization problem and obtain the correct solutione Tain task is
thus to find the correct active set, and an active set metkaoatiitely refines



70 Newton-Type Optimization Algorithms

a guess for the active set that is often called wweking set and solves in
each iteration an equality constrained problem. This éyuabnstrained pro-
blem is particularly easy to solve in the case of linear iradity constraints,
for example in LPs and QPs. Many very successful LP solverbased on an
active set method which is called teamplex algorithmwhose invention by
Dantzig [28] was one of the great breakthroughs in the fieldpimization.
Also many successful QP solvers are based on active set dsethonajor ad-
vantage of active set strategies is that they can vfigiently be warm-started
under circumstances where a series of related problemah&essolved, e.g.
within an SQP method, within codes for mixed integer prograng, or in the
context of model predictive control (MPC) [39].

4.4 Globalisation Strategies

In all convergence results for the Newton-type algorithtasesl so far, we had
to assume that the initialization wadciently close to the true solution in or-
der to make the algorithm converge, which is not always tise cklndeed, the
Newton iteration using the SQP approach is based on solviogessive qua-
dratic problems which approximate locally the originallpeon. The Newton
step then takes the minima of the current quadratic probeeguess for the
minima of the original problem. However, the Newton step bararge, and
leave the region of validity of the quadratic model. In suakes, the Newton
step can be counterproductive for improving the optimaditgfor feasibility
of the iterate. We illustrate this problem in the unconsiedicase in Figure 4.3

An approach often used to overcome this problem is to usan@otopybe-
tween a problem we have already solved and the problem we tovaative:
in this procedure, we start with the known solution and thestged slowly,
step by step modifying the relevant problem parametersardsvthe problem
we want to solve, each time converging the Newton-type #lgorand using
the obtained solution as initial guess for the next problapplying a homo-
topy requires more user input than just the specificatiorhefgroblem, so
most available Newton-type optimization algorithms hawgecalledglobali-
sation strategiesMost of these strategies can be interpreted as autonigtical
generated homotopies.

In the ideal case, a globalisation strategy ensgtebal convergencei.e.
the Newton-type iterations converge to a local minimum fiamiitrary initial
guesses. Note that the termi®bal convergencandglobalisation strategies



4.4 Globalisation Strategies 71

2.65r1

Newton step

Figure 4.3 lllustration of the failure of the full Newton stéfhe Newton itera-
tion is based on solving successive quadratic problems, which muciglyl the
original optimisation problem. If the Newton step provided bg ttluadratic mo-
del leaves its region of validity, and can then provide a woisat w1 than the
previous one, i.ewy. In this example, the Newton step going from to Wi 1
increases the cost function.

have nothing to do witlglobal optimizationwhich is concerned with finding
global minima for non-convex problems.

Here, we only touch the topic of globalisation strategiey \siperficially,
and for all details we refer to textbooks on nonlinear optation and recom-
mend in particular [64].

Two ingredients characterize a globalization strategst,fer measure of pro-
gress, and second, a way to ensure that progress is madeéiitezation.

4.4.1 Measuring Progress: Merit Functions and Filters

When two consecutive iterations of a Newton-type algoritemsblution of a
constrained optimization problem shall be compared withezher it is not
trivial to judge if progress is made by the step. The objectinction might
be improved, while the constraints might be violated more;anversely. A
merit functionintroduces a scalar measure of progress with the propeaty th
each local minimum of the NLP is also a local minimum of the itfanction.
Then, during the optimization routine, it can be monitorfatié next Newton-
type iteration gives a better merit function than the iteta¢fore. If this is not
the case, the step can be rejected or modified.



72 Newton-Type Optimization Algorithms
A widely used merit function is thexact L1 merit function
T1(w) = f(w) + o(lg(w)ll + Ih* (W)ll1)

with f(w) the objectiveg(w) the residual vector of the equality constraints, and
h*(w) the violations of the inequality constraints, i&(w) = max(Q h;(w)) for

i =1,...,ny. Note that the L1 penalty function is nhon-smooth. If the pgna
parametewr is larger than the largest modulus of any Lagrange multiglie

a local minimum and KKT pointw*, A*, u*), i.e. if & > max(|A*]lco, |t ]lco),
then the L1 penalty is exact in the sense tivatalso is a local minimum of
T1(w). Thus, in a standard procedure we require that in eacHidara descent

is achieved, i.eT1(Wk,1) < T1(Wk), and if it is not the case, the step is rejected
or modified, e.g. by a line search or a trust region method.

A disadvantage of requiring a descent in the merit functioeach iteration
is that the full Newton-type steps might be too often rejéctehich can slow
down the speed of convergence. Remedies to are e.g. a “vegttbchnique”
that starting at some iteratg allows up toM — 1 full Newton-type steps
without merit function improvement if th#lth iterate is better, i.e. if at the
end holdsT1(Wi:m) < T1(Wy), so that the generosity was justified. If this is not
the case, the algorithm jumps backwp and enforces strict descent for a few
iterations.

A different approach that avoids the arbitrary weighting of dhje¢unction
and constraint violations within a merit function and oftgfows to accept
more full Newton-steps comes in the formfdfer methods They regard the
pursuit of a low objective function and low constraint viitas as two equally
important aims, and accept each step that leads to an impesdn at least
one of the two, compared to all previous iterations. To esmshiss, a so called
filter keeps track of the best objective and constraint violatainspthat have
been achieved so far, and the method rejects only thosetst@psedomina-
ted by the filteri.e., for which one of the previous iterates had both, a bette
objective and a lower constraint violation. Otherwise thwiterate is accep-
ted and added to the filter, possibly dominating some othies pathe filter
that can then be removed from the filter. Filter methods amulao because
of the fact that they often allow the full Newton-step andl $iave a global
convergence guarantee.

4.4.2 Ensuring Progress: Line Search and Trust-Region Methods

If a full Newton-type step does not lead to progress in thesehaneasure, it
needs to be rejected. But how can a step be generated thaejstalsle? Two
very popular ways for this exist, one callie searchthe othettrust region



Exercises 73

A line search method takes the result of the QP subproblemtréal atep
only, and shortens the step if necessaryff{, 42", 112") is the solution of the
QP at an SQP iteratg, it can be shown (if the QP multipliers are smaller than
o) that the step vector @earch directior(wffP — W) is a descent direction for
the L1 merit functionT,, i.e. descent ifT; can be enforced by performing,
instead of the full SQP stegy,; = WEP, a shorter step

p
Wi = Wi + W — W)

with a damping factor ostep length te (0, 1]. One popular way to ensure
global convergence with help of of a merit function is to riegn each step
the so calledArmijo condition a tightened descent condition, and to perform
a backtrackingline search procedure that starts by trying the full step ()
first and iteratively shortens the step by a constant fatter (/8 with 8 > 1

) until this descent condition is satisfied. As said, the Lagy function has
the desirable property that the search direction is a dédagation so that the
Armijo condition will eventually be satisfied if the step isast enough. Line-
search methods can also be combined with a filter as a measpregress,
instead of the merit function.

An alternative way to ensure progress is to modify the QP saiidpm by
adding extra constraints that enforce the QP solution tankee small region
around the previous iterate, threist region If this region is small enough, the
QP solution shall eventually lead to an improvement of theitmenction, or
be acceptable by the filter. The underlying philosophy i$ the linearization
is only valid in a region around the linearization point amdychere we can
expect our QP approximation to be a good model of the oridihd?. Similar
as for line search methods with the L1 merit function, it canshown for
suitable combinations that the measure of progress caryslbaaimproved
when the trust region is made small enough. Thus, a trusbmegjgorithm
checks in each iteration if enough progress was made to atteegtep and
adapts the size of the trust region if necessary.

As said above, a more detailed description dfadient globalisation strate-
gies is given in [64].

Exercises

4.1 Prove that a regularized Newton-type step = X — (Bx +al) ™1V f(x)
with B¢ a Hessian approximatiom; a positive scalar and the iden-
tity matrix of suitable dimensions, converges to a smalldgmat step



74 Newton-Type Optimization Algorithms

Xer1 = X — 2V (%) ase — oo.

4.2 Show that the Newton method is guaranteed to convergedotdif it
exists) of any monotonically increasing convextelientiable function
F:R—>R.

4.3 Letf be a twice continuously fferentiable function satisfyingl >
V2f(x) = ml for someL > m> 0 and letx* be the unique minimizer of
f overR".

(a) Show that for anx € R":

m
f(x) - f(X*) > EHX— X2

(b) Let{x}ks0 be the sequence generated by the damped Newton’s met-
hod with constant stepsizge= T'. Show that:

06 = F0e) > 51 V106" (V21 (x0) V(%0

(c) Show thatxx — x* ask — oo.

4.4 Prove the following theorem on the convergence of thetedawton
method.

If we apply the exact Newton method on the nonlinear set oatguos
r (w) = 0 and the following properties on the Jacobian hold:

e Boundedness[Vr (W) || > m, Yw e R",
e Lipschitz continuity:|Vr (W) — Vr (X)|| < LIlw - X, VYw, xe R",
then the Newton iteration converges (locally) with the rate

L 2
lIr (w+Aw) || < omelf (W)~

Hint; use the integration by parts formula:

1
r(w+ Aw) = r (w) +f Vr (w+ tAw) " Aw - dt.
0

4.5 The goal of this exercise is to Implemenrttelient Newton-type methods
that minimize the nonlinear function:

f(xy) = %(x— 1)? + %(10(y— x?))? + %yz (4.10)



Exercises 75

(a) Derive, first on paper, the gradient and Hessian matrikedfunction
in (4.10). Then, re-write it in the fornfi(x,y) = %||R(x, y)||§ whereR:

R? — R3 is the residual function. Derive the Gauss-Newton Hessian
approximation and compare it with the exact one. When do tloe tw
matrices coincide?

(b) Implement your own Newton method with exact Hessianrimfation
and full steps. Start from the initial poirtd, yo) = (-1, 1) and use as
termination conditioiV f (X, yi)ll. < 1073. Keep track of the iterates
(X, Yx) and use the provided function to plot the results.

(c) Update your code to use the Gauss-Newton Hessian appatgin
instead. Compare the performance of the two algorithms &otdhe
difference between exact and approximate Hessian as a funétion o
the iterations.

(d) Now try to implement the BFGS formula for calculating tHessian.
Compare the results with the previous algorithms.

(e) Check how the steepest descent method performs on thispde.
Your Hessian now becomes simply wherea is a positive scalar
andl the identity matrix. Trye = 100,200 and 500. For which values
does your algorithm converge? How does its performance aoenp
with the previous methods?

() Imagine you remove the ten%’y2 from f(x,y) and compare the exact
Newton’s method with the Gauss-Newton. What do you expect?

4.6 Consider an NLP of the form:

minimize © (w)
i (4.11)
subjectto g(w) = 0.

Prove that, under a condition on mattikthat you should specify, the
primal Newton direction for (4.11) is provided by solvingtQP:

. 1
minimize =AwW'HAw + VO (w) T Aw
Aw 2 (4.12)

subjectto g(w) + Vg(w)"Aw =0
and the Lagrange multipliers of QP (4.12) provide the updatehe
Lagrange multipliers of (4.11).

4.7 Write a NLP solver for a problem of the type (4.11) using tevton
method.



76 Newton-Type Optimization Algorithms

e Have the option between using an exact Hessian and a GaugsiNe
Hessian approximation.

¢ Implement a line-search based on the Armijo condition.

o Use| [VL g] ll1 < tol as an exit condition.

Hint: use the matlab symbolic toolbox to automatically comepyour
sensitivitiesvg, V@, and H, generate a function computing them using
"matlabFunction”. You will then be able to easily deploy yatode to
any NLP of the fornf4.11) that will save you a lobf time in the follo-
wing question. Test your code on a strictly convex Quadatagram
first, it should converge in one full Newton step.

4.8 Try the following problem:
L 1
minimize —w'w+ 1"w
W 2
subjectto w'w=1

wherel is a standing vector of ones of adequate dimensionyaad".
Prepare your solver far = 2, and plots of:

e The trajectory ofvy, Wy in a 2D plot, plot the unit circle representing

the constraint.

e A semi-log plot of your exit criterion [VL g] l1 < tol over the ite-
rations.

e Your step sizd over the iterations.

(a) Run the code using the parameters 8 = 0.5 for the line-search
parameters and = 1 for the T; merit function. Use a tolerance of
10°8. Usea = 0 for the dual initial guess and try the following primal
initial guesses:

0 - -1
w= [1 and w= [_1 and w= [ 1].
Explain what you see.
(b) Try now the initial guess
1
W= [1 and 1=0.
What happens ? Explain.
(c) Same question for the initial guess
0
w= [O and 1=0.




Exercises 77

(d) Finally what happens with the initial guess

W= [0'5 and 1=0.
1
Canyou fix it ?
4.9 We now turn to the following NLP
N 1.
minimize —-w'w
weR 2 4.13
subjectto Wi — 2w3 — w, — 10wz = 0, &>
Wy + 10\N3 =0.

Deploy your NLP solver on problem (4.13). You can e.g. usérittial
guess:

1
w=|1| and /1:[8}
0

and a tolerance of 18. What do you observe ? Explain.

4.10 Re-use your code to write an SQP solver for the genesbalgms of the
form:

min\i/(lnize (W)
subjectto g(w) = 0, (4.14)
h(w) < 0.

You can use the Matlab functioquadprogas a QP solver. Make sure
you include a check of the QP solver output (check for intasi, and
non-convexity). Verify your code by setting up a QP problent4.14),
you should observe a one-step convergence.

4.11 We will again use the aircraft model of Exercise 1.2 tiith aircraft’'s
flight noisy data of Exercise 3.11 to estimate a model for ighttrajec-
tory. The data can be obtained in the book websit€laght_data.m,
and as before, it represents the positgn 4nd g, during a 20 s flight.
For this exercise, we will assume that the solution trajgotan be mo-
deled by a fifth order polynomial as:



78 Newton-Type Optimization Algorithms

Pxk(Bx) = Ox1 + tkbx2 + Oy 3 SiN(Oy 4 + tcby5) €70k
Pok(62) = 621 + tbz2 + 0,3 SIN(0,4 + tfy5) €720k

Then, in order to model the airplane flight trajectory, we eatimate
the polynomial cofficients by solving the following optimization pro-
blem:

N-1
minimize > (Pxk(6x. 6)) = Pxi)” + (Pek(6x. 62) — Pak)®
k=0

x> Yz

(a) Write down the objective function in the form of Gauss-Nmaw
T 1
mlngmze EF(@)TF(G) (4.15)

(b) LinearizeF(0) analytically to solve folFq, J, where:
F(0) ~ Fo + JAO

(c) Use Newton’s method with the Gauss-Newton Hessian appe
tion to solve (4.15).

(d) Plotpx vs—pz, —p; Vs time, andpy vs time. It will probably be very
useful in debugging to plot each iteration of the algorithm.

(e) In Exercise 1.2, you used a RK4 integrator to minimizertteasu-
rement errors but for estimatingand the initial state. Now put that
probem in the Gauss-Newton form. Only writeATLAB function
for F, not J. A function for computingJ from F is provided in the
book website afinite_difference_jacob.m. You will call this
function with a command something like:

[FO,]] = finite_difference_jacob(@(x)Fobj(x),x0);
Solve this problem using Newton’s method with the Gauss#daw
Hessian approximation. For initial guess, use any inittatesyou
want, and use = 3°.

4.12 CasADi Exercise: SQP ImplementationRegard the following optimi-
zation problem:

- i 1 1 1
minimize f(x) := §(X1 12+ E(10()(2 — )2+ Exg

subjectto g(x) := X1 + (1 — x2)? = 0, (4.16)

h(x) =02+ - % <0



Exercises 79

(a) Re-write on paper the objective function in nonlineastesquare
form f(x) = %||R(x)||§ and derive the Gauss-Newton approximation
of the Hessian of the Lagrangian.

(b) We will start by implementing an SQP solver for the undmaised
problem obtained by removing bothandh from (4.16). Using the
template provided in the website, implement the CasADi fioms £
andJ £ that return evaluations dfand its Jacobian. Use the numerical
values given in the template to check that your implemeorais
correct. Do the same for the residual funct®and its Jacobian.

(c) Using the Jacobian of and R build the Gauss-Newton objective
function

fogn = %AXTVR(Xk)VR(Xk)TAX + Vi F(X)TAX.

Then, allocate an instance of the QP solver gpOASES using@ias
and use it to solve the local quadratic approximations in S
iterations. Plot the results using the template. Where daténates
converge to?

(d) Include now the equality constraints. Define two CasADidtionsG
and Jg that return evaluations @f and its Jacobian and use them to
define the linearized equality constraint

9 = g(x¥) + Vgy(x) " Ax.

Include this constraint in the QP formulation and run theudation
again. Does the solution change?

(e) Finally, include the inequality constraints. As in TasK, defined
and Jh and use them to define the linearized inequality constraints
Include them in the QP formulation and run the finalized \@rf
the SQP solver.



)
Calculating Derivatives

Progress is measured by the degree gfedi
rentiation within a society.
—Herbert Read

Derivatives of computer coded functions are needed evesyavim optimi-
zation. In order to just check optimality of a point, we neé@ady to com-
pute the gradient of the Lagrangian function. Within Newtgpe optimization
methods, we need the full Jacobian of the constraint funstitf we want to
use an exact Hessian method, we even need second ordettidesivaf the
Lagrangian.

There are many ways to compute derivatives: Doing it by hamdror prone
and nearly impossible for longer evaluation codes. Com@l¢ebra packages
like Mathematica or Maple can help us, but require that timetion is formu-
lated in their specific language. More annoyingly, the risgilderivative code
can become extremely long and slow to evaluate.

On the other handinite diferencesan always be applied, even if the functi-
ons are only available as black-box codes. They are easyptement and
relatively fast, but they necessarily lead to a loss of gieni of half the valid
digits, as they have to balance the numerical errors thginatie from Taylor
series truncation and from finite precision arithmetic.@bderivatives obtai-
ned by recursive application of finitefférences are even more inaccurate. The
best perturbation sizes ardfitiult to find in practice. Note that the computa-
tional cost to compute the gradievif (x) of a scalar functiorf : R" — R is
(n+ 1) times the cost of one function evaluation.

We will see that a morefigcient way exists to evaluate the gradient of a
scalar function, which is also more accurate. The techryisgalledalgo-
rithmic differentiation (AD)and requires in principle nothing more than that

80



5.1 Algorithmic Djferentiation (AD) 81

the function is available in the form of source code in a séadgrogramming
language such as CAG or FORTRAN.

5.1 Algorithmic Differentiation (AD)

Algorithmic differentiation uses the fact that eaclfetientiable functiorf :

R" — R™ is composed of severalementary operationdike multiplica-
tion, division, addition, subtraction, sine-functiongpdunctions, etc. If the
function is written in a programming language like e.g. G#Gr FORTRAN,
special AD-tools can have access to all these elementaratiques. They can
process the code in order to generate new code that does Igatadiver the
function value, but also desired derivative informatiotgaithmic differenti-
ation was traditionally calledutomatic djferentiation but as this might lead
to confusion with symbolic dierentiation, most AD people now prefer the
termalgorithmic djferentiation which fortunately has the same abbreviation.
A good and authoritative textbook on AD is [45].

In order to see how AD works, let us regard a functien: R" — R
that is composed of a sequencenotlementary operations. While the inputs
X1, ..., %, are given before, each elementary operatign = 0,...,m-1 ge-
nerates another intermediate variabg,.1. Some of these intermediate vari-
ables are used as output of the code, but in principle we ¢andall variables
as possible outputs, which we do here. This way to regardaifumevaluation
is stated in Algorithm 5.1 and illustrated in Example 5.20vel

Algorithm 5.1 (User Function Evaluation via Elementary Operations)
Input: Xi,...,X%n
Output: Xg, ..., Xptm

fori=0tom-1do

Xn+i+1 < @i (Xl, ceey Xn+i)
end for

Note:eachg; depends on only one or two out pfy, . .., Xni}-

Example 5.2(Function Evaluation via Elementary Operatiankgt us regard
the simple scalar function

f (X1, X2, X3) = SIN(X1X2) + €XpX1X2X3)

with n = 3. We can decompose this function imo= 5 elementary operations,



82 Calculating Derivatives

namely
X4 = X1 X2
Xs = Sin(Xs)
Xe = X4X3
X7 = exp(Xs)
Xg = X5 + X7.

Thus, if then = 3 inputsxy, X, X3 are given, then = 5 elementary operations
do, ..., ¢4 compute than = 5 intermediate quantitiey, ..., Xg, the last of
which is our desired scalar outpust,, m.

The idea of AD is to use the chain rule andfdientiate each of the elemen-
tary operationg; separately. There are two modes of AD, on the one hand the
“forward” mode of AD, and on the other hand the “backwardgverse”, or
“adjoint” mode of AD. In order to present both of them in a dstent form,
we first introduce an alternative formulation of the oridinger function, that
uses augmented elementary functions, as foftows introduce new augmen-
ted states

X1 X1 X1
Xo=x=|:1], X=| [, ... Zm=]| :
Xn Xn+1 Xn+m

as well as new augmented elementary functiogns R™ — R™+1 %
Xi+1 = ¢i(%) with
X1

Fi(x) = : Ci=o0...m-1

Xn+i
¢I(X1’ ceey Xn+i)

Thus, the whole evaluation tree of the function can be sunzedias a con-
catenation of these augmented functions followed by a plidétion with a
“selection matrix”C that selects fronxy the final outputs of the computer
code.

F() = C - $ma(@m2(- - 1(Bo(2))))-
The full Jacobian of, that we denote byg = % is given by the chain rule as

1 MD thanks Carlo Savorgnan for having outlined to him this wépresenting forward and
backward AD



5.2 The Forward Mode of AD 83

the product of the Jacobians of the augmented elementagjidus); = Z—Q
as follows:

JF=C-Jn1- s 3- % (5.1)

Note that each elementary Jacobian is given as a unit matiome extra row.
Also note that the extra row that is here marked with stdnas at maximum
two non-zero entries.

1

For the generation of first order derivatives, algorithmiffedentiation uses
two alternative ways to evaluate the product of these Jaogbitheforward
and thebackward modas described in the next two sections.

5.2 The Forward Mode of AD

In forward AD we first define &eed vector pe R" and then evaluate the
directional derivativelg p in the following way:

Jp=C- (@1 Gmaz {1 (Sop))).

In order to write down this long matrix product as gfiaent algorithm where
the multiplications of all the ones and zeros do not causepcational costs,
it is customary in the field of AD to use a notation that useg tl@antities”x;
that we might think of as the velocity with which a certainia#te changes,
given that the inpuk changes with speex= p. We can interpret them as

. dx

X = ax P
In the augmented formulation, we can introduce dot quastii for the aug-
mented vectorg;,; fori = 0,...,m—1, and the recursion of these dot quantities
is just given by the initialization with the seed vectir= p, and then the re-
cursion

%= Ji(%)%, i=01,....m-1
Given the special structure of the Jacobian matrices, nestents of% are

only multiplied by one and nothing needs to be done, apam tiee computa-
tion of the last component of the new veciqr;. This last component ig;i.1



84 Calculating Derivatives

Thus, in an éicient implementation, the forward AD algorithm works as the
algorithm below. It first sets the se@d="p and then proceeds as follows.

Algorithm 5.3 (Forward Automatic Dfferentiation)
Input: X, ..., X, and all partial derivativeg%
Output: Xg,...,Xnim

fori=0tom-1do
Xniel < ZT:l %XJ
end for

Note:each sum consist of only one or two non-zero entries.

In forward AD, the function evaluation and the derivativalesation can be
performed in parallel, which eliminates the need to stoseiaternal informa-
tion. This is best illustrated using an example.

Example 5.4(Forward Automatic Dfferentiation) We regard the same exam-
ple as abovef(xy, X2, X3) = SiN(X1X2) + €XpXyX2X3). First, each intermediate
variable has to be computed, and then each line canflezetitiated. For given

X1, X2, X3 @andXxy, Xz, X3, the algorithm proceeds as follows:

X4 = X1 X2 Xg4 = X1 X2 + Xy X2
X5 = SiN(Xs) X5 = COS(a)Xa
X6 = X4X3 X6 = Xa4X3 + XaX3
X7 = eXp(Xe) X7 = expie) X
Xg = X5 + X7 Xg = X5 + X7

The result isxg = (5(1, Xo, Xg)Vf(Xl, Xo, X3).

It can be proven that the computational cost of Algorithmlb4s smaller
than two times the cost of Algorithm 5.1, or short

costJg p) < 2 costf).

If we want to obtain the full Jacobian &, we need to call Algorithm 14.15
several times, each time with the seed vector correspoidioge of then unit
vectors inR", i.e. we have

costdr) < 2ncostf).



5.3 The Backward Mode of AD 85

AD in forward mode is slightly more expensive than numerfoate differen-
ces, but it is exact up to machine precision.

5.2.1 The “Imaginary trick” in MATLAB

An easy way to obtain high precision derivatives in MATLAR:Issely related
to AD in forward mode. It is based on the following observatid F : R" —
R"™ is analytic and can be extended to complex numbers as inpdtsidputs,
then for anyt > 0 holds

Jep= TECEIR) o
In contrast to finite dferences, there is no subtraction in the numerator, so
there is no danger of numerical cancellation errors,tacah be chosen extre-
mely small, e.gt = 1019, which means that we can compute the derivative
up to machine precision. This “imaginary trick” can mostilgalse used in a
programming language like MATLAB that does not declare tipetof varia-
bles beforehand, so that real-valued variables can auimatiate overloaded
with complex-valued variables. This allows us to obtairhhyecision deriva-
tives of a given black-box MATLAB code. We only need to be stivat the
code is analytic (which most codes are) and that matrix otovedcansposes
are not expressed by a primAigwhich conjugates a complex number), but by
transp.

5.3 The Backward Mode of AD

In backward AD we evaluate the product in Eq. (5.1) in the re¥®rder com-
pared with forward AD. Backward AD does not evaluate forwdirgctional
derivatives. Instead, it evaluatadjoint directional derivativeswhen we de-
fine aseed vecton € R™ then backward AD is able to evaluate the product
AT Jk. It does so in the following way:

AT = (((A7C) - In-1) - Jn2) -+ J) - o (5.2)

When writing this matrix product as an algorithm, we use “baarmfities”
instead of the “dot quantities” that we used in the forwarddmdrhese quan-
tities can be interpreted as derivatives of the final outpithh wespect to the
respective intermediate quantity. We can interpret

x=a o

dx’



86 Calculating Derivatives

Each intermediate variable has a bar variable and at thie wiinitialize all
bar variables with the value that we obtain fr@hA. Note that most of these
seeds will usually be zero, depending on the output seleatiatrixC. Then,
the backward AD algorithm modifies all bar variables. BaclovaD gets most
transparent in the augmented formulation, where we haveummtitiess; for
the augmented states We can transpose the above Equation (5.2) in order to
obtain
Fa=3 (I CT).
—
=Xm-1
In this formulation, the initialization of the backward skise nothing else than
setting%, = C 1 and then going in reverse order through the recursion

% =Ji(%) %1, i=m-1m-2,...,0.

Again, the multiplication with ones does not cause any cdatmnal cost, but
an interesting feature of the reverse mode is that some digthguantities can
get several times modified in veryffirent stages of the algorithm. Note that
the multiplicationJ| %1 with the transposed Jacobian

modifies at maximum two elements of the vecfr by adding to them the
partial derivative of the elementary operation multiplieith X,,i.1. In an fi-
cient implementation, the backward AD algorithm looks dkofes.

Algorithm 5.5 (Reverse Automatic Mierentiation)
Input: seed vectoksy, ..., X,.m and all partial derivativegi—;
Output: X1, Xp, ..., Xy

for i = m- 1 down to Odo
forallj=1,...,n+ido
Yj — )?] + )?n+i+lg;ﬁ;
end for
end for

Note:each inner loop will only update one or two bar quantities.



5.3 The Backward Mode of AD 87

Example 5.6(Reverse Automatic Mierentiation) We regard the same exam-
ple as before, and want to compute the gradlefitx) = (X1, X, X3)T given
(X1, X2, X3). We setd = 1. Because the selection matiix selects only the
last intermediate variable as output, i@.= (0, --- 0, 1), we initialize the
seed vector with zeros apart from the last component, whiabne. In the
reverse mode, the algorithm first has to evaluate the fumetith all interme-
diate quantities, and only then it can compute the bar dgiiestiwhich it does
in reverse order. At the end it obtains, among other, theregjuantitities
(X1, X2, X3). The full algorithm is the following.

/] *** forward evaluation of the function ***

X4 = X1 X2
X5 = SiN(Xs)
Xe = X4X3
X7 = exp(Xe)
Xg = X5 + X7

// *** initialization of the seed vector ***
x=0 i=1...,7
Xg=1

/] *** backwards sweep ***

// * differentiation ofxg = X5 + X7
Xs = X5+ 1 Xg

X7=X7+1X%g

// * differentiation ofx; = exp(Xs)
X6 = Xe + EXP(Xe)X7

// * differentiation ofxg = X4%3
Xg = Xa + X3Xe

X3 = X3 + XaXe

// * differentiation ofxs = sin(x,)
X4 = X4 + COS(Ka) X5

// differentiation ofxy = X1 %o

X1 = X1 + XoXa

X2 = X + X1X4



88 Calculating Derivatives

The desired output of the algorithm i% (X,, X3), equal to the three compo-
nents of the gradieri f (x). Note that all three are returnedonly onereverse
sweep.

It can be shown that the cost of Algorithm 5.5 is less than &sirthe cost
of Algorithm 5.1, i.e.,

cost@" Jg) < 3 costf).

If we want to obtain the full Jacobian &%, we need to call Algorithm 5.5
several times with thag seed vectors corresponding to the unit vectoi®"m
i.e. we have

costdr) < 3ng costfF).

This is a remarkable fact: it means that the backward modddoé#@n compute
the full Jacobian at a cost that is independent of the statermionn. This is
particularly advantageousrit < n, e.g. if we compute the gradient of a scalar
function like the objective or the Lagrangian. The reverselencan be much
faster than what we can obtain by finitefdrences, where we always need
(n + 1) function evaluations. To give an example, if we want to pata the
gradient of a scalar functiof : R" — R with n =1 000 000 and each call of
the function needs one second of CPU time, then the finfferdince approxi-
mation of the gradient would take 1 000 001 seconds, whiledingputation of
the same quantity with the backward mode of AD needs only dreisc(1 call

of the function plus one backward sweep). Thus, besideglmore accurate,
backward AD can also be much faster than finit&edences.

The only disadvantage of the backward mode of AD is that we bagtore
allintermediate variables and partial derivatives, intcast to finite diferences
or forward AD. A partial remedy to this problem exist in forrhaheckpointing
that trades-fi computational speed and memory requirements. Instead of al
intermediate variables, it only stores some “checkpoidig’ing the forward
evaluation. During the backward sweep, starting at thesekgoints, it re-
evaluates parts of the function to obtain those intermediatiables that have
not been stored. The optimal number and location of checkpds a science
of itself. Generally speaking, checkpointing reduces tkenory requirements,
but comes at the expense of runtime.

From a user perspective, the details of implementation aer¢oo relevant,
but it is most important to just know that the reverse mode bfexists and
that it allows in many cases a much mof@&aent derivative generation than
any other technique.



5.4 Algorithmic Dfferentiation Software 89

5.3.1 Hficient Computation of the Hessian

A particularly important quantity in Newton-type optimtikan methods is the
Hessian of the Lagrangian. It is the second derivative ofstadar function
L(x, A, 1) with respect tox. As the multipliers are fixed for the purpose of
differentiation, we can for notational simplicity just regafdiaction f : R" —

R of which we want to compute the Hessigaf (x). With finite differences we
would at least neech(+ 2)(n + 1)/2 function evaluations in order to compute
the Hessian, and due to rounfi-and truncation errors, the accuracy of a finite
difference Hessian would be much lower than the accuracy of tetidun f:

we loose three quarters of the valid digits.

In contrast to this, algorithmic fierentiation can without problems be app-
lied recursively, yielding a code that computes the Hessiatrix at the same
precision as the functiof itself, i.e. typically at machine precision. Moreo-
ver, if we use the reverse mode of AD at least once, e.g. byginserating an
efficient code forV f(x) (using backward AD) and then using forward AD to
obtain the Jacobian of it, we can reduce the CPU time coraitiecompared
to finite differences. Using the above procedure, we would obtain thdaatess
V2f at a cost of 2 times the cost of a gradieRtf, which is about four times
the cost of evaluating alone. This means that we have the following runtime
bound:

cost(V2f) < 8ncost(f).

A compromise between accuracy and ease of implementatarigttequally
fast in terms of CPU time is to use backward AD only for compgtihe first
order derivativeV f(x), and then to use finite filerences for the lierentiation
of Vf(x).

5.4 Algorithmic Differentiation Software

Most algorithmic diferentiation tools implement both forward and backward
AD, and most are specific to one particular programming lagguThey come
in two different variants: either they usperator overloadingr source-code
transformation

The first class does not modify the code but changes the tyihe ehriables
and overloads the involved elementary operations. Fordivesfrd mode, each
variable just gets an additional dot-quantity, i.e. the nawables are the pairs
(%, %), and elementary operations just operate on these p&ies g.

(%) - (y.¥) = (XY, Xy + yX).



90 Calculating Derivatives

An interesting remark is that operator overloading is alstha basis of the
imaginary trick in MATLAB were we use the overloading of reaimbers
by complex numbers and used the small imaginary part as dwttity and
exploited the fact that the extremely small higher ordemtedisappear by
numerical cancellation.

A prominent and widely used AD tool for generic user supple+- code
that uses operator overloading is ADOL-C. Though it is netriost icient
AD tool in terms of CPU time it is well documented and stableoter po-
pular tool in this class is CppAD.

The other class of AD tools is based on source-code transfaym They
work like a text-processing tool that gets as input the ugppked source code
and produces as output a new and vefiedently looking source code that im-
plements the derivative generation. Often, these codebeamade extremely
fast. Tools that implement source code transformation&\BM€ for ANSI C,
and ADIFOR and TAPENADE for FORTRAN codes.

In the context of ODE or DAE simulation, there exist good nuige in-
tegrators with forward and backwardidirentiation capabilities that are more
efficient and reliable than a naive procedure that would cowgistking an
integrator and processing it with an AD tool. Examples faegrators that use
the principle of forward and backward AD are the code DAESObr the
open-source codes from the ACADO Integrators Collectiofian the SUN-
DIALS Suite.

Exercises

5.1 Assume we have a twice continuouslffelientiable functiorf : R —» R
and we want to evaluate its derivati¥&xp) at xo with finite differences.
Further assume that in a neighborh@gfk) it holds:

IF7( < fae 1T < Fna (5.3)

with N(Xg) = {X|Xg — § < X < X + 6}, 6 > t andt the perturbation in the
finite difference approximation. The functidiix) can be represented on
a computing system with an accuragych i.€., it is perturbed by noise

e(X):
() = F(L+€(x) 1€ < €macn

(a) Compute a boungon the error of the finite dlierence approximation



5.2

Exercises 91
of /(o)

w - f/(XO) < 'J’(t, fmax, fr%/ax’ fmach)-

(b) Which valuet* minimizes this bound and which value has the bound
att*? ) )

(c) Do asimilar analysis for the centrafidirences wheré& (xo) = W.
Hint: you can assume that also the third derivative is bouhde

[Xo—t, X +t].

Consider a two-dimensional model of an airplane wittesta= [ px, pz,

Vx, Vo] where positiong = [px, p-] and velocityV = [v, v,] are vectors in
thex—zdirections. We will use the standard aerospace convertiatixXt

is forward andzis down, so altitude is-p,. The system has one control
u = [a], wherea is the aerodynamic angle of attack in radians. A Matlab

function has been provided for you which integrates theesgsh time,
implementing:

Xer1 = X + Mo f (X, Uk)
where the continuous time system dynamics have the form:

Vx
Vz
Fyx/m
F,/m

f(x,u) =

with
F= 'flift + 'f)drag"‘ 'f)gravity'

As well as outputting, 1, this function also provideég%+1 and 33‘{11.
This function is available aisntegrate_airplane_ode.m at the book
webpage. In this exercise we want to find controls for thdaimp so that
it gets a maximum velocity in upwards direction at the endhefliorizon
(after 2 seconds) using = 0.02 and a horizon length dfi = 100. In

particular, we will optimize the following NLP:

minimize ¢(U) = v,n(U)
U e RO

subjectto -1° < Uy <10°, k=0...N-1

A matlab functionfunction [phi, grad_phi, X] = phi_obj(U)



92

Calculating Derivatives

has been provided at the webpage in thefdiié_obj.m. This function

IViN

computess,y (phi) and a time history of stateX It also returns~
(grad_phi), but this part is incomplete - you will implement it yourkel

(a) Usephi_obj.mto solve the NLP usingmincon letting Matlab es-

(b)
(©

timate derivatives. Youfmincon call should look like:
opts = optimset(’display’,’iter’,’algorithm’,...
’interior-point’,’MaxFunEvals’, 100000);
alphasOpt = fmincon(@phi_obj, alphas®, [], [],...
(1, 1, 1b, ub, [], opts);

Useax =0, k=0...N-1asaninitial guess. Plgt vs—p; anda vs
time. How much time and iterations does the solver need tearge?
Using reverse mode AD, complete the missing pagttdf obj.mto
computegrad_phi.
Solve the NLP witlphi_obj.m and fmincon again, this time using
exact derivatives. Youfmincon call should look like:
opts = optimset(’GradObj’,’on’,’display’,’iter’,...

’algorithm’,’interior-point’);
alphasOpt = fmincon(@phi_obj, alphas®, [], [],...

[1, [1, 1b, ub, [], opts);

Useax =0, k=0...N-1asaninitial guess. Plgt vs—p, anda vs
time. How much time and iterations does the solver need tearge?



6
Parameter Estimation

6.1 Parameter Estimation via Least-Squares Penalties

A common source of optimization problems are least-squan@sems, which
often arise from parameter estimation tasks. Let us in #gsien discuss how
these problems are formulated, starting with linear Isgstares problems and
then going to nonlinear ones.

6.1.1 Unconstrained linear least-squares

For a start, let us first consider the followitigear model
Aw=y (6.1)

that aims at explaining the set of measured g&f&° < R™ via the vector of
parameters wve R™, i.e. one aims at having

Aw ~ ymeas

In this context, matrixA € R™*™ serves as a set of input data, and provides
themodel structure

For aredundantset of measuremeng'®® i.e. forny, > ny, (6.1) is over-
determined and typically does not have a solution. In thigasion, matrixA
has more rows than columns, and is not invertible. This issaddressed via
solving afitting probleminstead of solving the original problem (6.1). Fitting
provides a vector of parametexghat minimises the fitting error aesidualin
system (6.1), defined as

e= Aw—yme

The vector of parametev i5 then determined by means of the following opti-

93



94 Parameter Estimation
misation problem:
1
W= min Z||Aw - y™*293 (6.2)
w2
where the symmetric positive-definite matfdds an ad-hoaveighting matrix

Example 6.1. Let us consider the problem of fitting a line of equatoi-
W1X + W, to a set of measured pairs of poirtg, z} for k = 1,...,N. We
formulate the estimation of;, w, as a least-squares problem:

N
I 1 )
mln\ll(lnlze kz_; > (W1Xxk + Wo — Z)

which can be put in the form (6.2) using:

X1 1 V4}

XN 1 N

Solution to the unconstrained least-squares problem
Problem (6.2) is solved by finding a stationary point of itstdoinction, i.e. a
vectorw that satisfies:

1
VuslIAW=y"elG = ATQ(Aw- yTe%) = 0.
The optimal vector of parameterthen reads as:

W= (ATQA) " ATQy™ (6.3)
In the special cas® = I, one can recognise thatis obtained via th@seudo-
inverseof matrix A, i.e.

W= (ATA) ATy
———
A
Remark: The size of matrixATA is n,, X ny. For a very large number of

parametersw, i.e. for n,, very large, the factorisation of the possibly dense
matrix AT A can be challenging.

Moments of the parameter estimation
Let us assume here that the fitting ereaf the linear model (6.1) results from
a zero-mean normally distributed additive measuremersenake.

*8S= Awp + N (6.4)



6.1 Parameter Estimation via Least-Squares Penalties 95

wherewy is the actual vector of parameters, amd- N (0, Z,). We want to
understand the impact of the measurement noise the resulting estimated
parametersv by computing its two first moments (expected value and cevari
ance). It should be observed here that since the nois€&aussian and since
the least-squares solution (6.3) is a linear map appliethéamnieasurements
y™M€2s the resulting parameter estimatiaris™also following a Gaussian distri-
bution, i.e.:

W~ N (E (W}, Za)

whereE {W} andXy, are the expected value and covariance of the estimation ~
The expected valuk {W} can be easily computed:

EiW) =E {(AT QA) AT Qy“eai _
(ATQA) " ATQE{AW, + 1} = (ATQA) TATQAW = wo  (6.5)

where we have used the fact tiiagn} = 0. It follows that the parameter estima-
tion obtained via solving the fitting problem (6.2)uebiasedi.e. E {W} = wy.
The covariance of the parameter estimation then reads as:

i = E{(W— wo)(W - wo)T}.

Let us defineA, = (ATQA) " ATQ. We then havav’= ALy = Al(Awp + n)
and becausAéA = |, we have the following identity:

W— W = AQn
such that we get
T = AQE (T} (Ag)
and definingz, = E{nn"}, we finally have:
o= (ATQA) ' ATQE,QA(ATQA)
Observe that for the specific choice
Q=134 (6.6)
the covariance of the parameter estimation reduces to:
Sa = (ATQA) .

We will see in the next two sections that the choice of weightnatrix (6.6)
can be interpreted as optimal in twdfgrent ways.



96 Parameter Estimation

Least-squares and maximum likelihood estimator
Let us consider an alternative view of deciding the bestrpatar estimatiom ”
from a set of measurement®©2 Instead of the fitting problem (6.2), we will
consider finding the value af that maximises the likelihood of obtaining the
observed measurement8®?s Sincew andy™¢?are continuous variables, we
frame this question in terms of probability densities. Warfolate the maxi-
mum likelihood problem as follows:

W = arg navaxf (y™%w) (6.7)

wheref (y"%w) is the conditional probability distribution gf¢2s for a given
parametemw. A simple interpretation of (6.7) is: what is the value thia¢ t
parametew should have in order to make the probability density of oliser
yme®Smaximal ?

From (6.4) and for a givew, it is clear thaty™¢@*follows a normal distribu-
tion of the form:

Yy LN (AW, ) ,
hence

f (y"*iw) = exp{- (Aw—y™*9" £;! (Aw - y™*39} - const

We then reformulate the optimisation problem (6.7) as feflpusing the mo-
notonicity of the logarithm:

W = arg max f (y"**{w) = arg min —log {f (y"**{w)} =
arg min (Aw - y"eyT 3oL (Aw— y™eay

It follows that problem (6.7) delivers the same solutivias’ the least-squares
problem (6.2) with the choice of weight (6.6). Hence thetiesagiares problem
with the choice of weight (6.6) is a maximum-likelihood esditor.

Least-squares as a minimiser of the estimation covariance
In this section, we show that the choice of weight (6.6) isropt in the sense
that it minimises the trace of the covariance of the paramegtgmationXy,
i.e. it minimises the uncertainty of the estimated paramete
The trace operator, here denoted as t(gcesums the elements of the diago-
nal of the matrix it is applied to, i.e. for an arbitrary mathl € R™":

trace(M) = Z Mi.
i=1



6.1 Parameter Estimation via Least-Squares Penalties 97

Taking the trace of a matrix is identical to summing up thermatigenvalues,
ie.

trace(M) = zn:/l,- (M),
j=1

and is identical to the sum of the matrix singular values & thatrix is sym-
metric positive-definite.

To establish the statement of this section, let us define #taxiK € R™*™
as a generic linear estimator providing the estimation efgthrameter vector
W from the measuremeny8?s i.e.:

W = Ky™®= K (Aw+n).

In order to recover an unbiased estimator, i.e. to ensuteeth@ = w, matrix
K must satisfy:
KA=1. (6.8)
It can be verified that the covariance of the parameter estm# then reads
as:
o = E{@} - E (W) E (W'} = KZKT.

Let us then consider the following matrix optimisation pesh:

o .
minjmize Etrace(KEnK ) (6.9a)

subjectto KA-1 =0, (6.9b)

which minimises the covariance wfunder the constraint that the estimator
should be "unbiased”, i.e. Eq. (6.8). Even though problefs® form (6.9)
have not been considered so far in this book, they can bedolsiag very
similar techniques as seen previously. To that end, we d#fméagrangian
function associated to (6.9):

£(K,Z) = %trace(KEnKT) +tracg(Z™ (KA-1))

where matrixZ € R™*™ acts as the set of Lagrange multipliers associated to
the constraint (6.9b), and tra¢&" (KA — 1)) defines a scalar product between
Z andKA - I. The solution to (6.9) is then given by:

VkL(K,Z)=0, KA-1=0.



98 Parameter Estimation
The trace operator is linear and has the following usefuperties:
trace(ABC) = trace(BCA) = trace(CAB), Vatrace(AB) = B".
It can then be verified that:
1 T T
VkL(K,Z) = EvKtrace(Kan ) + Vktrace(ZTKA) =
=KZ,+ZA" =0.
HenceK = —ZATx-!, and using the constraint (6.9b):
ZATA=1 o Z=—(ATEA)
We finally get as the optimal solutidf, = (ATZglA)_l ATzt e,
W = K,ymeas= (ATZHlA)_l ATE‘.;lymeas.

Hence, the least-squares problem (6.2) with the choice a@hv€6.6) mini-
mizes the trace of the covariance matrix of the parametenason;. More
generally than discussed here, one can prove that the dpitm@ar estimator
K. minimizes not only the trace of the covariance, but any otheaningful
performance measure: for any unbiased linear estinkaigith KA = | holds

KZ KT > K,ZoKT.

The reasoning above was minimizing the trace.

6.1.2 Nonlinear least-squares

We now turn to the problem of estimating a set of parametetbéncase a
nonlinear measurement function is in use. Consider thel@mub

. 1
W= argmin Sly (W) -y TR, (6.10)

wherey(.) : R™ — R is an arbitrary yet sficiently smooth function.

Solution to the unconstrained nonlinear least-squares prolem
Problem (6.10) is in a form suitable for the Gauss-Newtonhogtwith the
nonlinear residual function (see Section 4.1.3), with #sédual function:

R(W) = QF (y (w) — y™3.



6.1 Parameter Estimation via Least-Squares Penalties 99

The estimationw’is then typically obtained by performing the Newton-type
iterations:

Wie1 = W — BOVR(W) R(W),  VR(W) = Vy (W) Q2,

to convergence, whe®, = VR(wy) VR(wW)" is the Gauss-Newton Hessian
approximation for problem (6.10).

Moments of the parameter estimation

Similarly to the linear least-squares case, we are integeist assessing the
moments of the parameter estimatianrésulting from measurement noise,
mainly its expected value and covariance. However, contptréhe linear
least-squares case, using a nonlinear measurement fumetgsome impor-
tant consequences.

The firstimportant observation we need to make concernscrexéed value
of the parameter estimation. By definition, the expectedevaf the estimated
parameter is given by:

E{v“v}:fwfw(w)dw
W

whereW is the domain ofv’and f,, the probability density function of."We
note that the solutiow fo problem (6.10) satisfies the KKT conditions:

1 1
Vs ly W) -y = 5V (RTR) = VuRR= 0. (6.11)
Because the measurement functiogw) is nonlinear, (6.11) yields an im-
plicit nonlinear map from the measuremeyt§2sto the estimated parameters
w. It follows that even assuming that the measurements ajectub additive,
Gaussian noise, i.e.:

y"®=y(Wwo) +n, n~N(0,Z,), (6.12)

wherewy is the true value of the parameter, the resulting probgldlénsity
function of the estimated parametgris in general not a Gaussian distribution.
In particular, it follows that in general:

E{\fv}:fwfw(w)dW;t Wo. (6.13)
w

This result needs to be contrasted with (6.5), and warnsatsrthhe case of a
nonlinear measurement function, the expected value ofdh@npeter estima-
tion does, in general, not match the true value of the pareuméte then say
that the nonlinear least-squares problem (6.10) provitlesedestimations.



100 Parameter Estimation

We are interested next in estimating the covariance of theiso of pro-
blem (6.10). As detailed previously, for a nonlinear measwent function
y(w), the estimatiow'will in general not have a Gaussian distribution, even
when the noise distribution has. It follows that assesgiegrue covariance of
the parameter estimation is in general an intricate problencircumvent this
issue, we consider a linearisation of the nonlinear fittingbgem (6.10) at its
solution, and deploy a similar approach as in the lineatisqsares case. The
distribution of the parameter estimati@nis then approximated as Gaussian.
We detail this approach next.

Using the additive noise (6.12), the residual functitbecomes

R(w, n) = QZ (y (W) — y (Wo) — ).

In the absence of measurement noise, i.e. with0, the solution to the fitting
problem (6.10) yields the true parametey with R(wp, 0) = 0. The true pa-
rametemn is then solution of (6.11). We carry out the analysis by tgkime
first-order approximation of the (nonlinear) KKT condit®(6.11) atn = O
andwg:

H (wo, n) (W — w) + % (VuRWo, M) R(Wo, M) n+ O(IIn?) =0, (6.14)

whereH (wp, ) is the Hessian of the least-square penalty. We observe that

0
an (VwR (Wo, n) R(wo, n)) = =Vy (wo) Q. (6.15)
We then obtain the following linear system:
W= wo = H (wo) ™ ¥y (Wo) Qn-+ O ((Inl’)

describing to a first-order approximation the error betwemnestimated pa-
rameterw and its true valuevg. We can then approximate the covariance of

W
Sa = E{(W-wo) (W — wo) "} ~ H (Wo) ™ Vy (wo) QEnQVY (Wo) ™ H (o).
Using the choice of weight (6.6), i.Q = X1, we obtained:

T = E (= wo) (W — wo) "} ~ H (o)™ Vy (o) QVy (Wo) " H (o) .
(6.16)

Finally, the Gauss-Newton Hessian approximation for prob{6.11) reads as:

H (Wo, n) & VwR (Wo, n) VwR (Wo, n) " = Vy (Wo) QVY (Wo) "



6.1 Parameter Estimation via Least-Squares Penalties 101

such that (6.16) can be further approximated as:
-1
T ~ (Vy (Wo) QVY (Wo)T) .
Note that if the measurement functigrfw) is linear, i.e.y(w) = Aw, then
Vy(w) = AT, and (6.17) yields (6.1.1).
We illustrate next the concepts developed in this subsectio

(6.17)

Example 6.2. Consider the nonlinear least-squares problem:
1
. . . - _ ea 2
minimize 5 kil llz(w, %) — Y2l 3 (6.18)

wherey'®®; x, w € R andz(w, x) = W + xW>. We write problem (6.18) in
the form (6.10) using:

z(W, X1) yred
yw =| .. |, Y=

Z(w, Xy) y',;]‘-‘.?a .

We useN = 10, and use an additive Gaussian noise in the measurements, i
y"®=yWo) +n,  n~N(0,Z,).

We then solve problem (6.18) for 50000 randomly generatéskrsequences
n e RN, and a true parametey, = 0.2. Figure 6.1 reports the resulting dis-
tribution of the parameter estimationfér various levels of nois&, (shaded
dots). The true distribution is approximated as a Gaussgrillition of mean

E {W} and using the covariance given by (6.17), reported as tha plack
curves in Figure 6.1. The plain lines report the true valgyevhile the dashed
lines report the true expected valuevefIf can be observed that for a small
measurement noise, the estimatwiis practically unbiased and the Gaussian
distribution is a good approximation of its true distritmrti For a larger me-
asurement noise, the estimation becomes biased and thbutish becomes
clearly non-Gaussian.

Bias and Consistency
It is important in the context of nonlinear least squarenestion to have a
clear understanding of theftérence between a biased estimator and a consis-
tent estimator. As detailed in the previous section, thdinear least-squares
estimator (6.10) is biased, i.e. in general

E (W) £ Wo (6.19)



102 Parameter Estimation
2,=01-1 2, =051 h=1

30

)

25

_
20
2

%15

@

f W)

10

n

0 0 ;
014 016 018,,p2 022 024 02 01 0 \p1 02 03

Figure 6.1 distribution of the parameter estimatignfor various measurement
noise covariance. The black curve report the Gaussian distnbestimating the
true distribution. The dots represent the

because of the integral (6.13). Put in practical terms,rassyithat one accu-
mulates a large number of realizatiomsof the nonlinear least square estima-
tion (6.10) computed fronNey, different experimentis= 1, ..., Neyp, One shall
not expect that averaging the estimatesvill deliver an estimator that conver-
ges tawp for Neyp — co. However, itis crucial here to distinguish between bias
and inconsistency. To that end, we consider the problenepted in Example
6.2,i.e.

Y H 1 N eas|2
Wy = arg min zéuww,xk)—y'k“ 13 (6.20)

where we assume that a Gaussian noise enters linearly inghsurements,
..y, ®% =y (Wo, %) +N. As detailed previously, the nonlinear estimator (6.20)
is biased, but it is nonethelessnsistentin the sense that ligL,. Wy — Wo,
i.e. the estimator (6.20) converges to the true value of efphrametew as
the number of data sampk — 0. More details on this remark and on the
difference between unbiased and consistent estimators caruhe ifo e.g.
[59].

An interesting interpretation of this lack of equivalensdo construe it as
a non-commutativity between the argmin and the summati@natipn. More
specifically, let us labeky; the least-squares estimates stemming from a batch
of N data pointx;, y'l(‘jieaswith k = 1,..,N obtained in an experimemt Sup-
pose now thalNey, experiments are performed, such that 1, ..., Nexp. The
following two approaches can then be used to compute an a#bimof the



6.1 Parameter Estimation via Least-Squares Penalties 103

true parametewy:

Nexp
- A 1 -
IJ(WN,l,-n,WN,NeXp) = N Wi
o= (6.21)
Nexp 1 N '
= argminz » [ly (W, Xq;) — Vo5,
Nexp 22 O 2; YW, %ei) = Yie "
and
11 Nexp N
WixNg = argmin > lly (W, %) — Ve 1% (6.22)
P W 2Nexp;; iR
We then observe that
Jim 1 (W1, V) # Jim W, = Wo (6.23)

We then observe that (6.22) converges to the to the true paeamy while
(6.21) does not. The fierence between the two estimations lies solely in com-
muting the summatiorlq\‘i—xp Ziij with the minimization.

6.1.3 Constrained least-squares

We now turn to the problem of estimating a set of parametdsgestto con-
straints. The vector of parametaris then determined by means of the follo-
wing optimisation problem:

W= arngin %Hy (W) - y™215 (6.24a)
subject to g(w) =0 (6.24b)

wherey () : R™ — R"% andg(.) : R™  R™ is a suficiently smooth function.

Remark: a possible interpretation of the equality constraint46)4s that it
embeds in problem (6.24) the prior knowledge that the estichparametew ~
sits on the manifoldvl = {w| g(w) = 0} with absolute certainty. Such certainty
must be treated with care. Indeed, if functigrepresents a model underlying
the estimation problem, includingyas a constraint in (6.24) entails that one as-
sumes that the underlying model captures the reality pidyfétowever, such
an assumption is rarely valid in practice.

Solution to the constrained nonlinear least-squares prolg@m
As in Section 6.1.2, one can recognise in (6.24) a problemforra suitable
for the Gauss-Newton method (see Section 4.1.3). We thethgeablution to



104 Parameter Estimation
problem (6.24) via iterating the linear system:

B« Vg (Wk)] [Wk+1 - Wk} _ [VR(WK) R (W)
Vg (W)’ 0 A1 g(wq)

whereR(wy) = Q% (y (wy) — y™3 and B, = VR(wk) VR(W)" is the Gauss-
Newton Hessian approximation for problem (6.24).

Moments of the parameter estimation

Similarly to the nonlinear, unconstrained least-squasase cwe are interested
in assessing the moments of the parameter estimati@sulting from measu-
rement noise, mainly its expected value and covarianceaitticplar, we are
interested in understanding th&ext of the equality constrairg in problem
(6.24).

Similarly to (6.11), we note that the solutient6 problem (6.24) is impli-
citly given by the KKT conditions:

VwR(W,n)R(w,n) + ATg(w) =0
g(w) =0.

As in Section 6.1.2, because the measurement and (or) aorisiunctions
y(w), g(w) are nonlinear, the conditions (6.25) yield an implicit ioahr map
from the measuremeng©@sto the estimated parametavsitalso follows that
the distribution of the estimated parameterss in general not Gaussian, and
that the expected value of does in general not match the true value of the
parameter, i.e. the constrained nonlinear least-squéireader is biased.

We deploy a similar approach as in Section 6.1.2 to assesotfziance
of the nonlinear constrained estimator (6.24). In the atxsef measurement
noise, i.e. withn = 0, the solution to the fitting problem (6.24) yields the true
parametem, solution of (6.25). It is interesting to observe thatfot 0, the
multipliers 1o associated to the constramin (6.24) are zero, i.elp = 0.

We carry out the analysis by taking the first-order approxiomeof the (non-
linear) KKT conditions (6.25) at = 0 andwg:

(6.25)

H (Wo, n) (W — Wo) + a% (VWR(W, nNRWw,n) +17g (W)) n+0o (||n||2) =0
Vg (wo) " (W—wp) =0
(6.26)

where H (wg, n) now stands for the Hessian of the constrained least-square
problem (6.24). We observe that the maiffelience between (6.14) and (6.26)



6.1 Parameter Estimation via Least-Squares Penalties 105

is that now the first-order variatiom = wy is restricted to the null-space of the
constraints Jacobia¥ig (wp) ". We additionally observe that:

(VRO MR ) + AT gW) = -7y (0) Q.

i.e. itis identical to the unconstrained case (6.15). lofes that the first-order
variation ofw — wyg is provided by:

z

r‘A—"H
[gg(m;) VgéWO)] [V/\{: ;v; ] - [_Vy ((\)NO) Q] n+o(InF)  (6.27)
M 6

It will be useful to consider in the following the range-spaull-space de-
composition of the constraints Jacobfm(wo) ", i.e. matricesN, F such that:

Vg(wo)" N =0, Vg(wo)' F = 1.
It can then be verified that:
W—wo = - (NTH o, ) N) ™ N7y (wo) Qn+ O (IInP).

The matrixH = NTH (wo, n) N is labelled thereduced Hessiawof problem
(6.24) and is the projection of the Hessian of the problenhéndpace of the
admissible primal directions. We can then obtain:

T = Bn (W - wo) (W — wo) 7) = H*NTVy (Wo) QEaQVY (Wo) " NH+0 ([Inl/?).
Using the choice of weigh® ! = X, then yields:
T = By (W - wo) (W —wp) ") = H*NTVy (wo) QVy (Wo) " NH ™" + O (jInif?).
Finally, the Gauss-Newton Hessian approximation for pob(6.24)

H (Wo, n) ~ VwR (Wo, n) VwR (Wo,n) " = Vy (Wo) QVY (Wo) "
yields:

g = HINTH (wo, ) NH™ + O (Inf?) = H + 0 (1Inl?).

It follows that the inverse of the reduced Hessian of prob(én24) at the
noise-free solutiomvy provides an estimation of the covariancenof ~



106 Parameter Estimation
6.2 Alternative convex penalties

Though the least-squares cost function is by far the mostspicead cost used
in fitting problems, there exist other penalty functionsntiiae L, norm that
are used at dlierent occasions. Like thie, norm, all commonly used penalty
functions are convex. We discuss two of the most popular.ones

6.2.1 L; horm

The first common alternative penalty for fitting problemsaugeL;-norm as
a penalty function. Here, we consider the fitting problem:
minimize |ly (w) — Y™,
w (6.28)
subjectto g(w) = 0.
1 Slack formulation
A cost function involving ari; penalty is non-dterentiable. One must be very
careful when deploying Newton algorithms on non-smoottbfems in order
to obtain a reasonably fast and guaranteed convergencdrcloneent this
problem, we detail next a reformulation of the penalty function in problem
(6.28), which allows for removing the non-smoothness frbmdost function,
and place it in the inequality constraints instead. To timal, &e introduce an
additional set of variables € R" having the same dimension as the vector
subject to thd_; penalty. The variables are often labelledlack variablesn
the literature, and are used in manyteient contexts. The; penalty is then
implemented by "trapping” the fitting errgr(w) — y"¢®betweersand-s, i.e.:

=S¢ < V(W) — Y %< s

If all constraints are active, then we have

Iy (W) — Y ®o = s¢

and
n
lly(w) - Y™ = ) sc=1"s
k=0
We then rewrite problem (6.28) as:
minimize 1's
W, S
subjectto g(w) =0, (6.29)
-s< y(w) _ ymeasS s



6.2 Alternative convex penalties 107

We leave it as an exercises the proof that (6.29) is equivtdg(®.28).

Remark: problem (6.29) has a linear cost function, and as such nepyine
some care when using Newton-type algorithms. E.g. the Gldasgon Hes-
sian approximation for (6.29) is zero and therefore singiNavertheless, the
Gauss-Newton method with zero Hessian might converge iryroases when
applied toL,-fitting problems, and converge even with quadratic coreecg
rate, due to the fact that the solution is in a vertex of theifda set.

When an exact Newton method is used, one needs to observadtatdct
Hessian associated to (6.29) is likely to be indefinite and ttme might want
to apply some level of regularisation.

6.2.2 Huber penalty
min\i,(/nize H, (y (W) — y™®3

(6.30)
subjectto g(w) =0,

where

1x2 if X <p
_ 2 =
H”(X)‘{p(|x|—%p) it 12> p

with p € R. The shape of the Huber penalty function is depicted in Egur
6.2. The Huber penalti, (y — y"**) implements ari, on the samples of the
fitting errory — ym®that are smaller thap, and anL; norm on the larger
ones. Itis very useful for rejecting outliers, while refamthe nice behaviour
least-squares fitting with respect to the data points thabeawell fitted.

Remark: the Huber penalty function is not a norm, since e.g.ltbmoge-
neity condition does not hold, i.e. in genetd) (aX) # || H, (X).

Slack formulation The Huber penalty is everywhereidirentiable, but not
twice differentiable. Similarly to thé.; norm problem (6.28), a reformula-
tion using slack variables allows for having a smooth forttioh of problem
(6.30), which is better suited for the Newton context. Thi@nmaulation for
problem (6.30) reads as:

N 1
minimize olTy + E’uT’u
subjectto  g(w) =0, (6.31)

=y <yW) -y <y +p,
y>0.



108 Parameter Estimation

---L norm1x?
— Huber penaltyH,(X)

Figure 6.2 Huber penalty functidd, (x) for p = 0.3.

Example 6.3.

2 15 1 05 0 05 1 15 2
X
5.
- L
O L LI
Gi_O_Huber | O g ééDDDCﬁ@@@@@ﬂé
> . .
5- O o
_10 O 1 1 1 1 1 1 1 |
2 15 -1 05 0 05 1 15 2
X

Figure 6.3 Comparison of the, L; norms and the Huber penalty with= 1 for
a linear regression with outliers. The crosses report the twagbaving a zero
residual in the_; norm problem.

We leave it as an exercises the proof that (6.31) is equivtdg6.30).



6.1

6.2

Exercises 109
Exercises

Linear Least Squares and Maximum Likelihood Estimagi@two met-
hods to estimate unknown parameters. State the relatiorebatthem.
Can they both be used under the same circumstances?

Consider the following experimental set up to estim#iessalues ok
andR.

U(K)

SR BN

N

1)< T {::}

Every experiment consists &f measurements of the voltaggk) for
different values of(k). The measurement$(k) are dfected by additive
Gaussian noise with meanand standard deviatian:

U(K) = E + RI(K) + ny(K)

Here we assume that the input variab(lg) is not dfected by noise.
Tasks:

(a) Import the data available on the website to MATLAB andt file
U(K), I(K) relation using 'x’ markers.

(b) Use a least squares estimator in matrix form to find theexpental
values ofR andE and plot the linear fit through tHe(Kk), I (k) data.

(c) Athermistor is a resistor which resistance varies withange of the
resistor temperature. A basic model of suchffea isR = Ry(1 +
ki(T(t) — To)), whereR, is the resistance at ambient temperaflige
and wherekl[%] is positive for PTC (positive temperature ¢heient)
thermistors and negative for NTC (negative temperaturdéfictent)
thermistors. On the other hand, resistor self-heating dpeter dis-
sipation increases the resistor temperature, being thigipdissipa-
tion also a function of the temperaturdfdrence between the ambient
and the resistor that can me modelledPas ky(T(t) — To)), where
kz["%] > 0. Modelling ngl/kz as a single constakg, and assuming



110

6.3

6.4

Parameter Estimation

that the power dissipated can be approximatedPby |2R,, obtain
the new equation model & and compute the least squares estima-
tor of Ry, ks andE. Finally plot the nonlinear fit into the same figure
as before (usgegend and diferent colors to clearly show the corre-
spondence of each plot).

(d) Using the estimation values of part c, give an approxiomabf % Is

ita NTC or PTC type of thermistor?

Given a matrixd € R™" with arbitrary dimensions, a symmetric positive
definite matrixQ > 0, a vector of measuremengse R™ and a point
X € R", calculate the limit:

. 1
lim argminZ|in - I¥I3 + g(x— X)TQ(X - X).
a—0 x 2 2
a>0
Hint: Use matrix square root and the MoorePenrose pseuduose; i.e.,
SVD of a suitable matrix.
Assume we have a set Nfmeasurements«(,y;) € R? onto which we
would like to fit a liney = ax + b. This task can be expressed by the

optimization problem:
a
(-

(a) Generate the problem data. Take= 30 points in the interval [(5]
and generate the measuremapnts 3x; +4. Add Gaussian noise with
zero mean and standard deviation 1 to the measurementsartepl
results.

(b) Write down matrixJ and vectoty for your fitting problem. Calculate
the codficientsa,b in MATLAB and plot the obtained line in the
same graph as the measurements.

(c) Introduce 3 outliers in your measurementand plot the new fitted
line in your plot.

(d) In this task we want to fit a line to the same set of measunésnbut
we use a dferent cost function:

2

N
min > (ax + b —y;)?2 = min
min D (@ +b-y)* = mp 2

N
rgibni; l(ax +b - y)I.

This objective is not dferentiable, so we will need auxiliary varia-
bles to form an equivalent problem. We introduce the scedallack



Exercises 111

variabless,, ..., sy and solve instead:
min )
ab,s Z S

st. —g<ax+b-y<s, i=1,...,N,
-5 <0, i=1...,N

Solve the problem using the measuremsnfisoth with and without
outliers) and plot the results against those of the L2 fittMtnich
norm performs better and why?

6.5 You are trying to estimate th&seto, of a voltmeter given a set of values
Y =[50, 55,58 61] [V] obtained from an experiment on a setup which
is known to have a true value @§ [V]. In the data sheet of the volt-
meter, it is written that theftset error follows the following probability
distribution f(6) = te~""

(a) Name the probability distribution given by0).

(b) Using MLE, write down the minimization problem that yoliosild
solve in order to obtain an estimat@yoffset.

(c) Solve the minimization problem and provide the numérnieault of
6o in the case thatly = 54 [V].

6.6 In a high precision telescope looking into outer spaeeywant to esti-
mate the position of an extremely far star as exactly as plesdinfor-
tunately, only very few photons arrive every hour to thesceflour light
detector. We model the problem in one dimension only. On rae dif
N detector cells (which also has a lengthhillimeters, i.e. each cell
is a millimeter wide) we have counted the number of photgik} € N
that arrived in one hour in each cell. We know that the truetinkihown
light intensityA(x; 6) of the star is spread out and bell-shaped, and there-
fore we use bell-shaped function for describing it. The fiorchas three
unknown parameters: the center-paintthe overall scaling,, and the
spreadis, and is given by

- AY
A(X; 0) = 6, exp(— (x 9391) )

The interesting fact is that the number of photons arrivingach hour
for a given light intensity follows a Poisson-distributjdre. the proba-
bility to county € N photons is given by

e

P(y) = v




112

6.7

6.8

Parameter Estimation

Formulate the negative log-likelihood function for the rimaxme-likelihood
estimator.

We will again use the aircraft model of Exercise 1.2 with aircraft's
flight noisy data of Exercise 3.11 to estimate a model for ihattrajec-
tory. The data can be obtained in the book websit€ldght_data.m,
and as before, it represents the posifpp 4nd g« during a 20 s flight.
For this exercise, we will assume that the solution trajgctas a poly-
nomial form in timet:

10 10
Pxk = Z ajt;J(, Pzk = Z bjt|](,
j=0 j=0

Then, in order to estimate the polynomial fia@ents to obtain the air-
craft model, we should solve the following optimization Ipiem:

N-1

. = A N2 = A N2

minmize g (Pxk(@ b)) = Puk)? + (Dol b) = Puk)

(a) Formulate the problem as a linear least squares probiensalve it
using the standard formubas = (AT A)~*ATb. You should expect an
imperfect fit, and possibly a badly conditioned matrix irsearit may
be better to use thBATLAB mldivide function (which is written as
A\b) instead of the least squares formula.

(b) Plotpy vs—p,, —p; Vs time, andpy vs time.

It has been observed that the magnitude of the wind speedind farm
throughout a year follows a distribution given by the follagy conditio-
ned probability density function:

K (v o706
PV k) =] 4 (i) e v=0 (6.32)
0 V<0

This distribution is known as the Weibull distribution, wea > 0 and
k > 0 are the parameters of the distribution arid the magnitude of the
wind speed at the turbine location. Since these parametengquired
to study the average power that a certain turbine will predo@ certain
location, the task of this problem will be to estimate theammetersl
andk given some measurements of the wind speed at a given location

(a) Formulate the negative log-likelihood function gilémeasurements
of wind speed/, ..., vy from the same same turbine throughout the
year. Simplify this function as much as possible.



Exercises 113

(b) State the minimization problem and simplify again thgeotive function.
Hint: constant terms in the objective function do not alte solution
of a minimisation problem.

(c) Import the wind speed data from the website and solve themsa-
tion problem to estimate andk.

6.9 Consider a test setup with a LED light driven by a PWM (PW5dth
Modulation) signal with a frequency d§ = 100 Hz. The dutycycl® <
[0, 1] of a PWM signal determines what portion of a cycle a signal is
active, i.e. itis active fob/fy s, and inactive for (+ D)/ fo s within one
cycle. We want to identify an ARX-type model (Auto-Regresswith
eXogeneous inputs) for the heating of the LED. We take thieviahg
form for the ARX model:

T(k) = —Za:aiT(k—i) +Zb:biD(k— i) + e(k), (6.33)
i=1 i=1

whereT [C] is the temperature of the LEM [—] is the dutycycle of the
PWM signal,n,, n, are the number of past outputs and inputs, respecti-
vely, ande [C] is the output noise.

(a) What assumption do we need in order to do a Linear Leastr8gjua
fit?

(b) Write down the Linear Least Squares problem you need teesal
order to estimate the parametersh; in Eq. (6.33). State all the vec-
tors and matrices that are needed.

Download from the course website the simulation routii®sim.m,
which you can use to simulate the LED. It takes/alues for the duty-
cycles and returnBl + 1 resulting temperatures. The initial temperature
is set within this simulation function.

(c) Choose an input signal witk between 50 and 500 and generate me-
asurements from the functiaEDsim.m.

(d) Implement the above Linear Least Squares estimationAmLMB.

(e) Plot the measurements along with the one-step-aheditime at
each time step.



v
Discrete Optimal Control

A lot of times it's up to our discretion.
—Joe Jimenez

Path constrainia(x;) < 0

Path constrainti(xz) < 0

0 ettt atesseeoe
Initial value: Terminal conditions:
—
X0.2 r(xn)<0

11 B

—e— Statexi1

—e— Statexy »

Controluy
_2 | | | | | | | | |
0 5 10 15 20 25 30 35 40 45

Figure 7.1 Variables of a discrete optimal control problenhwt= 49

Throughout this part of the script we regard for notatiomadicity time-
invariant dynamical systems with dynamics
X1 = F(% U), k=0,...,N-1

Recall thatuy are thecontrolsandx, the states with x, € R™ andu, € R™.

114



7.1 Optimal Control Problem (OCP) Formulations 115

As discussed in the first chapter, if we know the initial stetand the con-
trols ug, . .., Un-_1, We could simulate the system to obtain all other states. But
in optimization, we might have fferent requirements than just a fixed initial
state. We might, for example, have both a fixed initial statbafixed terminal
state that we want to reach. Or we might just look for periagiqguences with
Xo = Xn. All these desires on the initial and the terminal state caaxpressed
by a boundary constraint function

r(Xo, Xn) = 0.
For the case of fixed initial value, this function would just b
r(Xo, Xn) = Xo = Xo

where X is the fixed initial value and not an optimization variablenother
example would be to have both ends fixed, resulting in a fanetiof double
the state dimension, namely:

%=X

o) =02

Finally, periodic boundary conditions can be imposed btirsgt
r(Xo, Xn) = Xo — XN.

Other constraints that are usually presentpath constraininequalities of
the form

h(x,u) <0, k=0,...,N-1

In the case of upper and lower bounds on the contrgls, < Ux < Umax, the
functionh would just be

7.1 Optimal Control Problem (OCP) Formulations

Two major approaches can be distinguished to formulate angtrically solve
a discrete time optimal control problem, teienultaneousnd thesequential
approach, which we will outline after having formulated thatimal control
problem in its standard form.



116 Discrete Optimal Control

7.1.1 Original Problem Formulation

Given the system model and constraints, a quite genericatiéstime optimal
control problem can be formulated as the following constdiNLP:

N-1
minimize Z L (X, UHE(Xn) (7.1a)
Un-1,XN k=0
subjectto X1 — f(x%, W) =0, k=0,...,N-1, (7.1b)
h(xeW) <0, k=0,...,N—-1, (7.1c)
r(xo, Xn) = 0. (7.1d)

We remark that other optimization variables could be preasrwell, such

as a free parametgg that can be chosen but is constant over time, like e.g.
the size of a vessel in a chemical reactor or the length of atratm. Such
parameters could be added to the optimisation formulatimve by defining
dummy state$pk}|§‘:l that satisfy the dummy dynamic model equations

Pxiz =Pk, k=0,...,N-1

Note that the initial value ofy is not fixed by these constraints and thus we
would have obtained our aim of having a time constant paranvetctor that
is free for optimization.

7.1.2 The Simultaneous Approach

The nonlinear program (7.1) is large and structured andhasih principle be
solved by any NLP solver. This is called thisnultaneous approado optimal
control and requires the use of a structure exploiting NUResan order to be
efficient. Note that in this approach, all original variables,uy andx, remain
optimization variables of the NLP. Its name stems from ttut flaat the NLP
solver has to simultaneously solve both, the simulation thedoptimization
problem. It is interesting to remark that the model equatibfhlb) will for
most NLP solvers only be satisfied once the NLP iterationsangerged. The
simultaneous approach is therefore sometimes referrexlaniafeasible path
approach. The methodtrect multiple shootinginddirect collocationthat we
explain in the third part of this script are simultaneousrapphes.

7.1.3 The Reduced Formulation and the Sequential Approach

On the other hand, we know that we could eliminate nearly talles by a
forward simulation, and in this way we could reduce the \@éapace of the



7.2 Analysis of a Simplified Optimal Control Problem 117

NLP. The idea is to keep only andU = [u],...,uj_,]T as variables. The
statesxy, ..., Xy are eleminated recursively by
Xo(%0, U) = %o
Xks1(X0, U) = f(x(X0,U), ), k=0,...,N-1

Then the optimal control problem is equivalent taesluced problenwith
much less variables, namely the following nonlinear progra

(7.2)

N-1
minimize Z L(Xk(Xo0, U), i HE(X(%0, U)) (7.3a)
X05 U k=
subjectto r(Xg, Xn(Xo, U)) = 0, (7.3b)
h(X«(%0,U),u) <0, k=0,...,N-1 (7.3c)

Note that the model Equation (7.2) is implicitly satisfiedd®finition, but is
not anymore a constraint of the optimization problem. Tkiduced problem
can now be addressed again by Newton-type methods, but pheitexion of
sparsity in the problem is less important. This is calledséguentiabpproach,
because the simulation problem and optimization problersalved sequen-
tially, one after the other. Note that the user can observiaglall iterations of
the optimization procedure what is the resulting statettayy for the current
iterate, as the model equations are satisfied by definition.

If the initial value is fixed, i.e. if (Xo, Xn) = X0 — Xo, ONE can also eliminate
Xo = Xg, Which reduces the variables of the NLP further.

7.2 Analysis of a Simplified Optimal Control Problem

In order to learn more about the structure of optimal coriroblems and the
relation between the simultaneous and the sequential apiprave regard in
this section a simplified optimal control problem in diserétne:

N-1
minimize Z L (X, UHE(Xn) (7.4a)
UN-1,XN k=0
subjectto X1 — f(X%, W) =0, k=0,...,N-1, (7.4b)

r(Xo, xn) = 0. (7.4c)



118 Discrete Optimal Control
7.2.1 KKT Conditions of the Simplified Problem

We first summarize the variablesas= (X, Ug, X1, Ug, . . . , UN—1, Xn) @Nnd Sum-
marize the multipliers ag = (14, ..., AN, 4;). Then the above optimal control
problem can be summarized as

minimize F(w)
W

subjectto G(w) = 0.

Here, the objectivé-(w) is just copied from (7.4a) whil&(w) collects all
constraints:

f(Xo, Uo) — X1
f(X1, Ug) — X2

G(w) =

f(Xn-1, UN-1) — XN
r(Xo, Xn)

The Lagrangian function has the form
L(w, 1) = F(w) + 1" G(w)
N-1 N-1
= D L0 U + EON) + D A% (F (% ) = Xer1)
k=0 k=0

+ A/ 1(X0, Xn),

and the summarized KKT-conditions of the problem are

Vwl(w, 1) =0 (7.5a)
G(w) = 0. (7.5b)

But let us look at these KKT-conditions in more detail. Finge evaluate
the derivative ofC with respect to all state variableg, one after the other. We
have to treak = 0 andk = N as special cases. Fbe= 0 we obtain:

Vao (W) = Vool (. U) + (0, ) s + 2o 30"y = 0. (7.62)



7.2 Analysis of a Simplified Optimal Control Problem 119

Thenthe casefdk=1,...,N — 1 is treated

of
Vi LW, 2) = Vi L(Xc, Uk) — Ak + &(Xk, U) " A1 = 0. (7.6b)
Last, the special case= N
or
Vi LW, ) = Vi E(Xn) — AN + M(Xo, xn) ' A = 0. (7.6c)

Second, let us calculate the derivative of the Lagrangiah véspect to all
controlsuy, fork =0, ..., N — 1. Here, no special cases need to be considered,
and we obtain the general formula

of
Vi LW, 2) =V, L(X, Uk) + 6_uk(xk’ U) " A1 = 0. (7.6d)

Until now, we have computed in detail the components of thet fiart of
the KKT-condition (7.5a), i.eVy£(w, 1) = 0. The other part of the KKT-
condition,G(w) = 0, is trivially given by

f(X,U) —X:1=0, k=0,...,N-1 (7.6e)
r(xo, Xn) = 0. (7.6f)

Thus, collecting all equations (7.6a) to (7.6f), we havéestshe KKT-conditions
of the OCP. They can be treated by Newton-type methodsfiardint ways.
The simultaneous approacaddresses equations (7.6a) to (7.6f) directly by a
Newton-type method in the space of all variablsA). In contrast to this, the
sequential approachpproach eliminates all the statgs. .., xy in (7.6€) by a
forward simulation, and if it is implementedheiently, it also uses Egs. (7.6¢)
and (7.6b) to eliminate all multipliersy, .. ., 41 in a backward simulation, as
discussed in the following subsection.

7.2.2 Computing Gradients in the Sequential Approach

A naive implementation of the sequential approach would btecoding routi-
nes that evaluate the objective and constraint functiorit@en passing these
routines as black-box codes to a generic NLP solver, fikincon in MAT-
LAB. But this would not be the mostiécient way to implement the sequential
approach. The reason is the generation of derivatives hwehiieneric NLP sol-
ver will compute by finite dferences. On the other hand, many generic NLP
solvers allow the user to deliver explicit functions for ttherivatives as well.
This allows us to compute the derivatives of the reduced Ipmifunctions



120 Discrete Optimal Control

more dficiently. The key technology here is algorithmidfdrentiation in the
backward mode, as explained in Chapter 5.

To see how this relates to the optimality conditions (7.@a]t6f) of the
optimal control problem, let us simplify the setting evenrmby assuming a
fixed initial value and no constraint on the terminal stagr (X, Xn) = Xo—Xo.
In this case, the KKT conditions simplify to the followingtsaf equations,
which we bring already into a specific order:

X0 = Xo (7.73)
X1 = F(X, Uk), k=0,...,N-1, (7.7b)
A = Vi EOn) (7.70)

of
Ak = Vi L(X, Uk) + a_xk(xk’ U) " Akt k=N-1,...,1, (7.7d)

of
0= Vy L(X, ) + 6_uk(xk’ U) " Aks1, k=0,...,N-1 (7.7¢€)

It can easily be seen that the first four equations can thvisd satisfied, by a
forward sweep to obtain a¥ and a backward sweep to obtain &ll Thus,xk
and, can be made explicit functions @, . .., un-1. The only equation that
is non-trivial to satisfy is the last one, the partial detives of the Lagrangian
w.r.t. the controlslg, . . ., uy_1. Thus we could decide to eliminatgandAy and
only search with a Newton-type scheme for the variakles (up,...,Un-1)
such that these last equations are satisfied. It turns outht@deft hand side
residuals (7.7e) are nothing else than the derivative ofédaced problem’s
objective (7.3a), and the forward-backward sweep algorittescribed above
is nothing else than the reverse mode of algorithmifedéntiation. It is much
more dficient than the computation of the gradient by finit&efiences.

The forward-backward sweep is well known in the optimal calditerature
and often introduced without reference to the reverse mdd&Do On the
other hand, it is good to know the general principles of AD amwfard or
backward mode, because AD can also be beneficial in otheexisne.g. for
the evaluation of derivatives of the other problem fundiam (7.3a)-(7.3b).
Also, when second order derivatives are needed, AD can ket arsé more
structure can be exploited, but this is most easily derivettié context of the
simultaneous approach, which we do in the following section



7.3 Sparsity Structure of the Optimal Control Problem 121
7.3 Sparsity Structure of the Optimal Control Problem

Let us in this section regard a very general optimal controbfem in the
original formulation, i.e. the NLP that would be treated by simultaneous
approach.

N-1
minimize Z Lic(Xe, UHE(Xn) (7.8a)
UN-1,XN k=0
subject to fu W) — X2 =0, k=0,...,N-1, (7.8b)
N-1
(X, Uk) + rn(xn) = 0, (7.8¢)

=
1l

0
h(%. Uu) <0, k=0,...,.N-1,  (7.8d)
hn (%) < O. (7.8€)

Compared to the OCP (7.1) in the previous sections, we nawalfidices
on all problem functions making the system time dependdst;, ave added
terminal inequality constraints (7.8e), and as boundanditmns we now al-
low now very general coupled multipoint constraints (7.8@t include the
cases of fixed initial or terminal values or periodicity, lmé much more ge-
neral. Note that in these boundary constraints terms grfsim different time
points are only coupled by addition, because this allowsousiaintain the
sparsity structure we want to exploit in this section.

Collecting all variables in a vectay, the objective in a functiofr (w), all
equalities in a functio®(w) and all inequalities in a functiod (w), the optimal
control problem could be summarized as

minimize F(w)
W
subjectto G(w) =0,
Hw) < 0.

Its Lagrangian function is given by
LW, A, 1) = F(W) + ATG(W) + p" H(W).

But this summarized form does not reveal any of the struchaeis present
in the problem.



122 Discrete Optimal Control

7.3.1 Partial Separability of the Lagrangian

In fact, the above optimal control problem is a very sparablem because
each of its functions depends only on very few of its variablEhis means
for example that the Jacobian matrix of the equality comssdnas many zero
entries. But not only first order derivatives are sparsey tle second order
derivative that we need in Newton-type optimization altforis, namely the
Hessian of the Lagrangian, is a very sparse matrix. This éstduhe fact that
the Lagrangian is partially separablefunction [44].

Definition 7.1 (Partial Separability) A function f : R" — R is called partially
separable if it can be decomposed as a sum fifnctionsf; : R" — R with

nj < nforall j = 1,...,m This means that for eachexists a subsdl; of

indices from{1, ..., n} and subvectorg,; of x such that

(0= fi(x):
=1

The Lagrangian function of the above optimization problean explicitly
be decomposed into subfunctions that each depend on soine wittipliers
and only on the variablesq, ux) with the same indek. Let us collect again
all variables in a vectow but decompose it &sv = (Wi, ..., Wy) with wy =
(X, ug) fork = 0,...,N — 1 andwy = xy. Collecting all equality multipliers
in a vectord = (4y,...,4n, 4;) and the inequality multipliers in a vectar=
(uo, . . . , un) We obtain for the Lagrangian

N
LW, Apr) = ), L A 1)
k=0

with the local Lagrangian subfunctions defined as followse first subfunction
is given as

Lo(Wo, 4, 12) = Lo(Xo, Uo) + A1 fo(Xo, Uo) + 19 ho(Xo, Uo) + A/ Fo(Xo, Uo)
and fork = 1,...,N — 1 we have the subfunctions
LW, 4, 1) = L%, k) + A1 FiOks U) = e X+ e (%, k) + A7 Tie(Xe, U)
while the last subfunction is given as

ON(WN, A, 1) = E() = A%+ sghn () + A7 T ()

In fact, while each of the equality multipliers appears ivesal (11, ..., Ay) Or
1 Note that for notational beauty we omit here and in many otheasions the transpose signs

that would be necessary to make sure that the collection afrtolectors is again a column
vector, when this is clear from the context.



7.3 Sparsity Structure of the Optimal Control Problem 123

even all problem functionsif), the primal variables of the problem do not have
any overlap in the subfunctions. This leads to the remaekabservation that
the Hessian matri¥2,C is block diagonali.e. it consists only of small sym-
metric matrices that are located on its diagonal. All othesrond derivatives

are zero, i.e.

%L L
m(w,/l,,u) =0, forany i#].
This block diagonality of the Hessian leads to several vamptirable facts,
namely that (i) the Hessian can be approximatedigi-rankor block updates
within a BFGS method [44, 20], and (ii) that the QP subprobileall Newton-
type methods has the same decomposable objective funcitimeaoriginal
optimal control problem itself.

7.3.2 The Sparse QP Subproblem

In order to analyse the sparsity structure of the optimatrebproblem, let us
regard the quadratic subproblem that needs to be solveckiit@nmation of an
exact Hessian SQP method. In order not to get lost in too nratigas, we dis-
regard the SQP iteration index completely. We regard then@#Hg formulated
at a current iteratex( A, u) and use the SQP steyw = (AXg, AU, ..., AXy) as

the QP variable. This means that in the summarized fornmatie would

have the QP subproblem

A 1
minimize  VF(W)TAW + ZAW' V2 L(W, A, 1) AW
AW 2
subjectto G(w) + VG(W)"Aw = 0,
H(w) + VH(W)"Aw < 0.

Let us now look at this QP subproblem in the detailed formaatt is remar-
kably similar to the original OCP. To reduce notational tnvexd, let us define
a few abbreviations: first, the diagonal blocks of the Hessfadhe Lagrangian

Qu=V3L(w, ), k=0,...,N,
second, the objective gradients
Ok = V(X,U)L(Xk, u), k=0,...,N-1, and gn= ViE(Xn),

third the system discontinuities (that can be non-zero énsimultaneous ap-
proach)

a = (% W) — X1, k=0,...,N-1,



124 Discrete Optimal Control
and fourth the transition matrices
of of
Ak__k(xk, k) Bszt(Xk,uk), k=0a°'~7N_1’

fifth the residual of the coupled constraints

N-1
r= Z I(Xe, Uk) + n(Xn),
k=0

as well as its derivatives
org orN

= ,u), k=0,...,N-1, and = X
R 9%, 1) (X, U) Ry = ——0),
and last the inequality constraint residuals and theivdévies
ohy oh
he = (X, W),  Hk = T )(Xk, u) and hy =hy(xy), Hy= a—;(XN)

With all the above abbreviations, the detailed form of the €pBproblem is
finally given as follows.

Ax 1 o [Ax]
inimi k T N T
= + =A A A
momee 3 3o o] Jadeun 3 [l avn
AXn =
(7.9a)
subjectto ax + AkAX¢ + BlAuk—AX;1 =0, k=0,...,N-1, (7.9b)
N-1 AXk
r+ é Re| puy | * Rudxu =0, (7.9¢)
AX¢
hi + Hi <0, k=0,...,N-1, (7.9d)
AU
hy + HyAXxy < 0. (798)

This is again an optimal control problem, but a linear-ga&idrone. It is
a convex QP if the Hessian block3 are positive semidefinite, and can be
solved by a variety of sparsity exploiting QP solvers.

7.3.3 Sparsity Exploitation in QP Solvers

When regarding the QP (7.9) one way would be to apply a spatesganpoint
QP solver like OOQP to it, or a sparse active set method. Tdnshe very
efficient. Another way would be to first reduce,aamdensgthe variable space



7.3 Sparsity Structure of the Optimal Control Problem 125

of the QP, and then apply a standard dense QP solver to theegguoblem.
Let us treat this way first.

Condensing
When we regard the linearized dynamic system equations)(th@y corre-
spond to an fine time variant system in the stefos,, namely

AXi1 = a + AcAX + BrAug. (7.10)

If the values forAxp as well as for aII{Auk}I';‘;Ol would be known, then also

the values fOt{AXk}L\‘:l can be obtained by a forward simulation of this linear
system. Due to its linearity, the resulting map will be linea. we can write

AXo
AX
1 AUg
: =v+ M . s
AX ’
N Aun_y
=

AWgep = V + MAWipg

with a vectorv € RN™ and a matrixM e RN\ “and dividing the
variables into a dependent and an independent fart; (AWgep AWing).

The vectorv can be generated recursively by simulating tiaa dynamic
system (7.10) with all inputs set to zero, i‘evi,g = 0. This yields the forward
recursion

Vi =a, Viii=ax+AW k=1,...,N-1

for the components of the vecter= (vi,...,vn). The subblocks of the ma-
trix M can be obtained recursively as well in a straightforward.Wnte that
the matrix is lower triangular because the staes do not depend ormuy
if k > j. On the other hand, ik < |, the corresponding matrix blocks are
Aj_1--- A1Bx. Finally, the dependence dfx; on AXg is Aj_1 - - - Ao. In this
way, all blocks of the matrid are defined.

To get a notationally dierent, but equivalent view on condensing, note that
the linear dynamic system equations (7.9b) are nothing tbkse the linear



126 Discrete Optimal Control

system

C Axo |
AUg
AXq

Aug
AXo -

Ava Bya ~I||
N-1 N-1 AXnt an

Aun-1
| AXn |

After reordering the variables into dependent and independnes, this sy-
stem can be written as

A |
AUy

Ao By -1 : ao

B: A -I : a1

Aun-1 [ = -

. : AXq :

Bn-1 Ano1 T . an
[ AXn |

which we can summarize as

[X|Y] [ AWing ] —a

AWdep
so that we get the explicit solution

AWgep = (=Y 71a) + (=Y X) AWing.
=v -M

Note that the submatri¥ is always invertible due the fact that it is lower
triangular and has (negative) unit matrices on its diagonal

Once the vectoy and matrixM are computed, we can formulateanden-
sed QPwhich has only the independent variablesi,q as degrees of free-
dom. This condensed QP can be solved by a dense QP solvethamd-t
sulting solutionAw; , can be expanded again to yield also the QP solution
for wy, ep =V MAw; .. The QP multiplierslgep = (41,...,An) for the con-
straints (7.9b) can be obtained from the dense QP solutiansiightly more
complex way. The trick is to regard the Lagrangian of theinegQP (7.9b),
LOP(AWing, AWgep, Adep Ar, 1) and note that the condensed QP yields also the



7.3 Sparsity Structure of the Optimal Control Problem 127

multipliers A%, u*, which turn out to be the correct multipliers also for the un-
condensed QP. Thus, the only missing quantity;ie%. It can be obtained by
using the follwing two observations: first, for the true QRuson must hold
that the Lagrange gradient is zero, also with respeaivige, Second, this
Lagrange gradient depends linearly on the unknown mutiplige, which
contribute to it via the ternY™ Aqep, i.€. we have

0= VAWdepLQP(AV\riknd’ AV\féiepv ﬁZep A1)

= V angey T (AW, g, AWy 0, 47, 117) + YT Ay

It is a favourable fact that the Lagrange gradient dependh@missing mul-
tipliers via the matrixY™, because this matrix is invertible. Thus, we obtain an
explicit equation for obtaining the missing multipliergmely

/lZep = _Y_T VAWdepLQP(A\Niknd’ Aw

dep 0,47, 1)

Note that the multipliers would not be needed within a Gades#on method.
Summarizing, condensing reduces the original QP to a QFhtsathe size
of the QP in the sequential approach. Nearly all sparsityss but the dimen-
sion of the QP is much reduced. Condensing is favourable ifirizon length
N and the control dimension, are relatively small compared to the state di-
mensionny. If the initial value is fixed, then alsaxg can be eliminated from
the condensed QP before passing it to a dense QP solveerfuettiucing the
dimension.

On the other hand, if the state dimensigris very small compared td - ny,
condensing is not favourable due to the fact that it destepggsity. This is
most easily seen in the Hessian. In the original sparse @Mldtk sparse
Hessian hadl(ny + ny)? + n§ nonzero elements. This is linearhh In contrast
to this, the condensed Hessian is dense andrias Nn,)? elements, which
is quadratic inN. Thus, if N is large, not only might the condensed Hessian
need more (!) storage than the original one, also the saolutine of the QP
becomes cubic ilN (factorization costs of the Hessian).

Sparse KKT System
A different way to exploit the sparsity present in the QP (7.9) ketp all va-
riables in the problem and use within the QP solver lineaglalg routines that
exploit sparsity of matrices. This can be realized withithpterior point (IP)
methods as well as in active set methods, but is much easiersivate at the
example of IP methods. For illustration, let us assume alerolwithout cou-
pled constraints (7.9¢) and assume that all inequalitige baen transformed
into primal barrier terms that are added to the objectiveeri[iin each interior



128 Discrete Optimal Control

point iteration, an equality constrained QP of the follogvgimple form needs
to be solved.

N-1 T

L 1 Axk} [ Q E”HAXK 1 -
minimize = +=AX AX
AXo, AU, .., ZKZO[AUk (Q)k(u)T QE Aug| 2 N QuAXy

AXN

N T

AXN
+ +AX],

é[AUN GBI (7 11)

subjectto ax + AkAxk + BkAuk—Ax1 =0, k=0,...,N-1

Formulating the Lagrangian of this QP andfeientiating it with respect to
all its primal and dual variables= (AXg, Aug, A1, AXy, Aug, . .. Ay, AXy) in this
order we obtain a linear system of the following block trgbaal form

QX XU T ] . .
XST % A(‘)r AXo [ ]
@ & 8 N
Ao Bo 0 I ol
oA ol I
QYT Q B] o ||
AL B 0 I =|*
-1 2 *
: *
'. .- A *
An-1 Bnor O I A;:N | |
-I Qn|™ :

This linear system can be solved with a banded direct fattidn routine,
whose runtime is proportional td(ny + ny)3. We will see in the next chapter
that a particularly ficient way to solve the above linear system can be obtained
by applying the principle of dynamic programming to the dijyaonstrained
guadratic subproblem (7.11).

Summarizing, the approach to directly solve the sparse @#out conden-
sing is advantageousMn, is large compared toy. It needs, however, sparse
linear algebra routines within the QP solver. This is easiémplement in the
case of IP methods than for active set methods.



Exercises 129
Exercises

7.1 Consider a simple pendulum defined by the system state[¢, w]™
where¢ is the angle and the angular velocity of the pendulum, and
where¢ = 0, represents the pendulum in its inverse position, e.g. the
mass is at the top. The system dynamics are given by:

b=w
w =2sinf@)+u
In this problem, we will solve a Discrete Optimal Control Biem

formulated as an Non-Linear Program by discretization efdynamics.
In particular, we will use the Matlab fmincon function to gelthe follo-

wing NLP:
N-1
. . . 2 2
minimize ) (6 + )
Uo,...,UN-1 k=0
subject to Xo — %o = 0,

(X, Uk) = X1 = 0,

k
Wmin £ Wk < Wmax k=
k

g o ooy

o oo
z Zz z

Umin < Uk < Umax,

where the discrete time system dynamics are obtain by a Rkintia
integrator of order 4 with a timestep of = 0.2. The horizon of the
optimal control problem i&N = 60, the given initial state i = [-, 0],
and the bounds are given byin = —7, Wmax = 7, Umin = —1.1, Umax =
11.

In order to pass the optimal control problem to the solver vt fiave
to formulate it as an NLP. The variables of the optimal cdrproblem
are summarized in a vectgr= (xg, Up, ...,Un-1, Xn)'. Then the NLP
has the following form:

m|n|)r/’n|ze ()

subjectto G(y) =0, (7.12)

Ymin £ Y < Ymax-



130 Discrete Optimal Control

(a) Write down the objective functiof(y) and the constraints on paper.
Use the same order for the constraints as in the optimal @oprto-
blem.

G(y) = : Ymax = Ymin =

Implement the objective and the equality constraints asaditincti-
ons
(b) Check if your functionG(y) does what you want by writing a for-
ward simulation functioy]=simulate(x0,U) that simulates, for
a given initial valuexg and control profileU = (uo,...,Un-1), the
whole trajectoryxy, ..., Xy and constructs from this the full vector
y = (Xo, Ug, X1, ..., Xn). If yOou generate for anykg andU a vectory
and then you call your functio(y) with this input, almost all of
your residuals should be zero. Which ones are not zero?
As atest, simulate e.g. witly = [0,0.5]" anduy = 1,k =0,...,N-1
in order to generatg, and then calG(y), to test that your functio
is correct. Specify the norm of the residu@l§y).
(c) Usefmincon to solve the NLP:
options=optimoptions(@fmincon, ’display’,
’final/iter’,’MaxFunEvals’, 100000);
y=fmincon(@objective,y®,[],[]1,[]1,[],1by,uby,
@Gnonlconstraints,options);

As an initialization foryy you can usexg for all state variables and
zero for all control variables.

How many iteration does the solver need to converge (useaglisp
option iter)? How long does the call to the minimizer take (use
tic/toc and the display optiorfinal)? Plot the evolution of the
state and the applied controls in time. Make an animatioeédfshe
pendulum swings up.

Hint: You can call the following function several times teate the
animation:

function plot_pendulum(x)
phi = x(1);



7.2

Exercises 131

plot([0;sin(phi)], [0;cos(phi)], ’'-0’)
xlim([-1,1])
ylim([-1,1])
end
(d) Do a RK4 simulation of the pendulum and apply the optinai-c
trols of part (c) open-loop. Does the pendulum swing up? Dbes
resulting state trajectory fiier from the output of the solver? Why?
(e) Play with other options of the solvers like the type oftérdifferen-
ces for computing the Jacobian, stopping criteria, anddalees for
violating the constraints. How do they influences compatatime,
number of iterations, and precision of the solution.

In this exercise, we will again use the same pendulumlt@ sbe NLP
given by (7.12). This time however, we will solve (7.12) byedf svritten
Sequential Quadratic Programming (SQP) solver with Ghlesgton
Hessian.

In particular, we will first prepare the calculation of thesdhian that
is needed in the SQP iterations and we will test the correstioé the
Jacobian by passing it to thenincon solver and find a faster way to
compute the Jacobian. Then, we will implement the SQP sdlyesol-
ving the Quadratic Programs (QP) in each iteration with thetlab
quadprog function.

Hint: It is recommended to start the problem by re-using theecfrom
the previous task.

(a) The Jacobian of the non-linear equality constrailif) = %(y)
can be passed directly to tHaincon function by including it as an
output of the constrains function (see Matlab constraintsithenta-
tion), and by activating the correéhincon option:

options=optimoptions(@fmincon,\dots, ’GradConstr’,
"on’,\dots);

Calculate the Jacobials(y) by finite differences, perturbing all 182
directions one after the other usidig= 10™*. This needs in total 183
calls of G. Give your routine e.g. the nanigac, Gy]=GJacSlow(y).
Computels for wy and look at the structure of this matrix by making
a plot using the commanspy (3). Use this Jacobian to solve the
OCP. How many iterations and how much time does the solvet nee
to converge?

(b) By looking at the structure aks;, we see that the matrix is very sparse
can be calculated much morgieiently. The Jacobiadg(y) = %(y)



132

Discrete Optimal Control

is block sparse with as blocks either (negative) unit masrior the
partial derivativesA, = Z—L(Xk, u) and By = Z—L(Xk, uy). Fill in the
corresponding blocks in the following matrix

Js(y) =

(c) With this knowledge you can construct the Jacobian inmaprgatio-
nally much more flicient way, as follows:

e First write a function[A,B]=RK4stepJac(x,u) using finite dif-
ferences with a step size éf = 1074 Here, A = ‘;—;(x, u) and
B= %(x, u).

e Using this function [A,B]=RK4stepJac(x,u), implement a
function [jac,Gy]=GJacFast(y).

e Compare if the result is correct by taking theffdience
of the Jacobians you obtain byjac,Gy]=GJacFast(y) and
[jac,Gy]l=GJacSlow(y).

Pass this Jacobian to your constraints function. How maamgtit
ons and how much time does the solver need now?

(d) The SQP with Gauss-Newton Hessian (also caltatstrained Gauss-
Newton methadsolves a linearized version of this problem in each
iteration. More specific, if the current iterateyisthe next iterate is
the solution of the following Quadratic Program (QP):

mini);nize y"Hy
subjectto G(y) + Js(W)(y—-V) =0, (7.13)
Ymin < Y =< Ymax-
Define whatH, andH, need to be in the Hessian
Hy
Hy
H= . Hy = [ :| Hy = [ ]
Hx

(e) Write a function[ybar_next]=GNStep(ybar) that performs one
SQP-Gauss-Newton step by first callipgac,Gy] = GJlacFast(y)



Exercises 133

and then solving the resulting QP (7.13) using the MATLAB @p s
ver quadprog. Note that the QP is very sparse but that this sparsity
is not exploited in full during the call afuadprog.

(f) Write a loop around your functioNStep, initialize the GN proce-
dure at atyp, and stop the iterations whéy.1 — Y«l| gets smaller
than 10“. Plot the iterates as well as the vec@muring the itera-
tions. How many iterations do you need? How much time does you
SQP solver need to converge? Plot the evolution of the statehae
applied controls in time.

(g) Find out how to exploit sparsity in thguadprog solver and solve
the SQP with the sparse QP solver. How much time does your SQP
solver need to converge now?

7.3 The aim of this exercise is to bring a harmonic oscillatorest with
minimal control d€fort. For this aim we regard the linear discrete time

dynamic system:
Prr1 Pk 0 1||pk 0
[] - [ ° OH]HU) K=1...N-1
with p; = 10,v; = 0,At = 0.2, N = 51. Denote for simplicity from now
on X = (P Vi) -

(a) Write a MATLAB routine[xN]=oscisim(U) that computesy as a
function of the control inputs) = (uy,...,un_1)" . Mathematically,
we will denote this function byfpscisim: RN"1 — R2.

(b) To verify that your routine does what you want, plot thegiated
positionspy, . .., pn Within this routine for the inputy = 0.

(c) Now we want to solve the optimal control problem

+At(

minimize [|U]3
UeRrN

Formulate and solve this problem wifimincon. Plot the solution
vectorU as well as the trajectory of the positions in the solution.

(d) Now add inequalities to the problem, limiting the inputsin am-
plitude by an upper boundy| < Umpaxk = 1,...,N — 1. This adds
2(N — 1) inequalities to your problem. Which?

(e) Formulate the problem with inequalitiesfinincon. Experiment with
different values ofimay, Starting with big ones and making it smaller.
If it is very big, the solution will not be changed at all. At h cri-
tical value ofunax does the solution start to change? If it is too small,



134 Discrete Optimal Control

the problem will become infeasible. At which critical valaéumax
does this happen?

(f) Both of the above problems are convex, i.e. each locaimim is
also a global minimum. Note that the equality constraintef opti-
mal control problems is just a linear function at the moméfdke
this constraint nonlinear and thus make the problem noreor®ne
way is to add a small nonlinearity into the dynamic systerhi4yby
making the spring nonlinear, i.e. replacing the tertnin the lower
left corner of the system matrix by(1 +/,¢p§) with a smallu, and sol-
ving the problem again. At which value pfdoes the solvefmincon
need twice as many iterations as before?

7.4 We regard again the optimal control problem from Exer@$8. We had
previously used the Euler integrator, so let's now we use 4 Rikegra-
tor because it is more accurate. Furthermore, instead ofj dsincon,
you will write your Newton-type optimization method. Fortation sim-
plicity, let's denotefqscisim Y Gsim-

The necessary optimality conditions (KKT conditions) foe tabove

problem are
® agsim ST %
2 i e =
U*+ U un'ar=0
Osim(U™) = 0.
Let us introduce a shorthand for the Jacobian matrix:
(9 p
Jim(U) = ga'm(U)

By linearization of the constraint at some given iterddg, () and neg-
lecting its second order derivatives, we get the followiBg@ss-Newton)
approximation of the KKT conditions:

[ 2U ]+[ 20 Jsim(UK)THUk+1— Uk] _0

gsim(Uk) Jsim(Uk) 0 Aks1

This system can be solved easily by a linear solve in ordebtaio a

new iterateUy,;. But in order to do this, we need first to compute the

JacobianJsim(U).

(a) Implement a routine that uses finitéfdrences, i.e. calls the function
Osim (N + 1) times, once at the nominal value and then with each
component slightly perturbed by e.§.= 10 in the direction of
each unit vectoe, so that we get the approximations

00sim (U) ~ Osim(U + 6&) — gsim(U)
Ouk 1) ’




7.5

Exercises 135

We denote the resulting function that gives the full Jacolbreatrix
Of Qsim bY Jsim : RN — R&>N,

(b) Now, we implement the Gauss-Newton scheme from abotede
are not interested in the multipliers we just implement italeows:

2Ug }
gsim(uk)
Choose an initial guess for the controls, éJg= 0, and start your ite-

ration and stop wheffUy,1 — Uy|| is very small. How many iterations
do you need to converge? Do you have an idea why?

21 Jsim(Uk)T }_l

Uea= =[5 0l Ty >

Throughout this exercise, we make our controlled agoitifrom the pre-
vious problems slightly nonlinear by making it a pendulurd astting
g[pm]:[ v ]+
dt | v(t) —Csin(p(t)/C)
with C := 180/n/4. We again abbreviate the ODE as="f(x, u) with
x = (p,v)", and choose again the fixed initial valug = (10,0)" and
T = 10. Note thatp now measures the deviation from the equilibrium
state in multiples of 4 degrees (i.e. we start with 40 degrees
We also regard again the optimal control problem from the tias
problems:

0
1} u(t), tel[0,Tl,

minimize [lU5
UeRrN (7.15)
subjectto gsim(U) =0

and we use again RK4 and do aghir= 50 integrator steps to obtain the
terminal statexy as a function of the controld = [ug,.. ., Un_1].

(a) Run again your Gauss-Newton scheme from the last probhlenise
in each iteration finite dierences to compute the Jacobian matrix

agsim

(V)
and iterate
-1
il Jsim(Uk)T} [ 2Uk }
Jsim(uk) 0 gsim(Uk)
How many iterations do you need now with the nonlinear cesgilt?
Plot the vectoilUy and the resulting trajectory gf in each Gauss-

Newton iteration so that you can observe the Gauss-Newga al
rithm at work.

Uk = Uk =1 o][



136 Discrete Optimal Control

(b) Modify your Gauss-Newton scheme so that you also obtenmul-
tiplier vectors, i.e. iterate witBy = 2I as follows:

[um]_[ukH B Jsim(uk)T]‘l[ 2U
A1 - 0 Jsim(Uk) 0 gsim(Uk)

Choose as your stopping criterion now that the norm of thielues

VuL(Ug, /lk)] ’ _ H[ZUk + Jsim(Uk)T/lk}

KKTRES, :=
* H sim(Uk) sim(Uk)

shall be smaller than a given tolerance, e.g. FOL0™. Store the va-
lues KKTRE& and plot their logarithms against the iteration number
k. Which converge rate does it show?

(c) Now use a dierent Hessian approximation, namely the BFGS up-
date, i.e. start with a unit Hessia, = I and then update the Hessian
according to

T T
Byk.i1 := Bk — M + yl;yk .

S B sk
with s¢ := Uy — Ug andyk = VyL(Uks1, Ake1) — VuL(Uk, Aki1)-
Devise your BFGS algorithm so that you need to evaluate therex
sive Jacobiadsim(Uy) only once per BFGS iteration. Tipp: remember
the old Jacobiadsim(Uy), then evaluate the new odgm(Uy,1), and
only then computéy, ;.

(d) Observe the BFGS iterations and regard the logarithdeit g the
norm of the residual KKTRES How many iterations do you need
now? Can you explain the form of the plot? What happens if you
make your initial Hessian gue& equal to the Gauss-Newton Hes-
sian, ie.By = 2I?

*** |n the remainder of this exercise, we want to compute theabian
Jsim(U) in @ more dicient way inspired by the reverse mode of algo-
rithmic differentiation (AD). This part of the exercise sheet is optiona
and you should only do it if you feel motivated enough. ***

(e) For a start, save your old routine fiy,(U) in a separate folder to be
able to compare the results of your new routine with it later.

(f) Then, note that the RK4 integrator step can be summaiizaéunction
® so that the last state, i.e. the output of the functiogsim(U), is
obtained by the recursion

X1 = (X, W), k=0,...,N-1



@)

(h)

Exercises 137

Along the simulated trajectorfx., Ux)}k-5, this system can be linea-
rized as

0Xr1 = AoX¢ + Boug, k=0,...,N—-1,

where the matrices
oD oo
= — (X, U and By := — (X, W),
A X (X, U) K au( K Uk)

can be computed by finite fierences. Note that we use the symbol
Bk here for coherence with the notation of linear system thdmry
that this symboBy here has nothing to do with the Hessian maBix
used in the other questions.

To become specific: modify your integrator so that

e Your RK4 step is encapsulated in a single function:
[xnew]=RK4step(x,u)

e You also write a functiorixnew, A,B]=RK4stepJac(x,u) using
finite differences with a step size &= 10

e Your integrator stores and outputs both the trajectoryaiiestxk}kN:‘Ol
and the trajectory of matricd§Ay, Bk)}lt‘;ol. Use three dimensional
tensors likeAtraj (i, j,k).

The interface of the whole routine could be:

[x,Atraj,Btraj]=forwardsweep (U)
Now, using the matrice&, By, we want to computésin,(U), i.e. write

aroutine with the interfacglsim] =backwardsweep (Atraj,Btraj).
For this aim we observe that

agsim
Oy

(U) = (An-1An-2 - - - Aks1) Br

=:Gs1

In order to compute all derivative%T(U) in an gficient way, we
compute the matriceGy;1 = (An-1An-2- - A1) IN reverse order,
i.e. we start withk = N — 1 and then go down th = 0. We start by
Gy := I and then compute

Gk :=G1A, k=N-1,...,0

Combining the forward and the backward sweep from theipus
two questions, and write a new function fay,(U). It is efficient to
combine it with the computation dsim(U), i.e. have the interface
[gsim, Jsim]=gsimJac(U). Compare the result with the numerical
Jacobian calculation from before by takingrm(Jsimold-Jsimnew).



138

7.6

Discrete Optimal Control

(i) How do the computation times of old and the new Jacobianime
scale withN? This question can be answered without numerical ex-
periments, just by thinking.

() Now run your Gauss-Newton algorithm again and verifytihgives
the same solution and same number of iterations as before.

In this exercise we regard again the discrete time system

Xier1 = DXk, Uk)

that is generated by one RK4 step applied to the controlledimear
pendulum with a time stefit = 0.2. Its state isc = (p,v)" and the ODE
x = f(x, u) is with C := 180/7/10 given as

v(t)

0
f(x,u) = [—C sin(p(t)/C)

11

u(t).

The key diterence respect to the previous exercise is that now, you
will use the simultaneous approach with SQP and a Gaussedxdwes-
sian to solve the optimal control problem.

(a) Write the functiond(x, uy) as a MATLAB code encapsulated in a
single function[xnew]=RK4step(x,u)

(b) Let's define the OCP that we aim to solve in this section. Stéet
by considering that the initial value is agaig = (10,0)" and that
N = 50. Furthermore, we take into account that we define bounds on
p, v, andu, namelypmax = 10, Vmax = 10, i.€.Xmax = (Pmax Vmax) '
andumax = 3. Finally, we can regard the OCP that we solved in the
previous Exercises and that is given by Equation (7.15) dkthe
specific structure of the simultaneous approach, so thatesuét the
specific OCP is given by:

N-1
Tinmize kZ; [
subject to Xo— Xo =0,
DXk, Uk) = Xks1 = 0, k=0,...,N-1,
xn = 0,
—Xmax < Xk < Xmax» K=0,...,N-1,

A

_Umax_ukSUmax, k=0,...,N—1

Formulate the nonlinear functic&(w), the Hessian matrixd, and



(©

(d)

Exercises 139

boundswinax, Wherew = (Xo, U, - . ., Un_1, Xn) € R"andn = 152, so
that the above OCP can be written in the following form:

minimize w'Hw
W e R152
subjectto  G(w) =0,

~Wmax < W<Wmax-

Define whatH, andH, need to be in the Hessian

Hx
Hu

H= ,sz[ } He=[ ]

Hx

Construct the matrid and vectorwmay in MATLAB, and write a
MATLAB function [G]=Gfunc(w).

Check if your functionG(w) does what you want by writing a for-
ward simulation functionw]=simulate (x0,U) that simulates, for
a given initial valuexg and control profileU = (uo,...,Un-1), the
whole trajectoryx, ..., Xy and constructs from this the full vector
W = (X, Ug, Xg, . .., Xn)- If yOu generate for any, andU a vectorw
and then you call your functio®(w) with this input, nearly all your
residuals should be zero. Which components will not be zero?
As a test, simulate e.g. witky = (5,0) anduy = 1,k=0,...,N-1
in order to generate, and then callG(w), to test that your function
G is correct.

The SQP with Gauss-Newton Hessian solves a linearizesioveof
this problem in each iteration. More specific, if the curriéetate is
w, the next iterate is the solution of the following QP:

minimize w"Hw
w e R152
subjectto G(W) + Jg(W)(w — W) = 0, (7.16)

—Wmax < WSWmax-

In order to implement the Gauss-Newton method we need the Jac
bian Js(w) = %V(W). Considering thalg(w) is block sparse, where
the the blocks are either (negative) unit matrices, padigivatives



140

(e)

Discrete Optimal Control

Ac = 22X, Ug) or partial derivatives, = 22(x, u), fill in the cor-

X

responding blocks in the following matrix:

Jo(w) =

We compute the Jacobidg(w) by finite differences, i.e. perturbing
all 152 directions one after the other. Give your routine thg name
[G, J]=GfuncJacSlow(w). ComputeJs for a givenw (e.g. the one
from above) and look at the structure this matrix, e.g. ugiiregcom-
mandspy (7).

(f) Write a function[wplus]=GNStep (w) that performs one SQP-Gauss-

(@)

(h)

(i)

Newton step by first callingG, J1=GfuncJac(w) and then solving
the resulting QP (7.16) usinguadprog from MATLAB. Note that
the QP is a very sparse QP but that this sparsity is not erplait
full during the call ofquadprog.

Write a loop around your functio@NStep, initialize the GN proce-
dure at atv = 0, and stop the iterations whéw,, 1 — || gets smaller
than 10. Plot the iterates as well as the vec@®during the iterati-
ons. How many iterations do you need?

A different algorithm is obtained if we overwrite before each ofll
the functionGNStep the values for the states withinby the result of
a forward simulation, using the corresponding controlsthednitial
value xg. Run it again with this modification, using the same zero
initialization for the controls. How many iterations do yoeed now?
Do you know to which of the algorithms from the previous exsss
this new method is equivalent?

Finally, you can construct the Jacobian in a much morepmasatio-
nally efficient way:

e First write a function[xnew, A,B]=RK4stepJlac(x,u) using fi-
nite differences with a step size 6f= 10. Here,A = g—‘i’(x, u)
andB = 22(x, u).

e Using this function[xnew,A,B]=RK4steplac(x,u), implement
a function[G, J]1=GfuncJacFast (w).

e Compare if the result is correct by taking theffeience of
the Jacobians you obtain byG, J]=GfuncJacFast(w) and
[G, J]=GfuncJacSlow(w).



8
Dynamic Programming

In view of all that we have said in the fo-
regoing sections, the many obstacles we ap-
pear to have surmounted. What casts the pall
over our victory celebration? It is the curse
of dimensionality, a malediction that has pla-
gued the scientist from earliest days.
—Richard E. Bellman

Dynamic programming (DPis a very diferent approach to solve optimal
control problems than the ones presented previously. Thaadelogy was
developed in the fifties and sixties of the 19th century, nmoetinently by
Richard Bellman [5] who also coined the term dynamic prograng. Interes-
tingly, dynamic programming is easiest to apply to systertis discrete state
and control spaces, so that we will introduce this case fit$ten DP is ap-
plied to discrete time systems with continuous state spacese approxima-
tions have to be made, usually by discretization. Generthily discretization
leads to exponential growth of computational cost with egspo the dimen-
sionny of the state space, what Bellman called the “curse of dinoeiadity”.

It is the only but major drawback of DP and limits its practiapplicability to
systems withny ~ 6. In the continuous time case, DP is formulated as a partial
differential equation in the state space, the Hamilton-JaBeliman (HJB)
equation, sffering from the same limitation; but this will be treated inaph

ter 11. On the positive side, DP can easily deal with all kioidsybrid systems

or non-diferentiable dynamics, and it even allows us to treat stoichgstimal
control with recourse, or minimax games, without much addél efort. An
excellent textbook on discrete time optimal control andatyit programming

is [9]. Let us now start with discrete control and state space

141



142 Dynamic Programming
8.1 Dynamic Programming in Discrete State Space
Let us regard a dynamic system

Xir1 = (X, Uk)

with f : X x U — X, i.e. x € X andui € U, where we do not have to specify
the setX andU yet. We note, however, that we need to assume they are finite
for a practical implementation of DP. Thus, let us in thistegcassume they
are finite withny andny elements, respectively. Let us also define a stage cost
L(x,u) and terminal cosE(x) that take values fronR,, = R U {co}, Where
infinity denotes infeasible pairx,u) or x. The optimal control problem that
we first address can be stated as

N-1
minimize L (X, Uk) + E(xn)

UN-1,XN k=0
subjectto f(x,U) —X+1=0, k=0,...,N-1,

Xo — Xo = 0.

Given the fact that the initial value is fixed and the contfolgy"; are the
only true degrees of freedom, and given that each U takes one of they
elements ofJ, there exist exactlply different trajectories, each with a specific
value of the objective function, where infinity denotes deasible trajectory.
Assuming that the evaluation dfand ofL takes one computational unit, and
noting that each trajectory neeNssuch evaluations, the overall complexity of
simple enumeration I®(Nnfy). Simple enumeration of all possible trajectories
thus has a complexity that grows exponentially with the ZmrilengthN.

Dynamic programming is just a more intelligent way to enweterll pos-
sible trajectories. It starts from thpginciple of optimality i.e. the observation
that each subtrajectory of an optimal trajectory is an ogtitmajectory as well.
More specifically, in DP we define thalue functioror cost-to-go functioras
the optimal cost that would be obtained if at tikne {0,..., N} and at state
we solve the optimal control problem on a shortened horizon:

N-1
J(%) = minimize ) L(x,u) + E(4)
P . 8.1)
subjectto f(x,u)—-%.1=0, i=k...,N-1

X=X = 0.



8.1 Dynamic Programming in Discrete State Space 143

Thus, each functiody : X — R, summarizes the cost-to-go to the end
when starting at a given state. For the clise N we trivially have Jy(X) =
E(X). The principle of optimality states now that for akye {0,...,N — 1}
holds

J(%) = minjmize  L(XU) + Jeea(F (K, ). (8.2)

This immediately allows us to perform a recursion to compltdunctions
Jx one after the other, starting with= N — 1 and then reducing in each
recursion step by one, until we have obtairlgdThis recursion is called the
dynamic programming recursio®nce all the value functiong are compu-
ted, theoptimal feedback contrdbr a given state at timek is given by

U (%) = arg minL(xc, U) + Jiea(F (%, 1)

This allows us to reconstruct the optimal trajectory by avand simulation
that starts aky = Xg and then proceeds as follows:

Xir1 = F(X, Ug(%)), k=0,...,N-1

In this way, DP allows us to solve the optimal control problgpto global op-
timality, but with a diferent complexity than simple enumeration. To assess its
complexity, let us remark that the most cost intensive stépe generation of
theN cost-to-go functiongy. Each recursion step (8.2) needs to go through all
nx statesx. For each state it needs to tegtcontrolsu by evaluating once the
systemf (x, u) and stage codt(x, u), which by definition costs one computati-
onal unit. Thus, the overall computational complexit®idN ngny). Compared
with simple enumeration, where we h@dN nLN,), DP is often much better even
for moderately sized horizorié. Let us for example assume an optimal control
problem withng = 10, nx = 1000,N = 100. Then simple enumeration has a
cost of 13°? while DP has a cost of £0

One of the main advantages of dynamic programming, that ikawike
be defined for continuous state spaces, is that we do not oeedke any
assumptions (such asflidirentiability or convexity) on the function§ L, E
defining the problem, and still it solves the problem up tdbglooptimality.
On the other hand, if it shall be applied to a continuous fptee, we have
to represent the functionk on the computer, e.g. by tabulation on a grid in
state space. If the continuous state sp#igg; is a box in dimensiomy, and
if we use a rectangular grid witl intervals in each dimension, then the total
number of grid points isn™. If we perform DP on this grid, then the above
complexity estimate is still valid, but withy = m™. Thus, when DP is applied



144 Dynamic Programming

to systems with continuous state spaces, it has exponenfigblexity in the
dimension of the state space; itflars from what Bellman called theurse

of dimensionality There exist many ways to approximate the value function,
e.g. by neural networks or other functional representatja], but the global
optimality guarantee of dynamic programming is lost in theases. On the
other hand, there exists one special case where DP can lmemed exactly

in continuous state spaces, that we treat next.

8.2 Linear Quadratic Problems

Let us regard now linear quadratic optimal control problefihe form

N-1

T
L X Qi SiT Xi T
m|r)1(|’mu|ze Z [Ui] s R|lu + Xy PnXn
i=0
. _ (8.3)
subject to Xo— X =0,
Xi+1—Aqu—BiUi=O, i=0,...,N—1.

Let us apply dynamic programming to this case. In each remustep, we
T T
have to solve, for a time varying stage cbgfx, u) = [Xk] [Qk Sk } [Xk]

U] [Sk Re]]uk
and a dynamic systerfy(x, u) = Acx + Byu the recursion step

39 = minL(x, U) + Jea(f(x ),

where we start withJy(x) = Xx"Pnx. Fortunately, it can be shown that
under these circumstances, eakhis quadratic, i.e. it again has the form
J(X) = X" P¢x. More specifically, the following theorem holds, where wepr
the indexk for simplicity.

Theorem 8.1(Quadratic Representation of Value Functioif)R + B"PB is
positive definite, then the minimumdX) of one step of the DP recursion

wanemm [(2 %

is a quadratic function explicity given byied(X) = X" Prew X With

+[AIB]P[A] B])m

Prew= Q+ATPA—(S™ + ATPB)(R+ B'PB)}(S+ B'PA).  (8.4)

The proof starts by noting that the optimization problemda@pecificx is



8.2 Linear Quadratic Problems 145

.
X
y
Then it uses the fact that for invertibR = R + BT PB this problem can be

solved explicitly, yielding the formula (8.4), by a diregication of theSchur
complement lemmahat can easily be verified by direct calculation.

given by

JnewlX) = Min S+B'PA R+B'PB

Q+ATPA ST +ATPBHX]

Lemma 8.2(Schur Complement Lemma)f R is positive definite then
- =
X [Q STIX|_ r(a aret
|2 5[-xe-swsy
and the minimizer(x) is given by t(x) = -R1Sx.

The above theorem allows us to solve the optimal control Iprokby first
computing explicitly all matrice®k, and then performing the forward closed
loop simulation. More explicitly, starting witfPy, we iterate fork = N —
1,...,0 backwards

Pr = Qu+ A Pis1 Ak — (S + APt BO(Re + By P B) ™ (Sk + By Pia1A).

(8.5)
This is sometimes called thgifference Riccati EquatiormThen, we obtain the
optimal feedbacki (x) by

Up(%<) = —(Re + By Pi1Bi) 1 (Sk + By Pis 1AQ) Xk
and finally, starting withxg = Xo we perform the forward recursion
Xer1 = AXic + BrU (%),

which delivers the complete optimal trajectory of the lingaadratic optimal
control problem.

An important and more general case are problems with lingadi@tic costs
and dfine linear systems, i.e. problems of the form

N-1f 1 * qiT ST 1 i T
minimize Z x| (g Q@ S'||x]|+ ! ] [ * Py } [ 1 }
X, U . XN Pn o Pn]| XN
=0juf |s S R]lu (8.6)
subject to Xo— X =0,
Xi+1—AiXi—BiUi—Ci=0, i:O,...,N—l.

These optimization problems appear at many occasionsxéongle as linea-
rizations of nonlinear optimal control problems, as in Gleaj.3, in reference



146 Dynamic Programming

tracking problems with.;(x,, u;) = || — >g."3f||(2g + ||ui]|3, or in moving horizon
estimation(MHE) with costL;(x;, u)) = ||Cx — y{“eaﬂé + [lull3. They can be
treated by exactly the same recursion formulae as aboveudppenting the
system statez to

%=
Xk
and replacing the dynamics by
K1 = [ L Ol + 0 }u
k+1 Cy Ak Bk k
with initial value
o 1
%=

Then the problem (8.6) can be reformulated in the form of jenmb(8.3) and
can be solved using exactly the saméatence Riccati equation formula as
before!

8.3 Infinite Horizon Problems

Dynamic programming can easily be generalized to infinitézoo problems
of the form

m|r)1(|’mu|ze Z(; L(x, u;)
i=
subject to Xo — Xo = 0,
X1 — F(G,U) =0, i=0,...,00.

Interestingly, the cost-to-go functialy(x) defined in Equation (8.1) becomes
independent of the indel i.e it holds thatl, = Ji,.1 for all k. This directly
leads to théBellman Equation

J(X) = muin L(x,u) + J(f(x,u)).

=J(x.u)

The optimal controls are obtained by the function
u*(x) = arg minJ(x, u).
u

This feedback is called th&tationary optimal feedback contrdt is a static
state feedback law.



8.4 The Linear Quadratic Regulator 147
8.4 The Linear Quadratic Regulator

An important special case is again the case of a linear syatiédmquadra-
tic cost. It is the solution to an infinite horizon problem ki linear system
f(x,u) = Ax+ Buand quadratic cost

o[22 %1}

For its solution, we just require a stationary solution of tRiccati recur-
sion (8.5), setting’x = Pyx.1, which yields the so calledlgebraic Riccati
equation in discrete time

P=Q+ATPA-(S™ + ATPB)(R+ B'PB)(S + BTPA).

This is a nonlinear matrix equation in the symmetric mafjxe. withny(ny +
1)/2 unknowns. It can either be solved by an iterative appbeadtf the dif-
ference Riccati recursion (8.5) starting with e.g. a zerdrim@ = 0, or by
faster converging procedures such as Newton-type methddse, however,
care has to be taken to avoid possible shadow solutionsréhabapositive de-
finite. Once the solution matriR is found, the optimal feedback contni(x)
is given by
u“(x) = — (R+ BTPB) (S + BTPA) x.
=K

This feedback is called thieinear Quadratic Regulator (LQRRNndK is the
LQR gain.

8.5 Robust and Stochastic Dynamic Programming

One of its most interesting characteristics is that DP caityelae applied to ga-
mes like chess, or tmbust optimal control problemdiere, an adverse player
choses counter-actions, or disturbanegsagainst us. They influence both the
stage costsy as well as the system dynami§sand while we want to mini-
mize, our adversary wants to maximize. The robust DP remurfir such a
minimax game is simply:

J(x) = minmaxLi(x, u, W) + e (fi(x U, W)
w

=J(xu)
starting with
INGX) = E(X).



148 Dynamic Programming

The solution obtained by DP takes into account that we cart teéhe actions
by the adversary, i.e. that we can apply feedback, and in thaehpredictive
control (MPC) literature such a feedback law is sometiméead&losed-Loop
Robust Optimal Control [7].

Alternatively, we might have a stochastic system and theisita find the
feedback law that gives us the best expected value. Heteamh®f the max-
imum, we take arexpectationover the disturbancesy. The stochastic DP
recursion is simply given by

\]k(x) = mulnEW{ Lk(X, u, W) + Jk+l(fk(xv u, W))}
=J(xu)

whereE,{-} is the expectation operator, i.e. the integral owaxeighted with
the probability density functiop(wix, u) of w givenx andu:

Eulé(x, U, W)} = f 6%, U Wo(wix, L)dw.

In case of finitely many disturbances, this is just a weiglsech. Note that
DP avoids the combinatorial explosion of scenario treesdt@often used in
stochastic programming, but of courséfets from the curse of dimensionality.
It is the preferred option for long horizon problems with diltate spaces.

8.6 Interesting Properties of the DP Operator
Let us define theynamic programming operatorBcting on one value function,
Jk+1, @and giving another onéy, by
T[IN(x) = min Li(x, u) + I(fi(x, u))-
Note that the operatdr, maps from the space of functiofis— R, into itself.
With this operator, the dynamic programming recursion isypactly written
asJx = Tk[Jk:1], and the stationary Bellman equation would justlse T[J].

Let us for notational simplicity drop the indéin the following. An interesting
property of the DP operatdr is its monotonicity as follows.

Theorem 8.3(Monotonicity of DP) Regard two value functions J and. Jf
J > J in the sense that for all ¥ X holds that Jx) > J’(x) then also

T[J] =T[J].
The proof is

T[I](X) = minL(x, u) + J(f(x, u)) > minL(x,u) + J(f(x, u)) = T[I(X).
’ 2J (f(xu)) ’



8.6 Interesting Properties of the DP Operator 149

This monotonicity property holds also for robust or stotitadynamic pro-
gramming, and is for example used in existence proofs fanteols of the
stationary Bellman equation, or in stability proofs of mopleedictive control
(MPC) schemes [62].

Another interesting observation is that certain DP opesat@reserve con-
vexity of the value functiord.

Theorem 8.4(Convex dynamic programming)f the system isffine in(x, u),
i.e. f(x,u,w) = A(w)x+ B(w)u+ c(w), and if the stage cost(k, u, w) is convex
in (x, u), then the DP, the robust DP, and the stochastic DP operatopseF
serve convexity of J, i.e. if J is a convex function, th¢d] Ts again a convex
function.

Proof It is interesting to note that no restrictions are given ow kiwe functi-
ons depend ow. The proof of the convexity preservation starts by notirgt th
for fixed w, L(x,u,w) + J(f(x, u,w)) is a convex function inx, u). Because
also the maximum over alV, or the positively weighted sum of an expectation
value computation, preserve convexity, the functi¢x u) is in all three cases
convex in bothx andu. Finally, the minimization of a convex function over
one of its arguments preserves convexity, i.e. the regutitue functionl [J]
defined by

T[] = min J(x, u)
is convex. O

But why would convexity be important in the context of DPXEiconvexity
of J(x, u) implies that the computation of the feedback law argyiix, u) is a
convex parametric program and could reliably be solved bglloptimization
methods. Second, it might be possible to represent the fiahagdon J(xX) more
efficiently than by tabulation on a grid, for example as the paisg maximum
of affine functions

1
x] '

It is an interesting fact that that for piecewise linear aneosts and con-
straints and polyhedral uncertainty this representagaxact and leads to an
exact robust DP algorithm that might be callgdlyhedral DP[7, 31]. The

polyhedral convex representability of the cost-to-go faear systems with
piecewise linear cost is indirectly exploited in some eplIMPC approa-

ches [67, 6]. Polyhedral representations with a limited benof facets can
also be used to approximate a convex cost-to-go and stitl gigme guaran-

J(X) = miaxaiT




150 Dynamic Programming

tees on the closed-loop system [16, 17, 50]. Finally, no& @tso the linear
guadratic regulator is a special case of convex dynamicranoging.

8.7 The Gradient of the Value Function

The meaning of the cost-to-go, or the value functidnis that it is the cost
incurred on the remainder of the horizon for the best possitrategy. In order
to make an interesting connection between the value fumeti@ the multi-
pliers A, that we encountered in derivative based optimization misthiet us
now regard a discrete time optimal control problem as in tiegipus chapters,
but without coupled constraints, as these cannot direetlyydated with dyna-
mic programming. We assume further that the initial valuexisd and that all
inequality and terminal constraints are subsumed in thgestastl (x, u) and
terminal costE(xy) by barrier functions that take infinite values outside the
feasible domain but areftiérentiable inside. For terminal equality constraints,
e.g. a fixed terminal state, assume for the moment that thresgpproxima-
ted by a terminal region of non-zero volume on which againraidracan be
defined. Thus, we regard the following problem.

N-1
minimize > L(X U + E(n)
UN-1,XN k=0
subjectto f(x,U) — X1 =0, k=0,...,N-1,

X0 — X% = 0.
The dynamic programming recursion for this problem is gilggn
IN) = E(X), KX = muin L(x u) + Ja(f(x,u)), k=N-1,...,0. (8.7)
We remember that we obtained the optimal solution by thedotwecursion
Xo =X, Xe1=f(% W), k=0,...,N-1,
whereu is defined by
Ui = arg minL (X, U) + i1 (F (X, U))- (8.8)

The solution of this optimization problem im necessarily satisfies the first
order necessary optimality condition

of
VoL (X, Ug) + %(Xk, U) "V s (f (X, Uk)) = 0 (8.9)

which definesuy locally if the problem is locally strictly convex, i.e., ite
jective has a positive definite Hessian at, (k). We now formulate simple



8.8 A Discrete Time Minimum Principle 151

conditions o anduy that follow necessarily from the DP recursion. For this
aim we first note that on the optimal trajectory holgs; = f(x, uc) and that
we trivially obtain along the optimal trajectory

INON) = E(xn),  Jk(%) = L% W) + Je1(Xr1), k=N-1,...,0.

This implies for example that the value function remainsstant on the whole
trajectory for problems with zero stage costs. Howeves, évien more interes-
ting to regard the gradie Ji(x«) along the optimal state trajectory. If we
differentiate (8.7) at the poim with respect tax we obtain

VIn(X) = VE(X),

d
V(X)) = ax L(X k) + Jea(F(Xe, W)) k=N-1,...,0.

=3 (X U)

In the evaluation of the total derivative it is needed to obsé¢hat the optimal
U is via (8.9) an implicit function okg. However, it turns out that the derivative
does not depend og-‘;’f because of

d -~ _ (9jk 65k duk
dXJk(st Ug) = ax (X, Ug) + au (X«» Uk) i
=0
where the partial derivative with respectuds zero because of (8.9). Thus,
the gradients of the value function at the optimal trajectaave to satisfy the

recursion
of
V(%) = VL (X, Uk) + &(Xk, u) ' VIe1(xew1) k=N-1,...,0.

This recursive condition on the gradieWs,(xy) is equivalent to the first order
necessary condition (FONC) for optimality that we obtaimedviously for
differentiable optimal control problems, if we identify the djents with the
multipliers, i.e. set

A = VI(X).

This is a very important interpretation of the multiplietis they are nothing
else than the gradients of the value function along the atirajectory!

8.8 A Discrete Time Minimum Principle

Collecting all necessary conditions of optimality that wetjderived, but sub-
stituting VJk(X«) by Ax we arrive indeed exactly to the same conditions (7.7)



152 Dynamic Programming

that we derived in Chapter 7 in a completelyfdient way.

X0 =X
Xk+l=f(xk7uk)’ k=0"-"N_1a
/1N = VXNE(XN)

of

/lk = VXI—(Xk’ uk) + &(Xk’ uk)T/lk+1, k =N- l’ ey 1’
of

0 = VyL(X, uy) + %(xk, uw) A1, k=0,...,N-1

In the context of continuous time problems, we will arriveaatery similar
formulation, which has the interesting features that tieanrgion ford becomes
a differential equation that can be integrated forward in timeesiced, and
that the optimization problem in (8.8) does only depend andhadient of
J. This will facilitate the formulation and numerical soloi of the necessary
optimality conditions as a boundary value problem.

8.9 lIterative Dynamic Programming
8.10 Dfferential Dynamic Programming
Exercises

8.1 Consider a very simple system with state {1,2,...,10} and controls
u € {-1,0,1} and time invariant dynamicK(x, u) = X + u and stage cost
L(x,u) = |ul on a horizon of lengtiN = 3. The terminal cosE(X) is
given by zero ifx = 5 and by 100 otherwise. Take pen and paper and
compute and sketch the cost to go functidgsl,, Ji, Jo.

8.2 Use dynamic programming to solve the following simplecdéte time
OCP with one state and one control by hand. On the way towhsis t
solution, explicitly state the cost to go functiog(x), J1(X), Jo(x) and
feedback control lawsg(x) andu;(x).

1
minimize Zuﬁ + 10%5
X0,X1,X2,
Uo,U1 k=0

subjectto X =5,
Xk+1:Xk+uka k:O’l‘



Exercises 153

8.3 Regard the discrete time damped-spring system

(1 0.02 .t 0 U
X1= 101 0992 {0.02) ™
over the horizon oN = 600, with initial statex, = [10, 0].

(a) Simulate and plot the uncontrolled systam=(0) as a baseline.
(b) Using dynamic programming, minimize the cost function:

N-—

=

(x;ka + u[Ru() + X P XN

with

i 0 1 0
=[5 3 =@ (o

F
Plot the two states and control against the uncontrolletesys
(c) Consider the infinite-horizon systefN (~ co) with cost function:

2, (5 Qe+ iRy
k=0

What control policy will minimize this cost function? Implemt this
control policy and simulate fal = 600. Plot this in state and control
against the previous two trajectories.

8.4 In this Exercise we regard again the discrete time system

Xis1 = D(Xc, Uk)

that is generated by one RK4 step applied to the controlledimear
pendulum, as defined in Exercise 7.6. Furthermore, we astahgou
have the MATLAB function[xnew]=RK4step(x,u) available. If not,
refer to Exercise 7.6 for implementation.

We regard the same optimal control problem as last time, thi¢h
initial value Xo = (10,0)" andN = 50 time steps, and boung,ax =
10, Vmax = 10, i.e.Xmax = (Pmax Vmax) ', @andumax = 10. In contrast to
last time and because of approximation errors, we now hakelds the
terminal constrainky = 0 to a small boX-Xnmax < XN < Xn,max With

Xnmax = (5,5)7T. We also add a small terminal cost terrﬂlmlg. As a
result, the optimization problem we want to solve is given by



154

Dynamic Programming

N-1
= 0 minimize § udll? 2
X0.Ug, X1 s llukll2 + 1QIxnlI
UN-1,XN k=0

subjectto ®(X, U) — X1 =0,  k=0,...,N-1,
—Xmax < Xk < Xmax K=0,...,N-1,

—XNmax £ XN < XNmax
—Unax < Uk < Umaxy kK=0,...,N-1

(a) Discretize the state and control spaces choosing step 8i all di-

(b)

(©

mensions of size 1. Considering thate R?| — Xmax < X < Xmax} and

{U € R| — Unmax < U < Umax this would resultim = 21-21 = 441 state
grid points andn = 7 control grid points. Let us denote the gridded
space and control spaces EyandU. As a first step, define the ter-
minal cost-to-go functiody(X) on then state grid pointx € X, i.e.
define all elements of 21 by 21 matrix that you might dalht. For
infeasible values, i.e. those that exceed the tight bouhtteedermi-
nal state, choose a very large number, e.§. For later use, you
might also define a three dimensional tengmatTen(i, j,kpl)
with kpl=1,...,51 in order to store ally.

The next problem in implementing dynamic programminthat we
cannot expect that we exactly hit wid(x, u) any of the grid points,
i.e. unfortunately we have even fare X andu € U that usually
d(x,u) ¢ X. We can resolve this issue by rounding the value of the
output of ® to the next grid point (this corresponds to a piecewise
constant representation d§,; in the DP equation). Let us denote
this function by® : X x U — X. Thus, write a MATLAB function
[xnew = RK4round(x, u) which has the property that it always maps
to the next grid point irX. Note that we introduce uncontrolled dis-
cretiation errors here.

Last, implement the dynamic programming recursion,viste two
nested loop: the outer loop goes through eachX and solves the
optimization problem

J(X) = min|[ul2 + J2(D(x, u))
uelU

by enumerating over all € U in the inner loop. Summarize your dyn-
amic programming operatdrin a functionJmatplus=DPoper (Jmat).



Exercises 155

(d) Starting atly, generate all fifty more matricely_1, . .., Jo, and visu-
alize your cost-to-go functiond by plotting the matrix entries as a
two dimensional function (cutting away the “infinitely” Higrzalues).
Comparely andJy. Can you interpret the form of them ?

(e) In order for DP to be useful, we need to generate conttarafor
a given state. They are easily obtained by

U(¥) = arg minflul} + Je.1(®(x. 1)

Write a functionu=DPcont (x,J) that gives you the dynamic pro-
gramming feedback.

() If you want to generate the optimal trajectory for a givettitial state
X0, we can do &losed-loopsimulation, i.e. we simulate

Xier1 = P, U (Ko Jier1))-

Note that we daot used in this forward simulation, bub, because
we want the feedback to compensate for our discretizatiameGe-
nerate the trajectories forandu for the above optimal control pro-
blem.

(g) Assume a small bounded perturbation against which yau wero-
bustify your controller. Assume for this that your functidnis per-
turbed by a perturbatiow € [-1, 1]? as follows

X1 = D (X, Ui) + 0. 1u Wi

= Drob(Xk, Uk, Wk)

Discretize the cube in whictv lives e.g. by a 3 by 3 gri@V. Also,
you need again to round the result so that you have a fundtign:
XxUxW — X. Now solve instead of the nominal DP recursion the
robust DP recursion

Je(®) = minmax|ull3 + Jer1(Pron(X, U, W)).
uelU weW

Generate the nominal trajectory, i.e. with @l = 0 by the closed-
loop simulation. Plot the result. What isfidirent now?

(h) Last, generate a random scenario of valugmside the cube of per-
turbations, and simulate your closed-loop system agairifjMat
the terminal constraint is still satisfied.

8.5 Inthis task we are using Dynamic Programming to find ogkitontrols
to swing up a pendulum. The state of the systemis[¢, w]” whereg
is the angle ana the angular velocity of the pendulum. When= 0,



156 Dynamic Programming

the pendulum is in its inverse position, e.g. the mass isatdp. The
system dynamics are given by

$=w
w = 2sinf@)+u
wherew € [wmin, Wmaxl, aNAU € [Umin, Umax]-

To find the controls for the pendulum swing-up, we are solvimg
following optimal control problem:

.....

Uo,...,UN_1 k=0
subject to Xo = Xo,
f (%, W) = X1 = 0, k
Umin € Uk < Umax K
k

REEE)

0
0,...
0

z z z
|

Wmin < Wk < Wmax

Dynamic Programming requires a system which is discretpates
and in time. We already prepared the discretization of tindicoous sy-
stem for you in the filpendulum_template.m on the course webpage.
The discretization is done in the following way:

The discrete versions @f w andu live in the integer spacg and thus
are denoted byz, wz anduz. The conversion from real space to inte-
ger space is done by projection of the variables M§oN,,, N, equally
spaced bins in the range of the variables. In the templatgdilefind
predefined functions to convert the variables between éntagd real
numbers, e.gphiZ_to_phi andphi_to_phiZ.

To complete the tasks, fill in the missing parts of the tengpfde
pendulum_template.m.

(a) Use the functionintegrate_Z to simulate the system in discrete
space withxg = [0.4,0]" andu = 0. Do N = 60 integration steps
and use a timestep &f= 0.12. Plot the evolution of andw in time
(in continuous state space). Make a plot (animation) thatvshthe
motion of the pendulum. Assume a rod length of. You don’t need
to submit the animation in the pdf, it's just for you to seéhié system
behaves well.

(b) In the following section of the template file you see thegailcula-
tion of all integrations in the discrete state space to auaitecessary



Exercises 157

computations during Dynamic Programming. For a given combi
tion of ¢z, wz, andug, the resulting state from integrationy], w]
is stored in the lookup tableehiNext andWNext and the costs are
stored in the tablé.

Use the lookup tables to do the same simulation as in Taslof.th&l
evolution of¢ andw in time (in continuous state space).

(c) Implement the backward pass (recursion) of Dynamic Frogning,
i.e. calculate the cost-to-go functidp(x) going fromk = Ntok = 1.
Fork = N, the cost-to-go is initialized zero for all states (no tarati
cost). Fill in the missing lines in the template file for thask. Use
N = 60 andh = 0.12.

(d) Simulate the system using the optimal controls whichgaven by

Up(%) = argumin @7 + U + Jen (F (X, U))

starting fromxg = [-=, 0]". Plot the evolution ofp andw in time
(in continuous state space). Make a plot (animation) thatvshthe
motion of the pendulum to see if the pendulum swings up.

8.6 Consider the inverted pendulum problem defined by thienaptcont-
rol problem given by Equation (8.10). This time, we will try find an
approximate solution to the optimal control problem by #irising the
original non-linear problem and finding a solution to theresponding
linear-quadratic problem of the form:

Xk

+ XKI PnXn
Uk

m|n|m|ze Z[uk] Q ST]

Uo ,,,,, UN1 k

subjectto  Xg = Xo,
Xir1 =AkX + B, k=0,...,N—-1

In order to solve the dierent tasks download tHeyr_template.m
from the website.

(a) Linearise the system dynamics around the pwiget [0,0]", u = 0
analytically by diferentiation to obtain a continuous time system of
the form: X = A.x + Bcu. Then you can obtain the corresponding

discrete time systemy,1 = AX + Bu with a timestep of A using
the Matlab commands:



158

(b)
(©

(d)

(e)

(f)

()]

(h)

Dynamic Programming

sysc = ss(Ac,Bc,eye(2),0);
sysd = c2d(sysc,0.1);

A = sysd.a;

B = sysd.b;

Specify the continuous time and discrete time system neesthig B,

A B.

Bring the objective of the optimal control problem intaaadratic
form and specify the matrice3, R, S.

Calculate recursively thB, matrices (Dfference Ricatti Equation)
fork=N-1,...,0with N = 60 starting fromPy = [8 8 .

Calculate the first cost-to-ghy for the linear system for each state of
the dynamic programming exercise of exercise sheet 3. Ma&{@ a
contour plot with a fine level-step @f using the matlab commands:

[C,handle] = contour3(J0);
set(handle, 'LevelStep’,get(handle, 'LevelStep’)*0.2)

Compare the contour plot with the contour plot of the noredincost-
to-go function of the dynamic programming exercise the yauo get
with theget_first_J () function in the template.

What are the similaritigdifferences of the two contour plots?
Starting fromxy = [-3,2]", calculate the optimal feedback and the
complete optimal trajectory of the linear quadratic opfimantrol
problem by forward recursion.

Make a plot with the evolution of the state in time and a pldbefop-
timal feedback controls vs. time. Does the controller bthmgsystem
to the steady state?

Apply the same optimal controls (open-loop) to the nimeér pen-
dulum system. Start from the same initial stageand simulate the
system using théntegrate_rk4 function. Make a plot of state evo-
lution and controls as before. Does the controller bringstystem to
the steady state? Discuss the result.

Implement a feedback controller, i.e. calculate thenoglt feedback
for the current state and simulate the non-linear systengusi
integrate_rk4. Make a plot of state evolution and controls as be-
fore. Does the controller bring the system to the steadg3tat
Solve the Algebraic Ricatti Equation by iteratively @ahting the
Py matrices until convergence. We say, convergence is reatties
Frobenius norm of dierences between the current matfy, and
the next matrixP ey is below 10°;



Exercises 159

norm(Pnext-Pcur, 'fro’) <= le-5
(i) Use the solution to the Algebraic Ricatti Equation to ietpent a
Linear-Quadratic-Regulator(LQR). Simulate the systethwhtegrate_rk4.
Make a plot of state evolution and controls as before. Doe<tin-
troller stabilize the system at the steady state?
8.7 We shall consider a simple OCP with two statgsX,) and one control

(u):

.
minimize f X1(t)? + Xo(t)? + u(t)? dt
) 0

subjectto x; = (1 - X3) Xg — X2 + U, x1(0) = 0,
X2 = X, x(0) =1,
“l<x)<1,
1< x(t) <1,
1< ut) <1,
with T = 10.

To be able to solve the problem using dynamic programmingava-
meterize the control trajectory inté = 20 piecewise constant intervals.
On each interval, we then take 1 step of a RK4 integrator iermtal get
a discrete-time OCP of the form:

N-1 N-1
inimi (K) (k) (K (K) (K K
minimize ;Fo(x1 AT )); Fo(x{?, %, u®)

subjectto X&) = F0d, ¥, u®), k=0,...,N-1, X =0,
X = B0 W), k=0,...,N-1, XD =1
1< <1, k=0,...,N,
1< <1, k=0,...,N,
-1<u® <1 k=0,...,N-1

] s

(a) Implement the RK4 integrator for the system dynamickeTalook
to Chapter 10 if you need help.

(b) The continuous, X, andu are uniformly discretized in 101 values.
Create the vectors containing the discrete values of thehlas. Mo-
dify the integrator so that the dynamics round up to the clbdes-
crete value.



160 Dynamic Programming

(c) Using the stage cost and starting«gfT ), x2(T), recursively compute
the cost of every possible statd'{, x}9, u®).

(d) Using the initial conditions solve the problem using dgric pro-
gramming.

(e) Add the additional end-point constrait(T) = —0.5 andx,(T) =
—0.5. How does the solution change?



9
Continuous Time Optimal Control Problems

When we are confronted with a problem whose dynamic systess livcon-
tinuous time and whose control inputs are a continuous prafé. functions
of time living in anco-dimensional functional space, we speak abatinuous
time optimal control problemThis type of problem is the focus of this third
part of this script. We will encounter variations of the satnacepts as in the
discrete time setting, such as Lagrange multiplierthe value function, or
the diference between sequential or simultaneous methods. Samerioal
methods and details, however, are only relevant to the mootis time setting,
such as the indirect methods and Pontryagin’s Maximum Rimdescribed
in Chapter 12, or the ODE solvers with sensitivity generatitescribed in
Section 10.4.

9.1 Formulation of Continuous Time Optimal Control
Problems

In an ODE setting, many continuous-time optimal controlgbeon can be sta-
ted as follows.

r?(&rilmuzz)e fOL(x(t),u(t))dt+ E(x(T))

subject to X(0) — %o = 0, (fixed initial value)
X(t) — f(x(t),u(t)) =0, te[0,T], (ODE model)
h(x(t),u(t)) <0, te[0,T], (path constraints)
r(x(T)) <0, (terminal constraints)

161



162 Continuous Time Optimal Control Problems

The problem and its variables are visualized in Figure 9.1.

path constrainth(x, u) < 0

initi ¥ terminal
initial Va'%oe i constrafmr(x(T)) <0

......

t T
Figure 9.1 The variables and constraints of a continuous tiptenal control
problem.

The integral cost contributioh(x, u) is sometimes called tHeagrange term
(which should not be confused with the Lagrange functiorg e terminal
costE(X(T)) is sometimes called Mayer term The combination of both, like
here, is called 8olza objective

Note that any Lagrange objective term can be reformulated\ayer term,
if we add an additional “cost state’that has to satisfy the filerential equa-
tion ¢ = L(x,u), and then simply add(T) to the terminal Mayer cost term.
Conversely, every dlierentiable Mayer term can be replaced by by a Lagrange
term, namely byL(x, u) = VE(X)T f(x, u), as the cost integral then satisfies the
equalityfoT L(x, u)dt = fOT Edt = E(X(T)) - E(x0). These two equivalences
entail that formulating a problem involving only a Lagrantgem or only a
Mayer term present no loss of generality. However, in thigpseve will use
the full Bolza objective.

9.2 Problem reformulation

So far, we wrote all functionk, E, f, hindependent of timéor of parameters
p, and we will leave both of these generalizations away iné¢neainder of this
script. However, all the methods presented in the follovdhapters can easily
be adapted to these two cases, using again state augmengatitollows. If

a time-dependency occurs in the problem, one just needrtmdimte a “clock
state”t with differential equatio = 1, and work with the augmented system
X = f(X u):

k:[x], 1?(>~<,U)=[f(x’1u’t)}.



9.3 Multi-stage Problems 163

Likewise, in the case time-constant, but free optimizafiarameterg appear
in the problem, they can be incorporated as “parameter’spandth differen-
tial equationp’ = 0 and free initial value.

Another interesting case specific to continuous-time naisl is when the
durationT of the problem is free. As an example, we might think of a robot
arm that should move an object in minimal time from its cutigtate to some
desired terminal position. In this case, we might rescadetitne horizon to
the interval [Q1] by a time constant but free variablethat is treated like an
optimization parameter. We then regard a scaled problem

o | X fo o~ [T f(xu)
X_[T}’ f(Xu) = 0 }

with pseudo timer € [0, 1] yielding the dynamics

%)”( = f(% u)
and whereT is treated as a parameter, i.e. the initial condifig®) for the
“state” T is free andT satisfiesT = 0.

We note that although all the above reformulations makessitibe to trans-
fer the methods in this script to the respective specials;aame dficient nu-
merical implementation should exploit the structures iehein these special

cases.

X

9.3 Multi-stage Problems

A special class of continuous-time optimal control protdeane multi-stage
Problems, where the problem formulation can “switch” in twairse of the
horizon [Q T]. Such problems occur when e.g. the system dynamics, the cos
function or the constraints change discontinuously at sttme instant. The
time instant at which the switching occurs can be fixed, freeven event-
dependent (i.e. occurring when the system states fulfil aifspeondition).
Classical examples of multiple-stage optimal control peois stem from con-
tact problem such as e.g. walking robots, shocks (e.g. adimgiball), the lan-
ding pattern of airliners (where the configuration of thengias to be adjusted
according to prescribed rules, yielding event-based oesimgthe dynamics),
industrial robots picking up and releasing objects. Howewe will assume
hereafter that therderingin which the changes occur is prescribed and inde-
pendent of the system evolution. This excludes e.g. haggliablems such as
gear-shifting in vehicles, where the order in which the geae shifted is not
prescribed but depends on the vehicle trajectory.



164 Continuous Time Optimal Control Problems

A fairly simple way of framing a multi-stage problem mathdioally is to
consider eaclstageof the problem as an optimal control problem of its own,
and to link the diferent stages by matching the terminal state of a state to the
initial condition of the following stage. AMN-stage multi-stage problem can
then be formulated as:

N-1

Tt
((JPinimize. kz:;) fT k Li(%(0), Uk(t))dt + Ex (Xc(Tics1)

subject to Xo(To) — %o = 0, (initial value),
X(Tk) = X-1(T) = 0, (state continuity)
(1) — fe(%(D), u@®) = 0, te [T, Trea], (ODE model)
h(Xc(t), u(t)) <0, te[Tw Tea], (path constraints)
e (%(Ty)) < 0, (terminal const,)
Tk =Tk <0, (time ordering)

whereXg are the assigned initial conditions for the multi-stagebpem, and
are prescribed, they should then be excluded from the \lagat the optimal
control problem. Each stage can then be treated as a sefraatend time
problem, apart from the constraintg(Ty) — X«_1(Tk) linking the state trajec-
tories between stages. Many variations of the above fottionlare possible
and useful to tackle various kinds of multi-stage problems.

9.4 Hybrid problems
9.5 what else ?
9.6 Overview of Numerical Approaches

Generally speaking, there are three basic families of ambres to address
continuous-time optimal control problems, (a) state-spéu) indirect, and (c)
direct approaches, cf. the top row of Fig. 9.2. We follow h&eeoutline given
in [37].

State-space approachasse the principle of optimality that states that each
subarc of an optimal trajectory must be optimal. While this @ basis of
dynamic programming in discrete time, in the continuousetirase this leads
to the so-calletHamilton-Jacobi-Bellman (HJB) equatipa partial diferential
equation (PDE) in the state space. Methods to numericahypebe solution



9.6 Overview of Numerical Approaches 165

Continuous Time Optimal Control

Hamilton-Jacobi- Bellman ;

Equation: Ind||3rec: MEt.h(?dS' Direct Methods:

Tabulation in Solve g’;%?%rr;' Valud Transform into Nonlinegr
Program (NLP

State Space Problem ogram (NLP)
Direct Single Shooting Direct Collocation: Direct Multiple Shootind:
Dnly discretized controlgin | Discretized controls angl | Controls and node start

NLP states in NLP values in NLP

(sequential) (simultaneous) (simultaneous)

Figure 9.2 The optimal control family tree.

approximations exist, but the approach severefjess from Bellmans “curse
of dimensionality” and is restricted to small state dimensi This approach
is briefly sketched in Chapter 11.

Indirect Methodsuse the necessary conditions of optimality of the infinite
problem to derive a boundary value problem (BVP) in ordindifferential
equations (ODE). This BVP must numerically be solved, aredapproach
is often sketched as “first optimize, then discretize”, asdanditions of op-
timality are first written in continuous time for the givenoptem, and then
discretized in one way or another in order for computng a migalkesolution.
The class of indirect methods encompasses also the wellrknalsulus of va-
riations and the Euler-Lagrangefidirential equations, and the so-calleah-
tryagin Maximum PrincipleThe numerical solution of the BVP is performed
by shooting techniques or by collocation. The two major dragks are that
the underlying dferential equations are oftenfiiicult to solve due to strong
nonlinearity and instability, and that changes in the aargtructure, i.e. the
sequence of arcs wheref@irent constraints are active, aréfidult to handle:
they usually require a completely new problem setup. Maggawn so called
singular arcs, higher indexftigrential-algebraic equations (DAE) arise which



166 Continuous Time Optimal Control Problems

necessitate specialized solution techniques. This apbrisabriefly sketched
in Chapter 12.

Direct methodstransform the original infinite-dimensional optimal cont-
rol problem into a finite-dimensional nonlinear programgiproblem (NLP)
which is then solved by structure-exploiting numericalimzation methods.
Roughly speaking, direct methods transform (typicallynianerical methods)
the continuous-time dynamic system into a discrete-tinséesy and then pro-
ceed as described in the first two parts of this script. Theasmh is therefore
often sketched as “first discretize, then optimize”, as ttoblem is first con-
verted into a discrete one, on which optimization technécare then deployed.
One of the most important advantages of direct methods adéneict ones is
that they can easily treat all sorts of constraints, suchgashe inequality path
constraints in the formulation above. This ease of treatstems from the fact
that the activation and de-activation of the inequality stoaints, i.e. structu-
ral changes in active constraints, occurring during théndipation procedure
are treated by well-developed NLP methods that daniently deal with such
active set changes. All direct methods are based on one foramather of
finite-dimensional parameterization of the control tregeg, but difer signifi-
cantly in the way the state trajectory is handled, cf. thedmtrow of Fig. 9.2.
For solution of constrained optimal control problems inl rearld applicati-
ons, direct methods are nowadays by far the most widesprebsiecessfully
used techniques, and are therefore the focus of this senijgf descriptions
of three of the direct methods — single shooting, multipleatimg, and collo-
cation — and some algorithmic details are given in Chaptewhie we point
out that the first two parts of the script covering finite dirsienal optimi-
zation and discrete time dynamic systems have already edveost of the
algorithmic ideas relevant for direct approaches to optooatrol.

Exercises

9.1



10
Numerical Simulation

Deploying optimal control on problems involving non-tavicontinuous-time
dynamics hinges on havingdfeient and accurate numerical simulations tools,
which allow for building discretizations of these contimsodynamics. This
chapter provides a brief but crucial exploration of thesdsto

The existence of a solution to an OrdinanfiBrential Equation (ODE) with
defined initial conditions, also call Initial-Value ProbgIVP), is guaranteed
under continuity off with respect to tox andt according to a theorem from
1886 due to Giuseppe Pean®d,)[ But existence alone is of limited interest as
the solutions might be non-unique. For example, the scaldE €{t) = VIx()]
with x(0) = 0 admits as solution:

B 0 for t<tp,
X(t)‘{ Lt-to)? for tt,

for anyty > 0, such that its solution is not unique. This ODE is contiraiatl
the origin, but its slope approaches infinity, which caukesnon-uniqueness.
More important than the existence of the ODE solution isafee its (lo-
cal) uniqueness discussed in the following theorem by @hké&iile Picard
(1890), 7], and Ernst Leonard Lindéf (1894), ]

Theorem 10.1(Existence and Uniqueness of IVVPRegard the initial value
problem(1.1)with x(0) = xo, and assume that f is continuous with respect to
x and t. Furthermore, assume that f is Lipschitz continuoris k@spect to X,
i.e., that there exists a constant L such that for alf and all te [0, T]

10 t) = £y, Ol < LlIx =il

Then there exists a unique solutioft)xof the IVP in a neighbourhood of
(X0, 0).

Note that this theorem can be extended to the case wifgrt has finitely

167



168 Numerical Simulation

many discontinuities with respect toin which case the solutions are still
unique, but the ODE solution has to be defined in the weak s&hsdact that
unique solutions still exist in the case of discontinuitesmportant because
(a) many optimal control problems have discontinuous @birtajectoriedu(t)
in their solution, and (b) many algorithms, the so calidect methodsfirst
discretize the controls, often as piecewise constant immetvhich have jumps
at the interval boundaries. These finitely many discontiesiin the control do
not cause dficulties for the existence and uniqueness of the IVPs.
Following Theorem 10.1 we know that a unique ODE (or DAE) ol
exists to the IVPx = f(xt), x(0) = Xp under mild conditions, namely the
Lipschitz continuity off with respect to the stateand continuity with respect
to the timet. This solution exists on the whole interval [(j if the time T >
0 is chosen small enough. Note that for nonlinear continuibne systems
— in contrast to discrete time systems — it is very easily ipbsgven with
innocently-looking functiond to obtain an “explosion” in the solution of the
ODE, i.e., a solution that tends to infinity in finite time. Etbe trivial ODE
x = X2, x(0) = 1 has the explicit solutior(t) = 1/(1 - t) tending to infinity for
t — 1. This simple example reveals that we cannot guaranteexitierce of
the solution to a dferential equation on any given interval [Q for arbitrary
T, but only on stficiently small time intervals.

10.1 Numerical Integration: Explicit One-Step Methods

Numerical integration methods are used to approximatdiyesa well-posed
IVP that satisfies the conditions of Theorem 10.1. They conmedny diferent
variants, and can be categorized according to two majorchess) on the one
hand the one-step vs. the multistep methods, on the othdrtharexplicit vs.
the implicit methods.

In the following of our exploration of numerical optimal dool we will
need to discuss the numerical integration over arbitrangetintervals, e.g.
[to, ts]. Let us start in this section with the explicit one-step met) which
is arguably the most basic numerical integration methotinAmerical inte-
gration methods start by discretizing the state trajeesoover a discretization
time grid over the integration intervith, t;]. For the sake of simplicity, let us
assume a uniform time grid, i.e. having fixed interval siZesto= (to — tf) /N,
whereN is an integer. The discretization time grid is then setuR as to + kAt
with k = 0,...N, and divides the time intervdlg, t{] into N subintervals
[tk, tk+1], €each of lengthAt. Then, the solution is approximated on the grid



10.1 Numerical Integration: Explicit One-Step Methods 169

pointsty by discrete valuesy that shall satisfys, ~ x(t), fork = 0,..., N,
wherex(t) is the exact solution to the IVP.

Numerical integration methodsftkr in the ways they approximate the so-
lution on the grid points and in between, but they all shallehthe property
that if N — oo thens, — X(tk). This property is labelledonvergenceMet-
hods diter in how fast the integrator convergeshigicreases. One says that a
method is convergent with orderif

nax s x(t)ll = O(AtP).

The simplest integrator is the explicit Euler method. Ittfastssy := xg and

then recursively computes, fer=0,...,N — 1:

Skil = S+ At (S, ).

Itis a first-order method, i.g0 = 1, and due to this low order it is very ifie
cient and should not be used in practice. Indeed, a few exalaations off in
each step can easily yield higher-order methods. E.gextpécit Runge-Kutta
(RK) methodslue to Runge (1895)7?[], and Kutta (1901),7 ] use on each
discretization intervalt], tc,1] not only one buim evaluations off. They then
hold intermediate state value§, i = 1,...,m withineach interval f, tx.1],
which live on a grid of intermediate time poin@ = tx + ¢ At with suitably
chosert; € [0, 1]. One RK step is then obtained via the following constitti

Sk1 = Sk
S2 = S+ Atap f(sc1,tka),
Sc3 1= S+ At(@s1f (Sc1, tr) + @s2f (Sc2, t2)) s

i-1

Si = &+ AtZaij f (S(,jstk,j)»

=1

m-1

Sem 1= Sc+ AU amf (S0, 1)
=t

m
Sl o= S+ A'[Z bjf(&,j,tk,j).
-1

Each RK method is characterized by its so-called Butchéeaalof dimension



170 Numerical Simulation

C1
C2 | a2
C3 | Az1 az2

Cm|@m - 8mm1
by b, o bn
An integration order o < 4 is obtained from a Butcher tableau of dimension
mfor an adequate choice afb, c. It is however important to understand here
that this equivalence between the dimension of the tabledute integration
order holds only form < 4. In order to obtain an order of integration with
m > 5, tableaus of dimensidarger than 5 are needed

The explicit Euler integrator uses = 1,¢; = 0, b; = 1. A more dficient
and widespread choice of Butcher tableau is

(YN S )

ol O O NI
Wik O NIk
WIF|

1

6

which yields a method of orden = 4, often simply referred to as the RK4
integration scheme.

Note that practical RK methods also have stepsize contelthey adapt
At depending on estimates of the local error, which are obddiyecomparing
two RK steps of dierent orders. Particularlyfiicient adaptive methods are
the Runge-Kutta-Fehlbergnethods, which reuse as many evaluations as
possible between the two RK steps.

Because of its simplicity, the Euler method may appear dpypia practice,
however it is strongly recommended to favor higher-ordethods. To get an
intuitive idea of why it is so, let us assume that we want toudate an ODE
on the interval [01] with an accuracy of = 102 and that a first-order method
gives an accuracy = 10At. Then a time step oAt = 107 is required, i.e.
N = 10000 steps are necessary in order to achieve the desirathegclf a
fourth-order method gives the accuracy 10(At)4, a time step ofAt = 0.1
is needed, i.e. onlyN = 10 steps are required for the same accuracy. Given
this enormous dierence, the fourfold cost per RK step required to deploy
the fourth-order method is more than outweighed by the lomlmer of steps
required, such that it is actually 250 times cheaper tharfiteeorder Eu-
ler method. In practice, RK integrators with orders up to & ased, but the



10.2 Stif Systems and Implicit Integrators 171
10

0 0.2 0.4 0.6 0.8 1
t

Figure 10.1 Numerical simulation of the first-order linear dyresmi = —15x
using the explicit Euler method witht = 0.1, starting from the initial condition
x(0) = 10. The exact solution is displayed as a plain curve, while tiraerical
solution is displayed using circles, connected by dotted lines.c@an observe that
due to the steep state derivatixén the early time of the integration, the explicit
Euler scheme, which essentially computes the next state on the tidheig the
tangent to the trajectory, significantly overshoots the esalettion of the ODE.

Runge-Kutta-Fehlberg method of fourth order (with fifttder evaluation for
error estimation and control) is the most popular one.

10.2 Stit Systems and Implicit Integrators

When an explicit integrator is applied to a very stable systésnsteps can
overshoot the actual trajectory of the ODE solution, résglin an inaccu-
rate numerical integration, or even outright instabilitile simple prototypical
first-order system is often used to discuss these issues:

X =—AX

It takes the explicit, exact solutiax(t) = x(to)e (%), For a very largel > 1
the ODE has a very fast stable mode decaying very quickly to. & we
now use an explicit Euler method with stepsige then the trajectories of the
discrete statey are defined by the discrete-time dynamic system:

Sl = &~ AtAsc= (1-Atd)s, S0 = X(bo),



172 Numerical Simulation

which differs significantly from the exact trajectorigg), see fig. 10.1 for an
2

illustration. This discrete system actually becomes Unietd At > %, which
might be very small when is very large. Note that such a small stepsize is
not necessary to obtain a high accuracy, but is only necessaender the
integrator stable.

It turns out that all explicit methods fer from the fact that systems having
very fast modes necessitate excessively short step sihesb&comes parti-
cularly problematic if a system has both slow and fast dewpyodes, i.e.,
if some of the eigenvalues of the Jacob@ﬂhave a small magnitude while
others are strongly negative, resulting in very quicklyaléeg dynamics. In
such a case, one typically needs to perform fairly long satiohs in order to
capture the evolution of the slow dynamics, while very skteps are required
in order to guarantee the stability and accuracy of the nigaleintegration
due to the very fast modes. Such systems are callfdgsitems.

Instead of using explicit integrators with very short stees, stif systems
can be much better treated by implicit integrators. The Estpf them is the
implicit Euler integrator, which in each integrator stefgves the nonlinear
equation in the variable, 1

Sc+1 = S+ At F(Sert, tean)-

One ought to observe the subtle yet crucidfetence between this equation
and the one used for deploying an explicit Euler integrathile explicit Eu-
ler requires implementing an explicit rule, the equatioowabprovidess,1
implicitly. If applied to the fast, stable test system frobwae, for which this
equation can be solved explicitly because of the linear aos, the implicit
Euler scheme yields the discrete dynamics

Si1= K —AtASG1 ©  Sq1=S/(1+ALD),

which are stable for anjt > 0 and always converge to zero, like the true
solution of the ODE. Hence the implicit Euler scheme is alsvstable for this
example. This idea can be easily generalized to RK methduishvthen yield
Butcher tableaus that are full squares and not only lowangilar, reflecting
the implicit nature of the integration scheme. An implick Rhethod has to



10.3 Orthogonal Collocation 173

solve at each integration st&he nonlinear system of equations

m
Sk1 =S+ AtZaljf (Sk,j,tk,j)
j=1

m

Si = S+ Atzaij f (Sq,tk,j)
=1

m
Scm = S+ Atzamjf (&,j,tk,j)

i=1

and then sets the next step to
m
Ske1 = S+ AIZ bj f (SK]"IK]') .
j=1

The nonlinear system needs typically to be solved by a Newtetinod. Note
that the system is of sizen - ny, such that the computational complexity of
performing the Newton iterations “naively” on an implicikRnethod is un-
fortunately in general of ordé®d(m*ng).

10.3 Orthogonal Collocation

Orthogonal collocatioris a specific variant of implicit RK methods. The so-
lution x(t) on the collocation interval € [t, tk;1] < [to, tf] iS approximated
by ad"-order polynomial, labellegh(t,vi) € R" in the following, where the
polynomial depends linearly on the dheientsy, € R"@+D),

Interpolation polynomial The polynomialsp (t, vk) used in orthogonal col-
location methods are typically built as Lagrange polyndsii&he Lagrange
polynomial pi(t, vi) for a time interval {x, t.1] and a set of collocation times
txo. .., tkd can be simply constructed using:

d d
=1ty
P(t, Vi) = ZVk,ifk,i(t), bi(t) = 1_[ —1 ¢R,
. ALt — Tk
i=0 j=0,j#i >
wherev; € R™ is a subset of the polynomial cieientsvy having the size
of the state vector of the system, and the collocation timeshosen ak; €

[t tkra].



174 Numerical Simulation

t, b (t)
/\

| f H H
o tk1 o 3 to fk1 tio ti3

ty bea(t) tira ty bes(t) tiia

I
|
i
i
i
I
-0
[

i s s ;
o 1 t2 3 o W1 2 %)

Figure 10.2 lllustration of the Lagrange polynomiaigi(t) on the interval
[t t+1]. The property (10.1) is clearly visible here as each polyrebri;(t)
take a unitary value at the collocation tirag (black dots) and a zero at all other
timesty ;. (white dots).

One can observe that the basis polynomialshave by construction the
property:

1if Q=]
b (tk»J'):{ 0 if i#] (10-1)

which we illustrate in Figure 10.2 below. They have the adddl property of
being orthogonal (though not orthonormal 1), i.e.

1
f Ca®b,Odt =0, %] (10.2)

tk

Property (10.1) entails that the interpolation polynongg(ty;, i) “passes
through” the interpolation pointg;, i.e.

Pr(teis Vi) = Vi (10.3)

holds fori = 0,...,d, see Figure 10.3 for an illustration.
We detall later in this section the selection of the coll@ratimesty;. It
is, however, useful to anticipate here with specifying thatfirst collocation



10.3 Orthogonal Collocation 175

V.2

Pr(t, Vie)

to 1 tio t3

Figure 10.3 lllustration of the polynomiad(t, ) = Zﬁzovk,it’k,i(t) ford = 3
and for an arbitrary cdBcient vector, € R*, andvi; € R. One can observe the
property (10.3), i.epk(tki, Vik) = Vi,

timety o is systematically chosen && = tx, such thatpy (tk, px) = Vko readily
provides the initial value of the interpolation.

Collocation equations Using the polynomiapx (t, vi) the integration over the
time interval [, tx.1] is performed via selecting adequate collocation varigble
Vi € R™91D_ This selection occurs via solving a set of algebraic equati
that ensure that the polynomigk (t, v) is an accurate representation of the
trajectories of the state. Assuming we have the initial @aguat timety, the
collocation equations for the simple OD#t) = f(x(t),t) then enforce the
following ny(d + 1) conditions, see Figure 10.4:

() px (t, px) = ., i-e. the polynomialg (t, vi) must meet the initial condition
at the beginning of the interval, i.e. at time= to. It is worth observing
here that sincey (tk, px) = Vko. satisfying the initial condition requires
simply vko = S to hold.

(i) p« (tki, vik) must satisfy the model dynamics on the remaining colloaatio
timestya, ..., kq, I.€.:

Pr (ti> Vi) = F (P (i i), ki) (10.4)
—————

=Vkii



176 Numerical Simulation

tk tk+l

S¢ Pr(t, Vi) Scr1

tyo tic1 ti2 ty3

Figure 10.4 The NLP variables in the direct collocation mdthar d = 3, and
for one specific time intervaty, tx,1]. Here we illustrate the polynomigk (t, vk)
(solid curve) vs. the actual state trajectories (dashed curkiehuhe collocation
equationg (S, Vk, tki) = 0 are not yet satisfied.

The integration of the system dynamics over a time intertyaty, 1] is hence
performed via solving the collocation equations:

Vko —

Pr (i1, Vic) — F (Vi1 tei) 0

Ck (Vi tiin &) = (10.5)

P (tkd> Vi) = F(Vicds ti)

The end state of the simulation(tx,1) is then accurately approximated by
p(tk+1, Vk)- This principle is illustrated in Figure 10.5 for a singtate.

We observe here that (10.5) is a systerm@f + 1) equations in they €
R"@+D) variables. We additionally observe that

d
P (t, Vi) = Z Vi ki (1),
i=0

such that, similarly topk (i, V), the time derivatives of the polynomial, i.e.
Pk (tki, Vi) are linear inv. It can then be observed that for a linear dynamic
model f, (10.5) is a linear system of equations. However, in genétél.5)
does not have an explicit solution.



10.3 Orthogonal Collocation 177

ty T 1
Sk Vk,O Sk—i—l
Vi1
Pr (tir 1, Vi)
Vk,2
Vi3
tyo ti1 t2 lic3

Figure 10.5 The NLP variables in the direct collocation mdtfar d = 3, and
for one specific time intervaty, tx,1]. Here we illustrate the polynomigk (t, vk)

when the collocation equatiomg (s, Vi, tkj) = 0 are satisfied, such that (t, v)

captures accurately the system trajectory over the time itfigy ty,1]. The end
state of the simulatioR(ty.1 is then accurately approximated pgti.1, Vi)-

Selection of the collocation timesy; It is very important to point here that an
adequate choice of collocation points leads to very higlemrdf integration.
We can understand this point using the principle of Gausshqiure. Assu-
ming thatp(t, v) is a polynomial of order @, the Gaussian quadrature formula
provides for any the equality:

e 1

P Vi dt = (tien = ) - D i - Pltii, Wi, (10.6)
i=1

I3

for an adequate choice of weightsand of collocation point;.

The adequate choice of collocation time, i.e. the one treltlgithe Gauss
guadrature formula (10.6) for polynomials of degrek i8 obtained by choo-
sing the collocation points; as the zeros of orthogonal Legendre polynomials
on the corresponding intervadl[tx1]. This choice of collocation times is cal-
led Gauss-Legendre collocatiofror the specific time interval [A], the col-
location pointdy; fori = 1,...,4 are provided in Table 10.3 fat=1,...,4.

For an arbitrary time intervdly, ty.1], the adequate collocation timgg can
be computed by identifyingi = (t; — t)/(tx1 — t) to the time points; in



178 Numerical Simulation

[d] Gauss-Legendre collocatign | Gauss-Radau collocatign |
1 0.50000 1
2 0.21132 0.78867 0.33333 1
3 0.11270 0.50000 0.88729 0.15505 0.64494 1
4 1 0.06943 0.33000 0.66999 0.930560.08858 0.40946 0.78765 [l

Table 10.1Collocation timesy;, . .. txg for d = 1, ..., 4 on the intervalO, 1].

Table 10.3, i.e. by computing the collocation timgsas:
tei =t + (ter — W& € [t tea]

An extra collocation poirt o is systematically added to the collectign, . . . tkg
in order to be able to enforce the initial value constraiis= s.

Note that the collocation pointgs, . . . txg are all in the interior of the collo-
cation interval and symmetric around the midpoint.

Let us then observe that the exact state trajeckft)yof the ODEX(t) =
f(x(t),t) satisfies the equation

X(tee1) = X(t) + ft e x(.  t (10.7)

Let us then assume that the trajecto(y) can be exactly captured on the
time interval[t, tx;1] by the polynomialp (t, vi) of degree &. Using (10.5),
(10.6) and (10.7), we obtain the identity

d
P(tkr1, Vi) = Plte, Vi) + (tkes — t) - Z wi F(p(tki, Vi), ti)
i=1
such thats, 1 = p(tk:1, Vk) = X (tkr1) holds.

Using Gauss-Legendre collocation times, the integrasatién exact iff
is a polynomial of up to degreed2- 1. This implies that the collocation step
Sq1 — S is exact if the exact solution has a derivati(€) that is a polynomial
of order 2 - 1, i.e., if the solutionx(t) is a polynomial of order @ Gauss-
Legendre collocation is the collocation method with thehleist possible order
for a givend, i.e. 4.

An alternative collocation setup sacrifices one order arabsbs a set of
collocation points that includes the end point of the in&érit is calledGauss-
Radau collocatiorand has a desirable property fortsystems callegtiff de-
cay. The relative collocation point locatiogs= (tx; —tk)/(tk+1 — tk) for Gauss-
Legendre and Gauss-Radau collocation are given in TabB; 4€e [14].

It is worth stressing here that the very high order of coltmcamethods
hinges on using the collocation times prescribed by Tabl8,Ifleally with



10.3 Orthogonal Collocation 179

minimum rounding error. Indeed, numerical experimentsastiat using ap-
proximate collocation times can yield a fast loss of accymafccollocation-
based integrators.

10.3.1 Linear Multistep Methods and Backward Diferentiation
Formulae

A different approach to obtain a high order are the linear myttistethods that
use a linear combination of the padtstepssc_m+1,- - - »  and their function
values f(S-m+1),- .-, f(S) in order to obtain the next statg;. They are
implicit, if they also use the function valug s, 1). A major issue with linear
multistep methods is stability, and their analysis needsegard a dynamic
system with an enlarged state space consisting dflahst values.

A very popular and successful class of implicit multisteptimoels are cal-
led thebackward djferentiation formulae (BDFmethods. In each step, an
implicit equation is formulated in the variabg,1 by constructing the inter-
polation polynomialpk(t, sc;1) of orderM that interpolates the known values
Sk-M+1» - - - » Sk @S well the unknowis, 1, and then equates the derivative of this
polynomial with the function value, i.e., solves the noakn equation

d
apk(tkﬂa Scr1) = F(Skets then)

in the unknowns,, ;. Note that the fact that only a nonlinear system of size
needs to be solved in each step of the BDF method is in contramsistage
implicit RK methods, which need to solve a system of sizen,. Still, the
convergence of the BDF method is of orddr It is, however, not possible
to construct stable BDF methods of arbitrary orders, ag #iability regions
shrink, i.e., they become unstable even for stable systeahsery short step
lengthsAt. The highest possible order for a BDF methodMs= 6, while
the BDF method withM = 7 is not stable anymore. If e.g. it is applied to
the test equatiox = —Ax with 4 > 0 it diverges even if an arbitrarily small
step sizeAt is used. It is interesting to compare linear multistep meésheith
the sequence of Fibonacci numbers that also use a linearicatian of the
last two numbers in order to compute the next one (Me.= 2). While the
Fibonacci numbers do not solve dfdrential equation, the analysis of their
growth is equivalent to the analysis of the stability of Anenultistep methods.
For more details, the reader is referred to, e.g., [23, 24, 3]



180 Numerical Simulation

10.3.2 Solution Map and Sensitivities

In the context of optimal control, derivatives of the sintida of the system
dynamics with respect to the initial conditions and coningluts need to be
provided to the numerical algorithms.

In order to discuss the issue offfdirentiating the solution of an ODE with
respect to its initial conditions and possibly other parrs which in the
context of dynamic systems are often caldemhsitivitiesLet us now regard an
ODE with some parametepse R™ that enter the functiori and assume that
f satisfies the assumptions of Theorem 10.1. We regard somesxg| p, T
such that the ODE

x=f(x, p,t), tel[0,T]

with p = p andx(0) = X has a unique solution on the whole interval T(.
For small perturbations of the valueg, &), due to continuity, we still have
a unique solution on the whole interval,[0]. Let us restrict ourselves to a
neighborhood\ of (p, o). For each fixed € [0, T], we can now regard the
well-defined and unique solution mag, ) : N — R™, (p, Xo) = X(t, p, Xo)-
This map gives the valug(t, p, xo) of the unique solution trajectory at tinte
for given parametep and initial valuexy. A natural question to ask is whether
this map is diferentiable. Fortunately, it is possible to show thdti§ m-times
continuously diferentiable with respect to bottandp, then the solution map
X(t, -) is alsomtimes continuously dierentiable.

Let us illustrate this sensitivity question for linear, tiomous-time systems

x = Ax+ Bp

hence withf (x, p,t) = Ax+ Bp, the mapx(t, p, Xo) is explicitly given as

t
X(t, p, Xo) = o + f e\ -IBpdr,
0

wheree is the matrix exponential function. Similarly to functidn this map
is infinitely many times dierentiable (and even well defined for all timigs
as linear systems can be unstable but cannot "explode” ite filme). In this
simple case, having an explicit solution map, the sensdwiof the solution
can be explicitly computed, and read as:

5 _ M 9 _ (" A
axox(t,p,xo)_ef“, 6px(t,p,xO)—f0ef‘ Bdr

In the general nonlinear case, the mdp p, Xp) can only be generated by a
numerical simulation algorithm. The computation of detiixes of this nume-
rically generated map is a delicate issue that we discusstail dhereafter. To



10.4 Sensitivity Computation for Integration Methods 181

mention already the mainftiiculty, note that most practical numerical integra-
tion algorithms are adaptive, i.e. they might choose to dexint numbers of
integration steps for dierent IVPs. This renders the numerical approximation
of the mapx(t, p, Xo) typically non-diterentiable as an infinitesimal perturba-
tion in p or Xg can trigger a discrete change in the number of integratigsst
This feature makes multiple calls of a black-box integratod application of
finite differences problematic, as it often results in significantlgngrderiva-
tive approximations.

10.4 Sensitivity Computation for Integration Methods

Numerical optimal control methods require one to compugeddrivatives of
the result of an ODE or DAE integration algorithm, on a givéne inter-
val. Let us for notational simplicity regard just the autoraus ODE case
x = f(X) on a time interval [0T]. The case of constant control or other pa-
rameters on which this ODE depends as well as time depend=cygon-
ceptually be covered by state augmentation, i.e. one camesvgte the ODE

x=f(x p), X(0) = X as:
x| [f(xv) X _ %o
-5 Klo-[3

0
Thus, we regard an initial conditioty and the evolution of the ODE

x=1f(x), te[0,T], X(O)= xo.

giving a solutionx(t, xp), t € [0, T]. We are interested here in tlsensitivity

matrix

IxX(t, Xo)
%

and in particular its terminal value. This mat@T) € R™*™ can be computed

in many diferent ways, five of which we briefly sketch here.

G(t) =

te[0,T],

(i) External Numerical Diferentiation (END)
(i) Solution of the Variational Dfferential Equations
(iiiy Algorithmic Di fferentiation (AD) of the Integrator
(iv) Internal Algorithmic Diferentiation within the Integrator
(v) Internal Numerical Ciferentiation (IND)

In all five methods we assume that the integrator to ffemdintiated is a state-
of-the-art integrator with inbuilt error control and adaptstepsize selection.



182 Numerical Simulation

External Numerical Differentiation (END) The first approactExternal Nu-
merical Djfferentiation (END)just treats the integrator as a black-box function
and uses finite diierences. We perturky by some quantity > 0 in the di-
rection of the unit vectorg; and call the integrator several times in order to
compute directional derivatives by finitefidirences:

X(T, %o + €&) — X(T, Xo)

- .
The cost of this approach to comp@€T) is (ny + 1) times the cost of a for-
ward simulation. The approach is very easy to implementstfters from one
serious problem: due to integrator adaptivity, each cafjihhave a dferent
discretization grid. This error control of each trajectaiges not only create
an overhead, but worse, it might result in discontinuousupleations even for
smalle, when a perturbatioRy + e triggers a discrete adaptation of integra-
tor (e.g. a change in the number of steps). It is importantote that due to
adaptivity, the outpuk(T, Xp) is not a diterentiable function inxg, but only
guaranteed to be close to the true solution within the iatiegraccuracy TOL.
Thus, we need to use, as a rule of thumb; VTOL in order to make large-
enough perturbations. As finiteftBrences always mean that we loose half the
digits of accuracy, we might easily end e.g. with a derivathat has only two
valid digits.

G(T)a =~

(10.8)

Variational Approach A completely diferent approach is to formulate and
solve thevariational djferential equationglong with the nominal trajectory.
In this context, we define a matrX(t) with the property:

OX(t, Xo)
%o

where x(t, o) is the solution map of the ODE. Clearly, sing, X5) = Xo
holds,G(0) = I. Moreover, we observe that:

G(t) =

v df o _oX(t,x) 0 _of oX(t, Xo)
60 = g (e X0 10) = P52 = 2 (e x) = G ) P
G(t)

This entails that we can obtain the sensitivities of the tsmtuof the ODE
by solving, together wittx = f(x), the additional matrix dierential equation

d of
80 = 2 (OGO, te[0.T]. GO)=L

This approach is much more accurate than the previous oaesiatilar com-
putational cost. However, analytic expressions%brare required. Also, it is



10.4 Sensitivity Computation for Integration Methods 183

interesting to note that the computed sensiti@{") might not be identical to
the derivative of the (discretized) integrator resglk, xo).

External Algorithmic Di fferentiation (EAD) The last disadvantage mentio-
ned above is avoided in the third approadligorithmic Diferentiation (AD)

of the Integratoror External AD The approach requires that the time steps
and the order of the integrator are fixed at the current ndniagectory. An
AD tool is then deployed on the whole integrator code to gatecthe sensi-
tivities. Up to machine precision, AD provides derivatitat are identical to
the ones of the numerical solutioiT, xo) for a given fixed discretization grid.

In a practical implementation, the integrator and rightchaitle functionf (x)
need to be in the same or in compatible computer languagearthireated by
the corresponding AD tool (e.g.4G when using ADOL-C).

If External ADis deployed on an implicit integrator, it should be noted tha
the underlying Newton iterations will be fiéérentiated, which might create
considerable and avoidable overhead compared to theivagadiferential
equation approach.

Internal Algorithmic Di fferentiation (IAD) A fourth approach, labellebh-
ternal Algorithmic Dfferentiation (AD) of the Integratois a subtle variation
of External AD Here, AD is applied independently to each step of the ilategr
tor in a custom implementation of the integration algoritfamd care is taken
that only the components of the algorithm that need to Ifierdintiated are
differentiated. The approach can be easily illustrated for derESegheme (in
this specific case it internal AD is identical to both the aidnal ditferential
equation and external AD). If the grid is given m(}k”:0 and the Euler iterates

X1 = X + (i — ) F(%), k=0,...,.N-1, x=s

Then this approach generates matrices
of
Gk+1=Gk+(tk+1—tk)&(Xk)Gk, k=0,...,N-1, Gog=1L

Internal AD can arguably be construed as a discrete vanatiequation
deployed on the integration algorithm.

This approach is usually the most computationaftficeent of the exact dif-
ferentiation approaches but requires a custom implenmentat an ODEDAE
solver that is explicitly designed for the generation ofstvities. Note that as
in the previous two approaches, dealing with black-boxtrigind side functi-
ons f(X) would require that the matri%;(xk) must also be computed by finite
differences at every integration step.



184 Numerical Simulation

For the reader interested in implementing a rudimentaryeffatient inte-
gration scheme with sensitivity, we provide next the dsetaflan éficient RK4
scheme with internal AD.

Algorithm 10.2.  Input: Xo, p

Output: frka (Xo, P), % frra (%0, D), @% frka (Xo, P)
Setx=X%, A=I1, B=0
forn=0:Ndo

k — F(x, p), AX «— k
ke «— VxF(X, p), AXg < kg
Kp « VuF(X, p), AXp < kp

k—F(x+ 45k p),  Ax < Ax+ 2K
ke — ViF(X, p)(l + %kx), AXy — AXy + 2Ky
kp — VuF (X, p) + VxF (X, p)a5Ke,  AXp — Axp + 2k

ke F(x+ 4k p),  Ax« Ax+2k
ke — ViF (%, D) (1 + Z5kx),  Axe — A+ 2Ky
kp — VuF(X, p) + VxF(X, p)25Ke,  AXp — AXp + 2k

ke F(x+&8kp), Axe Ax+k
ke — ViF (D) (1 + §Ke)  Axy e Axy+ K
kp « VuVuF(X, p) + VxF(X p)§kp, AXp — AXp + kp

X — X+ FLAX
A (I + 5hAx) A
B« (I + %Axx) B+ &5 AXp

end for
Setfrea (X0, P) = % g frka (0. P) = A & frka (X0, p) = B

Such an algorithm can e.g. be easily deployed in plain C goidaily deli-
vers high computational performances for a large class dE©D

This last idea can be generalized to the concepbiirnal Numerical Dif-
ferentiation (IND)[21]. At first sight it is similar to END, but needs a cus-
tom implementation and flers in several respects. First, all trajectories are
computed simultaneously, only the nominal trajectory iamite, while the
perturbed trajectories use the nominal, frozen grid. Inlicitpmethods, also
matrix factorizations etc. will be frozen. At the end of tiiegrval, we use the



10.4 Sensitivity Computation for Integration Methods 185

finite difference formula (10.8) but with a much smaller perturbati@mely
€ = VPREC where PREC is the machine precision, typically*4The deri-
vatives will have the accuracyPREC, i.e. usually 1¢, which is much higher
than for END.

Again, we illustrate IND at hand of the explicit Euler intajon scheme,
where each perturbed trajectory with index 1, .. ., ny just satisfies

XL+1=XL+(tk+1—tk)f(XL), k=0,...,N-1, xb:s+ga,

Note that due to the fact that adaptivity and possible mdackorizations are
switched df for the perturbed trajectories, IND is not only more acoeiratt
also cheaper than END.

10.4.1 Dfferentiation of Implicit Intergrators

Internal Numerical Diferentiation adequately deployed on implicit integrators
is usually fairly simple and inexpensive as the Newton sahesed to solve
the implicit equations underlying the scheme contain dlyenost of the infor-
mation required for computing the sensitivities. Implicitegrators are based
on solving a set of equations defining on the time intertyaltf,,] the end-
state of the integratox.1 implicitly from the initial conditionx, and possible
parameterp. One can write an implicit integrator in the general form:

X (b %) = p(W),  with  g(w, %, p) =0

whereg captures implicitly the continuous dynamics of the systéman ad-
hoc implicit integration schemey is a set of intermediate variables supporting
the implicit integration an@ a function delivering the end state. The integra-
tion is the performed by running the following Newton itéoat

Algorithm 10.3.  Input: x, p, W
Output: X1, W
while ||g(w, Xk, p)|| > tol do

-1
W w29 X p)] 9w, X )

end while
Setx1 = ¢ (W)

The sensitivities can then be obtained using the impligicfion theorem,



186 Numerical Simulation

by evaluating:

-1

1 _5¢ w)|[ o 9
o~ aw |awdWXe P g0 X ) (10.9a)
O0%i1 _ op(w) | 0 -1 Pl

ap  ow [aWQ(W, X, D)] apg(w, Xc» P) (10.9b)

at the outputw of Algorithm 10.3. It is important here to observe that the
computation of the sensitivities (10.9) can re-use thestafictorisation of
%Vg(w, Xk, p) formed in Algorithm 10.3, so that they require only the evalu
ation of&g(w, Xk P) %g(w, Xk P), and% and the matrix multiplications
required to evaluate (10.9). They can therefore be usuailndd at a fairly
low computational complexity.

10.5 Second-order sensitivities

We have detailed so fafffecient methods to compute the first-order sensitivi-
ties of integrators, both in the explicit and implicit caBer a give simulation
methodx(t, p, o), these computation aim at delivering the derivatives

9

apx(t, P, Xo) (10.10)

0

%x(t, p, %) and
which are essential in the context of numerical optimal m@ntHowever, nu-
merical methods tackling the NLP underlying optimal cohfnmblems can
also make use of the second-order information on the NLFPhénform of
the Hessian of the Lagrange function. While approximaticens loe used to
compute the exact Hessian, see Chap®providing the exact Hessian of the
Lagrange function to the NLP solver can lead to a signifigaingitter conver-
gence of the NLP solver than when using Hessian approximsaties we will
see later in further details, computing the exact HessigheNLP resulting
from the discretization of a continuous optimal controligem will require the
computation of the second-order derivatives of the sinridéh some specific
directions, i.e. we will be interested in computing:

2 2 2

0 0
g XEPXD) S (WX ) 5

(4" X(t.p. %)) (10.11)

for some specific vectot € R™. We will present in the following some met-
hods to approach the problem of computing (10.fiiently.



10.5 Second-order sensitivities 187

10.5.1 Second-order sensitivities for explicit integrators

In order to build a generic discussion here, let us describéoit integrators
as a generic recursion:

Algorithm 10.4.
Input: o, p
S = Xo
for i=1:Ndo
s =¢(s-1.p)
end for
Returnx(t, Xo, p) = S\

We observe that this generic algorithm can represent aniicixptegrator
takingN step in integrating the dynamics, depending on the choifenation
&. E.g. a basic explicit Euler integrators would use the fiomc§ (s, p) = § +

n (s, p)

Adjoint-mode sensitivities Let us then first consider the problem of com-
puting the sensitivities not of the simulatiot(t, Xo, p) but of somescalar
functionof the simulation, i.e. we are interested in computing:

d ]
axgt XL p. ) - and ap° (X(t, p. %)) (10.12)

where( is a scalar function. Clearly, these sensitivities can bemded via a
chain-rule, using the classical sensitivities (10.10)weer, for this specific
problem, the adjoint-mode fi@rs a more straightforward approach. Let us
define:

9Z (sn)

T = 10.1
A== (10.13)
the sensitivity of the outputy of Algorithm (10.4) to some of it intermediate
states. We then observe that:

+ _ 0(sv)
W= e (10.14a)
L 0L(sn) _ 0L(sn) Os +0¢(s-1, )
T - ) 10.14
YT s T as osa N asa (10.145)
N——

=,1iT
One can observe that (10.14) definelsagkward recursiorthat can be com-

.....

a deployment of Algorithm 10.4 with a storage of its internagel values. The
adjoint-mode sensitivity computation then reads as:



188 Numerical Simulation

Algorithm 10.5.

Input: 59N, P
A — —ag(;“)—r
for i=N:1do

A«
end for
Returnz2-£ (x(t, p, o)) = A7

05(sap) T
0s_1 A

If the sensitivities are needed only in the form (10.12) a¥eded, as oppo-
sed to the entire sensitivities (10.10), then it is typicatiore dficient to de-
ploy Algorithm 10.4 forward sweepand then Algorithm 10.5Adjoint mode
sensitivity in order to compute (10.12) rather than to compute theestate
sensitivities (10.10) to finally compute (10.12).

Forward over adjoints A classical approach to compute the second-order
sensitivity of a scalar function of the form (10.11) is tofeem a forward sen-
sitivity computation over the adjoint-mode Algorithm 10i6 order to com-
pute the sensitivitie 10 . To that end, we labeH; = ’”' € R and we first
observe that:

OAn _ 0An ISy _ 0%¢ (sn) Osw
A OSn X  9Psy 0%
where 35'“ can be obtained via a standard forward sensitivity comjaurtadf
the explicit integrator. In the special case we considee hwhere the scalar
function( is linear insy, we observe thatly = 0. We then observe that:

0dic1 0di—1 04 0A4i—1 0S-1
Hiy = _ k) 10.1
I M N TN v (10.16)

Hy = (10.15)

_ %(s1.P)7, 9 (0£(s-1.P) ", )9S

- aai( 951 ) 7. 1( as ) ”‘) Pl
a‘f (S 1, p) T

sy - 32 (/¢ (s, p)) e (10.18)

where, as befor@%—)(;]1 can be obtained via a standard forward sensitivity com-
putation of the explicit integrator. A prototype of algtit that computes the
directional second-order sensitivities of an expliciegnator can then read as:

Algorithm 10.6.
Input: Xo, p and directiornu
Forward pass:
So = Xo, Ao = |
for i=1:Ndo



10.5 Second-order sensitivities 189

A = %AH Storage needed
s =£&(s.1, p) Storage needed

end for

Adjoint + Forward over adjoint:

A—u, H<DO

for i=N:1 doT ,
H e 2500 H 4+ 52 (T8 (51, P) At

1
0&(S-1,P) T/l

h
A 01

end for
Returnx(t, Xo, p) = S, &X(t, X0, P) = An
and 2 (uTx(t %0, P)) = 4, 2 (47X(t, %o, P) = H

It is interesting to observe that this fairly simple algbnit generates a si-
mulation of the dynamics with first-order sensitivities veall as the first and
second-order sensitivities of the scalar functidn(t, Xo, p) of the simulation
X(t, Xo, p) in the prescribed direction. However, it is important to underline
here that the intermediate stepsand their sensitivitieg\ need to be stored
during the forward pass. In general, the storage requirtsranounts to the
storage ofNn(n + 1) floats, which can be, unfortunately, fairly large.

Symmetry-preserving sensitivities ?

10.5.2 Second-order sensitivities for implicit integrators

Second-order sensitivities of:

82
P (L Tw) (10.19)

wherevy is implicitly defined bycy (v, X«, px) = 0.



190 Numerical Simulation
Exercises

10.1 Euler vs RK4: Consider a controlled harmonic oscillator described by:
dip®|_|0 1f{p®],|0
at [v(t)| |-1 Of [wt)]| |1

We abbreviate this ODE as= f(x,u) with x = (p,v)". We choose the
fixed initial valuex(0) = (10,0)" andT = 10.

(@) We are interested in comparing the simulation resultauf) = 0
that are obtained by two fllerent integration schemes, namely the
(explicit) Euler integrator and a Runge-Kutta integratbdth order.
We regard in particular the valyg10), and as the ODE is explicitly
solvable, we know it exactly, which is useful for comparisoWhat
is the analytical expression f@(10)? Evaluate it numerically.

(b) Write a function named f usingef f(x,u) that evaluates the right
hand side of the ODE. Then, implement an explicit Euler methibh
N = 50 integrator steps, i.e. with a stepsize\vf= 10/50 = 0.2. The
central line in the Euler code reads

Xer1 = Xk + At - (X, Ux) (10.20)

Plot your trajectorieg(tc, x)})'** for u = 0.
(c) Now exchange in your Euler simulation code the line trategates
the step (10.20) by the following five lines:

u@), telo,T].

ke = (X, W)
ko = 0+ 5At -k, W)
ko = 0+ 5AL ko, )
Ky = f(x + At - ks, Ug)
1
Xip1 = xk+Até(k1+2k2+2kg+ Ks)

This is the classical Runge Kutta method of order four (RHNBte
that each integrator step is four times as expensive as an Eelp.
What is the advantage of this extri@t? To get an idea, plot your
trajectoried(tx, xk)}?+l for the same numbeX of integrator steps.

(d) Make both pieces of your integrating code reusable bgticre functi-
ons name@uler andrk4 out them. Both should have argumerés
T andN and return the state at the end point. Test your implememntati
by comparing with the plots.



Exercises 191

(e) To make the comparison of Euler and RK4 quantitativeaneédhe
different approximations qi(10) that you obtain for dierent stepsi-
zes, e.gAt = 10% with k = 0,...,5. We call these approximations
Pp(10;At). Compute the erroi@(10)- p(10;At)| and plot them doubly
logarithmic. Use the norm function to calculate the norm efters.
You should see a line for each integrator. Can you explairditie-
rent slopes?

10.2 Code a collocation-based integrator with sensigigitiWe will use the
following setup:

e Legendre polynomials of ordét, using the time roots:

t =[0.0 0.06943184420297355.83000947820757187
0.6699905217924282 .9305681557970262]

and build the Lagrange polynomials according to:

P;(7) = ]_[ tTj:ttii (10.21)

¢ Forthe sake of simplicity, we will use a single finite elempet shoot-
ing interval. l.e. on the shooting intenvayl, t,1], the state trajectories
are fully interpolated as:

K

t—t

x(@.1)=) 6;P, (ﬁ) Wt € [te, teea] (10.22)
=0 k+1 k

e The collocation equations then read as:
X(6,t%) - % =0

9 . (10.23)
—X(0,t - F(x(6,tj),u) =0, =1..,K
ZX( >|t=tj (x(6t) . ue) j
where X, is the initial condition for the shooting intervfl, t.1].
Note thatx (6, t;) = 6.
Hints:

o define your collocation polynomials;) symbolically and compute
their time derivativest(t) by symbolic dferentiation. Export them
via matlabFunction to build the interpolations you need.(for %x(e, t)lt:tj
and x(4, ty)).

¢ Build the collocation constraintel0.23)also symbolically so that you
can djferentiate them automatically. Export all functions for the
merical part.



192 Numerical Simulation

e Observeg10.21)and(10.22) and reflectcarefully on how and where
the duration of your shooting intervalst = t,,; — tx needs to be
inserted. This is a classic source of error !

e Think also carefully of whefehen to form the updates of your collo-
cation variables in your integrator, such that your sensiies match
the collocation variables (and therefore the "final stateaBhat your
integrator delivers.

e |t can be advantageous to use LU decompositions in yourriateg
E.g. in Matlab you can form your factor using the functignU] =
lu(Vg"). The solution t&vg™ x+y = Ois then given by y —U\ (L\X).
Observe that you can then re-use your factors for the seitgitom-
putations.

Note: collocation-based integration is rather intensioding-wise.
Make sure you think through your coding strategy befordisgr

(a) Deploy a (full-step) Newton scheme to solve the colliocaequati-
ons (10.23). Have an "integrator tolerance’ig} variable to control
the accuracy of your Newton iterations.

(b) Introduce a computation of the integrator sensitigitie

(c) Validate your integrator by deploying it on an LTI. In sh¢ase, at
steady-state your sensitivities will match the zero-ottu@d linear
discretisation of the dynamics (Matlab function "c2d”) whig,; —
tx — 0.

(d) Deploy your integrator on the pendulum dynamics builthog "Wri-
teDynamics.m”.

(e) Introduce your collocation-based integrator in youttiple-shooting
code of the "Shooting” assignment. Use a terminal consttaiforce
your system to be at = 0O at final time. You can build a "smart”
initial guess for your integrators. Verify that your solvenverges
for moderate tolerances (try e.g. toll0™4)

(f) Test your solver at a tight tolerance (iry e.g. tol101%), and expe-
riment with the tolerance tgleg you set in the integrator. You will
probably have to neutralise your line-search here, as ithgitome
the numerically very sensitive. Explain what you observe.

10.3 Adjoint-mode Differentiation Consider the discrete dynamics
Xk+1 = f (Xk, le) s k = 0, ooy N-1 (10.24)
(a) Consider the cost function

d =T (xn) (10.25)



Exercises 193
Prove the following statement:
Vi@ = Ao (10.26)
whereg is provided by the following recursion:
Ak-1 = Vi T (X, Uk) Ak with An = Vi T (Xn)

Hint: computeVv,, ® by proceeding backward, starting frafg, @ and
making your way tdv,, & via chain-ruling the dynamics.

(b) We now consider a cost function made of a stage and teloisa

N-1
®=T(xn)+ Z L (X, Ug) (10.27)
k=0

Prove that (10.26) is still valid ifo is provided by the following re-
cursion:

Ak = Vy L (X, Uk, A1) AN = Vi T (Xn)

with £ (x,u,2) = L(x,u) + 27 f (X, u).

Hint: we use a similar strategy as in the previous question. Hewev
we need to be very careful here about the implicit and exligpen-
dencies of the functions on the variables. One way of hagdtliis
problem is to clearly distinguish between partial and totlivati-
ves.

(c) A problem with a cost function of the form (10.27) and dyries
(10.24) can always be rewritten as:

® =T () +XQ

wherexy € R arises from thestate augmentation

f(XoW) | _
X@"'L(Xk,uk)}_ 0t

)?k+1 =

Xk+1]
Xlé+l
Such a reformulation allows one to get rid of the stage costnin
optimisation problem, and consider only problems with ieahcost
without loss of generality. Reconcile formally this refartation with
the results established before. In particular, what happethe mul-
tipliers of the formulation using a stage cost when switghio the
reformulation ?




194

Numerical Simulation

(d) Consider the discrete dynamics (10.24), and the costifum(10.25).

Prove the more generic statement:

N-1

Vo® = VpXo (p) Ao + Z VoL (X, Uk (P) » Akr)
k=0

for any variablep entering in the construction of the inputg an-
d/or initial conditionsxg, where thely:s are given by the following
recursion:

A = Vy L (X, Uk, Aka1) AN = Vi T (Xn)

and withL (x,u, 1) = A7 f (x, u).

Hint: this is a tricky one. You need to use tixegmented cogtinction:

N-1
® =T O0) + D, A (F O U = Xer)
k=0

and take the Jacobian with respecptorou will have to make ad-hoc
simplifications and spot the telescopic sum (i.e. a sum whadh
term cancels out with the subsequent one).



11
The Hamilton-Jacobi-Bellman Equation

In this short chapter we give a very brief sketch of how thecegh of dyna-
mic programming can be utilized in continuous time, leadmghe so called
Hamilton-Jacobi-Bellman (HJB) Equation. For this aim wgane the follo-
wing simplified optimal control problem:

%wmz)e fo L(x(t), u(®) dt + E(x(T))

subject to x(0)—X% =0 (fixed initial value)
X(t) = f(x(t),u®)) =0, te[0,T] (ODE model)

Note that we might approximate all inequality constraintsdifferentiable
barrier functions that tend to infinity when the boundarytaf feasible set is
reached.

11.1 Dynamic Programming in Continuous Time

In order to motivate the HIB equation, we start by an Eulecrdigzation of
the above optimal control problem. Though we would in nug®rpractice
never employ an Euler discretization due to its low ordeis helpful for the
theoretical purposes we are aiming for here. We introduémesteph = ﬁ

195



196 The Hamilton-Jacobi-Bellman Equation
and then address the following discrete time OCP:
N-1
mir)1(i’ndize ; hL(x,u) + E(xn)
subjectto Xg— X9 =0,
Xiv1 =X +hf(q,uw), i=0,...,N-1
Dynamic programming applied to this optimization probleislgs:
(X)) = mini&nize hL(X, U) + Jk1(X + hf(x, u)).

Replacing the indek by time pointsty = kh and identifyingJi(x) = J(X, tk),
we obtain

(X t) = minilﬂnize hL(x, u) + J(X + hf(x, u), t + h).

Assuming the dferentiability of J(x,t) in (X, 1), its Taylor expansion yields

J(x,t) = mini&nize hL(X, u) + J(X,t) + hV, J(x, 1) f(x, u) + h%—“t](x, t) + O(h?).

Finally, bringing all terms independent afto the left side of the equation
and dividing byh — 0 we obtain already thamilton-Jacobi-Bellman (HJB)
Equation

_§(X, t) = miniLrInize L(x, u) + VyJ(X, t)T f(x, u).

This partial diterential equation (PDE) describes the evolution of theevalu
function over time. We have to solve it backwardstfar[0, T], starting at the
end of the horizon with

J(XT) = E(X).
The optimal feedback control for the statat timet is then obtained from

Uedpack X ©) = argmin  L(x,u) + V,J(x, 1) " f(x, u).
u

One ought to observe that the optimal feedback control doeslepend on
the absolute value, but only on the gradient of the valuetfancv,J(x, t). In-
troducing the variabl@ € R™ as this gradient, one can define thamiltonian
function

H(x, A, 1) := L(x,u) + A7 f(x, u).



11.2 Linear Quadratic Control and Riccati Equation 197

Using the new notation and regardin@s the relevant input of the Hamilto-
nian, the control can be expressed as an explicit functiotaofd A:

Uaspic( 4) = arg min  H(x 4.u).

Then we can explicitly compute the so calkede Hamiltonian
H*(x, 1) := muin H(x, A, u) = H(x, 4, u;xp”dt(x, ),

where the control does not appear as input anymore. UsinfjuaeHamilto-
nian, we can write the Hamilton-Jacobi-Bellman Equatiompactly as:

0J x
=5 060 = H(x VJ(x.1).

Like dynamic programming, the solution of the HIB Equatimoaufers from

the “curse of dimensionality” and its numerical solutiorvery expensive in
larger state dimensions, as the solution to a parti@&dintial equation having

a large state size needs to be computed. In additidferdntiability of the
value function is not always guaranteed such that even tiseeexe of soluti-
ons is generally diicult to prove. However, some special cases exist that can
analytically be solved, most prominently, again, lineaadpatic problems.

11.2 Linear Quadratic Control and Riccati Equation

Let us consider a linear quadratic optimal control problenthe following
form.

o TIx] [ Q@) S(t)THx
momee [[3]1S0 0 |Le

subject to X(0) — %9 = 0, (fixed initial value)
X—Alt)x—Bt)u=0, te][0,T], (linear ODE model)

dt + x(T)"Prx(T)

As in discrete time, the value function is quadratic for ttyige of problem.
In order to verify this statement, let us first observe th@gt T) = x"Prx

is quadratic. Let us assume for now thi{k, t) is quadratic for all time, i.e.
J(x,t) = X" P(t)x for some matrixP(t). Under this assumption, the HIB Equa-
tion reads as

93, . [x]"[Q® S®T
_E(X’t) = minimize [u} [S(t) R(t)]

X

L[+ 2T POA®X + BO).




198 The Hamilton-Jacobi-Bellman Equation
If symmetrized, the right reads as:
T
L X X
minimize .
pee [3] i

By the Schur Complement Lemma 8.2, this yields

0J

-5 = T(Q+PA+ATP— (ST + PBR (S +BTP))x,

which is again a quadratic term. Thus,Bs quadratic at a tim&, it remains
guadratic throughout the backwards evolution. The remyiatrix diferential
equation

Q+PA+ATP S"+PB
S+B'P R

-P=Q+PA+ATP— (ST +PBR}S+B"P)
with terminal condition
P(T) =Pr

is called thedifferential Riccati equationintegrating it backwards allows us
to compute the cost-to-go function for the above optimatadmproblem. The
corresponding feedback law is by the Schur complement legivea as:

Usedback% 1) = —R®(S() + B(t)TP(t))x.

11.3 Infinite Time Optimal Control

Let us now regard an infinite time optimal control problem{a®ws.

minimize foo L(x(t), u(t)) dt
0

ORVO)
subject to X(0) — % =0,
X(t) — f(x(t),u®)) =0, te][0,o0].

The principle of optimality states that the value functidrtids problem, if
it is finite and it exists, must be stationary, i.e. independs time. Setting
%(x, t) = 0 leads to the stationary HIB equation

0= minitlj”nize L(x, u) + V(X f(x, u)
with stationary optimal feedback control law

u:eedbacb(x) = arg min L(X» U) + VX\](X)—r f(X, U).
u

This equation is easily solvable in the linear quadratiecas., in the case of



Exercises 199

an infinite horizon linear quadratic optimal control witme independent cost
and system matrices. The solution is again quadratic aradradat by setting

P=0
and solving
0=Q+PA+A"P- (ST +PBR (S +B"P).

This equation is called thalgebraic Riccati equation in continuous timés
feedback law is a static linear gain:

UrsedbackX) = —RH(S +B"P) x.
K

Exercises

111 ...



12
Pontryagin and the Indirect Approach

The indirect approach is an extremely elegant and compactaeharacterize
and compute solutions to optimal control problems. Itsiogglate back to the
calculus of variations and the classical work by Euler andraage. Howe-
ver, its full generality was only developed in 1950s and E)&®arting with
the seminal work of Pontryagin and coworkers [68]. One ofrttagor achie-
vements of their approach compared to the previous work heapadssibility
to treat inequality path constraints, which appear in melevant applications
of optimal control, notably in time optimal problenontryagin’s Maximum
Principle describes the necessary optimality conditions for opticoalrol in
continuous time. Using these conditions in order to elin@rithe controls from
the problem and then numerically solving a boundary valeblem (BVP) is
called theindirect approachto optimal control. It was widely used when the
Sputnik and Apollo space missions where planned and exécatal is still
very popular in aerospace applications. The main drawbatkise indirect
approach are the facts, (a) that it must be possible to ditmithe controls
from the problem by algebraic manipulations, which is netagls straight-
forward or might even be impossible, (b) that the optimaltoaa might be a
discontinuous function ok and A, such that the BVP is possibly given by a
non-smooth dferential equation, and (c) that thefdrential equation might
become very nonlinear and unstable and not suitable foveaforsimulation.
All these issues of the indirect approach can partially ldresbed, and most
important, it dfers an exact and elegant characterization of the solutiop-of
timal control problems in continuous time.

200



12.1 The HJB Equation along the Optimal Solution 201
12.1 The HJIB Equation along the Optimal Solution

In order to derive the necessary optimality conditionsestah Pontryagin’s
Maximum Principle, let us again regard the simplified optimantrol pro-
blem:

T

r?(zn)lrmz)e jo‘ L(x(t),u(t)) dt + E(X(T))

subject to x(0)-X% =0 (fixed initial value)
X(t) — f(x(t),u®)) =0, te[0,T] (ODE model)

and let us recall that the Hamiltonian function was defineddés A, u) =
L(x,u) + AT f(x, u) and the Hamilton-Jacobi-Bellman equation was formulated
as:—%(x, t) = miny H(X, VJ(x, t), u) with terminal conditiond(x, T) = E(X).

We already made the important observation that the optieadifack con-
trols

Upegback X t) = argmin  H (x, VyxJ(x 1), u)
u

depend only on the gradiewiJ(x, t), not onJ itself. Thus, we might introduce
the so callecdjoint variablesor costatest that we identify with this gradient.
If the statex*(t) and costatd*(t) are known at a point on the optimal trajectory,
then we can obtain the optimal contral¥t) from u*(t) = ug,(x*(t), 2*(t))
where the explicit control law is defined again by

U;XP(X, A) = argmin  H(x 4,u).
u

For historical reasons, the characterization of the ogtaoatrols resulting
from this pointwise minimum is calleBontryagin’s Maximum Principlebut
we might also refer to it as thminimum principlevhen convenient.

The problem of computing the optimal input is now reducedtgroblem
of finding the optimal state and costate trajectoxg$) andA*(t). The idea is
to assume that the trajectory is known, and tidedentiate the HIJB Equation
along this optimal trajectory. Let us regard the HIB Equmtio

—Z—‘:(x, t) = mini&nize H (%, VxJ(x,t),u) = H (x, VxJ(X, 1), Ugyo(X, VxI(X, t)))
and diferentiate it totally with respect & Note that the right-hand side de-

pends vidvyJ(x, t) andug,, indirectly onx. Fortunately, we know th%(x*, A5, Uf) =
0 due to the minimum principle. Moreover, it is useful to renter here that



202 Pontryagin and the Indirect Approach
A(t) = Vi JI(X(t), 1), such thal‘%( = V2J(X(t), t). We then obtain

823 OH, . . . 8H, . . . .
—M(X,t)zW()(*,/l,u)+a(x,/l,u)V)2(J(x,t)

=f(xur)T

where we drop for notational convenience the time deperafama*(t), 1*(t),
u*(t). Usingx* = f(x*,u*) and reordering yields

0

5 V00 + V2J(X',1) X' = A" = =V, H(X", %, u").

=4v,J(x.t)

This is a diferential equation for the costaté Finally, we diferentiatel(x, T) =
E(x) and obtain the terminal boundary condition

A(T) = VE(X(T)).

Thus, we have derived necessary conditions that the optiajalctory must
satisfy. We combine them with the constraints of the optiotaitrol problem
and summarize them as:

x(0) = Xo, (initial value)
X)) = o), ut(t)), te[0,T], (ODE model)
() = =V HEC®), (1), u*(t), te[0,T], (adjointequations)
ut) = arg muinH(x*(t), A*(t),u), te][0,T], (minimum principle)
(M) = VEX()). (adjoint final value)

Due to the fact that boundary conditions are given both atstag and the
end of the time horizon, these necessary optimality cammstiform atwo-
point boundary value problem (TPBV.P)hese conditions can either be used
to check if a given trajectory can possibly be a solutioreralatively, and more
interestingly, we can solve the TPBVP numerically in ordesitain candidate
solutions to the optimal control problem. Note that this éssible due to the
fact that the number and type of the conditions matches th&beuand type
of the unknownsu* is determined by the minimum principle, whil¢ and
A* are obtained by the ODE and the adjoint equations, i.e. an "™,

in combination with the corresponding number of boundanyditions, ny at
the start for the initial value an at the end for the adjoint final value. But
before we discuss how to numerically solve such a BVP we haaltress
the question of how we can eliminate the controls from the BVP



12.2 Obtaining the Controls on Regular and on Singular Arc203

12.2 Obtaining the Controls on Regular and on Singular
Arcs

Let us in this section discuss how to derive an explicit esgien for the opti-
mal control that are formally given by

WX A) = argmin  H(x 4, u).
u

In this section we discuss two cases, first the standard aasesecond the
case of so calledingular arcs

In the less demanding standard case, the optimal contrelsimply deter-
mined by the equation

oH
—(x, ,u") =0.
6u(x u)

In this case, the controls appear explicitly in the analgttpression of the
derivative. We can then solve the implicit function eithed@ompute the con-
trol ug,(, 4) either numerically, or transform the equation in order e it
explicitly. Let us illustrate this with an example.

Example 12.1(Linear Quadratic Control with Regular CasBegard_(x, u) =
%(xTQx+ u"Ru) with positive definiteRand f(x, u) = Ax+ Bu. Then

H(x A,u) = %(XTQX+ U'RU + AT (Ax+ Bu)

and
H
l =u'R+A"B.
ou

Thus, 2 = 0 implies that

Usp(X ) = -RBTA.

Note that the explicit expression only depends.iohere. For completeness,
let us also compute the derivative of the Hamiltonian witpest tox, which
yields

OoH

— =X’ ATA
X XQ+ ’
so that the evolution of the costate is described by the midgojuation
. OHT
A=—— =-ATA-
ox Qx

If a fixed initial valuexq is provided for the optimal control problem, and qua-
dratic terminal cost, i.eE(X) = %XTPX is present, then the TPBVP that we



204 Pontryagin and the Indirect Approach

need to solve is given by

x0) = X, (initial value)

X(t) = Ax(t)-BRIBTA*(t), te[0,T], (ODE model)

M) = AT — QX (t) te[0,T], (adjointequations)
r(T) = Px (adjoint final value)

Note that this TPBVP is linear and therefore admits an eitggalution.
m]

The second and more complicated case occurs in theuitésaot provided
by the implicit function:

oH §
m(x,/l,u)_o

The implicit function theorem tells us that this occurs wl%zéi‘(x, A, U) is rank-
deficient (i.e. null in the single-input case). We then spefaé singular arc
This e.g. occurs it.(x, u) is independent ofi and f(x, u) is linear inu, as then
% does not depend explicitly om Roughly speaking, singular arcs are due
to the fact thasingular perturbationof the controls — that go up and down
infinitely fast — would not matter in the objective and yielkhaetly the same
optimal solution as the well-behaved piecewise continumrgrol in which
we are usually interested. Note that the controls still grfilce the trajectory on
a singular arc, but that this influence occurs only indiseatla the evolution
of the states.

This last fact points out to a possible remedy%fis zero along the singular
arc, then also its total time derivative along the trajectirould be zero. Thus,
we differentiate the condition totally with respect to time

d oH
a%(x(t),/l(t), u) =0,

which yields
doH 0 oH

OX OU —— " 01 du ——
=f(xu) =-VH

0.

We substitute the explicit expressions foarid A into this equation and hope
that nowu appears explicitly. If this is still not the case, wefdrentiate even
further, until we have found am> 1 such that the relation

d\" oH
(&) Gow.a0.0=0

explicitly depends onu. Then we can invert the relation and finally have an



12.3 Pontryagin with Path Constraints 205

explicit equation foru*. It is interesting to observe here that an explicit de-
pendence om can occur only fom even. Let us illustrate this with another
example.

Example 12.2(Linear Quadratic Control with Singular CosBregard.(x, u) =
x"Qxandf(x,u) = Ax+ Bu. Then

1
H(x, A,u) = EXTQX+ AT(Ax+ BU)

and

oH
— =A1"B.
ou

This expression does not depend explicitlyuoand thusu* can not be directly
obtained from it. Therefore, wefiiérentiate totally with respect to time:

dot _ A'B= —(Z—ZB = (x"Q+ATAB.

dtou
This still does not explicitly depend an Once more dferentiating yields:
ddoH . _— . p i
Gidiay - X QB-1'AB=—(Ax+BU QB+ (X' Q+ TAAB.

Setting this to zero and transposing it, we obtain the egnati
-BTQAx- B"QBu+ BTATQx+ BTATATA = 0,
and inverting it with respect ta we finally obtain the desired explicit expres-
sion
Uzp(X. 1) = (BTQB) BT (ATQx— QAX+ ATAT1).

12.3 Pontryagin with Path Constraints

Let us consider here OCPs with path constraints:

-
r?(&r;lmuzz)e j;L(x(t),u(t)) dt + E(X(T))

subject to X(0)-%X =0 (States initial value)
X(t) — f(x(),ut)) =0, te[0,T] (ODE model)
h(x(t),u(t)) <0, te[0,T] (Path Constraints)
(12.1)
If path constraints of the forrh(x(t), u(t)) < O are to be satisfied by the so-
lution of the optimal control problem far € [0, T] the same formalism as



206 Pontryagin and the Indirect Approach

developed before is still applicable. In this case, it castm@vn that for given
x andA, we need to determine the optimizingrom

Usp(X.2) = argmin  H(x, 4, u)
u (12.2)
subject to h(x,u) < 0.

This is simple to apply in the case of pure control constging. if we have
only h(u) < 0.

In the special case where the constramts, u), are not “fully controllable”
, a singular situation usually occurs. Higher-order deires of the state con-
straints ought then to be considered in order to describ&dectories along
the active state constraint at the solution; in the case obnitnollable state
constraints, we will only have a single time point where ttatestrajectory
touches the constraint and the adjoints will typically juatghis point. Let us
leave all complications away and illustrate in this sectialy the nicest case,
the one of pure control constraints.

In the case of mixed constraints with regular solution ofdheve optimi-
zation problem (12.2), a simple way to describe the optirakit®on is via the
modified Hamiltonian function:

Hxu Au)=Lxu)+ATf(xu+u h(xu). (12.3)

One ought to note that this modificatioffects both the adjoint ferential
equation and the Hamiltonian stationarity. Similarly te KT conditions,
the adjoint variableg must be positive at their solution, and a complementarity
slackness condition must hold at every titre[0, T]. The resulting conditions

of optimality can be written as:

x(0) — %o = 0, (12.4a)

A(T) = VE(X(T)) = 0, (12.4b)

X(t) — V H*(X(t), A(t), u(t)) =0, te[0,T], (12.4c)

At) + Vi H* (x(1), A(t), u(t)) = 0, te[0,T], (12.4d)

b (x(©),A(@), 1 () - () =0, te[0,T], (12.4e)

he (x(t),A(),u() <0, u®=0 tel0,TI, (12.4f)

where

H(X(1), A). (1) = H (X (1), UseoX (©), A1) (©). A1) . (©)  (12.5)
b (1), A1), (1)) = N (X (), WX (©). A (1) . 2 (1)) (12.6)



12.4 Properties of the Hamiltonian System 207

and
u;xp(x’ Ap) = argmin  H(X 1,u,U).
u
is based on (12.3). We consider the problem of solving (12uerically in
Section 12.6.4. Let us consider here simple special cases.

Example 12.3(Linear Quadratic Problem with Control Constraint&et us
regard constraints(u) = Gu+b < 0 and the Hamiltoniai (x, 2, u) = %XTQX+
u'Ru+ AT (Ax + Bu) with Rinvertible. Then

Ugp(X%, 4) = argmin  H(x, 4,u)
u
subjectto h(u) <0

is equal to
. 1
Usp(xA) = argmin  >u"Ru+A"Bu
u 2
subjectto Gx+b <0

which is a strictly convex parametric quadratic program Bp@hich has a
piecewise fiine, continuous solution.

A special and more specific case of the above class is theviolip

Example 12.4(Scalar Bounded Control)Regard scalan and constrainfu| <
1, with Hamiltonian

H(x, A, u) = %uz + V(X AU+ W(x, ).
Then, with
a(x, ) = —v(x, 1)

we have
ugxp(x, A) = max-1, min{1, T(x, 2)}}.

Attention: this simple “saturation” trick is only applicktin the case of one
dimensional QPs.

12.4 Properties of the Hamiltonian System

The combined forward and adjointBérential equations have a particular struc-
ture: they form aHamiltonian systemn order to see this, first note for nota-
tional simplicity that we can directly use the true HamilemmH*(x, 1) in the



208 Pontryagin and the Indirect Approach
differential equation, and second recall that

VaH" (%, 2) = f (% Ug(x 2).
Thus,

g[x} _[ VH*(x, ) }
dt| 1 =VyxH*(x, 1)
which is a Hamiltonian system. We might abbreviate the systgnamics as
Y = ¢(y) with

VaH*(x, 2)

oo | (12.7)

X
y=[ﬂ , and so(y)=[
The implications of this specific structure are, first, tha Hamiltonian is
conserved. This can be easily seen WfjedentiatingH totally with respect to
time.

d . .
aH*(x, A) = ViH* (X, ) "X+ VH*(x, )T A
= VyH* (% )TV H* (%, 2) = VH* (% )TV H* (%, ) = O.

Second, by Liouville’s Theorem, the fact that the systeme(y) is a Hamil-
tonian system also means that the volume in the phase space ¢k, 1) is
preserved. The implication of this is that even if the dynzsmif x are stable
and contracting fast, the dynamicstmust be expanding and therefore unsta-
ble. We illustrate thisfect in Fig. 12.1 for the optimal control problem:

4

n)w(zn)m&z)e % fo x(£)? + u(t)? dt

subject to x(0)-1=0 (fixed initial value)
X(t) + sinx(t) —u(t) =0, te[0,T] (ODE model)

yielding the state-costate equations:
X=-1-sinx,  1=1C0SX—X

This is an unfortunate fact for numerical approaches thiatsbe TPBVP
using a full simulation of the combinedftirential equation system, like single
shooting. If the system = f(x, u) has either someery unstabler somevery
stablemodes, in both cases the forward simulation of the combiystem
is an ill-posed problem. In general, the conservation ofin@ in the state-
costate space makes solving the TPBVP problem numerically dificult
with single shooting techniques. The indirect approactoigdver applicable
using alternative numerical approaches, but it then lossete of its appeal.



12.5 Connection to the Calculus of Variations 209

Figure 12.1 lllustration of the volume conservation in the statstate space.
Here an integration of the state-costate equations is dispHoyea disc of ini-
tial conditionsx, A at timet = 0. The evolution of this disc of initial conditions
is displayed for various time instants in the time intervaH0 The area of the
disc is preserved by the state-costate dynamics, such that a ¢mmtigiche area
along a dimension yields an expansion in others.

Different numerical approaches for solving the TPBVP are pteddnrther
in Section 12.6.

12.5 Connection to the Calculus of Variations

Calculus of variations are fundamental to optimal conimajéneral, and to in-
direct methods in particular. Itffers powerful insights into the mathematics of
optimal control, and also allows for explaining the behawbdirect methods
in some special cases. Consider a simple optimal contrblgms, which we
recast as a the functional:

tt
Q] = X))+ f L (x, u)

to
where: xX=f(x,u), X(tg) = Xo

that maps an input profile(.) into the corresponding codfu(.)] € R. We can
then defined the &eaux derivative
Ju@) +7£()] - I[u)]

6J[u(),£(0)] = lim - :




210 Pontryagin and the Indirect Approach

Note that Giteaux derivatives can be construed as the extension afidire
nal derivatives to arbitrary vector spaces, including itdidimensional ones.
Here we diferentiate the functional[u(.)] in the "direction”£(.). Optimality
then requires that

s3|ur ().£()] =0, vEQ).

A useful interpretation of the stationarity bff is provided by the fundamental
Lemma of Calculus of Variations:

s
6Ju().¢()] = fo Hu (x(t), 2 (1), u (1) - £ (1) ot.

In particular, it follows that at the optimal solutiart (.)

tt
63|ur ().£0)] = fo H (X" (0. 2" (0.0 (1) - £ O dt =0, V£Q)

In the case the optimal input(.) is free to move locally at any timtee [0, t],
the perturbatior (t) is unrestricted and the condition of optimality becomes:

Hy (X* (1), 2* (©),u* (1)) = 0

for all t, thus we recover the observations already made in the pre8ecti-
ons. A special case of the observation above will be of isterethe follo-
wing. It stems from the restriction of the control profilé) to the Banach
space (i.e. loosely speaking the notion of vector spacendgtkto functions)
of piecewise-constant functions. In such a case:

u(t) =u,, &)= ¢ Ve [t tiea]

This restriction allows one to discuss the zero-order h@gddrdtization of the
control input commonly used in direct methods framing itie tontext of the
Calculus of Variations. In this case, optimality requires:

tf
83w ().£()] = fo Hu (X* (1) 2% (1), u* (1)) - £ (1) cit
sl
=th Hy (X*(1). 2% (1) . 07) - &t = 0, V&
Hence the optimality condition is:

f - Hy (X*(), 2* @), u7) dt=0, vk (12.8)

t



12.6 Numerical Solution of the TPBVP 211

For a problem with a bounded, scalar input, i.e. for an OCPReform

1
IO = ) + ft L (x, u)

subjectto: x'= f(x,u), X(to) = Xo,

Umin < U < Umax

with u € R, the condition (12.8) then must hold at the optimum forkafibr
which Umin < Ux < Umax. These observations will be useful in Section 13.5 to
discuss the numerical solutions to singular optimal cdproblems via direct
methods.

12.6 Numerical Solution of the TPBVP

In this section we address the question of how we can compséugion of

the boundary value problem (BVP) in the indirect approadte femarkable
observation is that the only non-trivial unknown is theialitalue for the ad-
joints, 2(0). Once this value has been found, the complete optimjgctay

can in principle be recovered by a forward simulation of thenbined dffe-

rential equation. Let us first recall that the BVP that we wargolve is given
as

ro=x(0)-% =0, (12.9a)
rr = A(T) — VE(X(T)) = 0, (12.9b)
X(t) = VH*(X(t), A(t) =0, te[0,T], (12.9¢)
At) + V3 H* (x(1), A() =0, te[0,T]. (12.9d)

Using the shorthands (12.7) and

b(y(0). y(T). %) = | YO X_"’] ,

rr (Y(T))

the system of equations can be summarized as:
b (y(0), y(T), %) = 0, (12.10a)
y(t) - o(y(t) =0, tel[0,T]. (12.10b)

This BVP has the &, differential equationg = ¢, and the 2, boundary condi-
tionsb and is therefore usually well-defined. We detail here thpgg@aches
to solve this TPBVP numericall\gingle shootingcollocation and multiple
shooting



212 Pontryagin and the Indirect Approach
12.6.1 Single shooting

Single shootingtarts with the following idea: for any guess of the initialwe
Ao, We can use a numerical integration routine in order to obtlé state-
costate trajectory as a function a§, X, i.e. y(t, g, Xo) for all t € [0, T]. This
is visualized in Figure 12.2. The result is that thffetiential equation (12.10b)
is by construction already satisfied, as well as the init@irdary condition
(12.9a). Thus, we only need to enforce the boundary comdfti@.9b), which
we can do using the terminal trajectory val(&, 1o, Xo):

rr (Y(T, Ao, Xo)) = 0.
=:Rr (o)
For nonlinear dynamicg, this equation can generally not be solved explicitly.
We then use the Newton’s method, starting from an initialsgue, and itera-
ting to the solution, i.e. we iterate
-1
AL = 2k - tk(% (1‘5)) Rr (45)- (12.11)
for some adequate step-sitze<]0, 1]. It is important to note that in order to
evaluateZR (%) we have to compute the ODE sensitivitié§22) .

In some cases, as said above, the forward simulation of timbio@d ODE
might be an ill-conditioned problem so that single shootiagnot be em-
ployed. Even if the forward simulation problem is well-defil) the region of
attraction of the Newton iteration dRr(1p) = 0 can be very small, such that
a good guess faly is often required. However, such a guess is typically una-
vailable. In the following example, we illustrate these@tvation on a simple
optimal control problem.

Example 12.5. We consider the optimal control problem:

T
P . 2 2 2
r?(zrslnl]éz)e L X1 (t)° + 10xo(t)” + u(t)- dt

subjectto xa(t) = x1(t) x2(t) + u(t), x1(0) =0,
X(t) = xa(t), %(0)=1

with T = 5. This example does not hold a terminal cost or constrasuish
that the terminal condition reads &(1g) = A(T, g, X9) = 0. The state-
costate trajectory at the solution are displayed in Fig@@.1lt is then inte-
resting to build the functiomy — A (T, Ag, Xg) for various values oflyg, see
Figure 12.3. This function is very nonlinear, making iffidiult for the Newton
iteration to find the co-states initial valug resulting ini (T, Ag, X5). More spe-
cifically, the Newton iteration (full steps or reduced s)eganverges only for

(12.12)



12.6 Numerical Solution of the TPBVP 213

A1(t, Ao, Xo)
A(t, Ao, Xo)

0 1 2 3 4 5
t

Figure 12.2 lllustration of the state and co-state trajecsdioe problem (12.12)
at the solution delivering(T, 2o, Xo) = 0 for T = 5.

A1(T, Ao, Xo) A2(T, Ao, Xo)

8.53 \\/ 8.53
8.52 8.52
8.51 8.51
8.5 8.5
~8.49 ~8.49
~g48 ~g48
8.47 8.47
8.46 8.46

8.45 8.45 /

8.44 8.44 %

318 32 322 324 326 318 32 322 324 326

Ao Aot

Figure 12.3 lllustration of the majy — A (T, Ao, Xo), in the form of level curves

for T = 5. The black dot represents the solution of the TPBVP problenerevh
Rt (10) = A(T, 10, Xo) = 0. One can observe that the map is very nonlinear, such
that the Newton method can struggle to converge to the solagiofithe TPBVP,
unless a very good initial guess is provided.

a specific set of initial guesse§ provided to the iteration (12.11), see Figure
12.4.

A crucial observation that will motivate an alternative e single-shooting
approach is illustrated in Figure 12.5, where the magp- A (t, Ag, Xp) is dis-
played for the integration times= 3 andt = 4. The crucial observation here is
that the map is fairly linear up tio= 3, and becomes increasingly nonlinear for
larger integration times. This observation is general amdivates the chore
idea behind the alternatives to single shooting, namelyititagration shall
never be performed over long time intervals, so as to avadtirg strongly
nonlinear functions in the TPBVP.



214 Pontryagin and the Indirect Approach

Full Newton steps

Reduced Newton steps

9 N 9 - mﬁ)‘\
/ ) P
85 85
S 8 S 8
N o
~ ~
75 / 75
7 7
6.5 6.5
2.4 2.6 2.8 3 32 34 2.4 2.6 2.8 3 3.2 3.4
/1190 /11,0

Figure 12.4 lllustration of the region of convergence of thewibn iteration
(12.11) for problem (12.12) (in black, with full Newton stepsthe left-hand side
graph and with reduced steps on the right-hand side graphg.Jenotelg 1, Ao2
the initial guess provided to the Newton iteration. The gretsdat (322, 8.48))
depict the solution to the TPBVP. Only a fairly small, disconedcand highly
convoluted set of initial guess for the co-states initial cbods leads to a conver-
gence of the Newton iteration.

12.6.2 Multiple shooting

The nonlinearity of the integration maly — Y (t, Ao, Xo) for long integration
timest motivates the “breaking down” of the full integration in dir@eces,

S0 as to avoid creating very nonlinear map in the TPBVP cadit The idea

is originally due to Osborne [66], and is based on dividing time interval
[0, T] into (typically uniform)shootingintervals [k, tx+1] [0, T], where the
most common choice g = k%. Let us then frame the integration over a short
time interval [, tx.1] with initial value s, as the functionby (s¢), defined as:

D (s0) = Y (tke1)  Where
V() —e(y(1) =0, te[ttea] and y(t) = s

(12.13a)
(12.13b)

fork=0,...,N - 1. We then rewrite the TPBVP conditions (12.10) as:

b (S0, S, X0) = 0,
Dy (Sk) = S+1 = 0,

(boundary conditions) (12.14a)
k=0,...,N—1 (continuity conditions) (12.14b)

One can then rewrite the conditions (12.14) altogetherea$uction:

Rus (s, Xo) = 0 (12.15)



12.6 Numerical Solution of the TPBVP 215
A1(3, 20, Xo) A2(3, A0, Xo)
=
8.52 8.52 /
8.5 85
S S
~ 8.48 ~ 8.48
8.46 8.46
8.4 4 8.44
318 32 322 324 326 318 32 322 324 3.26
Ao Ao
A1(4, A0, Xo) A2(4, 20, Xo)
7 N
8.52 8.52
8.5 85
S S
~ 8.48 ~ 8.48
8.46 8.46
8.44 8.44
318 32 322 324 326 318 32 322 324 3.26
Ao Ao

Figure 12.5 lllustration of the majy — A(t, Ao, Xo), in the form of level curves

for different timeg. The black dot represents the solution of the TPBVP problem,
whereA(T, 19, Xp) = 0. One can observe that the map is close to linear for “small”
integration timeg (upper graphs, where= 3), and becomes increasingly nonli-
near as the integration time increases (lower graph, wherd), until it reaches

the final timeT = 5, see Figure 12.3. This observation is general, and holds for
most problems.

where we notes = (S, ..., Sy). A Newton iteration can be then deployed on
(12.15) to find the variables it reads as:

=

gl o g tk(aRMS (& x—o)) Rus (&, %). (12.16)

s

for some step-sizt €]0, 1]. We illustrate the Multiple-Shooting approach in
the following example.

Example 12.6. We consider the optimal control problem (12.12) from Exam-
ple 12.5 withT = 5. If we denotes, = (X, Ak), the boundary conditions for



216 Pontryagin and the Indirect Approach

05 14
X3,l .\j 0.8
09 ~~—o0 06
0.4
o DX (S3) o
X o5 1 X 02
0
1 0.2 X3, —"
04 @3, (S3)
0 1 2 3 4 5 0 1 2 3 4 5
t t
[ 9
3 8
2 6
< 1 /l3 1 o
~ > ~
0 0\ ¢ CD’;, 2 (SS)
2 '/O
1 Ol (S3) \/
31 0 1 30
0 1 2 3 4 5 0 1 2 3 4 5
t t

Figure 12.6 lllustration of the state and co-state trajecsdioe problem (12.12)
during the multiple-shooting iterations (12.16), such that¢bnditions conditi-
ons®y (k) — s+1 = 0 are not yet fulfilled. Here, the discrete tintgsre depicted
as grey dashed lines, the discrete state-costrtes(X 1, X2, Ak 1, Ak2) are de-

picted as black dots, and the resulting integratidps= (‘Dir‘bﬁ,z’ d)ﬁvl,cbﬁ_z)

are depicted as white dots. The black curves represent thecsittete trajecto-
ries on the various time interval&] ty,1]. At the solution (12.14), the conditions
Dy (sx) = sk+1 are enforced fok = 1,...,N — 1, such that the black and white
dots coincide on each discrete titpe

this example then become:
0
Xo = [ ] An=0. (12.17)

We illustrate the Multiple-Shooting procedure (12.14) igufe 12.6 forN =
5.

One ought to observe that the time intervlls t«,1] are of size%, and
hence get shorter ds increases. Because one can “control” the length of the
time interval over which the integration is performed Waand because the
functions®y (s¢) — s«+1 become less nonlinear as the length of the time interval
decreases, one can make them “arbitrarily” linear by irgirggN. It follows



12.6 Numerical Solution of the TPBVP 217

0

°
2 °

e0000
4reeeoe o

o000 °
6reeeoe °

eo0o000
8 oo o
o000 °
10 [ XN X} °
eo0oo0o
12 o000 o
[ XX X °
14 XX X °
eooco0o0
16 o000 o
[ XXX °
18 [ XXX ® -
[ XXX
20 0000 -
0 5 10 15 20

Figure 12.7 lllustration of sparsity pattern of the Jacobian im@% in the
Newton iteration (12.16) for the optimal control problem (12) approached via
indirect multiple-shooting, for Example 12.6. Here we dke 5. One can readily
observe that the Jacobian matrix is sparse and highly structunedsffucture ari-
ses via organising the algebraic conditions (12.15) and thablassin time (i.e.

in the orderk = 0,..., N). Note that here the last variablgs where eliminated
using the equalitgy = On-1 (Sk-1). In the specific case of Example 12.6, the eli-
mination has no impact on the Newton iteration because the laoyicdnditions

b (s0, Sy, Xo) are linear.

that a stficiently largeN typically allows one to solve the Multiple-Shooting
conditions (12.14) using a Newton iteration even if no gooitigl guess is
available.

It is important to observe that the set of algebraic conadi¢l2.15) holds a
large number of variables such that the Newton iteration (12.16) is deployed
using large Jacobian matricé%g—s. However, these matrices are sparse, and if
the algebraic conditions and variables are adequatelymga, they are highly
structured (see Figure 12.7), such that their factorisatian be performed
efficiently.

The second alternative to single-shooting is the objechefriext Section,
and can be construed as an extreme case of Multiple-ShoWagletail this
next.

12.6.3 Collocation & Pseudo-spectral methods

The second alternative approach to single shooting is tsiusglitaneous col-
locationor Pseudo-spectral methods. As we will see next, the twooagpes

are fairly similar. The key idea behind these methods isttoduceall the va-
riables involved in processing the integration of the dyitamand the related
algebraic conditioninto the set of algebraic equations to be processed. The



218 Pontryagin and the Indirect Approach

most common implementation of this idea is based on the Qathal Collo-
cation method presented in Chapter 10, Section 10.3.

We consider the collocation-based integration of the stattate dynamics
on a time intervalty, tc,1] starting from the initial values,, as described in
equation (10.5). The integration is then based on solvingt @fscollocation
equations:

Vko = S (12.18a)
P (ti Vi) = @(Vii» i) i=1....d (12.18b)

fork =0,...,N -1, wherety; € [t, txs1] fori = 0,...,d, and the variables
Vi € R?%(@+1) hold the discretisation of the continuous state-costateamiics.

The TPBVB discretised using orthogonal collocation theldfithe variables
v andscfork=0,...,N-21andi = 1,...,d, and the following constraints:

b (s0, S, X0) = 0, (boundary condition), (12.19a)
P(tks1, Vk) — S+1 = 0, (continuity condition), (12.19b)

Vo — & =0, (initial values), (12.19¢)

P (tki> Vi) — (Vi tki) = 0, (dynamics). (12.19d)

One can observe that equations (12.19b) and (12.19c) agx liwhile equation
(12.19d) is nonlinear when the dynamics are nonlinear. @Qneatso observe

slightly more compact set of equation, wki=0,...,N-1andi =1,...,d:

b (Vko, VN0, X0) = O, (boundary condition), (12.20a)
P(ts1, Vi) — Vie1.0 = 0, (continuity condition), (12.20b)
P (tki, Vi) — o(Vii ki) = 0, (dynamics). (12.20c)

This elimination does not modify the behavior of the Newtndtion. We can
gather the algebraic conditions (12.20) and the variafleg in the compact
form:

Rc (W, %) =0 (12.21)

wherew = {vg0,...,Vod,---»>VN-10,---»VN-1d> VNo}- A Newton iteration can
be then deployed on (12.21) to find the variabled reads as:

-1
W Wk g (% (w x—o)) Ro(W%).  (12.22)

for some step-sizt €]0, 1]. We illustrate the indirect collocation approach in
the following example.



12.6 Numerical Solution of the TPBVP 219

0 3
0.2 2!
< -0.4" ~ 1t
06t o
081 1
o 1 2 3 4 5 0 1 2 3 4 5
t t
N 10!
| 8|
i 6L
2 05! Sy
[ 2t
0 0;
0o 1 2 3 4 5 o 1 2 3 4 5
t t

Figure 12.8 lllustration of the state and co-state trajecsdioe problem (12.12)
using the orthogonal collocation approach with= 20. The grey curves display
the state-costate trajectories after the first full Newton sfei®.22), while the
black curves report the state-costate trajectories at cgemee. The discrete times
tx are depicted as grey dashed lines, the discrete state-costdhestone gridty

are depicted as dots. Note that the continuity conditionsl@9 in the collocation
method are linear in the variables such that the trajectories are continuous after
the first full Newton step (hence the grey curves are continueues) though the
problem is not solved yet).

Example 12.7. We consider the optimal control problem (12.12) from Ex-
ample 12.5 withT = 5. We illustrate the Orthogonal Collocation procedure
(12.19) in Figure 12.8 foN = 10. The sparsity pattern of the Jacobian ma-
trix "% from the Newton iteration (12.22) is illustrated in Figude(9). The
variables and constraints were ordered with respect to tiwen though it is
large, the complexity of forming factorisations of the Jaiem matrix"% is
limited as it is sparse and highly structured.

Pseudo-spectral methodsdeploy a very similar approach to the one descri-
bed here, to the exception that they skip the division ofitne interval[0, T]
into subintervalgty, t«;1], and use a single set of basis functions spanning the



220 Pontryagin and the Indirect Approach

0 50 100 150 200 250 300

Ric

- in the New-

Figure 12.9 lllustration of the sparsity structure for the Jaao
ton iteration (12.22)

entire time interval0, T]. Pseudo-spectral methods for the TPBVP problem
(12.10) can then be framed as:

b (p(0,V), p(T, V), %) = 0, (12.23a)
P (te, V) — o(p(tk, V), tx) = 0, i=k...,n (12.23b)

wherety € [0, T], and the variables € R™" hold the discretisation of the
continuous dynamics. Because they attempt to captureatetstjectories in a
single functionp(t, v), with t € [0, T], the Newton iteration solving constraints
(12.23) generally holds a dense Jacobian matrix, for whitttgire-exploiting
linear algebra is generally iffecient.

12.6.4 Numerical solution of TPBVP with Path Constraints

In order to provide a fairly complete discussion on numéscdutions of the
TPBVP problem for optimal control, we ought to consider tase of mixed
path constraints arising in problem (12.1), resulting inRBYVP of the form
(12.4). As hinted in Section 12.3, the treatment of mixedmanstraints in
the context of indirect methods can be fairly involved.

The dfficulty when solving the TPBVP (12.4) is very similar to thefidi
culty of solving the KKT conditions in the presence of inelifyaconstraints,
and stems from the non-smooth complementarity slacknestitamn (12.4e€).
Similarly to solving the non-smooth KKT conditions, we camsider here an
approach similar to the Primal-Dual Interior-Point apmtoalready detailed to
solve the KKT conditions in the presence of inequality caoaiats, see Section
4.3.1. The Interior-point idea deployed on (12.4) yields thlaxation of the
complementarity condition (12.4e) and the introductioslatk variables(t)



12.6 Numerical Solution of the TPBVP 221

such that the following relaxed PMP conditions are numdyicmlved:

X(0)-% =0, (12.24a)

A(T) = VE(X(T)) = 0, (12.24b)

X(t) = VHA(X(), A(t), u () = 0, te[0,T], (12.24c)
A(t) + Vi H*(X(1), A(t), 1« (1)) =0, te[0,T], (12.24d)
h(X(1). Use) + St) =0, te[0,T], (12.24¢)
sMuw®)-t=0, te[0,T], i=1...,ny (12.24f)

with the addition of the positivity conditions:
s(t) > 0, u®)=0 tel0,T]. (12.25)

One can observe that (12.24c)-(12.24f) is in fact an ind®AE (see Chap-
ter 14), as the algebraic variablg$) andu(t) can be eliminated using (12.24e)
and (12.24f). In practice, problem (12.24) is best suitedt &ssfor a numeri-
cal approach, as it allows to handle the positivity constsa{12.25) easily via
taking the adequate step lengths in the Newton iterations.

The diferential-algebraic conditions (12.24c)-(12.24f) camtbe handled
via a collocation method, yielding a large and sparse sdyjebaaic conditions
that are simply added to the boundary conditions (12.242)24b) to yield an
algebraic system that we note as:

R (w) =0, (12.26)

wherew = (X, 4,u, S) gathers the discrete stat®scostatest, slack varia-
bles s and multipliersy, discretized on the collocation time grig; for k =
0,...,N—-1andi = 0,...,d. A prototype of interior-point algorithm then
reads as follows.

Algorithm 12.8 (IP method for TPBVP with path constraints)
Input: guessw, algorithmic parameters> 0,y €]0, 1], € €]0, 1[, Tol > 0
while |R; (w) || > Tol do

Aw = —EHIR (w)

Updatew = w + tAw, wheret €]0, 1] ensures

S+tAsS>es pu+tAu> eu

if [IRRW)I|x<1l then t=y71
end while



222 Pontryagin and the Indirect Approach

whereX is an ad-hoc norm on the residugl. Let us consider the deploy-
ment of this Algorithm on the following example.

Example 12.9. We consider the optimal control problem (12.12) with the ad-
dition of simple mixed constraints in the form of state anglitbounds:

5
. 2 2 2
r?(zryrﬂéz)e L‘ X1 (t)° + 10x2(t)” + u(t)~ dt

subjectto xa(t) = x1(t) xo(t) + u(t), x1(0) =0, (12.27)
Xo(t) = xa(V), %(0) =1,
u(t) > -1, x1(t) > -0.6, te[0, T].

with T = 5, which is similar to the optimal control problem treatectle
previous examples, to the addition of the path constreift) > —-0.6 and
u(t) = —1. We treat this problem using Algorithm 12.8. The resultstgte-
costate trajectory at the solution are displayed in Fig@d@. The resulting
optimal control inputug,, (x, 4, 1), the slack variables and the adjoint va-
riabIeSnge(lmrl;a displayed in Figure 12.11. The sparsity pattern of titekian

matrix == used in the Newton iterations in Algorithm 12.8 is illus&dtin

Figure 12.12.

Remark on Indirect Multiple-Shooting vs. Indirect Collocation At first
sight multiple shooting seems to combine the disadvantagésth single-
shooting and collocation. Like single shooting, it cannahdile strongly un-
stable systems as it relies on a forward integration, arel diddlocation, it
leads to a large scale equation system and needs sparsesingaf the linear
algebra. On the other hand, it also inherits the advantafydsese two met-
hods: like single shooting, it can rely on existing forwaadvers with inbuilt
adaptivity so that it avoids the question of numerical diization errors: the
choiceN is much less important than in collocation and typicallye ahoo-
ses arN between 5 and 50 in multiple shooting. Also, multiple shogttan
be implemented in a way that allows one to perform in each Nevteration
basically the same computationdiaet as in single shooting, by using a con-
densing technique. Finally, like collocation, it allowseoto deal better with
unstable and nonlinear systems than single shooting. Tastskcts, namely
that alifted Newton methodan solve the large “lifted” equation system (e.g.
of multiple shooting) at the same cost per Newton iterat®tha small scale
nonlinear equation system (e.g. of single shooting) to tlitiés equivalent,
but with faster local convergence rates, is in detail ingaséd in [2] where
also a literature review on such lifted methods is given.



12.6 Numerical Solution of the TPBVP 223

6
4
|
,.;' |
2
|
o' '
|
0 1 2 3 4 5 0 1 2 3 4 5
t t
1i i
i 101
0.8+ |
0.6} '
o | 8
< 04 = 5|
02! |
T |
Or Or
0 1 2 3 4 5 0 1 2 3 4 5
t t

Figure 12.10 lllustration of the state and co-state trajeesdior problem (12.12)
using the orthogonal collocation approach with= 20. The black curves report
the state-costate trajectories at convergence. The disoregstt are depicted as
grey dashed lines, the discrete state-costates on the timg geice depicted as
dots.

1" 5,
| |14, 051 Vg
: < [y & | Py
05! -~ X e 1% 5
X o | o I e °
= : » ‘.‘ 0 oo L et
s [ 0 1 2 3 4 5 0 1 2 3 4 5
~ °
e | 5,
3 [ i “\.f.\\
S ‘ 13 o
_0.5: §‘. 3. ‘3‘13:  SEEEEESS
[ A i
B 0. Ly
1o 0 1 2 3 4 5 0 1 2 3 4 5
0 1 2 3 4 5 t t

Figure 12.11 lllustration of the inpug,, (x, 4, ), slacks and adjoint variablg
at the solution of problem (12.12) using indirect collocatiath an interior-point
approach.



224 Pontryagin and the Indirect Approach

0

100

200

300

400

500

600

0 100 200 300 400 500 600
Figure 12.12 lllustration of the sparsity structure for the Ja’mm%ff—; in the New-
ton iteration deployed within Algorithm 12.8.
Exercises

12.1 In this exercise sheet, we regard the continuous tintienapcontrol
problem defined by:

%nmz)e fo u(t)dt (12.28a)
subjectto  x(0) = Xo, (12.28b)
x(t) = f(x(t),u(t)), tel0,T], (12.28c)
X(T) =0, (12.28d)
~Umax < U(t) < Unax, t€[0,T]. (12.28e)

where the state ig = (X3, X2)T andX = f(x, u) is given by:

_ Xo(t)
FOOW = G sinpe()/C) + u(t) |
with C := 180/x.
We choose the initial valugy = (10,0)", T = 10, and at first, we will
leave away the control bound (12.28e) for first tasks.

(a) Considering that the Hamiltonian function for a gen€@P with in-
tegral cosL(x, u) is defined to béd(x, 2, u) = L(x, u)+ A7 f(x,u), and
that in our casé.(x,u) = u?, write down explicitly the Hamiltonian
function of the above optimal control problem as a functidrihe
five variables %q, X, 41, A2, U).

(b) Next, let us recall that the indirect approach elimisdbe controls to
obtain an explicit functiom*(x, A) that minimizes the Hamiltonian for



(©

(d)

(e)

(f)

(@)

Exercises 225

agiven , 2). This optimalu* can be computed by setting the gradient
of the Hamiltonian w.r.tu to zero, i.e. it must hoIt%—'J(x, A,u) =0.
Obtain an explicit expression foif (X, 1).

We will also need the derivatives w.nd.so also calculatgxﬂl(x, A,U)
and 5 (x, 4, u).

Recall that the indirect approach formulates the ELsggrange dif-
ferential equations for the states and adjoints togetlmmy are given
by x = f(x u*(x, 1)) and byd = —V,H(x, 4, u*(x, 2)). For notatio-
nal convenience, we define the vectoe (x, 1) so that the Euler-
Lagrange equation can be briefly written as the QDEf(y).

Collect all data from above to define explicitly the ODE ridifaind
sidef as a function of the four components of the vegter (X1, X0, A1, A2)
The boundary value problem (BVP) that we now have to save
given by

X(0) = %,
X(T) =0,
¥ = fyv). te0.T].

We will solve it by single shooting and a Newton proceduree Titst
step is to write an ODE simulator that for a given initial valy =
(X0, 10) simulates the ODE on the whole time horizon. Let us call the
resulting trajectoryy(t; yo), t € [0, T], and denote its terminal value
by y(T; yo). Write a simulation routine that computes for givgrthe
valueyyn = Y(T; Yo). Use a RK4 integrator with step sia¢ = 0.2 and

N = 50 time steps.

Regard the initial valugy = (X0, 4o). As the initial value for the sta-
tes, Xg, is fixed toxg, we only need to find the right initial value for
the adjoints, o, i.e. we will fix X, = Xo and only keeplg € R? as
an unknown input to our simulator. Also, we have only to metetra
minal condition onx(T), namelyx(T) = 0, while A(T) is free. Thus,
we are only interested in the map frotg to X(T), which we denote
by F(10). Note thatF : R? — R?. Using your simulator, write a
MATLAB function [x_end]=F(lambda_start).

Add to your function functionality for plotting the tegtories ofx,,
X2, A1, A2. To do so, extend the output of your MATLAB simualtor to
[x_end,ytraj]=F(lambda_start).

For 1o = 0, callF(1o) and plot the states and adjoints of your system.
In this scenario, what is the numerical value of the finaleskélt) =
F(0)?



226 Pontryagin and the Indirect Approach

(h) The solution of the BVP is found if we have foung such that
F(1;) = 0. This system can be solved by Newton’s method, that ite-
rates, starting with some guedlyl (e.g. zero).

A1) _ ( o Am))_l Fk)
0 0 o0 0
First write a routine that computes the Jacobifily) = 3—;(/10)

by finite differences using a perturbatién= 10™*. Then implement
a (full-step) Newton method that stops Whé?‘(/lg(])ll < TOL with
TOL = 1073,

(i) For your obtained solution, plot the resulting statgectories and
verify by inspection thak(T) = 0.

(i) Using your functionu*(x, 1), also plot the corresponding control tra-
jectoriesu(t).

(k) Add the control bounds (12.28e) witli,ax = 3. The only part in
your whole algorithm that you need to change is the expradsio
u*(x, 2). The new constrained function

Ugon(X, ) = argminH(x,A,u) St.  — Unax < U < Unax,
u

is simply given by the “clipped” or “saturated” version of ywoold
unconstrained functiot;,,(x, 1), namely by

Uzon(X% A) = max{—Umax, MiN{Umax, Ujn(X, )}}

Modify your differential equatiorf by using this new expression for
u* and run your algorithm again. We remark that strictly spegki
the ODE right hand side is no longeffidirentiable so that the use of
a RK4 is questionable as well as the computation of the Janatfi
F, but we cross our fingers and are happy that it works. Forainiti
lization of the Newton procedure, choose the multipligifrom the
unconstrained solution. In the solution, plot again thesltexy tra-
jectories for states, adjoints, and fa(t), using of course your new
function.

12.2 Consider the following two-point boundary-value pgeob, describing a
person throwing a ball against a target:

. V,

Px T Px(0)=0, pu(T)=d
VX _ —@Vx va + V§ Vx(o) = Vx0, VX(T) =VxT
Py Vy () =h— py(T)=0

Vy —aVy (V2 + V2 — o W(0) = o, W(T) =wr



Exercises 227

The ball leaves the hand of the thrower with a velooiky( vy ) a dis-
tanceh = 1.5 m above the ground. It then follows an unguided trajgctor
determined by standard gravity = 9.81 mjs? and air frictiona = 0.02
hitting a target on the grourdl= 20 m away aftell = 3 s. The problem
is to determinevyo, Vy,0).

(@) Implement e RK4 integrator scheme with 20 steps to sitaulze
trajectory of the ball assuming assuming = 0 = 5[m/s].

(b) Rewrite the integrator in order to get a function thategiv, =
(Vx0. Vy,0) returnspr := (Px, Py,1)-

(c) Compute the Jacobia%% by finite differences.

(d) Write a full-step Newton method with 10 iterations to sottae root-
finding problem:

pr = F(vo).
Verify the result by simulating the trajectory as in Task.4.1

(e) Replace the quadratic friction termsiy ,/V2 + VvZ anda vy V2 + V2
with the linear terms v, anda vy. How does this influence the num-
ber of Newton-iterations needed to solve the problem?

12.3 Regard again Exercise 8.7. We will solve now the modifiedion of
that problem given by:

.
minimize f X1 (t)? + Xo(t)? + u(t)? dt
d 0

subjectto x; = (1-X)x - X +Uu,  x(0)=0, (12.29)
X2 = X1, %(0) =1,
1< ult) <1,

whereT = 10. Notice the lack of state path constraints since they are
difficult to handle with indirect methods.

(a) Introduce the costatt) and write down the HamiltoniaH (X, 4, u)
of (12.29):

(b) Use Pontryagin’s maximum principle to derive an expgms$or the
optimal controlu® as a function ofx and 1. Note: u(t) may only be
a piecewise smooth function. Tip: How doggnter in the Hamilto-
nian?

(c) Derive the costate equations, iXt) = ...

(d) Derive the terminal conditions for the costate equation



228

Pontryagin and the Indirect Approach

(e) Augment the original equations with the costate equattioform a

(®

two-point boundary-value problem (TPBVP) with fourfiérential
equations:

Casadi Part: Solve the TPBVP with single-shooting. Use ) as
your initial guess for the initial costate. To integrate gystem, our
best chance is to use a variable stepsize integrator tbisgstems,
such as the CVODES integrator from the SUNDIALS suite, amd
in CasADi. Note that the system is only piecewise smoothchvhi
could potentially cause problems in the integrator, but Wkignore
this and hope for the best. The resulting nonlinear systesqeétions
is also challenging to solve, and in CasADi, our best bet iage
IPOPT with a dummy objective function ("minimize 0, subjeot
g(x) = 0"). We suggest allocating an instance of CVODES as follows:

o MATLAB
tf = SX.sym('tf’);

dae = struct(’'x’, aug, ’'p’, tf, ’'ode’,
tf xaugdot);
opts = struct(’abstol’, 1e8, 'reltol’,
le-8);
F = integrator('F’, 'cvodes’, dae, opts);
e Python

tf = SX.sym(’'tf")

dae = {'x’:aug, ’'p’:tf, ’'ode’:tf xaugdot}
opts = {’abstol’':1e-8, 'reltol’':1e-8}

F = integrator('F’, 'cvodes’, dae, opts)

whereaug andaugdot are expressions for the augmented state and
augmented state derivative, respectively. We use a freammert £
to scale the time horizon to [§] instead of the default [A].



13

Direct Approaches to Continuous Optimal
Control

Direct methods to continuous optimal control finitely paesernize the infinite
dimensional decision variables, notably the contufty such that the original
problem is approximated by a finite dimensional nonlineagpam (NLP).
This NLP can then be addressed by structure exploiting nigadeXLP so-
lution methods. For this reason, the approach is often ctenaed as “First
discretize, then optimize.” The direct approach conneasd\eto all optimiza-
tion methods developed in the continuous optimization comity, such as the
methods described in Chapter 3. Most successful directodsteven parame-
terize the problem such that the resulting NLP has the sirecif a discrete
time optimal control problem, such that all the techniqued structures des-
cribed in Chapters 7 and 7.3 are applicable. For this redlsercurrent chapter
is kept relatively short; its major aim is to outline the nrajoncepts and vo-
cabulary in the field.

We start by describingirect single shootingdirect multiple shootingand
direct collocationand a varianpseudospectral methadd/e also discuss how
sensitivities are computed in the context of shooting meshdhe optimiza-
tion problem formulation we address in this chapter typycedad as (but are
not limited to):

"
?(1(|r)1|r'rl1]|(zsa j; L(x(t),ut)) dt + E(X(T))
subject to X(0) — %o = 0, (initial value),
X(t) = f (x(t),u(t)) = 0, (system dynamics)
h(x(t), u(t)) < 0, (path constraints)
r (x(T)) <0 (terminal constraints)

For many OCPs, the system state derivatxgsare provided via an implicit
function, or even via a Dierential-Algebraic Equation (DAE). The methods

229



230 Direct Approaches to Continuous Optimal Control

presented hereafter are applicable to all thee cases witle soinor modifi-
cations. The direct methodsfidir in how they transcribe this problem into a
finite NLP. The optimal control problem above has a fixed &iialue, which
simplifies in particular the single shooting method, butcalhcepts can in a
straightforward way be generalized to other OCP formutestiwith free initial
values.

13.1 Direct Single Shooting

All shooting methods use an embedded ODE or DAE solver inrdodelimi-
nate the continuous time dynamic system. They do so by firsinpeterizing
the control functionu(t), e.g. by polynomials, by piecewise constant functions,
or, more generally, by piecewise polynomials. We denotefithiee control
parameters by the vector and the resulting control function hyt, ). The
most widespread parameterization are piecewise constatriots, for which
we choose a fixed time grid 8 tp < t; < ... < ty = T, andN parameters

g €R™,i=0,...,N-1, and then we set

utt,g) = ok for te [ty tua]

Thus, the dimension of the vector= [q, . .., On-1] is of dimensiorNn,.

Single shooting is aequential approackvhich has been earliest presented
in [48, 70]. In single shooting, we regard the staté3 on [0, T] as dependent
variables that are obtained by a forward integration of teadhic system,
starting atxg and using the controls inputt, g). We denote the resulting tra-
jectory asx(t, g). In order to discretize inequality path constraints, wease
a grid, typically the same as for the control discretizatimnwhich we check
the inequalities. Thus, in single shooting, we transcrime dptimal control
problem into the following NLP, that is visualized in Figu?e.

minimize fT L(x(t,q), ut,q)) dt + E(X(T,q))
qe RNV 0

subjectto h(x(ti,g),u(ti,q)) <0, i=0,...,N-1 (path constraints)
r(x(T,q) <0 (terminal constraints)

NLP structure in single shooting As the only variable of this NLP is the
vectorg € RN that influences nearly all problem functions, the above jerab



13.1 Direct Single Shooting 231

can usually be solved by a dense NLP solver in a black-boxdasks the

problem functions and their derivatives are expensive topde, while a small
QP is cheap to solve, often Sequential Quadratic Program(8iQP) is used,
e.g. the codes NPSOL or SNOPT. Let us first assume the Hes=ais not be
computed but can be obtained e.g. by BFGS updates.

The computation of the derivatives can be done ffedent ways with a dif-
ferent complexity: first, we can use forward derivativesngginite differences
or algorithmic diferentiation. Taking the computational cost of integrating
time interval as one computational unit, this means thatoomeplete forward
integration costdN units. Given that the vectag hasNn, components, this
means that the computation of all derivatives cobi,(+ 1)N units when im-
plemented in the most straightforward way. This number ¢#irbs reduced
by one half if we take into account that controls at the enchefhiorizon do
not influence the first part of the trajectory. We might caistivay theredu-
ced derivative computatioas it computes directly only the reduced quantities
needed in each reduced QP.

Second, if the number of output quantities such as objeetidkinequality
constraints is not big, we can use the principle of reversenaatic diferentia-
tion in order to generate the derivatives. In the extreme ta&t no inequality
constraints are present and we only need the gradient oflijeetive, this
gradient can cheaply be computed by reverse AD, as done gotballedgra-
dient methodsNote that in this case the same adjoirffetiential equations of
the indirect approach can be used for reverse computatitreajradient, but
that in contrast to the indirect method we do not eliminageabntrols, and we
integrate the adjoint equations backwards in time. The d¢exity for one gra-
dient computation is only M computational units. However, each additional
state constraint necessitates a further backward sweep.

Third, in the case that we have chosen piecewise controferas we might
use the fact that after the piecewise control discretinatie have basically
transformed the continuous time OCP into a discrete time 3€®next section).
Then we can compute the derivatives with respect to batindg; on each in-
terval separately, which costs,(+ n, + 1) units. This means a total derivative
computation cost oN(ny + n, + 1) units. In contrast to the second (adjoint)
approach, this approach can handle an arbitrary numbetofreeguality con-
straints, like the first one. Note that it has the same conitgl&xat we obtain
in the standard implementation of the multiple shootingrapph, as explained
next. We remark here already that both shooting methodsaemimplement
all the above ways of derivative generation, bufetiin one respect only, na-
mely that single shooting is a sequential and multiple shga simultaneous
approach.



232 Direct Approaches to Continuous Optimal Control

Example 13.1.Let us illustrate the single shooting method using the Yailhg
simple OCP:

5
L. 2 2 2
r?(én)lmuzz)e fo X1 (t)” + 10xo(t)” + u(t)~ dt

subjectto  X;(t) = x1(t) x2(t) + u(t), x1(0) =0, (13.2)
%o(t) = xa(b), %(0) =1,
ult) = -1, x1(t) > -0.6, tel0, T],

which we used already in Example 12.9 of Section 12.6.4.
The resulting solution is illustrated in Figure 13.1, tdg=twith the sparsity
patterns of the Jacobian of the inequality constraint fienct.e.

d
%h(x(ti, a), u(ti, 9)),

and the one of the Hessian of the Lagrange function.

Nonlinearity propagation in direct single shooting Unfortunately, direct sin-
gle shooting often diers from similar dificulties as the ones discussed in
Section 12.6.1 for indirect single shooting. More spedificavhen deploying
single shooting in the context of direct optimal control &dulty can arise
from the nonlinearity of the “simulation” functior(t, g) with respect to the
control inputsq for a large simulation timé We illustrate this problem using
the following example:

Xy = 10(X2 - Xl) (13.2a)
X2 = X1 (g — X3) — X2 (13.2b)
X3 = X1 X2 — 3X3 (13.2¢)

wherex = [xl Xo Xg]T € R® andq € R is a constant control input. Note
that the nonlinearities in this ODE result from apparentigacuous bilinear
expressions. We are then interested in the relatiorgshipx(t, q) for different
values oft. The initial conditions of the simulation were selectedxéd) =
[0 0 0 andq e [18 38§. The resulting relationship is displayed in Fig.
13.2. One can observe that while the relationship is not wemylinear for
small integration timeg it becomes extremely nonlinear for large tilhesven
though the ODE under consideration here appears simple daligt nonlinear.
This example ought to warn the reader that the functiing) resulting
from the simulation of nonlinear dynamics can be extremelglinear. As a
result, functions such as the constraints and cost funatitimee NLP resulting
form the discretization of an optimal control problem viagie-shooting can



13.1 Direct Single Shooting 233

o 05 1 15 2 25 3 35 4 45 5

10 10

15 15

o coe .o
20l eeeecccccccscccccccce 20leeceeccccccccsccccse

0. 5 10 15 20 . 0 5 10 15 20 .
Jacobian of the inequality constraints Hessian of the Lagrange function

Figure 13.1 Solution to OCP (13.1) using a discretization basesingle shoot-
ing, withN = 20 and using a 4-steps Runge-Kutta integrator of order 4. Therup
graph reports the states and input trajectories. The lowphgneport the sparsity
pattern of the Jacobian of the inequality constraints in tealting NLP and the
sparsity pattern of the Hessian of the Lagrange function.

be themselves extremely nonlinear functions of the inpgtisacey. Because
most NLP solvers proceed to find a candidate solution viantakiiccessive
linearization of the KKT conditions of the problem at hanlgg fpresence of
very nonlinear functions in the NLP problem typically ingates these ap-
proximations outside of a very small neighborhood of thedirization point,
see Chapter 4 for more technical details on this issue.

These observations entails that in practice, when usinglesshooting, a
very good initial guess fog is often required. For many problems, such an
initial guess is very diicult to construct. As in the context of indirect methods,
these observations motivate the use of alternative trgotier techniques.



20

10

X1
o

-10

-20

20

10

X1
o

-10

-20

10

X1

-10

-20

Integration time = 0.25

30
25
X' 20
15

10

Integration timet = 1.33

20
10
X0
-10
-20

20

25

30 35

Integration time = 2.41

20
10
X 0
-10

-20

/

20

25

30 35

ntegration time = 3.5

20

10

o] 0
-10
-20

-30

16

50
40
X 30
20
10

50

40

20
10

20 25 30 35
20 25 30 35
20 25 30 35
20 25 30 35

Figure 13.2 lllustration of the propagation of nonlineastin the simple dyn-

amic system (13.2). One can observe that for a short integratimatti= 0.25

(first row), the relationshipg — x(t, g) is close to linear. However, as the integra-
tion time increases tb = 1.33, 2.41, 3.5, the relationshipg — x(t,q) becomes
extremely nonlinear. While theffect of integration time is not necessarily as dra-
matic as for this specific example, large integration times yséldng nonlinear

relationshipg — x(t, g) for many nonlinear dynamics.



13.2 Direct Multiple Shooting 235
13.2 Direct Multiple Shooting

The direct multiple shooting method was originally develdby Bock and
Plitt [20]. It follows similar ideas as the indirect multgglshooting approach
discussed in Section 12.6.1, but recast in the direct ogttian framework,
where the input profile is also discretized and part of theésilme variables.

The idea behind the direct multiple-shooting approach steam the obser-
vation that performing long integration of dynamics can baerterproductive
for discretizing continuous optimal control problems iNoPs, and tackles
the problem by limiting the integration over arbitrarilyashtime intervals.
Direct multiple-shooting performs first a finite-dimensabmliscretization of
the continuous control inpui(t), most commonly using a piecewise control
discretization on a chosen time grid, exacly as we did inlsispooting, i.e.
we set

ut)=qg for telt,tq]

In contrast to single shooting, it then solves the ODE sdaphlran each inter-
val [tj, ti,1], starting with artificial initial values:

Xi(t, s, q)

f(x(t,s,0).G), te[ti,tial,
xi(ti, S, Gi) i

S.

See Figure 13.3 for an illustration. Thus, we obtain trajacpiecesx(t, s, g;).
Likewise, we numerically compute the integrals

tiz1
(s, o) :=ft L (x(t. 5. 0. ) dt.

The problem of piecing the trajectories together, i.e. enguthe continuity
conditions;; = Xi(tiy1, S, q) is left to the NLP solver. Finally, we choose a
time grid on which the inequality path constraints are cleelckt is common
to choose the same time grid as for the discretization of tmgrols as pie-
cewise constant, such that the constraints are checked basthe artificial
initial valuess. However, a much finer sampling is possible as well, provided
that the numerical integrator building the simulationsrotree various time
intervals [k, tx;1] report not only their final state(ti.1, S, g;), but also inter-
mediate values. An integrator reporting the state (or sametifon of the state)
over arefined or arbitrary time grid is sometimes labelleckadinuous-output
integrator.

The NLP arising from a discretization of an OCP based on plalshooting



236 Direct Approaches to Continuous Optimal Control

typically reads as:
N-1
minimize li(s, qj E
i i;.(s q) + E(sn)

subject to Xo—S =0, (initial value),
Xi(ti+1,S,0)—-S+1=0, i=0,...,N=1 (continuity)
h(s,q) <0, i=0,....,N (path constraints)
r(sv) <0 (terminal constraints)
(13.3)

It is visualized in Figure 13.3. Let us illustrate the mukighooting method
using the OCP (13.1). Here the ordering of the equality cairgs and varia-
bles is important in order to get structured sparsity pastein this example,
the variables are ordered in time as:

$1,0, 2,0, Yo, S1,1, 21, 1, ---5 ON-1, SIN, SN

and the constraints are also ordered in time. The resultitugisn is illustrated
in Figure 13.4, together with the sparsity patterns of ttewB&n of the equa-
lity constraint function, and the one of the Hessian of thgraage function.
Note that by definindi(s, g) := Xi(ti+1, S, i), the continuity conditions can
be interpreted a discrete time dynamic system = fi(s,q) and the above
optimal control problem has exactly the same structureaditrete time op-
timal control problem (7.8) discussed in detail in Chapt8t Kost important,
the sparsity structure arising from a discretization basedultiple-shooting
(see Figure 13.4 for an illustration) ought to be exploitethie NLP solver.

Example 13.2.Let us tackle the OCP (13.1) of Example 13.1 via direct mlgtip
shooting. A 4-step RK4 integrator has been used here, deglogN = 20
shooting intervals. The variables have been ordered as:

&)’ qo’ Sl’ ql?' M &\‘_l’ uN_l7 S\l’

and the shooting constraints are also imposed time-wise.

The resulting solution is displayed in Figure 13.3, where oan observe
gether with the simulations delivered by the integratorthatsolution. One
can also observe the very specific sparsity patterns of ttabikn of the equa-
lity constraints and of the Hessian of the Lagrange fundtia arise from the
direct multiple-shooting approach.

Remark on Schibder’'s Reduction Trick: We point out here that the deriva-
tives of the condensed QP could also directly be computexlg tise reduced



13.2 Direct Multiple Shooting 237

— S
Xo o i
Qo Y1 .S<
_'_li X (ti+1’ S, ql)/ \o SN

to h © 13 ty 5 t 7 g 1o

Figure 13.3 lllustration of the direct multiple shooting methdd piecewise-
constant input profile parametrized &y _ n-1 is deployed on the time grid__ .

X (t, 5, i) over each time intervak ti,1]. The state trajectory held in the NLP
solver becomes continuous only when the solution of the NLPashed, where
the continuity conditions; (ti;1, S, i) — S+1 are enforced.

way, as explained as first variant in the context of singleoshg. It exploits
the fact that the initial valueg is fixed in the NMPC problem, changing the
complexity of the derivative computations. It is only adiageous for large
state but small control dimensions as it has a complexitfM4f,. It was ori-
ginally developed by Schtler [73] in the context of Gauss-Newton methods
and generalized to general SQP shooting methods by [72]rtAdugenerali-
zation of this approach to solve a “lifted” (larger, but egient) system with
the same computational cost per iteration is the so céfted Newton method
[2] where also an analysis of the benefits of lifting is made.

The main advantages of lifted Newton approaches such agiewdhooting
compared with single shooting are the facts that (a) we camialtialize the
state trajectory, and (b), that they show superior localenyence properties
in particular for unstable systems. An interesting remarthat if the original
system s linear, continuity is perfectly satisfied in allSierations, and single
and multiple shooting would be identical. Also, it is intstiag to recall that
the Lagrange multipliers; for the continuity conditions are an approximation
of the adjoint variables, and that they indicate the costoafinuity.

Finally, it is interesting to note that a direct multiple sting algorithm can
be made a single shooting algorithm easily: we only have &verite, before



238 Direct Approaches to Continuous Optimal Control

1 N X2 . . . .

q

05 : :

0 ——r——

.
-1 1 1 1 1 I 1 1 I 1 1
0 0.5 1 1.5 2 2t5 3 3.5 4 4.5 5

0

0 20 40, 60,
Jacobian of the equality constraints

10

20

30

40

50

60

0 . 20 40 60
Hessian of the Lagrange function

Figure 13.4 Solution to OCP (13.1) using a discretization basednultiple
shooting, withN = 20 and using a 4-steps Runge-Kutta integrator of order 4.
The upper graph reports the states and input trajectoridseagdlution, where
the continuity condition holds. The lower graphs report thersity pattern of the
Jacobian of the equality constraints in the resulting NLP ardsgiarsity pattern

of the Hessian of the Lagrange function. The Hessian of the Lggrémction
arising from multiple-shooting is block-diagonal, due to thpasability of the
Lagrange function. The Jacobian of the inequality conssamdiagonal in this
example, and block-diagonal in general.

the derivative computation, the stateby the result of a forward simulation
using the controlsg| obtained in the last Newton-type iteration. From this per-
spective, we can regard single shooting as a variant of pheishooting where
we perturb the result of each iteration by a “feasibility hmpement” that ma-
kes all continuity conditions feasible by the forward siatidn, implicitly gi-
ving priority to the control guess over the state guess [76].



13.3 Direct Collocation method 239
13.3 Direct Collocation method

A third important class of direct methods are the so-caliegctltranscription
methods, most notablgirect collocation The discretization method applied
here is directly inspired from the collocation-based setioh already discus-
sed in Chapter 10, Section 10.3, and very similar to the @uadicollocation
method discussed in Section 12.6.3.

Here we discretize the infinite OCP in both controls and statea fixed
and relatively fine gridy, with k = 0,..., N. We denote the discrete states on
the grid pointsty as sc. We choose a parameterization of the controls on the
same grid typically as piecewise constant, with controbpaatersy,, which
yields on each intervaty, tx,1] a constant contrali(t) = g.

On each collocation intervalyf ty.1] a set ofd collocation timesty; €
[t, tks1] is chosen, with = 0,...,d. The trajectory of each state on the time
interval [tx, tx.1] is approximated by a polynomial(t, vk) € R" having the
codficientsy, € R™(@+1),

The collocation-based integration of the state dynamica time interval
[t, tkr1] starting from the initial values,, as described in equation (10.5) hin-
ges on solving the collocation equation:

Vko — Sk

Pr (t1> Vi) — F(Vic1, i1, )

Ck (Vi S, Ok) = 0 (13.4)

Pr (tieds Vic) — T (Vicds tids Ok)

for the variablesy; € R™, withi =0,...,d.

We now turn to building the NLP based on direct collocationatidition to
solving the collocation equations (13.4) foe= 0,...,N — 1, we also require
continuity accross the interval boundaries, i.e. we rexthiat

Pr(tkse1, V) — St1 =0

holds fork = 0,..., N.

One finally ought to approximate the integrﬁ‘é+1 L(x, u)dt on the colloca-
tion intervals by a quadrature formula using the same catlon points, which
we denote by the a terta(vk, S, dk). Path constraints can be enforced on the
fine time gridty;, though it is common to enforce them only on the interval
boundariegy in order to reduce the amount of inequality constraints i th
resulting NLP.

It is interesting to observe, that an arbitrary samplinghef $tate dynamics
is possible by enforcing the path constraints at arbitremg tpointst via the



240 Direct Approaches to Continuous Optimal Control

interpolationpy (t, vk). However, it is important to point out that the high inte-
gration order of collocation schemes holds only at the thanriae grid ty,
such that interpolations at finer time grids, including thie ¢;, holds a lower
numerical accuracy. In the following formulations, we weihforce the path
constraints on the main time grigl

Direct Collocation yields a large scale but sparse NLP, tvig@n typically
be written in the form:

N-1
minimize E + Ik (Vk, Sks

inimize  E (sv) ; (Vi Sk G
subject to S—X% =0 (fixed initial value)

&V, S k) =0, k=0,...,N—-1 (collocation conditions)
Pc(tki, k) = S1 =0, k=0,...,N-1 (continuity conditions)
h(s, k) <0, k=0,...,N-1, (pathconstraints)
r(sv) <0 (terminal constraints).

One ought to observe that the discrete state variatles alternatively the
collocation variables, o can be eliminated via the first linear equality in each
collocation equationsy(vk, 0k, &) = 0. It is in fact common to formulate the
NLP arising from direct collocation without thg and enforcing continuity
directly within the collocation equations. It then readda®ws:

N-1
minimize  E (o) + kzz(; le(Vic, OK)
subject to Voo — X0 = 0,
P (i Vi) — F(Mi.a) =0, k=0,...,N-1,i=1....d,
P(tks1, V) = Vib10=0, k=0,...,N-1,
h(Viko, k) <0, k=0,...,N-1,
r (vno) < 0.
(13.5)

We illustrate the variables and constraints of NLP (13.Higure 13.5.

The direct collocation methodfers two ways of increasing the numerical
accuracy of the integration. We need to remember here tleaintegration
error of a Gauss-Legendre collocation scheme i ((tm - tk)z") (respecti-

vely O ((tk+1 - tk)Zd‘l) for the Gauss-Radau collocation scheme). In order to
gain accuracy, one can therefore incredsed thereby gain two orders in the
integration error. Alternatively, one can reduce the sizéhe time intervals

[t, tr1] by e.g. a factog and thereby reduce the order of the integration error



13.3 Direct Collocation method 241

tk tk+l

Pr(t, Vi) Vik+1,0

Vk,0

0O

Pr(tke 15 Vi)

Pk-1

V.2 Vi3

teo ti1 to t3

Figure 13.5 lllustration of the variables and constraints bPN13.5) ford = 3,
and for one specific time intervak][ tx.1] before the constraints are fulfilled (early
iteration). One can observe that the continuity conditipg($c:1, V) — Vk+1.0 = 0
are not (yet) satisfied.

by a factoré?® (respectivelye?d-1 for the Gauss-Radau collocation scheme).
However, numerical experiments often show that the caolitig of the linear
algebra underlying the NLP resulting from direct collooatitends to wor-
sen agl increases beyond relatively small orders. In practiceftéroappears
counterproductive to use > 4 for complex optimal control problems.

One ought to observe here that a discretizing an OCP usiegtdiolloca-
tion allows for a fairly straightforward construction oftlexact Hessian of the
NLP. Indeed, one can observe that the nonlinear contribsitiothe constraints
involved in the NLPs arising from a discretization based wadl collocation
are all explicitly given by the model continuous dynamicsdiion f, the path
constraints functio, and the terminal constraints functionThese functions
are, in most OCPs, readily provided in their symbolic formgollows that
assembling the Lagrange function and computing its firstssednd-order de-
rivatives is fairly straightforward using anytieient symbolic computation tool
such as e.g. AMPL or casADi.

Example 13.3. Let us tackle the OCP (13.1) of Example 13.1 via direct col-
location. The direct collocation is implemented using a €sauegendre direct
collocation scheme witd = 3. Here again, the ordering of the equality con-



242 Direct Approaches to Continuous Optimal Control

straints and variables is important in order to get str@tigparsity patterns.
In this example, the variables are ordered in time as:

Voo, ---5> V0,3, do, ---5 VN-1,0, ---5 UN-1,3, ON-1

wherev; € R?, and the constraints are also ordered in time. The resulting
solution is illustrated in Figure 13.6, together with theusity patterns of the
Jacobian of the equality constraint function, and the orth®Hessian of the
Lagrange function.

The resulting solution is displayed in Figure 13.3, where oan observe
the discrete state trajectories (black dots) at the disc¢iete instants, n to-
gether with the simulations delivered by the integratorthatsolution. One
can also observe the very specific sparsity patterns of tubikn of the equa-
lity constraints and of the Hessian of the Lagrange fundfiaa arise from the
direct multiple-shooting approach.

The large NLPs resulting from direct collocation need todleed by struc-
ture exploiting solvers, and due to the fact that the protienctions are ty-
pically relatively cheap to evaluate compared to the coshefinear algebra,
nonlinear interior point methods are often the mdBteent approach here. A
widespread combination is to use collocation with IPOPhgishe AMPL in-
terface, or the casADi tool. It is interesting to note thike lin direct multiple
shooting, the multipliers associated to the continuitydibbons are again an
approximation of the adjoint variables.

An interesting variant of orthogonal collocation methdulsttis often called
the pseudo-spectral optimal control methades only one collocation interval
but on this interval it uses an extremely high order polyraim$tate con-
straints are then typically enforced at all collocationrei Unfortunately, the
constraints Jacobian and Lagrange Hessian matricesgafisim the pseudo-
spectral method are typically fairly dense and thereforeene@pensive to fac-
torize than the ones arising in direct collocation.

Alternative input parametrization We have discussed to far the use of a
piecewise-constant input parametrization in the contégirect methods. We
ought to stress here that, while this choice is simple ang pepular, it is also
arbitrary. In fact, what qualifies direct methods is the& nfa restriction of the
continuous (and therefore-dimensional) input profile(t) to a space of finite
dimension, which can then be described via a finite set of rugnand the-
refore treated in the computer. In principle, any desaiptif the continuous
input u(t) as a finite-dimensional object is possible, though somergg®ons
are less favorable than others. Indeed, it can e.g. be apuatkictive to adopt



13.3 Direct Collocation method 243

1 X2 } } .
: u : :
05} : :
0 i ; :
05 é é :
X1 : :
_l 1 1 : 1 1 1 I 1 1 : 1 1
0 0.5 1 1.5 2 2,5 3 35 4 4.5 5

140
160

0 . 50 100 150 )
Jacobian of the equality constraints

20
40
60
80
100
120
140
160
180

0 50 100 150 .
Hessian of the Lagrange function

Figure 13.6 Solution to OCP (13.1) using a Gauss-Legendretdimocation
discretization scheme with = 3, andN = 20. The upper graph reports the
states and input trajectories. The collocated statgsre reported as the dots.
The lower graphs report the sparsity pattern of the Jacobiameoédquality con-
straints in the resulting NLP and the sparsity pattern of the Hessfidhe La-
grange function. Observe that the Hessian is block diagonale wie Jacobian
has a block-diagonal pattern with some elemeffitshe blocks corresponding to
the continuity conditions. The Jacobian of the inequalitystrints is diagonal in

this example, and block-diagonal in general.

an input descritization that destroys or degrades the ispgatterns arising
in the linear algebra of the various direct methods preseab®ve. For this
reason, it is typically preferable to adopt input discratiians that are “local”
in time. Indeed, the sparsity patterns specific to the siracarising both in
multiple-shooting and direct collocation hinge on the siion of the overall
time interval [, ty] into the subintervalstf, tx;1], and the fact that the varia-
bles specific to one intervél e.g.v, gk in the direct collocation method have
an impact only on the neighboring intervaks<1 andk + 1) via the continuity
conditions. It would then be unwise to destroy this featyreiding a discreti-



244 Direct Approaches to Continuous Optimal Control

zation of the continuous inpukt) where the input parameteggnfluence the
input profile globally (i.e. at e.g. all time instants) subattan input parameter
gk would influence all intervals. This observation rules out tise of “global”
input parametrizations such as e.g. parametrizing thei$npa a finite Fourier
series or a polynomial basis over the whole intert@lty].

In the context of direct collocation, a fairly natural refinent of the conti-
nuous input parametrization consists in providing as mageks of freedom
as the discretization of the optimal control problem allodere specifically,
one can readily observe that the standard piecewise inpatrgdrization is
enforced by construction of the collocation equations4),3vhere a single
input valuegy is used on each collocation interva),[ty.1]. More degrees of
freedom in the discretized input can, however, be readitjeddoy allowing
a different inputgx; at every collocation time poirtk;, fori = 1,...,d. The
collocation equations for each intenka¥ 0O, ..., N — 1 then read as:

Vko — Sk
Pr (tii» Vic) = T (Vici» tii, Olki)
Ck (V> Sk k) = . = (0 (13.6)
Pr (tieds Vic) — T (Vicds ticds Clicd)
and the NLP receives the decision variables
W = {Vo,0, V0.1, 00,15 - - - Vod> do.ds V1,0, V1.1, O 1 - - - » Vids Olidls - - - -

It is important to observe here that the input is paramedriagqgy; with
k=0,...,N—-21andi = 1,...,d, i.e.no degree of freedomcg ought to be
attributed to the discrete input on the first collocationdsty o, as only the
continuity of the state trajectory is enforced on that amdigon time.

13.4 A Classification of Direct Optimal Control Methods

It is an interesting exercise to try to classify Newton tygtimal control al-
gorithms, where we follow the presentation given in [34]t us have a look
at how nonlinear optimal control algorithms perform theijor algorithmic
components, each of which comes in several variants:

(a) Treatment of Inequalities: Nonlinear IP vs. SQP.

(b) Nonlinear Iterations: Simultaneous vs. Sequential.

(c) Derivative Computations: Full vs. Reduced.

(d) Linear Algebra: Banded vs. Condensing.
In the last two of these categories, we observe that the fir&nts each exploit



13.5 Direct Methods for Singular Optimal Control Problems 245

the specific structures of the simultaneous approach, i#eecond variant
reduces the variable space to the one of the sequentialagprote that re-
duced derivatives imply condensed linear algebra, so théowtion [Redu-
ced,Banded] is excluded. In the first category, we might $iones distinguish
two variants of SQP methods, depending on how they solve timeierlying
QP problems, via active set QP solvers (SQP-AS) or via imt@oint methods
(SQP-IP).

Based on these four categories, each with two alternatrespne combi-
nation excluded, we obtain 12 possible combinations. Isdteategories, the
classical single shooting method [70] could be classifi§&@d>, Sequential,Reduced]
or as [SQP,Sequential,Full,Condensing] because somansrcompute di-
rectly the reduced derivativé®' in (??), while others compute first the stage-
wise derivative matrice8; andB; and condense then. Tenny’s feasibility per-
turbed SQP method [76] could be classified as [SQP,SequéntidBanded],
and Bock’s multiple shooting [20] as well as the classicdueed SQP collo-
cation methods [77, 13, 12] as [SQP,Simultaneous,Fulldénsing]. The band
structure exploiting SQP variants from Steinbach [75] arathke [42] are clas-
sified as [SQP-IP,Simultaneous,Full,Banded], while thdelyi used interior
point direct collocation method in conjunction with IPOPY Biegler and
Wachter P ] as [IP,Simultaneous,Full,Banded]. The reduced Gausstdie
method of Schidder [73] would here be classified as [SQP,Simultaneousi¢tet].

13.5 Direct Methods for Singular Optimal Control Problems

In this section, we want to discuss the implications of sava singular OCP,
as introduced in Section 12 using classical techniques fremerical optimal
control. We will focus here on the classic choice of a piesevgonstant input
parametrization using a uniform, fixed time grid.

For the sake of simplicity, we will consider OCPs having dacaputu € R
with only input bounds:

mir)1(imuize ¢(x(tf))+ftf L (x(t),u(t))dt

fo
subjectto x'= f(x,u), X(to) = Xo,

Umin <uc< Umax.



246 Direct Approaches to Continuous Optimal Control
We will moreover consider dynamics that aféree in the input:
X=¢p(X)+g(X)u (13.7)

and a Lagrange terinthat is either &ine in inputu. The Hamiltonian function
reads as

H(X A uu)=Lxu)+A"f(xu).
The PMP equations then read as:

u* (x,A) = argmin L(x,u)+ A" f(x,u)
Umin<U<Umax
x=f (x, u*), X(tp) = Xo,
A==V H(xu*,2),  Alt) = Vi (X(t).

In particular, ifL is a function ofx only, H, (x,u, 1) = A7g(X) such that the
input profile reads as:

Umax if ATg(x) <0
u*(x, ) = Umnin if ATg(x)>0 . (13.8)
Using (x,2) if ATg(x)=0

As detailed in Section 12.2, the inpuding (X, 1) is obtained via the time de-
rivatives ofH,. For the simple case os a scaler input, it is interesting te no
that for systems of the form (13.7), the time derivative$igf up to where the
dependence on the control input appears, are provided byiehgerivatives
over the vector fields, g, i.e.:

d« K

ﬁHu:/lTLfg, k<20—
d2(r
dtzr

whereo is the degree of singularity of the OCP, and the Lie derieatigerator

£ is defined in terms of the Lie brackgt ], i.e. £¢g = [f, g]. HereLk stands
for k applications of the Lie derivative operator on itself. Thputu appearing

at the diferentiation 2- can then be construed as a lack of commutativity of
the vector fieldy with thek"-order Lie derivative of the vector fields g. The
singular inputsing is provided by:

Hy=A"£3g+A7 [g.£¥ g u

o) AT Lkg
Using (X, 4) = ————.
AT LYY

An interesting special case occurs when21 equates the number of states



13.5 Direct Methods for Singular Optimal Control Problems 247
present in the dynamics, then:
[Hu ap, .. gti;,Hu] =" [g Lig .. L%g+ [g,L?‘Tg] u] =0
uniquely defines the singular inpuging via the condition:
det(|lg £rg .. £%7g+ g £¥ 19| Using]) = O.

The singular input then becomes a function of the states, @lyusing =
Using (X), and therefore becomes a pure feedback law. We turn nexatgsamng
the impact of using a piecewise-constant parametrizatidheoinput profile

u(.).

13.5.1 Oscillations in singular optimal control solutions

It is important to observe here that the restriction of thguinprofile to a
piecewise-constant input parametrization with a fixed tgrid generally pre-
vents the input profile from accurately capturing the switghtimes occur-
ring in the optimal input profiler*(.) given by (13.8). The optimal piecewise-
constant input profile will then compensate for not switghit the exact time
instant by "oscillating” around the singular arc. This pberenon is argua-
bly best explained in the light of the fundamental Lemma ef @alculus of
Variations introduced in Section 12.5. For a piecewisestamt input parame-
trization, it states that the piecewise-constant optimgilit profile

ur(t) = uy Ve [tk ta]

satisfies:

1
f Hy (X*(t), (1) dt =0, Vk suchthat Umin < U < Umax (13.9)

t

For singular problemd,, is "controlled” byu via H?", i.e. a chain of & in-
tegrators. The optimal inpwi, when it is not in its bounds, is then determined
by the initial conditions of this chain &, i.e. by

Ho (X1, *(t) . ... HZ™ (X" (). 1% (1)) -
via condition (13.9). Let us then define:

Hy

H(l)
u
v=| . |=Av+BH®) (x 1,u)

H L(JZ()')



248 Direct Approaches to Continuous Optimal Control

where
01 0 0 0
0 0 1 0 0
A= : ’ B=|:
00 .. 01 0
00 .. 0O 1

Whenevetunin < Ug < Umax the discrete optimal control inpuf on [ty, tk.1]
then enforces:

f e () dr = C (v (tes) — V(£)) = 0 (13.10)

t

whereC:[l .. 0 0].Wehavethat:

1
V(tirn) = AWyt + f Al BH) (x, 2, u) dr

tk

such that:
C(V(tiws) ~ V(1) = C ("™ ~ 1) w(t) (13.12)

i1
+ f CetamBH@) (x 2, u)dr = 0.
t

Let us consider for the sake of simplicity thﬂf“) = Uy . In this special case,
(13.11) defines the piecewise-constant optimal input im$eof a constant
linear feedback law:

uy = —Kv(t)
such that the discrete dynamicswat given by a constant transition matdx
V(tki1) = OV ().

It can be verified tha® takeso real, stable eigenvalues ir], 0], which de-
pend only on the degree of singularityof the OCP. These eigenvalues then
yield a damped "oscillatory” trajectory far(ty) in the direction of the corre-
sponding eigenvectors. These oscillations translatettireto corresponding
oscillations in the sequence of optimal control inpu}ls The oscillations ob-
served in the piecewise-constant optimal inpfitwhen discretizing and sol-
ving a singular problem numerically is therefore not a nuoaartefact, but
a fundamental property of the piecewise-constant inpwmatrization of the
input profile.

We illustrate these observations in the following example.



13.5 Direct Methods for Singular Optimal Control Problems 249

Example 13.4. Consider the linear-quadratic singular optimal contrad-pr
blem:

1
minimize }f X2 dt
x(),u() 2Jo

. .01 0 |0 (13.12)
subjectto x'= [0 0 X + 1 u x(0) = H
-5<u<5
It can be verified that
d d? d a*
Hu = /12, aHu = —/l]_, EHU = Xl, @Hu = X2, @Hu =Uu
The optimal input profile then reads as:
Unmin if 25 ()>0
u*(t) = § Umax If A3(t) <0

0 if x=4=0

i.e. the solution is bang-bang until the states and cosstai®ch the zero ma-
nifold. We are interested in studying the solution to prablél3.12) when
the optimal input profileu*(t) is approximated by a piecewise-constant pro-
file ug, ..., uy_,. Direct collocation was used to tackle (13.12), using Legen
polynomials with an integration order of 10. The NLP was edlusing an
interior-point method converged to machine precision.

The resulting optimal control solutiou} is reported in Fig. 13.7, together
with the continuous optimal input profile* (.). One can observe oscillations
in the piecewise-constant input after the last switchingetat 0578 s, which
is typical of singular optimal control problems. The copesding state trajec-
tories are reported in Figure 13.8. The trajectorieg(dffor this problem are
reported in Figure 13.9, for both the continuous optimauirgrofileu*(.) and
its piecewise-constant input parametrizatigin One can observe in the upper-
left graph that the optimality condition (13.9) is satisfieglthe solutionuy,
which requires an oscillation i(ty). Indeed, the stable eigenvalues of matrix
@ for problem (13.12) read as0.0431 -0.4306. The oscillation of(ty) in
turn require a corresponding oscillationup. These oscillations are also ob-
served in the states and co-states trajectories, whictrédtem (13.12) match
H, and its time derivatives.



250 Direct Approaches to Continuous Optimal Control
6 .

4,

2+

5 0f “1,7

Figure 13.7 Optimal input profile (in grey) and piecewise-canstnput profile
obtained via direct collocation (in black) for problem (13), where the input is
discretized as piecewise-constant oiee= 100 uniform time intervals. The ver-
tical dotted lines report the optimal switching times betwaen Umin, U = Umnax
andu = 0. The "oscillation” of the optimal piecewise-constant inpusysnpto-
matic of singular problems when the discretization of the inpofile does not
allow for capturing arbitrary switching times.

t t

Figure 13.8 Optimal state trajectories for problem (13.12grithough the opti-
mal input obtained from direct collocation is significantlyfdrent from the opti-
mal one, the respective resulting state trajectories are indigshable.

Exercises

13.1 Let's regard again the OCP defined in Exercises 12.3 and 8

mir;(i’nl]ize fo ' x1(t)? + X2(t)? + u(t)? dt

subjectto x; = (1- X)X - X +Uu,  x(0) =0, (13.13)
X2 = X1, %(0) =1,
-1< ult) <1,



HE

5 X 1010

0.62

0.62

t t
N 20 N
15
5 :
0.58 06 0.62 058 06 0.62
t t
0.01
0
001
-0.02
008 s 06 0.62
t

Figure 13.9fHudT and its time derivatives in the time interval.$325 0.63].
The "oscillations” in the input profile obtained from directllogation can be ea-
sily understood in the light of condition (13.10). The piecssvconstant optimal
inputsu¥ enforceft;k*1 H,dr for all k where the input bounds are not active (see

upper-left graph), which yield damped oscillationsHfY (X* (t) , * (t)).

whereT = 10 as earlier.

(@) Implement a RK4 integrator for the system dynamics.

(b) Use the integrator to create a functigfxg, u, T) that simulates the
system in a time interval, and wherexg is the initial state andi a



252 Direct Approaches to Continuous Optimal Control

set of piecewise constant controls defined in a time grid egthstant
step sizeAt.

(c) Use the previous function to solve the OCP using sing®thg and
N = 101. Approximate the cost function using the trapezoidbd ru
between the nodes wheuwds defined. Uséminconfrom MATLAB
to solve the NLP.

(d) Modify the script to solve the same problem using directtiple
shooting. The control parametrization and the definitiothefinte-
grator can remain the same.

(e) How did the change from direct single shooting to direcitiple
shooting influence the following features?

e The number of iterations.

e The number of nonzeros in the Jacobian of the constraints.
e The number of nonzeros in the Hessian of the Lagrangian.
The total solution time.

13.2 In the previous problem, we solved the NLP usfmgincon In the fol-
lowing, we will write our own simple SQP code to solve (13.18% a
quick reminder, SQP employs a sequence of quadratic appabixins
to solve the NLP and solves these with a QP solver. For an NLtReof
form:

mini{nize f(x)
subjectto  Xp < X,

Xub = X,
g(x) =0,

these quadratic approximations take the form:

. - 1

m|rgm|ze > AXT V)Z(L(x(k),,l(k))Ax+ Vo f ()T Ax
X

subject to xp — X% < Ax,

Xab — X9 > AX, (13.14)

09

®y 1+ 290y Ay —

ag(x*) + 6x(x )AX=0.

where &®, 11) is a guess of the primal-dual solution to (13.14) and

L(x, ) = f(X)+ A7 g(X) is the Lagrangian. The solution of this QP gives
the step ilnAx and a new approximation of the multipliets



Exercises 253

(a) For problems with a quadratic objective functibfx) = % ||F(x)||§,
like the NLPs arrising from both direct single shooting anrect
multiple shooting transcription of (13.13), a popular gatiis to use
a Gauss-Newtoapproximation of the Hessian of the Lagrangian:

V2L (x9, AK) < ’96_5 ()" ‘;_)F( (x¥)
andvy f(x) = & (x¥)" F (x®).
What are the main advantages and disadvantages of such axiappr
mation?
(b) Implement a Gauss-Newton method to solve the problera.dlio-
rithmic differentiation or finite dferences to calculalg andg—?( and
solve the QP subproblem using tpgadprog tool from MATLAB.

13.3 Jebediah Kerman is an astronaut that has gone for aspaem walk
and lost track of time. He can’t remember when atmospherantey is
scheduled, but he believes it is very soon. He needs to géttbaus
spaceship as quickly as possible. He has mass 30kg inclagame suit
but not including fuel. He is currently carrying 10kg of fukle is 50m
away from his ship, with zero relative velocity. He wants &urn to
the ship as quickly as possible (to have equal position arul redative
velocity), while still conserving 4kg of fuel for emergensi

Jebediah ca be modeled as having three states: pogitialocity v,
and fuel massn:. Moreover, the space suit has a rocket booster (control
u) which can fire forwards or reverse. As a result, the equatfanotion
of his body are:

d| P v
— | v |={u/(30+ m) (13.15)
mg —u

(a) Write down the continuous time optimal control problenthwa mi-
nimum time objectivel.

(b) Discretize this problem using direct multiple shootiagd write down
the NLP. Use the shooting functioR,; = fra(X, Uk, At) with At = %
being an optimization variable, so your vector of optimizatvaria-
bles isy = [Xo, Uo, . . . , Un_1, XN, AT] T

(c) Using an RK4 integrator, implement this NLP wifimincon and
solve it. UseN = 40 as the number of control intervals and think
of a proper initialization. Plop, v, mg, andu versus time.



254 Direct Approaches to Continuous Optimal Control

(d) Make a sketch of the Hessian of the Lagrange function.Witiisee
that the Hessian is sparse but not block diagonal. Can yowafprd-
blem reformulation with a block diagonal Hessian? Make dctkef
the new Hessian.

Hint: Introduce multiple copies of you timesteq and make it a
pseudo state.

13.4 CasADi Exercise: Consider the following continuous-time infinite di-
mensional problem:

.
minimize f X(t)% + u(t)? dt
X, U 0

subject to X=(@A+X)X+u,

u(t)| < 0.075
X(0) = Xo,
X(T) =0,

whereu € R is the control input and € R is the state of the system,
T = 3 andX; = 0.05. The above formulation can be discretized by
integrating the dynamics of the system over a fixed grid Withl nodes
leading to the finite-dimensional discrete-time problem

N-1

minimize h ) (¢ +u) +

PN e

subjectto X1 = f(x,u), i=0,---,N-1,
lui] < 0.075 i=0,---,N-1,
X0 = Xos
XNy =0

where f describes the discretized dynamics obtained using anrateg
tion schemeh := % X andu; refer to the evaluation of state and control
trajectories respectively. Furthermore, we can transftirenabove dis-
crete OCP into the single shooting scheme as:

mini&nize D(u)
subjectto |u| <0075 i=0,---,N-1,
xn(u) =0

where®(u) := (X + U2 + f(Xo, Ug)? + U2 + - - -).



Exercises 255

(a) Implement a CasAFunction f that takes as argument the states
and inputu and returns the ODE right-hand-sige

(b) Divide the time horizon intdN = 30 equidistant control intervals,
then use the RK4 scheme to define the discrete-time dynarsias a
CasADi function. This function should taket;) andu; as inputs and
return x(ti;1). The key lines of the integrator implementation could
look like this:

out = f({X,U});

k1l = out{l};

% ...

X =X + h/6x(k1 + 2xk2 + 2xk3 + k4);

(c) Formulate the direct single shooting NLP and solve ihWwROPT.
Note that the NLP should havd degrees of freedom, so start by
defining a variablel € RN:

u = SX.sym('u’',N);

The key lines of the NLP formulation could look like this:

X = XO0;
for i = 1:N
out = F{X,v(i)});
X = out{l};
J=J+ X(1)"2 + u(i) 2;

end

(d) Modify the script to so that it implements the direct nqlé shooting
method. The control parametrization and the definition efititegra-
tor can remain the same. Tip: Start by replacing the line:

nv = N
with

nv = 1*N + 2*(N+1)
Make sure that you get the same solution.

Compare the IPOPT output for both scripts. How did theangledrom
direct single shooting to direct multiple shooting influenc

(e

~

The number of iterations

The number of nonzeros in the Jacobian of the constraints
The number of nonzeros in the Hessian of the Lagrangian
The total solution time



256
()

Direct Approaches to Continuous Optimal Control

Introduce the additional path constraings> 0.05,i = 15,---,17.
Change your scripts to solve the modified problem.

(g) Replace the dynamics in the NLP from the previous task wieir

linearization at the originxg = 0. Compute the optimal solution and
apply it to the original system. Are the path constraintésfiatl? Is
there a neighborhood of the origin where this linearizedogitcon-
trol problem will provide a feasible solution?

13.5 CasADi Exercise:Consider the following simple OCP for controlling a
Van-der-Pol oscillator:

.
minimize f x1(t)? + Xo(t)? + u(t)? dt
4 0

subjectto x; = (1-x3)x - X2 +u,  x(0)=0,
X2 = X1, %(0) = 1,
-1l<u)<1
whereT = 10.

(@) Implement a CasADunction f : R> X R — R? x R that takes the

(b)

(©

(d)

(e)

statesx and inputu and returns the ODE right-hand-sideand the
Lagrange objective terr.

Divide the time horizon intdN = 20 equidistant intervalsty, tx.1],
k=0,...,N-1and assume a constant contuglon each interval.
Then takeM = 4 steps with a RK4 scheme to define the discrete-
time dynamics as Bunction F : R?> x R — R? x R. F should take
X(tx) andug and returnx(ty.1) andJy = ft:k*l L(x, uy), the contribution
to the objective from interval. Evaluate the integrator witk(ty) =
[0.2,0.3] anduy = 0.4.

Formulate the direct single shooting NLP and solve ihWwROPT.
Construct the NLP variables step-by-step starting with tgrfigt:

w =[]
lbw = []
ubw = []

Plot the results.

Modify the script to so that it implements the direct npli shooting
method. The control parametrization and the definition efithegra-
tor should remain the same. Introduce NLP variables cooredipg
to the state for all discrete time points, includikg 0.

Compare the IPOPT output for both scripts. How did theangldrom
direct single shooting to direct multiple shooting influenc



Exercises 257

e The number of iterations
e The number of nonzeros in the Jacobian of the constraints
e The number of nonzeros in the Hessian of the Lagrangian

() Introduce the additional constrairf(t) > —0.25. You only need to
enforce this path constraint at the end of each controlvateMo-
dify your scripts to solve the modified problem with directltipie
shooting (easy) and direct single shooting (more tricky).

13.6 CasADi Exercise:Collocation, in its most basic sense, refers to a way of
solving initial-value problems by approximating the staggectory with
piecewise polynomials. For each step of the integratoresponding
to an interval of time, we choose the ¢beients of these polynomials
to ensure that the ODE becomes exactly satisfied at a givest seie
points. The time points, in turn, are chosen to get the higpessible
acuracy and, possibly, to make sure that the dynamics b&fisdtiat
the beginning an@r end of the time interval. In the following, we will
choose thé.egendre pointsf orderd = 3:

7 = [0,0.1127020.5000000.887298] (13.16)

where we have assumed that the time interval j&JO
Using these time points, we define a Lagrangian polynomisiktfar
our polynomials:

d
L= [] == (13.17)
. . TJ — Ty
r=0,r#j
Introducing a uniform time gridk = kh, k = 0,..., N with the corre-
sponding state valueg := x(tx), we can approximate the state trajectory
approximation inside each interva ;1] as a linear combination of
these basis functions:
d

%= 3 L () % (13.18)

r=0
By differentiation, we get an approximation of the time derivative
each collocation point:

d d
: 18, 1
Xlt)) = ¢ ; Le(ri) Xer = = ;Cr,; X (13.19)

We can also get an expression for the state at the end of #eait

d d
)?k+1,0 = Z Lr(l) Xgr = Z Dr X r (13-20)
r=0 r=0



258

Direct Approaches to Continuous Optimal Control

We can also integrate our approximation over the intervalng a

formula forquadratures

e 1

d 1 d
K(t)dt=h Zf Le(t) dt X i=h D" Br X (13.21)
r=0 VY0 r=1

ty

(a) Downloadcollocation.m (MATLAB) or collocation.py (Py-

(b)

(©

(d)

thon) from the course website containing an implementabibthe
above collocation scheme. Go through the code and make sure y
understand it well. Use the code to to reproduce the resut the
second task of Exercise 13.5.

Replace the RK4 integrator in the direct multiple shogimplemen-
tation from Exercise 13.5 with the above collocation ingtgr. Make
sure that you get the same results as before.

Instead of letting the rootfinder solve the collocatiguations, aug-
ment the NLP variable and constraint vectors with additidegrees
of freedom corresponding to the state at the collocatiomtpcand
let the NLP solver also solve the integration problem. Fordicity,
only consider a single collocation finite element per cdritrerval.
Compare the solution time and number of nonzeros in the datob
and Hessian matrices with the direct multiple shooting ioeth

Form the Jacobian of the constraints and inspect thesispgattern
using MATLAB's or SciPy’sspy command. Repeat the same for the
Hessian of the Lagrangian functidugx, 1) = J(xX) + A7 g(x).



14

Optimal Control with Diferential-Algebraic
Equations

So far we have regarded optimal control problems based orehaythamics
in their simplest explicit-ODE form:

(1) = f (x(), ut)).

This form of model for dynamic systems tend to arise naturfaiim the first-
principle modelling approaches standardly taught and bgezhgineers. As a
result, most continuous dynamic systems are describedxpiécie ODEs. It
is a common but less widespread knowledge that for a largéoauof appli-
cations, building a dynamic model in the form of explicit O®&an be signi-
ficantly more involved and yield dramatically more compleadal equations
than via alternative model forms. Before laying down sone®t, let us start
with a simple illustrative example that we will use throughthis chapter.
Consider a mass attached to a fixed point via a rigid link of lengthfor
which one wants to develop a dynamic model. A classic maugfpproach is
to describe the mass via two angles (azimuth and elevatitireahass), which
yields an explicit ODE. The alternative model constructves will consider
here describes the system via the cartesian coordipate®® of the mass in a
fixed, inertial reference franie positioned at the attachment point of the mass,
see Figure 14.1. The rod maintains the mass at a distanfdés attachment
point by applying a force on the mass along its axis, i.e. ighe support
vectorp. We will then describe the force of the rodlagy = —zp, whereze R
is a variable that adjusts the force magnitude to maintamthss on a sphere
of radiusL, i.e. such that the conditiop”p — L2 = 0 holds at all time. The
model of the system can then takes a very simple form:

mp = u-zp+ mgk, %(pr—Lz)zo. (14.1)
whereE] = [O 0 1]. One can readily observe here that the model equation

259



260 Optimal Control with Diferential-Algebraic Equations

Figure 14.1 lllustration of the example considered in this téraf he system is
described via the cartesian position of the mpesR? in the fixed frameE. The
mass is subject to the gravity foreengE; and to a force-zpfrom the rod, which
ensures that the mass remains at a distanitem its attachment point. Here the
scalarzis a variable in the dynamics that scales this force adequately

(14.1) is not a simple explicit ODE. Indeed, while the scatatiablez is in-
trinsically part of the model, its time derivative does nppaar in the model
equation. Hence, variableis of a diferent nature than variable A variable
that is intrinsic to the model equation (i.e. excluding plolytime-varying pa-
rameters and inputs) but that is not timéfelientiated in the model equation
is labelled aralgebraic stateA differential equation holding such variables is
called aDifferential Algebraic Equatio{DAE).

Following up on this example, we will now provide a more foimigw on
the concept of Oferential-Algebraic Equations.

14.1 What are DAEs ?

Let us consider a tlierential equation in a very generic form:

f(X(t), X(1), u(t)) = O. (14.2)



14.1 What are DAEs ? 261

Such a diferential equation is labellachplicit as the state derivatiugt) is not
provided via an explicit function of the stax¢t) and inputu(t), but implicitly
as the solution of (14.2). The Implicit Function Theorem rgudees thax(t)
can be seen as a locally unique and continuousfemdintiable function ok(t)
andu(t) if the Jacobian off with respect tox(t), i.e. Z—TX, is full rank. Under
this condition, one is guaranteed that for a given skétleand inputu(t), the
state time derivative(t) can be computed, either explicitly or numerically e.g.
via a Newton iteration. Then (14.2) is @rdinary Differential Equationsince
X(t) can be computed at every time instant, and the model caririnipie be
treated as a classic explicit ODE.

Formally, Differential-Algebraic Equations are equations in the formZL4
for which the above rank condition fails. Let us formalisattim the following
definition.

Definition 14.1. f (x(t), x(t), u(t)) = 0 is a DAE ifg—)f( is rank deficient.

It is admittedly not straightforward to relate Definition.140 the earlier ex-
ample (14.1). Before making this relationship clear, letllustrate Definition
14.1 on a simple example.

Example 14.2. Let us consider the following implicit éfierential equation,
having the form (14.2):

X1—5(1+1

X% +2u | 0 (14.3)

ume:[

then the Jacobian df with respect to the state derivativeseads as:

of |-1 0

& B [ Xo 0] ’

and is rank-deficient, entailing that (14.3) is, by Defimtib4.1, a DAE.
Alternatively, one can also simply observe thatdoes not appear time-

differentiated in (14.3), such that one can assess by simpledtisp that it is

a DAE. In order to gain some further intuition in this examlensider solving

the first equation in (14.3) foxy, giving

5(1=X1+1

Upon inserting the expression fry in the second equation, one can then write
(14.3) as

5(1=X1+1,
0=(X1+1)X2+2.



262 Optimal Control with Diferential-Algebraic Equations

We observe here that the second equation is in fact puredpedir, such that
the model can be written as a mixture of an explicifetiential equation and of
an algebraic equation. This form of DAE is actually the mashmonly used

in practice. It is referred to as a semi-explicit DAE.

The above example can mislead one to believe that DAEs atg $anple
objects. To dispel that impression, let us provide a simpéerele of a DAE
that possess fairly exotic properties.

Example 14.3. Let us consider the following fferential equation

X1 +X-u=0,

(X1 = X2) X2 + X1 — % =0,

having the Jacobian

af 10
(95(_ 0 X1 — X2

which is rank-deficient fox; = x,. Hence for the initial conditions:
%1(0) = %2(0)
our equation is a DAE and its solution obeys:

5(1=U—X1

0=x — Xy,

otherwise it is an ODE. The fact that somdfeiiential equation can switch
between being DAEs and ODESs betrays the fact that DAEs anequatssarily
simple to handle and analyse. However, in the context of mgadeoptimal
control, simple DAEs are typically favoured.

As observed before, DAEs often simply arise from the fact ome states
in the state vectox do not appear time-fierentiated in the model equations,
yielding a column of zeros in the Jacobi%&] ase.g. inexample (14.2). In such
acase, itis very useful to make an explicit distinction itiplicit differential
equation (14.2) between tlgferential variablesi.e. the variables whose time
derivative appear itfi, typically labelledx, and thealgebraic variablesi.e. the
variables whose time derivative do not appearf jriypically labelledz. One
can then rewrite (14.2) as:

f(x,zxu)=0. (14.4)

A DAE in the form (14.4) is called a fully-implicit DAE. The g@fication of



14.2 Diferential Index of DAEs 263
definition 14.1 to (14.4) must then be understood in the sthae

det( gt 9 )=det( & 0)=0 (14.5)

is always rank deficient. Theftierential equation (14.4) is therefore always a
DAE.

As mentioned in example 14.2, a common form of DAE often usguiactice
is the so-calledsemi-explicitform. It consists in explicitly splitting the DAE
between an explicit dierential equation and an implicit algebraic one. It reads
as:

x=f(x,zu),
0=g(xzu).
The semi-explicit form is the most commonly used form of DAE®ptimal

control. We turn next to a very important notion in the worfdDfferential-
Algebraic Equations, both in theory and in practice.

14.2 Differential Index of DAEs

Before introducing the notion of fierential index for DAE, it will be useful
to take a brief and early tour into the problem of solving DAEsnsider the
semi-explicit DAE:
x=f(xzu), (14.6a)
0=g(x,zu), (14.6b)

and suppose that one can construct (possibly via a numatigalithm such
as a Newton iteration) a functign(x, u) such that:

gx¢(xu.u=0 vxu

That is, functioné (x, u) delivers the algebraic stagdfor any diferential state
x and inputu. One can then proceed with eliminating the algebraic state
(14.6), such that the DAE reads as:

x=f(x&(x,uU),u), (14.7a)

z=£&¢(xU). (14.7b)
One can observe that (14.7a) is then an explicit ODE, and loarefore be
handled via any classical numerical integration method-.edeer, (14.7b) pro-

vides the algebraic states explicitly. When such an elinonaif the algebraic
states is possible, one can consider the DAE (14.6) as "éasglve. It is then



264 Optimal Control with Diferential-Algebraic Equations

natural to ask when such an elimination is possible. Theitilunction The-
orem (IFT) provides here a straightforward answer, nantayunction (x, u)
exists (locally) if the Jacobian

d
579 (x,z ) (14.8)

is full rank along the trajectories u, z of the system. The full-rankness of the
Jacobian (14.8) additionally guarantees that the Newgatibn:

ag(x.zu)™
- 0z
converges locally to the solutiarof (14.6b). In that sense, (14.9) can be seen
as a numerical procedure for constructing the implicit fiores (x, u).

These notions easily extend to fully-implicit DAEs in thatilict form (14.4).
More specifically, suppose that there exists two functign(s, u) andé; (x, u)
that satisfy the fully implicit DAE (14.4), i.e.

Z—72Z g(x,zu) (14.9)

f (‘(;:X (X’ U)afz(x’ U),X, U) = Oa VX» u.
Then one can rewrite (14.4) as:

X = & (X, U) (14.10a)
z=&(XU). (14.10b)

Similarly to (14.7), one can treat (14.10a) as a simple ODHijenr14.10b)
delivers the algebraic statesexplicitly. The existence of functiong; (x, u)
andé&; (x, u) can then again be guaranteed by invoking the IFT, namelyrif fo
(14.4) the Jacobian matrix

E] (14.11)

X 0z

is full rank, then functionsty (x, u) and &, (x, u) exist locally. The attentive
reader will want to observe the important distinction betwe¢14.5) which
always hold for (14.4), and (14.11) whose full-ranknessrguoiees the local
existence of the implicit functiong (x, u) andé&; (x, u).

Let us consider two examples to illustrate these notions.

Example 14.4. Consider again the fully-implicit DAE of Example 14.2, i.e.

f(xzxu) = _—

x—>'<+1]

We observe that

-1 0
5% %= 3



14.2 Diferential Index of DAEs 265

is full rank wheneverx # 0, such that the implicit functionsy (x,u) and
& (x,u) are guaranteed to exist when# 0. In this simple case, they can
actually be computed explicitly. Indeed, we observe that:

. 2
k=& =x+1  z=&XU) =
solve f (X, z x,u) wheneverx'= x+ 1 # 0.
This simple example needs to be pitted against a more praiieone.

Example 14.5. Consider the fully-implicit DAE:

X1—2
f(X,zXxU)=|% —x]|=0.
| Xo—Uu

We observe that:

1 0 -1
% =|=]0o 1 0
00 0

is always rank-deficient, such that thefdrential statec and algebraic state
cannot be uniquely obtained (even numerically) from s@wir{x, z, x,u) = 0
alone.

The topic of this section is the notion offtérential index of DAEs. As we
will see next, the loose idea of "easy” DAEs presented abedéréctly related
to it. Let us introduce now the notion offtrential index for DAEs.

Definition 14.6. The diterential index of a DAE is the number of times it must
be time-diferentiated before an explicit ODE is obtained.

For the specific case of a semi-explicit DAE, the above déimialso reads
as follows.

Definition 14.7. The diferential index of the semi-explicit DAE (14.6) is the
number of times its algebraic part (14.6b) must be tinféedéntiated before
an explicit ODE is obtained.

In order to clarify these definitions, let us make a simplengxie.

Example 14.8. Let us calculate the fferential index of the DAE proposed in
Example 14.2, i.e.:

f(Xzx) =

X—-x+1
XZ+ 2



266 Optimal Control with Diferential-Algebraic Equations

We then consider the time derivative bfi.e.:

e X—X
f(XX,X22 = $z+ xz] =0. (14.12)
X
For the sake of clarity, we lab&l= | z| and rewrite (14.12) in the equivalent
X
form:
Vl - V3
((Wv)=| v3—Vv3 [=0.
V3V2 + V3V2
The Jacobian
- 1 0 O
WO g o 1
ov
0 s w

is then full rank, such thdtis an ODE fov according to Definition 14.1. Since
a single time-dterentiation has converted the original DAE of this example
into an ODE, we can conclude that the original DAE is of index 1

Let us contrast this example with a DAE having a highdfedéential index.

Example 14.9. Let us calculate the fierential index of our illustrative exam-
ple (14.1). Usingr = p, and defining the dierential state vector

X

one can easily verify that the DAE (14.1) can be written asraisxplicit
DAE:

p=V, (14.13a)
v=mlu-mlzp+gEs, (14.13b)
1
0=3 (pTp-L?). (14.13c)
N ——
=g(x.zu)

We observe that for a giveny (14.13a)-(14.13b) are already ODEsviand p.
As per Definition 14.7, we need toftérentiate the algebraic equation (14.13c)
until (14.13) becomes an ODE. The two first time derivatiezdras:

g(x,zu)=p'v=0, and g xzu=p'v+v'v=0



14.2 Diferential Index of DAEs 267
One can then use (14.13b)g@X, x, z u) to obtain
g xzu) = p" (u-m?zp+gEs) +Vv=0,

As znow appears explicitly ig (X, X, z u), an extra time-dferentiation yields
a differential equation from whichcan be computed " p # 0. We observe
that 3 time-dfferentiations of (14.13c) were necessary to turn (14.18)ant
ODE. It follows that (14.13) is an index-3 DAE.

Now we ought to relate the notion of "easy” DAESs to the notidnlidferen-
tial index. More specifically, we shall see next that indeRAEs are "easy”
DAEs in the sense detailed previously. This observationbeaformally des-
cribed in the following Lemma.

Lemma 14.10. For any fully-implicit index-1 DAE
f(x,z x,u) =0,
there exists implicit functiong; (x, u) andé&; (x, u) that satisfy:
féx(xu),&(xu),xu) =0, VX u.

Proof We observe that if is of index 1, then a single time{féiérentiation:

f—af5i+af'z+ 6f)_(+(9fu_o
T axT dzm ox. du

yields a pure ODE. For the sake of clarity, we label and write:

f=[2 v+ —x+—u_0 (14.14)
By assumption, (14.14) can be written as an explicit ODE,cbe%éix Z—;]
must be full rank, such that:

. of af1°1 of . of .

V=-—- % E:I (&X'l’ %U
holds on the DAE trajectories. The IFT then guarantees tistemce of the

implicit functionséy (x, u) andé; (x, u) in a neighborhood of the trajectories of
the DAE. ]

A similar result can clearly be established for any indexeinsexplicit
DAEs on the existence of an implicit functigp(x, u) that solves the algebraic
equation, i.e. such that

g(x&(xu),u)=0, ¥xu



268 Optimal Control with Diferential-Algebraic Equations

The crucial practical consequence of these observatiahaisndex-1 DAEs
can be in principle solved numerically (or sometimes eveplieily) without
difficulties, as for any state and inpuft) and u(t), the state derivativex(t)
and algebraic statgt) can be computed, and the simulation of the dynamics
performed. In practice, implicit integration methods dre most #icient ap-
proach to perform the simulations of index-1 DAEs (see $acti4.4 below
for some details on this question), while DAEs of index higtien 1 require
specially-tailored integrators.

A non-trivial but important point needs to be stressed hBAES of index
higher than 1, often labelletigh-index DAEspresent a pitfall to uninformed
users of numerical methods. Indeed, one deploying a ckdgsiplicit inte-
gration method on a high-index DAE may observe that the icitpfitegration
method converges reliably and be mislead into believing shaulations of
the DAE model can be reliably computed. In order to clarifig ksue, let us
consider the following example, based on a linear, higlexdAE.

Example 14.11. In this example, we are interested to observe the result of
"naively” deploying a classical implicit integration sehe on a high-index
DAE. We consider again the fully-implicit DAE of Example B4i.e.

5(1—2
f(XzXxU)=|%X —X]. (14.15)
Xo—U

The reader can easily verify that (14.15) is not an index-IEDW/e observe
that we can rewrite (14.15) in the linear follav = Av+ Bu, where

$ 1 00 0 0 1 0
V= Z}’ E=|0 1 0O, A=|1 0 0, B=]|0].
0 0 O 0 -1 0 1

We are interested now in naively deploying an implicit Etdeheme of step
lengthh on this DAE, yielding the steps:

%E(er —v(®) = Av, + Bu(t + h)

wherev, is an approximation of the state at timé + h), i.e.v, ~ v(t + h). It
can be verified that the true trajectorie@ + h) satisfy:

E %(v(t+ h) - v(1) + gX(T) = Av(t + h) + Bu(t + h)

for somer € [t, t + h]. We can then consider the one-step integration error



14.3 Index reduction 269

e, = v, —Vv(t+ h) given by:
h2
e == (E - Ah)LEX(7).

For DAE (14.15), matri¥f (E — Ah)™ E reads as:

2 (o nho
?(E—Ah)‘lEzio 0 o,
h 10

such that the integration error is of orde(1), i.e. much worse than the inte-
gration error expected from the implicit Euler method, whigof orderO (hz).

This simple example reveals that, even though a classiddinpitegration
scheme deployed on high-index DAEs (14.15) can in some cakaBly deli-
ver state trajectories, their lousy numerical accuracicglly makes them ac-
tually meaningless as simulations of the DAE model. THeadilty with DAE
(14.15) stems from its index larger than 1. These obsematinust be taken as
a warning that while one can sometimes deploy a classicdidiniptegration
scheme on a high-index DAE without observing notable nucatdificul-
ties, the resulting trajectories are typically nonethekenseless. Hence, good
practice in numerical optimization dictates that the indea DAE ought to be
systematically checked before tackling it via classictggnation methods.

Because index-1 DAEs are significantly easier to treat thgimimdex DAES,
it is common in numerical optimal control to avoid DAEs of endlarger than
1. Unfortunately, the index of a DAE stems from the naturehaf physical
system it models and cannot be decided. However, a treamhéngh-index
DAEs generally allows one to ultimately treat them as indeXAEs. We will
cover this question next.

14.3 Index reduction

As detailed in the previous Section, index-1 DAEs are simjgléreat numeri-
cally than high-index DAES, as index-1 DAEs can be approdalsing stan-
dard implicit integration methods. This observation matis the deployment
of procedures for reducing the index of an arbitrary higtheixn DAE into an
index-1 DAE, a procedure labelléddex reductionindex-reduction proceeds
very similarly to the procedure leading to assess the index@AE, i.e. via
time-differentiation of the DAE (or of some parts of the DAE) until a DAE
of index 1 is obtained. In order to explain this further, Istdetail it on our
illustrative example (14.1).



270 Optimal Control with Diferential-Algebraic Equations

Example 14.12.We consider again the semi-explicit DAE (14.13), i.e.

p=Vv, (14.164a)
V=u-mlzp+gEs, (14.16b)
0= % (pp-L2), (14.16c)
— e
=g(x,zu)

which is in a semi-explicit form. Similarly to the index euation presented in
Example 14.9, i.e. we consider the time-derivatives of fhelaaic equation
(14.16c)

g(x,zu)=p'v=0, and  dgx,zu=p'V+Vv'v=0

One can then easily verify that the new DAE:

p=v, (14.17a)
mv=u-zp+mgk, (14.17b)
O=p'V+V'y, (14.17c)

N———

=g(%,x,zu)
is of index 1. Alternatively, it is useful to put (14.17) in aone implicit form:
p=V, (14.18a)

m p|[v]_ [u+mgEs

m B9 [rmos] (16

which shows unambiguously that the state derivativasd p as well as the
algebraic statecan be computed for any statgp and inputu as long agp # 0.
This observation tells us without further investigatioattfl4.18) is an "easy”
DAE, i.e. of index 1.

Index-reduction procedures can be fairly intricate to dgpin very complex
models. For the sake of completeness, let us report herepeneoposed in
[14] for performing the index-reduction on any semi-expliRAE:

x=f(x zu)
0=g(xzu

(i) Check if the DAE system is index 1 (i.é% full rank). If yes, stop.
(ii) Identify a subset of algebraic equations that can beembfor a subset of
algebraic variables.
(iii) Perform a time-dfferentiation on the remaining algebraic equations that
contain (some of) the fierential variablex. Termsx will appear in these
differentiated equations.



14.3 Index reduction 271

(iv) Substitute thex with their corresponding symbolic expressiohéx, z, u).
This generates new algebraic equations.
(v) With this new DAE system, go to step 1.

Our discussion on index reduction would not complete if wetdhe que-
stion of consistency conditions. To understand this issarsider the index-
reduced DAE developed in Example 14.12, which takes the:form

x=f(xzu) (14.19a)
0=98(x,x,zu) (14.19b)

One needs to observe here that while a solution to the otiGii& (14.16) in
the form

x=f(x,zu) (14.20a)
0=g(x,zu) (14.20b)

is obviously also a solution for the index-reduced DAE (94, the converse is
not necessarily true, i.e. a solution of the index-reduca& pL4.19) is not ne-
cessarily a solution to the original DAE (14.20). To undanst this statement,
one simply ought to imagine a trajectory that is solution b4.09a), and for
which

9 (x(®), (1), u(t)) = g (x(0), 2(0), u(0)) + tg (x(0), (0),u(0)) =0 (14.21)

holds. This trajectory clearly satisfies (14.19b) but ndt20b). Equation (14.21)
additionally reveals that the issue is not related the DAtesiselves, but rat-
her to the initial conditions chosen for the simulation of tAAEs. Indeed,
simply selecting the initial conditiong0) such that

g (x(0),z(0),u(0)) =0, and g(x(0),z0),u(0)) =0 (14.22)

ensures that the trajectories of the index-reduced DAEatgisn of the ori-
ginal one. More generally, enforcing

9 (X(to). (to). U(to)) = 0. and g (X(to). Z(to). u(to)) (14.23)

at any timetp on the trajectory guarantees a simulation run with the index
reduced DAE is a valid simulation of the original DAE. Conalits that gua-
rantees the validity of the simulation performed on the xdeluced DAE,
such as (14.23), are labellednsistency conditions

In the context of optimal control based on an index-reducAd Dconsis-
tency conditions are crucial when the trajectories of tiidntial states of sy-
stem do not have (fully) prescribed initial or terminal v@duln such a case, the
consistency conditions must be adequately enforced witieioptimal control



272 Optimal Control with Diferential-Algebraic Equations

problem. E.g. an optimal control problem involving our ireleduced DAE
(14.18) having free initial or terminal states can e.g. bigter as:

-
minimize L(v, p,z u) dt
nrimize [ Lwpzu

s Mo

subjectto p=v (Differential equ.,)
nv=u-zp+mgg (Differential equ.) (14.24)
O=p'V+Vv'v (Algebraic equ.)
0 = p(to) "v(to) (Consistency cond.)

0 = p(to) "W(to) + V(o) "V(to) (Consistency cond.)

for anytp € [0, T].

It ought to be underlined here that imposisgmeconstraints on the initial
andor terminal state trajectories in conjunction with impagthe consistency
conditions must be done with great care in order to avoid igeing a redun-
dant set of constraints in the OCP. As a trivial example of tlifficulty, impo-
sing e.g. the initial states in (14.24) in addition to the sistency conditions
with to = 0 would clearly over-constrain the initial state valy#8), v(0). This
issue can become significantly more involved in less obvemenarios, such
as e.g. in periodic OCPs, where the initial and terminagstate free but must
satisfy a periodicity constraint of the form{0) = x(T). Handling the consis-
tency conditions and the periodicity constraints togethehe OCP without
generating an over-constrained problem can then becomhgifaiolved.

The consistency conditions can in principle be enforcedngttame tg in
the time span considered by the OCP. However, in some casessliction of
the timet, for imposing the consistency condition is not arbitrargldad, one
ought to observe that the combination of the index-redutggebaaic constraint
and of the consistency conditions, i.e.

g (x(t), z(t),u®) =0 (14.25)

9 (X(to), Z(to), u(to)) = 0 (14.26)
9 (X(to), Z(to), u(to)) = O (14.27)
(14.28)

ensure mathematically that

g (x(t), z(t), u(t)) = g (X(to). (to), u(to)) + (t — to)g (X(to), Z(to). u(to)) = O

holds at any time. However, when the DAE dynamics are handled via nu-
merical integration, numerical errors tend to accumulater éime such that



14.4 Direct Methods with Qjierential-Algebraic Equations 273

g (x(t), z(t), u(t)) = 0 can be less accurately enforced at times that are distant
from to. From this observation one ought to conclude that if thetgmiuto an
OCP is e.g. more important at the beginning of the time spai©@P covers,

say [Q T], then the consistency conditions ought to be enforcederbtgin-

ning of the time span, i.dg = 0. This situation occurs in Nonlinear Model
Predictive Control (NMPC), where the first control ingigtdelivered by the
OCP provides the control input to be deployed on the reaksyssuch that

the accuracy of the solution in the beginning of the timeriaekit covers is

the more important than later in the horizon.

Conversely, if the OCP implements a Moving Horizon Estimat{MHE)
scheme, then the fligrential state obtained at the very end of the time span
covered by the OCP delivers a state estimation to e.g. an NBt€me. In
such a case, the accuracy is most important at the very ehe tifite interval,
such that the consistency conditions are best imposegd-atT. These ideas
are detailed in [].

14.4 Direct Methods with Differential-Algebraic Equations

We will now turn to discussing the deployment of direct olroontrol met-
hods on OCPs involving DAESs. For the reasons detailed puslypwe will fo-
cus on OCPs involving index-1 DAES, possibly arising froniratex-reduction
of a high-index DAE.

14.4.1 Numerical Solution of Diferential-Algebraic Equations

In this Section, we will briefly discuss the numerical saatiof DAES. As
hinted above, index-1 DAESs are significantly simpler to traamerically than
high-index ones, and are therefore often preferred in adtgontrol. In this
Section, we will focus in the index-1 case.

Though low-order methods generallyfer a poor ratio between accuracy
and computational complexity and higher-order integsagirould be prefer-
red, let use nonetheless start here with a simpkep implicit Euler scheme
for the sake of illustration. For e.g. a semi-explicit DAE

x=f(x,zu),
0=g(xzu),

them-step implicit Euler scheme computes a numerical simulatitx, 1, S, 0k)
of the model dynamics over a time intervil [tx.1] from the initial states, and
the constant input via the following algorithm.



274 Optimal Control with Diferential-Algebraic Equations

Algorithm 14.13 (Implicit Euler integrator)
Input: initial value s, inputgy and timedy, tx.1
Setv = gk, andh = (t;1 — tk)/m
fori=0tom-1do

Solve

X, =v+hf(x.,z,0)
0 = g (X+, Zh qk)
for x,, z. via a Newton iteration, set« Xx,.
end for
Output: X(tk+1, Sk k) = V

A similar approach can be deployed using any implicit in&ign method,
see Chapter 10, such as an IRK4 integrator.

A fairly efficient and useful type of implicit integrator already intooed in
Chapter 10 and further detailed in Section 13.3 is the odhafcollocation
approach. Let us consider the building of the collocationagigns for DAEs
in a generic implicit form

f(x,x,zu)=0 (14.29)

on a time intervalt, tx,1], with initial value sc and a constant inpujc. The
differential states are, as in the ODE case described via polgi®opTt, v),
with t € [t, tx;1] linearly parametrized i € such that:

¢ the polynomial interpolation meets the initial value,:i.e.
P (tk, Vi) = S« (14.30)
[ —
=Vko
o the DAE is satisfied in the collocation timgg fori =1,...,d, i.e..
f(Pr (tiis Vi) » P (ti> Vi), Zcin ) =0, i=1,....d (14.31)
S e
=Vki
We can gather these requirements in the compact implicatému

Vko — Sk

f(Pr (te1s Vi) > Vi1, Zk 1, Ok)

Ck (Vks Zk» O k) = (14.32)

(P (ticds Vi) » Vicds Zieds k)

The same observations as for the semi-explicit case holithéogeneral case.
One ought to observe that the discretized algebraic statesppear only
for the indices = 1,...,d in the collocation equations, while the discretized



14.4 Direct Methods with Qjierential-Algebraic Equations 275

differential statesy; appear for the indices= 0,...,d. l.e. the discrete al-
gebraic stateg haveone degree of freedom lewat the discrete tlierential
statesv. The extra degree of freedom granted to thedéntial state is actu-
ally required in order to be able to meet the initial vabyeof the diferential
state trajectories, while the initial value of algebraiatsttrajectories cannot
be assigned as they are already defined implicitly by the DABject to the
imposed state initial valug, and inputgk. This observation is most obvious in
the semi-explicit case, where for a given state initial gauand inputgy, the
initial value for the algebraic state is implicitly given lgysk, z(tx) , g«) = O.

For the sake of completeness, let us provide the algorithira émllocation-
based integrator for index-1 DAEs.

Algorithm 14.14 (Collocation-based integrator)
Input: initial value s¢ input g, initial guessv, z and timedy, tx,1
Solve

Ck (Vis Z, O S) = 0 (14.33)

for v, z via a Newton iteration
Output: X(tie1, Se Ok) = P (tis1, Vi)

It is interesting to observe here that while the algorithrgltuo receive an
initial guess for the discrete algebraic statgsit receives an initial valuey
only for the diferential state. It is also important to notice that the algieb
statesz can in principle be entirely hidden inside the integratmeethough
they can be, of course, reported).

Sensitivities of the integrators The computation of the sensitivities of an im-
plicit integrator such as (14.14) can be done as detaile@ati@ 10.4. More

specifically, if we labely, = \z/: , the collocation equation (14.36) in algorithm

14.14 is typically solved using a (often full-step) Newtteration:

9o (W, G, )

Wi = Wk oW
k

Cic (Wic, Ol Sk) (14.34)

The sensitivities are then provided at the solutip(wy, gk, Sk) = 0 by:

OWk _ 9ok (Wi, G S) ™ Ak (Wi, Gks i)
00k OWi 00k ’
AW Ak (Wi, Gk, S) 9k (Wi, Gk )

= 14.35b
0 OWi 0S¢ ( )

(14.35a)




276 Optimal Control with Diferential-Algebraic Equations

Itis important to note here that a factorization of the Jmmatrix%vfk’s‘)

is already computed for the Newton iterations (14.34) aeddht factorization
can be readily reused at the end of the iteration to form theiteéties (14.35).
The computational complexity of obtaining the sensit@gtconsists then only
of the computation of the matricé§%<%%) ang "’Ck("(v,gfk’sk) and the matrix
products in (14.35). A collocation-based integrator wehsgstivities then reads
as:

Algorithm 14.15 (Collocation-based integrator with Sensitivities)
Input: initial value s input g, initial guessv, z and timesy, tc1
Solve

Ck (Vi Z, Ok» Sk) = 0 (14.36)

for v, z via a Newton iteration
Compute (14.35)

Form:
OX(ter1> S Ok) 9Pk (B 1, Vie) VK Wi
_ OVic OWk 14.37
s OV oW 0S¢ ( )
OX(tie, S Oh) _ 9Pk (test, Vi) Ik Wk (14.38)
90K OV OW 00k

Output: X(te1, Ser Gk) = P (tira, Vi), and 2esudd oxllessad

where2t = [ 0] is constant.
We can now turn to the deployment of Multiple-Shooting on DB&sed

optimal control problems.

14.4.2 Direct Multiple-Shooting with Differential-Algebraic
Equations

In the context of Multiple-Shooting for DAE-based optimaktrol problems,
the implicit numerical integration schemes detailed akarecinteracting with
the NLP solver tackling the NLP resulting from the Multid#tooting discre-
tization. We illustrate this interaction in Figure 14.4The NLP solver is then
responsible for closing the shooting gaps, i.e. enfordirgcontinuity conditi-
ons:

X(tkr1, S Ok) — Sv1 =0

fork = 0,...,N - 1, and solving the set of algebraic equations that capture
the conditions of optimality. It is interesting to observerd that the overall
process can be then construed as a “two-level Newton schemtate the



14.4 Direct Methods with Qjierential-Algebraic Equations 277

NLP solver
solves
KKT conditions

Y

{s0, do,---» SN-1, ON-1, SN}

So, Yo S Ok
A4 A4

Integrator onfp, t1] solves Integrator onf, t.1] solves
Implicit equations (e.g. alg. 14.1 Implicit equations (aly. 14.15)

=

Simulationx(ts, So, qo) Simulationx(tk+1, Sk, Ok)
for [to, t1], with sensitivities for [tk, tk+1], with sensitivities

upper level solve the KKT conditions (e.g. using the relak&d obtained in
the primal-dual interior-point approach, or using SQPaitiens) and the lower
level solves the equations underlying the numerical irstégm (e.g. (14.36)).
The NLP solver passes the discrete states and irgutgx, which become
inputs to the numerical integration algorithms (e.g. 13.&hile the numerical
integration algorithms report to the NLP solver the endestaf the simulations
X(tk+1, Sk Ok) @nd their sensitivities.

One ought to observe here that the algebraic state dynaamds rinciple
be totally “hidden” inside the integrator scheme, and npbreed at all to the
NLP solver. In that sense, implicit integrators in genesaf@rm an elimination
of the algebraic variables present in the dynamics, andthieie existence to
the NLP solver.

Another crucial observation to make here is that no corncondition
nor initial condition is enforced on the algebraic statgetrtoriesz(t). Indeed,
for a given diferential state trajectong(t) and input profileu(t), the algebraic
state trajectorieg(t) are entirely defined via the DAE (e.g. lo\(x,zu) = 0
in the semi-explicit case), such that an extra continuitydition imposed on
Z(t) would yield an over-constrained problem. As a matter of,fdca dis-
continuous input parametrization is used (such as e.gepise-constant), the
algebraic state trajectorigét) can be discontinuous at the time instattsor-
responding to the multiple-shooting time grid. E.g. in tleensexplicit case
and if the algebraic equatian(x, z u) = 0 depends omi, at the time instants
ty, a discontinuous input typically require@) to also be discontinuous.



278 Optimal Control with Diferential-Algebraic Equations

As mentioned previously, the integrator can hide the algiebvariables
from the NLP solvers and keep them as purely internal. Howexee may
want to use these variables in the cost function of the OCPnpose some
inequality constraints on them. In such a case, the algebtaies ought to be
reported to the NLP solver, where they are regarded as tngtif the decision
variablessy, k.

As illustrated in Figure 14.4.2, Multiple-Shooting with jiicit integrators
can be viewed as a two-level Newton scheme, where algebvaitoons are
solved at two dierent levels. A natural alternative to this setup is theartje
to introduce the algebraic conditions underlying the nuca¢integrators into
the NLP, and leave them to be solved by the NLP solver. Doinlgads us
back to the Direct Collocation scheme, which we revisit nesthe context of
DAE-based optimal control problems.

14.4.3 Direct Collocation with Differential-Algebraic Equations

We will focus now on the deployment of the Direct Collocatinathod on such
DAE-based optimal control problems. The principle herexisegnely similar
to those detailed in Section 13.3. However, there are a fquoitant additio-
nal specific details arising from the presence of algebtaies and equations
that need to be properly covered here. Let us briefly recad ttee core prin-
ciples of the direct collocation method. As detailed eaitieSection 13.3 and
briefly recalled in Section 14.4.1 above, théeliential state trajectories are
approximated on each time intervatg [tx.1] via the polynomialspy (t, vi) li-
nearly parametrized by the set of variablgse R"@2, For an explicit ODE
x = f (x, u), the collocation equations then enforce:

e the continuity conditions of the flerential states at the timag for k =
0,...,N-1

P (tk+1, Vi) — Vks1.0 = O, (14.39)
e the state dynamics at the timggfork=0,...,N-1andi=1,...,d
P (tii> Vi) = (Vi Ow)-

Additional conditions are typically added as boundary d¢tows, e.g.voo —
Xo = 0 to enforce the initial condition of the state trajectories
The extension of the collocation equations for a semi-eXdlAE
x = f(x zu)
0=g(x,zu)



14.4 Direct Methods with Qjierential-Algebraic Equations 279

follow the exact same philosophy, namely the collocationagigpns enforce:

¢ the continuity conditions of the flerential states via (14.39) at the times

¢ the state dynamics at the timggfork=0,...,N—-1andi =1,...,dvia

P (ticis Vie) = F (Vici» Zii» G (14.40a)
0 = g (Vki> Zi» Ok) (14.40Db)

The collocation equations for a semi-implicit DAE therefoead as:

[ P (ticz, Vi) = F(Vie1, O |
0 (Vic1, Zc1, Ok)

Cr (Vi Zs O Vks1) = =0. (14.41)

Px (tids> Vi) — F(Vids k)
9 (Vicd, Zcd» Ok)
Pr (tkr1, Vi) = Visz0 |

fork=0,...,N-1.

A few details ought to be properly stressed here. First,laiyito the ob-
servations made in Section 14.4.2, no continuity conditsoenforced on the
algebraic states, hence (14.39) applies to tifieidintial state trajectories al-
one. Secondly, one ought to observe that the discretizezbed stategy;
appear only for the indiceis= 1,...,d in the collocation equations, i.e. the
discrete algebraic states hauee degree of freedom lebsat the discrete ¢ie-
rential statesy; which appear with the indicds= 0,...,d in the collocation
equations. The extra degree of freedom granted to tfiereintial state is ac-
tually required in order to be able to impose the continuityhe differential
state trajectories, while the algebraic state trajectosi® not required to be
continuous. When building the NLP arising from a discretabf a DAE-
based OCP using direct collocation, one ought to make satetik adequate
number of discrete algebraic states and discreferéntial states are declared
to the NLP solver. Indeed, e.g. introducing by mistake theewessary extra
variablesz o can create numerical fiiculties in the solver, as these variables
would be "free” in the NLP and their values not clearly fixedthg problem.

Building the collocation equations for DAES in a generic litipform

f(x,x,zu)=0 (14.42)

is a natural generalization of the constraints used in tee ofa semi-explicit



280 Optimal Control with Diferential-Algebraic Equations
DAE. In the general case, the collocation equations simgdyl ras:
f(Px (te, Vi) » Vi, Zct, Ok)

Ck (Vi Z, O Vks1) = =0. (14.43)

f(Pr (ticd, Vi) » Vied» Zc1, Ok)
Pk (tkr 1, Vi) = Vier1,0

fork=0,...,N - 1. The same observations as for the semi-explicit case hold
for the general case.

Exercises

141 ...



15

Model Predictive Control and Moving Horizon
Estimation

So far, we have regarded one single optimal control problednfacussed on
ways to numerically solve this problem. Once we have contpsiteh a solu-
tion, we might try to control the corresponding real prooegh the obtained
control trajectory. This approach to use a precomputedrabtrajectory is
calledopen-loop contralUnfortunately, the result will most probably be very
dissatisfying, as the real process will typically not caidlgccompletely with
the model that we have used for optimization. If we wantedef@mple move
a robot arm to a terminal point, the robot arm might end at & uéferent lo-
cation than the model predicted. This is due to thEedénce of the model with
the reality, sometimes calledodel-plant-mismatchrhis mismatch might be
due to modelling errors or external, unforeseen disturesinc

On the other hand, we might be able to observe the real proesy) its
time development, and notice, for example, that the robt moves dife-
rently than predicted. This will allow us to correct the aohinputs online in
order to get a better performance; this procedure is cédledback controbr
closed-loop controlFeedback allows us to improve the practical performance
of optimal control enormously. In its most basic form, we Idouse ad-hoc
implementations of feedback that react to deviations fromplanned state
trajectory by basic control schemes such gsaportional-integral (Pl)con-
troller. On the other hand, we might use again optimal céi&chniques in
order to react to disturbances of the state, by usipignal feedback contrpl
which we had outlined in the Chapters 8 and 11 on dynamic progring
(DP) and the HJB Equation. In the case of the moving robot &ismvwould
result in the following behaviour: if during its motion thelrot arm is strongly
pushed by an external disturbance, it will not try to comekitadts planned
trajectory but instead adapt to the new situation and folllogrnew optimal
trajectory. This is straightforward in the case of DP or HdBere we have
the optimal feedback control precomputed for all possikdées. But as said,

281



282 Model Predictive Control and Moving Horizon Estimation

these approaches are impossible to use for nontrivial diatensions, i.e. sy-
stems with more than, say, 3-8 states. Thus, typically wa@aprecompute
the optimal feedback control in advance.

A possible remedy is to compute the optimal feedback coirirmal-time
or onling during the runtime of the process. In the case of the robutthrs
means that after the disturbance, we would call our optitiwzesolver again
in order to quickly compute the new optimal trajectory. If e@uld solve this
problem exactly and infinitely fast, we would get exactly #@ne feedback
as in optimal feedback control. In reality, we have to workhwapproxima-
tions: first, we might simplify the optimal control problem order to allow
faster computation, e.g. by predicting only a limited antoafitime into the
future, and second, we might adapt our algorithms to the asly hamely that
we have to solve optimization problems again and again. fHsis is called
real-time optimizatioror embedded optimizatigue to the fact that in many
cases, the numerical optimization will be carried outeombedded hardwaye
i.e. processors that reside not in a desktop computer buireay feedback
control system.

While this idea obptimal feedback control via real-time optimizatisounds
challenging or even impossible for the fast motion of robwhs it is since
decades industrial practice in the process control ingustder the name of
Model Predictive Control (MPC)There, time scales are often in the range of
minutes and allow ample time for each optimization. The nsti@am imple-
mentation of MPC can in discrete time roughly be formulatedodiows: (1)
observe the current state of the systeyn(2) predict and optimize the future
behaviour of the process on a limited time windowNoteps by solving an
open-loop optimization problem starting at the statg3) implement the first
control actionu; at the real process, (4) move the optimization horizon one
time step forward and repeat the procedure. MPC is sometilse<allede-
ceding horizon controtue to this movement of therediction horizon The
namenonlinear MPC shortNMPC, is reserved for the special case of MPC
with underlying nonlinear dynamic systems, while linearMifers to MPC
with linear system models. Note that NMPC leads typicallpan-convex op-
timization problems while nearly all linear MPC formulat®use convex cost
and constraints.

Note that in the case of a time-invariant system and coststitsequent
optimization problems dlier only by the initial valuex; and nothing else, and
thus, the MPC feedback is time-invariant as well. If we wadnddable to solve
the problem with an infinite prediction horizon, we would abtthe stationary
optimal feedback control. The limitation of the horizon tdirite lengthN



15.1 NMPC Optimization Problem 283

allows us to solve the problem numerically. If we chodsdarge enough, it
will be a good approximation to the infinite horizon problem.

In this script, we do not focus on thefi#irent ways to formulate the MPC
problem, but on its numerical solution by suitable realeiaptimization met-
hods. This and the next chapter follows the presentaticengiv[34] and [30]
and focusses on the MPC optimal control problem.

15.1 NMPC Optimization Problem

Let us in this chapter regard the following simplified optlroantrol problem
in discrete time augmented with algebraic equations.

N-1

mipipize .Z L(x.Z,u) + E(xx) (15.1a)
subject to Xo— Xo = 0, (15.1b)
Xii1— f(%,z,u4)=0, i=0,...,N-1, (15.1c)
o(%,z,u)=0, i=0,...,N—-1, (15.1d)

h(x,z,u)<0, i=0,...,N-1, (15.1e)

r (xn) < O. (15.1f)

Here,x; € R™ is the diferential statez, € R™ the algebraic state, angle R™

is the control. Functions and g are assumed twice ftierentiable and map
into R™ andR", respectively. The algebraic staas uniquely determined by
(15.1d) whenx; andy; are fixed, as we assume tI%ﬂtis invertible everywhere.

We choose to regard thisftirence-algebraic system form because it covers
several parametrization schemes for continuous time dimsystems in dif-
ferential algebraic equation (DAE) form, in particularetit multiple shooting
with DAE relaxation [55] and direct collocation [77, 13]. Mathat in the case
of collocation, all collocation equations on a collocatioterval would be col-
lected within the functiorg and the collocation node values in the varialdes
see the formulation in formul&®).

Here, the free variables are the fidrential state vectorx =
(Xg-X{ ---»X\_1- Xy) " at all considered time points and the algebraic and
control vector on all but the last time points: = (z],z] ...,z_,)" and
u=(ug,uj....u )"

The task in real-time optimization for NMPC is now the folloyg: for a
given value ofxg, we need to approximately solve the above optimization pro-
blem as fast as possible, and of the obtained solution, itasoptimal value



284 Model Predictive Control and Moving Horizon Estimation

Up that we need fastest in order to provide the NMPC feedbackmight
call the exact solution;(Xo) in order to express its dependence on the initial
valuexg. The only reason why we formulate and optimize the largentip-
tion problem is because it delivers us this mgp: R™ — R™, which is an
approximation to the optimal feedback control.

Remark on fixed and free parameters: In most NMPC applications there
are someconstantparameter$ that are assumed constant for the NMPC op-
timization, but that change for fierent problems, likesg. We do not regard
them here for notational convenience, but note that theyoeareated by state
augmentation, i.e. regarded as constant system statefixeithinitial valuep.

15.2 Nominal Stability of NMPC

Very often, one is interested in stabilizing the nonlinegnaimic system at a
given set point for states and controls, which we might witHoss of genera-
lity set to zero here. This steady state, that satidf{es0,0) = 0,9(0,0,0) = 0
must be assumed to be feasible, h@, 0, 0) < 0. One then often uses as stage
cost the quadratic deviation from this set point, ilgx, u) = x"Qx+ u'Ru
with positive definite matrice®, R. It is important to note that this function is
positive definite, i.e.l.(0,0) = 0 andL(x,u) > O other wise. In this case, one
would ideally like to solve the infinite horizon problem with= co in order to
obtain the true stationary optimal feedback control; thigilst automatically
ensure stability, as the value functid(x) can be shown to decrease along the
trajectory of the nominal system in each time step-hy(xo, u*(xg)) and can
thus serve as a Lyapunov function. But as we have in pradickdose a finite
N, the question arises how we can ensure nominal stabilityMP~ nevert-
heless. One way due to [52, 61] is to imposeego terminal constrainite. to
requirexy = 0 as terminal boundary condition (15.1f) in the NMPC problem
and to employ no terminal cost, i.E(xy) = 0.

In this case of a zero terminal constraint, it can be showhn ttiea value
function Jp of the finite horizon problem is a Lyapunov function that decr
ases by at leastL(Xg, u*(Xp)) in each time step. To prove this, let us assume
that (x5, z;, Ug. X1, Z;, U3, . . ., X ) is the solution of the NMPC problem (15.1a)-
(15.1f) starting with initial valuesg. After application of this feedback to the
nominal system, i.e. without model-plant-mismatch, thetem will evolve
exactly as predicted, and for the next NMPC problem theahitaluex; will
be given byx] = x;. For this problem, theshiftedversion of the previous



15.3 Online Initialization via Shift 285

solution 7,7, u;,...,X,0,0,0) is a feasible point, and due to the zero va-
lues at the end, no additional cost arises at the end of thiedmrHowever,
because the first stage cost term moved out of the horizon,awe that the
cost of this feasible point of the next NMPC problem is redlibg exactly
—L(xg, u*(Xg)). After further optimization, the cost can only be furthedu-
ced. Thus, we have proven that the value functlgris reduced along the
trajectory, i.e.Jo(X;) < Jo(Xo) — L(Xo, U*(Xo)). More generally, one can relax
the zero terminal constraint and construct combinatiorierafinal cos€(xy)

and terminal inequalities(xy) < O that have the same property but are less
restrictive, cf. e.g. [27, 29, 62].

15.3 Online Initialization via Shift

For exploiting the fact that NMPC requires the solution offaole sequence of
neighboring NLPs and not just a number of stand-alone pnagleve have first
the possibility toinitialize subsequent problemsheiently based on previous
information.

A first and obvious way to transfer solution information framne sol-
ved NMPC problem to the initialization of the next one is eayahg the
shift that we used already in the proof of nominal stabiliboge. It is mo-
tivated by the principle of optimality of subarcs, which,dnr context, sta-
tes the following: Let us assume we have computed an optiwlakign
(X3> Z Ugs X1, 23, U, ..., X)) of the NMPC problem (15.1a)-(15.1f) starting
with initial value xg. If we regard a shortened NMPC problem without the
firstinterval, which starts with the initial valug chosen to be, then for this
shortened problem the vectog(Z, u;, . . ., X)) is the optimal solution.

Based on the expectation that the measured or observeditiabvalue for
the shortened NMPC problemftérs not much fronx; —i.e. we believe our
prediction model and expect no disturbances — this “shmgikhorizon initi-
alization is canonical, and it is used in MPC of batch or fitihee processes,
see e.g. [47, 32].

However, in the case of moving horizon problems, the horigamot only
shortened by removing the first interval, but also prolongethe end by ap-
pending a new terminal interval — i.e. the horizon is movedérd in time. In
the moving horizon case, the principle of optimality is tmag strictly appli-
cable, and we have to think about how to initialize the appedntew variables
Zn, Un, Xny1. Often, they are obtained by setting := un_1 Or settinguy as
the steady state control. The statgsand xy,1 are then obtained by forward
simulation. In the case that zero is the steady state and &a haro terminal



286 Model Predictive Control and Moving Horizon Estimation

constraint, this would just result in zero values to be appénas in the proof
in the previous section. In any case, this transformatiothefvariables from
one problem to the next is called “shift initialization”.i not as canonical as
the “shrinking horizon” case, because the shifted solusat optimal for the
new undisturbed problem. However, in the case of long harleagthsN we
can expect the shifted solution to be a good initial guesghi®@mew solution.
Moreover, for most NMPC schemes with stability guarantee &h overview
see e.g. [62]) there exists a canonical choicaypthat implies feasibility (but
not optimality) of the shifted solution for the new, undidted problem. The
shift initialization is very often used e.g. in [58, 15, 68]3

A comparison of shifted vs. non-shifted initializationssygerformed in [19]
with the result that for autonomous NMPC problems that sieglulate a sy-
stem to steady state, there is usually no advantage of drgtidtization com-
pared to the “primitive” warm start initialization that ks the variables at
the previous solution. In the extreme case of short horizmyths, it turns
out to be even advantageous NOT to shift the previous soludi® subsequent
solutions are less dominated by the initial values than bytéhminal conditi-
ons. On the other hand, shift initialization are a cruciarpguisite in periodic
tracking applications [38] and whenever the system or amsttfon are not
autonomous.

15.4 Outline of Real-Time Optimization Strategies

In NMPC we would dream to have the solution to a new optimatrabipro-
blem instantly, which is impossible due to computationdhge. Several ideas
help us to deal with this issue.

Offline precomputationsAs consecutive NMPC problems are similar, some
computations can be done once and for all before the coatrsthrts. In the
extreme case, this leads to an explict precomputation oNt&C control
law that has raised much interest in the linear MPC commuéityor a solu-
tion of the Hamilton-Jacobi-Bellman Equation, both of whigre prohibitive
for state and parameter dimensions above ten. But also wilgre @ptimiza-
tion is used, code optimization for the model routines igm#ssential, and it
is in some cases even possible to precompute and factorgsidie or even
Jacobians in Newton type Optimization routines, in paléicin the case of
neighboring feedback control along reference trajectd8, 26]. Also, pre-
optimized compilable computer code can be auto-generhtadds specific to
the family of optimization problems, which is e.g. in convaptimization pur-
sued in [60].



15.4 Outline of Real-Time Optimization Strategies 287

Delay compensation by predictiothen we know how long our computa-
tions for solving an NMPC problem will take, it is a good ideat to address
a problem starting at the current state but to simulate athvtiate the system
will be when we will have solved the problem. This can be dosmg the
NMPC system model and the open-loop control inputs that wieapply in
the meantime [41]. This feature is used in many practical INPhemes with
non-negligible computation time.

Division into preparation and feedback phagethird ingredient of several
NMPC algorithms is to divide the computations in each sangplime into a
preparation phase and a feedback phase [33]. The more CPBhkivet pre-
paration phase (a) is performed with an old predicted stateefore the new
state estimate, say}, is available, while the feedback phase (b) then delivers
quickly anapproximatesolution to the optimization problem fag,. Often, this
approximation is based on one of the tangential predicistzidsed in the next
chapter.

Iterating while the problem changea:fourth important ingredient of some
NMPC algorithms is the idea to work on the optimization pesblwhile it
changes, i.e., to never iterate the Newton type proceducereergence for
an NMPC problem getting older and older during the iteratjdut to rather
work with the most current information in each new iteratiohis idea is used
in [58, 33, 65].

As a historical note, one of the first true online algorithros fonlinear
MPC was theNewton-Type Controller of Li and Biegl¢s7]. It is based on a
sequential optimal control formulation, thus it iterateghie space of controls
u = (Ug, Uz, ..., Ux—1) ONnly. It uses an SQP type procedure with Gauss-Newton
Hessian and line search, and in each sampling time, only Qfe igration
is performed. The transition from one problem to the nexswsshift of the
controlsu™" = (ug, ..., un-1, Uy’™). The result of each SQP iterate is used to
give an approximate feedback to the plant. As a sequentiense without
tangential predictor, it seems to have had sometimes prableith nonlinear
convergence, though closed-loop stability was provengeneloop stable pro-
cesses [58].

In the next chapter, we will discuss several other real-tipgmization al-
gorithms in more detail that are all based on ideas from tie dgparametric
nonlinear optimization.



288 Model Predictive Control and Moving Horizon Estimation
Exercises

15.1 In nonlinear model predictive control (NMPC), we refpelyy solve an
optimal control problem (OCP) with changing data in ordedéoive an
optimal feedback strategy for a controller. Since solving\d_P is an
expensive operation, there is often a tratidetween finding a better
solution to the NLP or returning feedback to the system magtfently.
In the most extreme case, we just do one iteration of the NI\NRséor
every feedback time. In the case of an SQP solver, this medviag a
single QP.

Regard once again the simple OCP from Exercises 13.1, 13.2, 1
and 8.7.

.
minimize f x1(t)? + X2(t)? + u(t)? dt
X, U o

subjectto x; = (1- X)X — X +U,  xi(0)=0, (15.2)
Xo = Xy, XZ(O) =1,
1< ut) <1,

whereT = 10 as eatrlier.

(a) In Exercise 13.2, you have implemented an SQP methodIve so
15.2. Use this code as an inspiration for implementing a NMBG
troller that uses a SQP solver. Remember that now the Gaexs$eN
SQP only needs to make a single iteration, so in contrast ¢odise
13.2, you should allocate a QP solver instance just oncehamddall
it multiple times.

(b) When just solving a single QP per NMPC iteration, it ofteake
sense to divide the solution code intp@paration phasand afeed-
back phaseThe preparation phase contains the part of the algorithm
that can be calculated before we obtain measurements faataite
of the system (i.e. the initial conditions of the ODE). Thiloas the
controller to return feedback to the system faster. What pfatte
algorithm can be made part of preparation phase?

(c) Modify the solution to take more than one SQP iterationeIPC
iteration. Does it improve the controller?



16
Parametric Nonlinear Optimization

In the shift initialization discussed in the previous clepte did assume that
the new initial value corresponds to the model predictidnisTis of course
never the case, because exactly the fact that the initi& istaubject to distur-
bances motivates the use of MPC. By far the most importanmtggsafrom one
optimization problem to the next one are thus the unpredlietehanges in the
initial value xo. Is there anything we can do about this in the initializatdda
new problem? It turns out that the conceppafametric sensitivitiebelps us
here. In order to understand this concept, in this chaptevileegard the task
of real-time optimization from a elierent perspective than before, namely from
the point of view ofparametric optimizationwhich is a subfield of nonlinear
optimization [4, 46].

16.1 Parametric Nonlinear Programming

Let us come back to our original NLP (3.1), with the additidran "exoge-
nous” parameters to the problem:

w* (p) = arg minvivmize f(w, p)

subjectto g(w, p) =0, (16.1)
h(w, p) < 0.

One should observe here that the parametés fixed in the NLP (16.4),
such that a giverp yields a corresponding solution* (if it exists). In that
sense, a parametric NLP definesiamplicit function w(p) that associates to
each parametep a solutionw*. The domain of this implicit function then
matches the set gb for which the NLP (16.4) has a well-defined solution.

289



290 Parametric Nonlinear Optimization

0 15
\ \ -05 1
1 fx(p) o5 )

é\‘ 15 0 Wi (p)
2 -05

> R w3 (p)

W1 B 95 0 o5 1 15 %1 05 0 o5 1 15
p p

Figure 16.1 lllustration of ...

Very powerful tools can then be derived from understandivggproperties of
the implicit functionw* (p).

In the following, we will make the simplifying assumptiortst the functi-
onsf, gandh are at leas€?, such that the Hessian of the Lagrange function
is guaranteed to be continuous. Let us then first state vefylugsults on the
continuity and dfferentiability of the implicit functionv* (p). For notational
simplicity, let us introduce the variabje= (w, A, u) that gathers the primal and
dual variables of our NLP.

Theorem 16.1. the implicit function f (p) is continuous. Moreover, if the
parametric NLR(16.4)satisfies LICQ and (strict) SOSC at a solution(p) for

a given p, then the implicit function*{p) is differentiable in a neighborhood
of p.

Theorem 16.2. if the parametric NLR16.4)satisfies LICQ and (strict) SOSC
at a solution y (p) for a given p, then the implicit function*v{p) is continuous
in a neighborhood of p. Moreover, if no inequality consttagweakly active,
then the implicit function¥/(p) is diferentiable in a neighbourhood of p.

The parametric solutiom* (p) of an NLP can havéifurcations i.e. it can
divide into several branches at a given parameter value.oDghbt to observe
that at such a bifurcation, the parametric solution(p) cannot be dferenti-
able as it is locally non-unique. At such a point, the assionptof Theorem
16.2 must fail. We provide next a simple example of such artition.

Example 16.3. We consider the parametric NLP withe R:

1 1
w* (p) = arg minimize = (Wy — 2+ p)% + =wW?2
(p) = arg minir 5 Wy =2+ p)"+ Sw, (16.2)
subjectto W2 +2w3 > 1,



16.1 Parametric Nonlinear Programming 291

10 0.8
0.6 /
8 0.4
ko
] 02/ W5 (p)
0
N
= 4 -0.2 .
-0.4 W]_ (p)
2 N -0.6
(P s
W 0 1
i 1 05 0 05 1 15 1 05 0 05 1 15
p p

Figure 16.2 lllustration of ...

and report the resulting parametric primal solution patl{p) in Figure 16.3.

This parametric NLP is interesting insofar as a bifurcatimeurs in the
solution path forp = 1.5, i.e. for parameter values less than> 1.5, the
problem holds two solutions faw; (p). In our example, the occurrence of the
bifurcation in the solution path occurs as the Hessian of grange function
of the problem becomes (at least point-wise) rank-defici@nt can observe
the bifurcation occurring gt = 1.5 in Figure 16.3, where the lowest eigenvalue
of the Hessian of the Lagrange function drops to zero.

Example 16.4. We consider the parametric NLP:
1
* _ TR i — nll2
w* (p) = arg minimize 2||w pll

subjectto wy — w3 < p, (16.3)
IWiZ < lipIl?,
Wy — W] < p;
and chart in Figure 16.4 theftirent regions in the parameter space R?
corresponding to dlierent active setd. Because the constraints are nonlinear

(and some non-convex), thefldirent regions are not polytopes but “curved”
regions.

We should first recall a well-known but very useful resultnfrparametric
optimization. Let us then consider the parametric optirnat,defined as:

f*(p) = min\i/rvnize f(w, p)
subjectto g(w, p) = 0, (16.4)
h(w, p) < 0.

In the context of parametric optimization, it is often udefu consider the



0.6
1.5 0.4
= 7 ?
~ 1 ~ 0
* € N
= = 02
0.5 0.4
0.6
0 0.8
0 05 1 15 2 0.5 1 15 2
p p
0.3 1y
0.25 0.8
—
0.2 L 0.6
= N
~0.15 B> 04
* ~—
S £
0.1 £ 0.2
~
0.05 0
0 0.2 . .
0 0.5 1 1.5 2 0 0.5 1 15 2
p p

Figure 16.3 lllustration of the solution path of the paramétili®® (16.2). The up-

per graphs report the parametric primal solution paths, therkwfiegraph reports

the dual parametric solution path and the lower-right graplonts the lowest ei-
genvalue of the Hessian of the Lagrange function of problen2§18 bifurcation
occurs atp = 1.5 in the solution path when the Hessian of the problem becomes
rank-deficient.

sensitivity of the parametric optimal coét (p) to the parameterp. Fortu-
nately, the sensitivity of the optimal cost to the parantseteicomputationally
inexpensive answer:

Vof*(p) = VpL| (16.5)

y=y*(p).p
A less common, but equally useful result provides the se@yddr derivative
of the cost function via a simple application of the chairergiven by:

oy* (p))
ap y=y*(p).p

Vapfr (p) = (V5,8 + V5,0 (16.6)
The existence of a derivati\fé;‘()—p) discussed in Theorem 16.2 will allow us
to build linear predictors for the solution of parametric Ri. Before discus-
sing these predictors, we ought to discuss the computatibasch derivati-
ves. To that end, we should consider the algebraic conditibat describe a



16.1 Parametric Nonlinear Programming 293
(possibly local) solution of the parametric NLP (16.4). Lsing the Lagrange
function:

Ly, p) = f(w, p) + 27 g(w, p) + " h(w, p),

with the Lagrange multipliera andu of adequate dimensions, the parametric
KKT conditions read as:

Vuwl (y, p) = 0,

g(w,p) =0,

hw,p) <0, >0,
/lihi(W,p)=O, i=1...,nh

At a solution having no weakly active constraint, one candgithe index-set
of h between the set of indices corresponding to strictly aativestraintsA
and the set of indices corresponding to strictly inactivesti@intsA, i.e.

haW'.p)=0, and h;w*.p) <0,

-0.6 T T T T T T T T T

0.4 -

0.4 0.6 0.8 1

0.2
P1

Figure 16.4 Regions with fierent active sets for the parametric NLP (16.3). The
nonlinear constraints result in regions that are not polydppet complex “round-
shaped” sets i®2.



294 Parametric Nonlinear Optimization

and the KKT conditions can be re-stated as

VwL (Y. p)
g(w, p)
Ry (Y, p) = =0, 16.8
. (Y, P) e (W p) (16.8a)
M
hi(w,p) <0, s > 0. (16.8b)

Splitting the (strictly) active and inactive inequalityreiraints allows one to
regard (16.8a) as a set offidirentiable algebraic equations locally describing
the implicit functiony*(p), and (16.8b) as non-smooth algebraic conditions
that are locally irrelevant for the solution.

We can then deploy the Implicit Function Theorem (IFT) onghmoth con-
ditions (16.8a) in order to compute the sensitiv;ggy* (p). In order to make
this development clear, let us observe that the implicicfiom y* (p) satisfy

R. (¥ (p).p) =0,

for any p in a neighbourhood of a givepandw* (p) satisfying all the condi-
tions of Theorem 16.2. It follows that

0
“Ru(y(.p)| =0
Y . (y*(P), p) .
A simple chain rule deployed on the above equation then gesvi

ay ap  ap
where all expressions are evaluateg andy* (p). The above equation for the
sensitivities can be explicitly stated as:

V2 L Va9 Veha oyt o [Th
Vag" O 0 |-2+—| g |=0 (16.9a)
dp Ip
Vwh] 0 0 ha
oy
—A -0, 16.9b
ap ( )

whereyx = (w*,1*,u}) and where all expressions are evaluateg and

y* (p). Equation (16.9) is linear in the sensitiviti%} which are then trivial to
compute at a solutiog* (p).

Note that the Jacobian matrix in (16.9a) is nothing else tharmatrix that
we called theKKT matrixin Chapter 3, and that it is invertible whenever the
second order dficient optimality conditions of Theorem 3.18 hold.



16.1 Parametric Nonlinear Programming 295
1.5 , 25
s 35
/! s 3
/ 2 ‘ 25
1 / /' w3 (p) '2
doark p) o 315
s /Wi (P s | ;
0.5 1/ 05
ol e (P)
05 Tl
K -0.5
0 / 4
0 2 4 6 0 2 4 6 0 2 4 6
p p p

Figure 16.5 lllustration of the solution manifold of the pararnweNLP (16.10)
(grey curves), and of its Iinearizatio?:Y#|p_ﬁ (dashed lines) using (16.9).

Example 16.5. In order to illustrate the sensitivity computations degdil
above, let us consider the (convex) parametric NLP \pithR:

1 1
w* (p) = arg minimize = (wy — 1) + = (W, — 2)?
(p) g minir 2(1 ) 2(2 ) (16.10)
subjectto &2 + w5 — p? <0,

and we consider the linearization of the parametric satuti@nifoldy* (p)

at a pointp, computed via (16.9). The outcome is illustrated in FiguBes1

One can observe how the sensitiv *(p)| _ builds the tangent space to the
P

p p=
solution manifoldy* (p) at p.

The discussion would be incomplete without discussing titeame of en-
countering a weakly active constraint at the solutydrip). Weakly active in-
equality constraints typically occur at the parameter edtr which (but not
necessarily when) an inequality constraint at the solutibthe parametric
NLP changes from being active to being inactive. At such atpoi

h(w*(p).p)=0 and u*(p)=0

holds and the solution manifola* (p) can be discontinuous.

Figure 16.5 readily provides a first illustration of thieet of a change of
active set on the solution manifolg* (p), namely that the solution manifold
typically becomes non-fierentiable when the active set changes, hence the
“corner” inw* (p) in Figure 16.5. In the neighborhood of that corner, though,
the derivatives‘%(f’) of the solution manifold are well-defined. In that sense,
while the derivative of the solution manifole* (p) does not necessarily exist
at a change of active set, gabderivativgdefined as the set between the limits

(16.11)



296 Parametric Nonlinear Optimization

0.4 -
0.35 0.25
0.3
0.25

0.2

wy

0.15

0.1

0.05

0~
-0.05
LA o 0 o T T 1
0.4 0.4 04 o2 04 02 03 04 05

0

p1 P2 P2 p1

Figure 16.6 lllustration of the solution manifold of the paranteNLP (16.12)
for p € [0, 0.5] and p; €]0, 0.5]. One can clearly observe the “edge” in the
solution manifoldws (p).

to the left and to the right of the classical derivativeswdf(p) in the case
p € R) generally does.

The same holds on the higher-dimensional caseR", to the diference
that the “corner” can then become an “edge” in the manifofdjimension
np — 1. The notion ofsubgradientis then generally applicable. We illustrate
this in the following example.

Example 16.6. In order to illustrate the sensitivity computations degdil
above, let us consider the (convex) parametric NLP \pithR:

1 1 1
w* (p) = arg minimize = (Wy — py)% + = (Wo — p1)? + =Wy W
(p) g W 2( 1— P1) 2( > — P1) 5 WiW2 (16.12)

subjectto W2 +5w5 — p; < 0,

The resulting solution manifold is illustrated in Figure.8.6

16.1.1 Linear Predictors

The tangent space to the solution manifgtd p) generated by the sensitivi-
ties allows one to build first-order predictor for the sadutj via the first-order
Taylor expansion of the solution manifold at a given pgnt —

W @B ey ®- P - e
p=p



16.1 Parametric Nonlinear Programming 297

Let us split hereaftey into y, = (W, 4, us) andu;, and splitAy*- (p, p) simi-
larly. Using the equation for the primal-dual sensitisti€l6.9), we observe
that:

H Vug Vuhe 5 [Twt
VugT O 0 |AY; + 25| @ (p-p) =0, (16.14a)

VeI 0 0 P hs
s —p=(p) = 0. (16.14b)

whereH = V2 £ and all functions are evaluated pty* (p). The linear pre-
dictor y- (p, p) resulting from (16.13) or equivalently (16.14) generates t
tangent space to the solution manifgiti(p) at a given pointp. However, it
does not capture changes of active sets, which often rastttorners” i.e.
non-smooth points in the solution manifold, see Exampl&.IBhis issue can
be addressed by considering a QP-based first-order prediesulting in a
piecewise-linear prediction manifold. We detail this ag@arh hereafter.

First we observe that the dual solutionpesatisfies the following system:

H Vwg Vuhs]|[ O Vo f
Vwg" O 0 ||2*(p)|+]| g |=0, (16.15a)

vwh, 0 0 |[u;(p) ha
1= (p) = 0. (16.15b)

We then consider the addition of (16.15) to (16.14), resglin the following
equality:

H  Vug Vuha][Awk (p, P) Vo f Vol
Vwg" O 0 || 2(p.p) *ap| 9 (p-P+| g |=0,
Vwh, 0O 0 |l u(p.p) hy hy
(16.16)
15 (p.P) = 0.

When no constraint is weakly active, one can verify thapfor a neighbour-
hood of p, equation (16.16) formulate the KKT conditions of the pagénia

QP:
Awgp (p, ) = arg min %AWTHAW+ Vuf AW+ (p- p)T V5, LAW
W

st. g+Vug AW+ Vg (p-p)=0
h+Vyh"Aw+ Vph" (p-p) <0 (16.17)

where all the term#d, V,,f, V&Vpﬁ, Vw0, Vwh, Vg, Vph are evaluated ap
andy* (p). Indeed, forp in a neighbourhood op, the active set of (16.17)



298 Parametric Nonlinear Optimization

matches the one of the original NLP (16.4) such that the KKnditions of
the parametric QP (16.17) are locally given by equationsl@6
As a consequence, the solution delivered by the parame®if1€.17)

Yor (P, P) = (W* (D) + AWgp (P, D) , dgr (P, P) . e (P P))

where Agp (P, P), ugr(p, P) are the multipliers associated to the linear con-
straints in the parametric QP (16.17), delivers local mtiols of the primal-
dual solution as:

Yor(p. P) = Y- (p. ) (16.18)

holds forp in a neighbourhood op.

However, the main interest of the parametric QP (16.17) aspehenp is
suficiently far from p such that the active set of the parametric QP (16.17)
no longer matches the one of the parametric NLP (16.4). &ne can then
observer that the manifolg® (p, p) built by the parametric QP (16.17) is a
piecewise-linear approximation of the solution manifofdie original NLP
(16.4). Let us consider the following illustrative examfdeexplain this state-
ment.

Example 16.7. We consider again the (convex) parametric NLP (16.10) with
p € R proposed in Example 16.5 and we consider the manifalgs;(p, p),
Hpred(P, P) built by the QP (16.17) at ffierent pointsp for the parametric NLP
(16.10). The manifold of the parametric NLP (16.10) and itstforder ap-
proximation computed via the parametric QP (16.17) arstilated in Figure
16.7.

16.1.2 Predictor-Correct methods for Online Path Following

In this section, we will consider an important practicallgemm in parametric
optimization, and one that is central to real-time optintitcol. Let us ima-
gine a path in the parameter space, i.e. .¢g= p(t) fort € [0, T], which
has a corresponding path in the solution spgcio(t)). Clearly, for every va-
lue t, one could construct the corresponding parametric selytidp(t)) and
therefore build the solution path.

However, an important question arises when attempting awgmnstruction
if tis a path parameter that evolves outside of our control, agahg. if it is
a physical time upon which we have no authority. In such a,dhseterative
construction of the solutiog* (p(t)) at a givent require a certain amount of
time, during which the actualwill keep evolving. By the time the iterative
procedure producing an accurate(p(t)) is finished, the solution obtained,



16.1 Parametric Nonlinear Programming 299

1 1 ,0:—*— — 1 ————
0.8 g 058 /Wi (®) 08 // Wy (®)
06 : 06 /o 06 / :
Soal ST T T =04 // g =04 /
0.2 . 0.2 : 0.2
0 4 WI (ﬁ) 0 // 0 //
0 2 4 6 0 2 4 6 0 2 4 6
p p p
2 2 R — 2 gy
Y 27 W, (5) s W, (5)
1.5 7 15 P 1.5 /
o ] < o
v
=1 /W5 (P) =1 A = 1 7
05t/ 05 05
0 2 4 6 0 2 4 6 0 2 4 6
p p p
3 3 3
32 32 32
il NN 1 1
L) W (D N * (p)
0 P 0 -——,— — — — —_— e —
0 2 4 6 0 2 4 6 0 2 4 6
p p p

Figure 16.7 lllustration of the solution manifold*(p), u*(p) of the parame-
tric NLP (16.10) (grey curves), and of piecewise linear appnaxionwqp (p, p),
Agp(p. ), anduge (P, p) (dashed lines) delivered by the parametric QP (16.17) at
various points (dotted lines).

even though it may be highly accurate, will be outdated as. This simple
observation motivates the devising of path-following neeth that produce an
adequately accurate approximationsydf(p(t)) for a givent in a minimum
amount of computational time.

The philosophy behindficient path-following methods is to exploit the
expected similarity between neighbouring solutions, tbeuse the fact that
y* (p(t+ At)) =~ y* (p(t)), so as to minimise the work required to compute
y* (p(t + At)) for p(t + At) using the information available at the solution
y* (p(t)) computed ap(t). Methods aimed at performing the task of tracking
as accurately as possibj& (p(t)) are referred to as path-following methods.
Predictor-correctors play a central role in these methods.

To approach the question offieient path-following methods, let us recon-



300 Parametric Nonlinear Optimization
sider the following parametric QP
Wored-corr (P P, Y) =
argmin % W-wW)"HW-W) + Vyf AW+ (p- )7 V5L (W-W)

st. g+Vug' (W-W)+Vpg' (p-p)=0
h+Vyh™ (W—W) + Voh™ (p—-p) <0, (16.19)

which is identical to the parametric QP (16.17), to the ekoepthat all the
termsH, v,,f, V&Vpﬁ, Vwg, Vwh, V,g andV,h are evaluated at tharbitrary
primal-dual pointy = (WI@ provided as an argument.

We can easily see that the parametric QP (16.19) is striddgtical to our
previous parametric QP (16.17)if= y* (p). However, here we are interested
in the behaviour of (16.19) when the equality does not necégdold, i.e.
wheny ~ y* (p). We ought to make the following observations:

e If y=y*(p) andp ~ p, then (16.19) delivers a piecewise lingaediction
of the solution of the parametric NLP (16.4) for a parametdu@p, using
the information formed at the parameter vajue

e If y ~ y*(p) andp = p, then (16.19) delivers a full SQ€orrectionstep
towards the solution of the parametric NLP (16.4) for theapaater value
pP=p

These observations allow us to construe the parametric @Rq)Las holding

both predictive capabilities (forp ~ p) and corrective capabilities (fory ~

y* (p)). Clearly, the casg ~ y* (p), p ~ p can be treated by the parametric QP

(16.19), resulting in both a predictive and corrective@ttiThe parametric QP

(16.19) is therefore often referred to apr@dictor-corrector For notational

simplicity, let us label

D(y, p) = {H. V3,L. Vuf g, Vug. Vph, h, Vi, Voh)

the linearization data of the problem at a painp.

We now aim at devising aonline path-following algorithm, with the speci-
fic purpose of "beating” the physical evolution of the partengp over time.
In that sense, for a givep(t), we aim at delivering a primal-dual solution up-
date being as close as possible to the solution gafip (t)) in a minimum
amount of time, exploiting the predictor-correctdfeet based on the previ-
ously obtained solution at a previous parameter valuguch a path-following
algorithm can be devised as follows.

Algorithm 16.8 (Path-following predictor-correctar)
Input: p andy, p, with D (y, p)



16.1 Parametric Nonlinear Programming 301

Take predictor-corrector step based®(y, p):
arg min %AWTHAW+ Vuwf AW+ (p-p)' V5, LAW
Aw
subjectto g+ Vwg'Aw+ Vg’ (p—p) =0,
h+ Vywh"Aw+ V,h" (p-p) < 0.

(16.20)

Updatey = (y + Aw, Agp, o), deploy the solution on the system
FormD (y, p)
Output: y, pandD (y, p)

We should underline here tloalineflavour of Algorithm (16.8). One ought
to observe that the operations performed between gettingnaparameter
p and delivering a primal-dual solution updatéboils down to solving the
predictor-corrector QP (16.20), while the production ofewnlinearization
D (y, p) is performed afterwards. It follows that, as underlinedaidin Algo-
rithm (16.8), one can deploy the solution updgten the real physical system
beforecomputing the linearization, hence minimising the timen®sn obtai-
ning a new parametgy and updating the solution

We illustrate the behaviour of Algorithm 16.8 in the followi example.

Example 16.9. We consider again the (convex) parametric NLP (16.10) with
p € R proposed in Example 16.5 and we consider the tracking ofdhgisn
manifold w* (p) using the predictor-corrector path-following Algorithné.8
with discrete steps in the parameteof 0.39. The resulting path-following
performance is illustrated in Figure 16.9.

The predictor-corrector path-following algorithm 16.8irgrinsically an
active-set approach, as the non-smooth KKT conditions arelled within
the algorithm. An Interior-point path following method che devised using a
similar philosophy. We detail this alternative next.

The algebraic conditions solved by IP methods read as:

VWL (y’ p)
gw.p) | _

h(w, p) +s
WS =T

R (zp = (16.21)

with the additional non-smooth conditioss: > 0 which are enforced separa-
tely. Let us denote, (p) the parametric solution implicitly defined by (16.21)
for a givent. A predictor-corrector Interior-point path-following red can
then be devised as follows.



302 Parametric Nonlinear Optimization

Path-following algorithm 16.8 without prediction

1 2 15
0.8 15
: 1
-0.6 N
S 2 =
0.4 1 05
0.2
0 0.5 0
2 4 6 2 4 6 2 4 6
p p p
Path-following algorithm 16.8
1 2 15
0.8 15
: 1
.0.6 N
S 2 =
0.4 1 05
0.2
0 0.5 0
2 4 6 2 4 6 2 4 6
p p p

Figure 16.8 lllustration of the predictor-corrector patitidwing Algorithm 16.8.
The solution manifold of the parametric NLP (16.3)(p), «*(p) is reported
as the grey curves. The upper-graphs report the behaviotiegdath-following
Algorithm 16.8without using the predictor féect, i.e. settingp — p = 0 in the
predictor-corrector QP (16.20). The lower graphs repatihaviour of the path-
following Algorithm 16.8, implemented as described. The prttigtect allows
Algorithm 16.8 to track the solution path more accurately. 8beuracy of the
tracking of the solution path by Algorithm 16.8 increases aslémgth of the
steps in the parameter spgeeecreases.

Algorithm 16.10 (IP Path-following predictor-correctar)
Input: pandz p, with R: (z p) andVR; (z p) andr.

Take predictor-corrector step basedRy{(z p) andVR; (z p), i.e.:

R

Az =
0z

R
Updatez = z + tAz, wheret €]0, 1] ensures + tAs > €S, u + tAu > eu
Deploy updated solutionz on the system
FormR; (z p) andVR; (z p)



16.1 Parametric Nonlinear Programming 303

Path-following algorithm 16.10 without prediction for= 0.03

Figure 16.9 lllustration of the predictor-corrector patiidwing Algorithm
16.10. The smoothened solution manifolds of the parametric N6R.Qwr* (p),

¥ (p) for various values of is reported as the grey curves. The upper-graphs
report the behaviour of the path-following Algorithm 1&&houtusing the pre-
dictor efect, i.e. settingp — p = 0 in the predictor-corrector (16.22). The middle
graphs report the behaviour of the path-following Algamitii6.8, implemented
as described for = 0.03. The predictor fect allows Algorithm 16.8 to track
the solution path more accurately. The lower graphs reporbéaviour of the
path-following Algorithm 16.8, implemented as describedfer 1074, showing
the dificulty of the predictor-corrector algorithm to follow the stibn manifold
for small values of. A value ofe = 107! was selected here.

Output: zandR; (z p), VR (z p)

A difficulty often observed using the Interior-Point followingpapach de-
tailed in Algorithm 16.10, is the highly nonlinear complemtezity slackness
conditionsyujs — v = 0 for small values of. Indeed, for low values of, the



304 Parametric Nonlinear Optimization

parametric solution path (p) corresponding to a path in the parameter space
can have a very sharp curvature when changes of active set dée path-
following method then struggles to follow properly thesetpaf the solution
path. This is especially true for a very low parametewhich letsu or sre-

ach values very close to zero, making iffatiult for the predictor-corrector to
recover the manifolghs — v = 0.

There is then a tradefiobetween being able to follow the manifold ef-
fectively with the predictor-corrector algorithm 16.1@dausing an accurate
smoothened manifold (p). Indeed, for a low value of, the smoothened ma-
nifold is accurate i.ez. (p) ~ z* (p), but the predictor-corrector algorithm
may struggle following the manifold. For a larger valuetgfthe predictor-
corrector algorithm will follow the manifold the manifolg (p) accurately,
but the manifold will be a less accurate approximation ofgleuine solution
manifold z* (p). It is however important to understand that solving thedine
system (16.22) is typically computationally significantlyeaper than solving
the predictor-corrector QP (16.20).

16.1.3 Predictor-Corrector Path-Following for real-time Optimal
Control and NMPC

The methods detailed above are typically the cornerstoneaietime Optimal
Control and real-time NMPC. In this context, the parameiid® (16.4) is
typically a standard transcription of a continuous optictitrol problem via
e.g. the multiple-shooting or direct-collocation appitues In that context, the
parameterg are the initial value of the optimal control problem, whiclin-
a real-time context — are estimated online and then usedrpute a new
optimal control solution for the system. E.g. a multiplessting transcription
of the form (13.3) recalled here

N-1
W (xo) = argmin Y li(s,q) + E(su)
S$q i=0

subject to Xo—S =0, | 16.23)
%(tii1,5.G) - S:2=0, i=0....N-1,
h(s,q) <0, i=0,...,N,
r(sw) <0

wherew = (Sp, U, - . . , SN—1, Un—1, Sy) @and the initial value assigned to the NLP
Xo acts as a parameter. Additional parameters can be prestra roblem
when e.g. preview information is available for the optimahtrol problem



16.1 Parametric Nonlinear Programming 305

or NMPC scheme. The methods detailed above can be readiligapp this
specific form of parametric NLP (16.23).

Due to the fact that the parametey enters linearly in the constraints of
(16.23), the Jacobian df,,g and thus also the Lagrange gradidftl and
the HessiarV3,, L and derivativev3 £ do not depend ono. Moreover, the
gradientV,,g becomes a constant matrix.

The fact that all derivatives are independent of the paramgtmakes the
description of the path-following algorithms for optimairdrol problems de-
pending on initial values easier. E.g. the predictor-aimeQP (16.20) at the
core of the predictor-corrector path-following algorithif.8 then reads as:

. 1
argmin =AW HAw + V,, f
Aw 2

subjectto g+ Vywg"Aw+ V9" (X0 — Xo) = O,
h+ Vyh"Aw < 0.

(16.24)

wherex, is the initial value corresponding to the solution whereltheariza-
tion is formed, arising from the optimal control problem\sad at theprevious
sampling time, andg the one valid at the current sampling time. Let us split
the equality constraints in the parametric QP (16.24) as:

Ge (W. Xo) ] (16.25)

Obyn (W, Xo)

wheregpyn holds the shooting constraints agigl= xo— . Itis interesting then
to observe here that the linearized equality constraint&24) corresponding
to the initial value embedding can be written as:

g(w, Xo) = [

(0 + VuGEAW + Vi 0E (X0 = %)) - = %o — S0 = Aso + (%0 = X0)
Xo— S — Ay (16.26)

&

or equivalently
(Ge + VuGEAW + VioGE (X0 — %)), o
It follows that the parametric QP (16.24) can be equivajentitten as

= (ge + VWQEAW)XO,W (16.27)

. 1
argmin =AW HAw + V,, f
AW

subject to g + Vg Aw = 0,
h+ Vvy,h"Aw < 0.

(16.28)

where all linearization terms are evaluatedveand xg (as opposed tag in



306 Parametric Nonlinear Optimization

(16.24)). Hence, the special form of parametric NLP (16r28)lts in the "ba-
sic” QP (16.28) to be a predictor-corrector without the adjion of the cor-
rection terms used in the classical predictor-correctof {gP19).

Note that this interestingfect stems from the fact that the parameters enter
linearly in the parametric NLP (16.23). This particularrfariation of the pa-
rameter dependence can be achieved in all parametric NLRgrbgucing in
the NLP a set of variables, e.g.corresponding to the parameteand con-
straining them to match the parametprsy a constrainp—v = 0, as we have
done in (16.23). We call this in the general cagaeameter embeddingn the
context of MPC, like here, we speak of timitial value embedding30].

The Continuation/GMRES Method of Ohtsuka [65]: The Continuati-
ornyGMRES method performs one predictor-corrector Newton tfypeation
at each parameter update, and is based on a sequential &ionult is based
on an IP treatment of the inequalities with fixed path paramet 0, using an
exact Hessian, and the iterative GMRES method for solvieditiear system
in each Newton step. Most important, it makes use of the tatreggredictor
described in Eq.%?). This features seems to allow it to follow the nonlinear IP
solution manifold well — which is strongly curved at activet shanges. For a
visualization, see Fig. 16.10(a). In each sampling timéy; one linear system
is built and solved by the GMRES method, leading to a predictorector
pathfollowing method. The closed-loop stability of the huat is in principle
covered by the stability analysis for the real-time itevasi without shift given
in [35]. A variant of the method is given in [74], which usesimgltanous
approach and condensing and leads to improved accuracpweddomputa-
tional cost in each Newton type iteration.

Advanced Step Controller by Zavala and Biegler [82]: In order to avoid the
convergence issues of predictor-corrector pathfollowieghods, in the “ad-
vanced step controller” of Zavala and Biegler a more corasd@m choice is
made. At each update of the parametpr& complete Newton type IP pro-
cedure is iterated to convergence (with» 0). In this respect, it is identical
to solving the NLP dline using an Interior-Point method. However, two fea-
tures qualify it as an online algorithm: first, it takes cortgtional delay into
account by solving an “advanced” problem with the expectates, as ini-
tial value — similar as in the real-time iterations with shifand (b), it applies
the obtained solution not directly, but computes first thegéatial predictor
which is correcting for the dierences between expected stejand the ac-
tual statexg, as described in Eq?@) with R(W, Xo) = 0. Note that in contrast
to the other online algorithms, several Newton iteratioresperformed in part



16.1 Parametric Nonlinear Programming 307

(a) of each sampling time, the “preparation phase”. Thedatigl predictor
(b) is computed in the “feedback phase” by only one lineatesyssolve ba-
sed on the last Newton iteration’s matrix factorization.iAgshe GGMRES
method, the IP predictor cannot “jump over” active set clesngs easily as
the SQP based predictor of the real-time iteration. Roughbaking, the ad-
vanced step controller gives lower priority to sudden &c#et changes than
to system nonlinearity. As the advanced step controlleresobach expected
problem exactly, classical NMPC stability theory [62] cafatively easily be
extended to this scheme [82].

The Real-Time Iteration Scheme [33]: Based on the above ideas, the real-
time iteration scheme presented in [30, 33] performs one §Q® iteration
with Gauss-Newton Hessian per sampling time. However, fileys a simul-
taneous NLP parameterization, Bock’s direct multiple simgomethod, with
full derivatives and condensing. Moreover, it uses the gaized tangential
predictor of the “initial value embedding” to correct foetmismatch between
the expected state and the actual stat€. In contrast to the GGMRES met-
hod by Ohtsuka, where the predictor is based on one linetarsysolve from
Eq. (??), here an inequality constrained QP is solved. The comiputatn

(a) Ohtsuka’s GIGMRES method

(b) Advanced Step Controller

Figure 16.10 Subsequent solution approximations.



308 Parametric Nonlinear Optimization

each iteration are divided into a long “preparation phasg; i which the
system linearization and condensing are performed, andch shorter “feed-
back phase” (b), see the visualization in Fig. 16.11. Thdldaek phase solves
just one condensed QRP?)—(?7?). Depending on the application, the feedback
phase can be several orders of magnitude shorter than tieefelephase. The
iterates of the scheme are visualized in Fig. 16.12(a). Hmeesiterates are
obtained with a variant of the scheme that uses &#fs trick for reducing
the costs of the preparation phase in the case of large staensions [71].
Note that only one system linearization and one QP solutierparformed in
each sampling time, and that the QP corresponds to a line&@ fd@dback
along a time varying trajectory. In contrast to IP formwas, the real-time
iteration scheme gives priority to active set changes anttswwell when the
active set changes faster than the linearized system msttic the limiting
case of a linear system model it gives the same feedbackesy IMPC. Er-
ror bounds and closed loop stability of the scheme have bsableshed for
shrinking horizon problems in [32] and for NMPC with shiftaxdd non-shifted
initializations in [36] and [35].

’ feeﬂdback feeﬂdback
" preparafion |~ preparation | '

,,,,,

+ H +—» time

Figure 16.11 Division of one real-time iteration into prepina and feedback
phase.

Adjoint-Based Multi-Level Real-Time Iterations [18]: A variant of real-
time iterations was presented in [18], where even cheapeulations are per-
formed in each sampling time than one Newton or Gauss-Nestamusually
requires. Within theéAdjoint-Based Multi-Level Real-Time Iteratiqra the lo-
west level (A), only one condensed QP?[—(?7) is solved, for the most current
initial value xg. This provides a form of linear MPC at the base level, taking
at least active set changes into account with a very high kagnfpequency.
On the next two intermediate levels, that are performeddéss than every
sampling time, only the nonlinear constraint residualsemauated (B), al-
lowing for feasibility improvement, cf. also [26], or the gg@nge gradient is



16.1 Parametric Nonlinear Programming 309

evaluated (C), allowing for optimality improvement. Thévél C is based on
the following QP with inexact matrices
minimize  FjyoH(Y)
Y

subjectto G(X,, Y¥) + BJ (Y - Y =0,

subjectto  H(YS) +Cl(Y-Y¥ <O
with the QP obijective

Fhior(Y) = YT (Vv L(YK, A4 1) — Bl - Ciul¥) +%(Y - YT AY - Y9).

"modified gradient”
(16.29)

A crucial ingredient of this level is the fact that the Laggargradient can be
evaluated fiiciently by the reverse mode of automati@eientiation. Note that

X0
(a) Real-Time lteration scheme

(b) Critical regions of a parametric NLP

Figure 16.12 Subsequent solution approximations (left), amiical regions
(right).



310 Parametric Nonlinear Optimization

in all three levels A, B, and C mentioned so far, no new QP medrare com-
puted and that even system factorizations can be reusedagadiagain. Level
C iterations are still considerably cheaper than one fulP$@ration [80], but

also for them optimality and NMPC closed-loop stability dzeguaranteed
by the results in [35] — as long as the system matrices araaecenough to
guarantee Newton type contraction. Only when this is notctiee anymore,
an iteration on the highest level, D, has to be performedchvinicludes a full

system linearization and is as costly as a usual Newton tepation.

16.2 Critical Regions and Online Active Set Strategies

It is interesting to have a look at the parameter spa&gevisualized in
Fig.16.12(b). The picture shows the “critical regions” aacle of which the
active set in the solution is stable. It also shows three exuts/e problems
on a line that correspond to the scenario used in Figure€9(,116.12(a),
and 16.10(b). Between problem 1 and 2 there is one activehseige, while
problems 2 and 3 have the same active set, i.e., are in theséroal region.
The GGMRES method and Advanced Step Controller exploit the shroasts
on each critical region in order to obtain the conventionaliMon predictor
that, however, looses validity when a region boundary isged. The real-time
iteration basically “linearizes” the critical regions whithen become polyto-
pic, by using the more accurate, but also more expensive €Hagbor.

As the QP cost can become non-negligible for fast MPC aptidics, a so-
called online active set strategy was proposed in [39]. Ehiztegy goes on
a straight line in the space of linearized regions from ttietolthe new QP
problem. As long as one stays within one critical region, @ solution de-
pends #inely onxy — exactly as the conventional Newton predictor. Only if
the homotopy crosses boundaries of critical regions, thieeaset is updated
accordingly. The online active set strategy is availablthénopen-source QP
package gqpOASES [40], and is particularly suitable in caration with real-
time iterations of level A, B, and C, where the QP matrices dbahange,
see [81].

Exercises

16.1 Recall Exercise 7.6 where we solve the following OCP:



Exercises 311

N-1
iz g lu3
subject to Xo — X0 = 0,
D(X, Ux) = X1 = O, k=0,...,N-1,
XN =0,
—Xmax < X < Xmaxk K=0,...,N-1,

A

_Umax_ukSUmax, k=0,...,N—l

with C = 180/7/10 and where now is treated as a parameter. In this
problem, we will regard the simultaneous Gauss-Newtonrdlgo de-
veloped in Exercise 7.6. In particular, we will modify thigarithm to
perform real-time iterations for fierent values okg, so that we can use
this algorithm to perform closed-loop NMPC simulations &abiliza-
tion of the nonlinear pendulum.

(a) Summarizing the variables of this problem in a vector =
(X0, Ugs - . ., Un—1, Xn) € R" of dimensionn = 152, we note that the
problem can be summarized as a parametric NLP of the form:

PNLP(X) :  minimize w'Hw
W e RISZ
subject to G(Xo, W) = 0,

—Wmax < W < Wmax

Modify the functionG from Exercise 7.6 so that it accepts as argu-
ment also the parametgs.

(b) The Gauss-Newton real-time iteration solves, for vagywalues of
Xo, a linearized version of this problem in each iteration. &speci-
fic, if the last iterate waw/, and we want to solve a problem with the
parameteix;, the next iteratev' is determined as the solution of the
following QP:



312

(©

(d)

(e)

(f)

)

Parametric Nonlinear Optimization

PQPEQ, W) : minim%g w'Hw
weR
subjectto G(xp, W) + Je(W)(w —w) =0,

Modify the function GNStep from Exercise 7.6 so that it accepts
the parameterx, as a second input, i.e. write a function
[wplus]=GNRTIStep(xprime,w) that performs one SQP-Gauss-
Newton real-time iteration by solving pQ@(w).

In order to visualize the generalized tangential priedjdix the vari-
able vectomw at zero and call your functioBNRTIStep with different
values fornx. Use linear interpolation of 100 points between zero and
the value (100)7, i.e. setxg = A(10,0) for A € [0, 1]. Plot the first
controlug as a function oft and keep your plot.

In order to compute the exact solution manifold with tigkly high
accuracy, perform now the same procedure for the same 106 inc
asing values oft, but this time perform in each iteration the Gauss-
Newton step, i.e. s&tto the output of the last real-time iteration. Plot
the obtained values fary and compare with the tangential predictor
by plotting them in the same plot.

In order to see how the real-time iterations work in a nreadistic
setting, let the values of jump faster from 0 to 1, e.g. by doing only
10 steps, and plot the result again into the same plot.

Modify the previous algorithm as follows: after each nga ofA by
0.1 keep it for 9 iterations constant, before you do the nextp.
This will resultin about 100 consecutive real-time itevas. Interpret
what you see.

Now we do the firstlosed-loop simulatianset the value ok to
(10,0)" and initializew at zero, and perform the first real-time ite-
ration by solving pQP(, w). This iteration yields the new solution
guessw’ and corresponding contral,. Use this control at the “real
plant”, i.e., generate the next valuexyf, sayxg, by calling the one
step simulation functionxy := (X[, uy). Close the loop by solving
now pQP7, w), etc., and perform 100 iterations. For better observa-
tion, plot after each real-time iteration the control aratestvariables
on the whole prediction horizon. (It is interesting to ndtattthe state
trajectory is not necessarily feasible).



(h)

Exercises 313

Also observe what happens with the statgduring the scenario, and

plot them in another plot the sequence against the time indiexhey

converge, and if yes, to what value?

We make our problem morefficult now by treating the swing-up of

the pendulum. This is simply done by changing the sign intfadn

the sine in the dferential equation, i.e. our model is now

v(t) 0
Rk

9 =] ¢ sinotty/c)

u(t). (16.30)

Start your real-time iterations againwat= 0 and seixj to (10,0)",
and perform the same closed-loop simulation as before.r@bgeat
happens. You might use = 180/x to avoid too strong nonlinearities.
Also, you might add to the cost the terlﬁﬁ':o ||xk||§, i.e. chooseH as
a unit matrix, in order to penalize all deviations of the sfabm zero
stronger.



17
Moving Horizon Estimation

In order to predict and optimize the future behaviour of aaiyit system,
one needs to know the state and possibly some unknown paanuftthe
system. Aim of this chapter is to present methods that esgirtree current
state and system parameters from a series of measuremémsiast. It turns
out that many estimation formulations naturally lead tdroj#ation problems
that have nearly the same structure as the optimal contodllgmns treated
earlier in this course. One powerful method for online state parameter
estimation uses the measurements on a moving time windoleipast, and
is called moving horizon estimation. It is the main topic liktchapter, and a
technology often combined with nonlinear model predictieatrol (NMPC),
with which its optimization problems share many charastis.

17.1 State and Parameter Estimation Problem Formulation

Throughout this chapter we regard a dynamic system of thexsig form

X1 = fi(Xi, W),

(17.1)
Vi = Ok(X W) + v, k=0,...,N-1

Here, fx describes the time varying system dynamgsmodels the measure-
ment processy are the unknown system states, andare unknown distur-
bances. The measurement noise is also unknown and giveg kshile the
only quantities that we know are the measuremegntdVe assume that we
have some important other piece of information, namely sknosviedge - or
an educated guess - on the probability density functiong=jR@r the noises
Vi and disturbancesy fork =0,...,N — 1, as well as for the initial state,.
For ease of notation, we sloppily denote B{) the PDF of a random vari-
ableX at the pointx, i.e. we haveP(x) > 0, f P(x)dx = 1, and the expectation

314



17.1 State and Parameter Estimation Problem Formulation 315

of variableX is computed a&{X} = f xP(x)dx. Without loss of generality, we
assume the following form of PDFs:

P(w) = exp®y(w)) -const k=0,...,N—-1,
P(Wk) = exppBk(wi)) -const  k=0,...,N-1, and
P(xo) = exp(-ao(Xo)) - const

where the constants are just for normalization and willrlat be of further
interest. Note that any PDF can be brought into this form kintathe negative
logarithm, and that a zero value of the PDF corresponds tdue wao for the
negative logarithm.

Remark: Note that if o, Wo, Wy, . . ., Wn_1) would be known, they would uni-
guely determine all stategq(, ..., Xn). The reason why we like to give a-priori
PDFs for all variablesxy, wo, Wi, . .., Wn_1) is that this helps us to ensure that
a unique optimal solution exists for the resulting estimragproblems, inde-
pendent of the observability properties of the system. dfitt@hal a-priori in-
formation would be known, e.g. for some of the statgs.( ., Xn), it could be
added easily to the estimation problem formulations thiévio

17.1.1 Generality of the Considered Dynamic System Class

Though the dynamic system setting in Egs. (17.1) is a rathepact formu-
lation, it comprises many estimation settings of practictrest. We discuss
a few of them.

Systems with known inputs
If we would have a system describedXyy: = f (X, Uk, Wi) with known inputs
Uk, we can bring it into the form (17.1) by defining

(% W) 1= £ (X Ukr W),

i.e. the dependence of the system on the known controls niaéegstem time
variant.

Systems with measured inputs
How could we deal with a system describedXy; = f~(xk, Uk, W) with inputs
ux that we do not know exactly, but for which we have measuresi@ If
the measurement noise on the input measurements is denoligdie define



316 Moving Horizon Estimation

a disturbance vectay, = (W, V) and bring the system into the form (17.1) by
setting

i Wi) = (X, Tl + T, Wie).

Systems with unknown parameters
Very often we do not only want to know the system states but sdsne pa-
rameters that are unknown, but constant in time. If the pasystem state
would be given byx; and the original dynamics by.: = f(%. p), we can
proceed as follows to bring the system into the form (17.itstFwe introduce
an individual parameter valug for each time interval. Second, we define the
augmented system statg = (X, px). Third, we define the augmented dyna-
mical system (17.1) as

f(% pk)]
P |’

such that the second part of the system dynamics equgiion= px, ensures
that the “parameter statgd remains constant over time.

fil(Xie, W) 1= [

17.2 The Trajectory Estimation Problem

A first question one might want to answer is the following:agithe measure-
mentsy = (Yo,...,Yn-1), What are the most probable state and disturbance
trajectoriesx = (Xo,...,Xn) andw = (Wp,...,Wn-1)? We decide to work
in a Bayesian estimation framework, and our aim is to find tl&imum a-
posteriori (MAP) estimate that maximizes the condition2FP(x, wly) of the
trajectory, given the measurements. Using Bayes’ formthia,PDF is given
by
P(x.w.y)

P(Y)
_ PyIx,w) - P(x,w)

P(Y)

= P(yIx, w) - P(x, w) - const

P(x, wly) =

Instead of maximizing the conditional PDF, one can equivdfaninimize the
negative logarithm of the PDF. Thus, the MAP estimate isglvg

argmin  —logP(x, w) — log P(y|x, w).
X, W

s



17.2 The Trajectory Estimation Problem 317
Fortunately, we can find explicit expressions for both tefffirst, we note that

P(x,w) = P(Xo, ..., XN, Wo, . .., WN-1)

_{ 0, ifnot Xu1= fi(x.We) foral k=0,...,N-1,
P(x0)P(Wo) - - - P(Wn-1),  else

This means that

oo, ifnot X1 = fk(x,Wx) forall k=0,...,N-1,
—logP(x,w) = _
gPOcw) { ao(X) + Xpog Br(w) + const  else
For the other term, we use the fact that the conditional gaitiba P(yx|x, w)
to obtain a measurememwt only depends on the stai@ and disturbancevy
at the same time time point. Becauseypf= gx(X, Wk) + Vi, it is given by
P(ykIxx, Wi) = P(vk), with vk = vk — gk(Xk, Wk). Thus, the following identities
hold:

P(yIx,w) = P(Yo, ..., Yn-1X0, .. ., XN, Wo, . . ., WN-1)

N-1
=1 | PO W)
k=0
N-1
= P(w), with w =vy—o(xw) for k=0,...,N-1
k=0
N-1

exp(—D(Yik — gk(Xk, Wk))) - const

=~
o

Therefore, we obtain the compact expression

N-1

—log P(y|x, w) = Z Dy (Yi — Gk(Xcs Whe)).
pay

Taking both expressions together, we obtain the MAP estéiraatsolution of
the following minimization problem, where we exclude thériite objective
values by the corresponding constraints:

N-1

minimize  ao(xo)  + ;[d)k(yk‘gk(xk’wk))+ﬁk(wk)] (17.2)

subjectto X1 — fk(, W) =0, k=0,...,N-1.

We will often call the termug(xo) the “arrival cost”, as it measures the “cost”
for arriving atx,. For notational convenience, we also define the shorthand

k(X W) := DYk — Ok(Xe» W) + Br(Wi)



318 Moving Horizon Estimation

and call this term, as in the previous chapters, the “stagé.ddote that the
optimization problem (17.2) is of exactly the same form asdptimal control
problems discussed previously in this lecture.

17.2.1 Examples for the stage and arrival costs

Very often the cost termsap(xo), Bc(Wx) and @y (vx) are chosen as quadratic
penalties. For notational convenience we deﬂnﬁ% := X"Px for positive
definite matriced® > 0. Note that quadratic penalties correspond to weighted
£>-norms, as|x||§, = ||P% x||§, whereP? is the unique symmetric matrix square
root such thaPz - Pz = P. A typical choice for the arrival cost i8o(X) =

IXo — Xoll3, Wherex, is an a-priori guess for the initial state, aRdn inverse
covariance matrix expressing the confidence we have forginéss. For the
disturbances, a penaly(w) = ||Wk||§ expresses how unlikely we expect them
to be. For the measurement errors, the quadratic pedaliy) = ||vk||(2g is
often used, wher® is the covariance matrix we expect for the measurement
errors.

Instead of quadratic penalties, that correspond to thengstson of Gaus-
sian distributions, other choices are possible as well.tiMosne uses con-
vex functions, because of their beneficial properties fainogation. Two
other popular convex penalty functions are the (possiblighted)£,-norm
VIl = Zi”:Vl [vi], which corresponds to a Laplace distribution, and the Huber
penalty, that is for a scalar inpute R defined as

V2 if |v|<o,

Dpyupers (V) = { 20V — o2 else

The Huber penalty corresponds to a distribution that loesd Gaussian in
the neighborhood of zero, but which has “fatter tails” thaBaussian. These
fat tails can express our expectation that outliers migipieap i.e. that we
expect that large residuals have a higher probability thaorenal distribution
would suggest. From the penalty function perspective, blogh’;- and the
Huber-penalty have the property that they penalize largar eesiduals less
than a quadratic penalty would do. Thus, usipgor Huber-penalties for the
measurement error functiordg(v) allows one to design estimators that are
more robust against outliers than the usigahorm based estimators.

Remark on parameter jumps: An interesting other application of thg-
norm arises in the case when we want to detect jumps in sonagnperp,
but we expect these jumps to occur only rarely. In additiothéousual system



17.3 DP for the Trajectory Estimation Problem 319

dynamics and measurement equation, one can then modelrdragiar dyna-
mics bypk.1 = px + Wk and penalize the parameter jumps withfgimorm, i.e.
chooseBk(Wk) := |lwg|l1. This discourages changesr, and nonzero values
for wy, i.e. changes ik, will only occur in the optimal solution if there is a
significant benefit in terms of the other optimization ohijecterms.

17.3 Dynamic Programming for the Trajectory Estimation
Problem

Because the trajectory estimation problem is an optimatrobproblem, it
can also be solved by dynamic programming. In this conteistjmteresting to
observe that dynamic programming can in principle be peréatin forward as
well as in backwards direction. In estimation problems,dnteast to standard
optimal control problems, one usually chooses to go in fodvearection. The
reason is that dynamic programming then allows us to “fotlgepast” and to
just summarize the contribution of the past in one functieimich we call the
“arrival cost”. The arrival cost is the equivalent to the §t@o-go” in the usual
backwards dynamic programming recursion. We define theahicostan(X,)
for anyn < N as the cost to arrive aftersteps at statg,:

n-1
an(Xn) = m)!or]vivg’j’i_’ze ao(Xo) + Z‘Pk(xk,wk)
Xn-1,Wn-1 k=0

subjectto X1 = fk(x, W), k=0,...,n—1

Note thatx, is not a variable, but a fixed parameter for the optimizatio p
blem. By the dynamic programming principle, one can comtheerrival cost
recursively, using the fact that the only connection betwi@en andn + 1

is via the statex,,1. The dynamic programming recursion proceeds as follows,
forn=0,...,N-1:

ans1(Xnr1) = minir\wl"nvize an(Xn) + on(Xn, Wn)
%n, Wn (17.3)
subjectto Xni1 = fr(Xn, Wh).

Again, note thak,,; is a fixed parameter to the optimization problem. To use

dynamic programming to solve the trajectory estimationbfm, one pro-
ceeds as follows:

(i) Start with the given arrival cosio(-).
(i) Compute a1(-) up to an(-), using the dynamic programming recur-
sion (17.3)



320 Moving Horizon Estimation
(iif) Computexy, = arg prinO/N(XN)-
(iv) For n = N -1,...,0, compute X, w;) = arg)miv? an(X,) +
¢n(%, Wn) St X5 = (%o, Wh).

Note that very often one is only interested in the estimateHe last state,
Xy, Which is already obtained after Step 3. Thus, Step 4 is oalj@nd only
needed if one wants to know an estimate of the complete toajedlowever,

if one is really only interested in the last statg, why should one first try
to maximize the MAPP(x, wly) of the complete trajectory? In this case, one
should rather maximize directly the PO xyly) of the last state, as we will
do in Section 17.5. It will later turn out that both estimatimrmulations, the
trajectory estimation and the direct estimation of thedéate, lead to the same
results for linear quadratic estimation problems.

17.4 Linear Quadratic Trajectory Estimation

Let us specialize the trajectory estimation problem to el case of linear
dynamic systems with quadratic costs, i.e. with underly@agissian PDFs for
disturbances and measurement errors. In this case we déahweifollowing
guantities.

fi(Xie, Wie) = AwXic + bic + W,
Ok (X, Wii) = CieXie,

"
Bie(wig) = 5 [IWkdz, (17.4)

1
Dy (Vi) = E||vk||g, for k=0,...,N-1, and

1 _
ao(%0) = 51X = Xollf,.
Note that we have chosen a formulation for the system dyraimiahich the
disturbancesféect every state directly. This will allow us to simplify sotager

expressions. The optimal control problem resulting from timear quadratic
estimation setup is the following.

1 1
Sk = Coxll + Sl

N-1
1
minimiz —= -
wee XOHP°+§ (17.5)

subjectto X1 — Ak —bk—wc=0, k=0,...,N-1



17.4 Linear Quadratic Trajectory Estimation 321

One can easily eliminate alli using the equality constraints, and then one
obtains the following unconstrained quadratic optimizatproblem.

1 1
Sk = Coxdll + 511Xt = A = bR

1 N-1
mlnl)znlze 2||x0 xo||F,0 + ;

To solve it, one might just dlierentiate the objective function with respecito
and set the gradient to zero, which results in a sparse lewation system for
the optimal state trajectory’. On the other hand, one could also use dynamic
programming to solve it. To formulate the dynamic programgniecursion,
we first state a useful lemma and corollary.

Lemma 17.1(Schur Complement Lemma)f R > 0, the following identity
holds

X

u

In particular,

T T
[g SRHL(] =X"(Q-STRS) x + |IRIS x+ ull2.

min[x] [g SF;HX]z T(Q-STRIS) x.

u (U u
g [Q ST _—
If in addition S R >0, thenalso Q- STR*S > 0.
The proof of the lemma uses the matrix decomposition

3 %)

Q-S™Ris 0 N STRIS &
0 0 S R

and the fact that the second term can be expressed as

x]"[STRIS ST
u S R

3] = X"STRLS x+ 2u™S x+ URU= [[R1S x+ U2,

From this we also obtain the following corollary.

Corollary 17.2 (Summarizing Linear Quadratic Costdj R > 0 then

117¢c g s'||1
x|lg Q S ||x|=c-s"Ris+2x"(q-SRly
ulls S Rilu

+ X (Q-STRIS)x+ R (s+ SR + Uz



322 Moving Horizon Estimation

The proof of the corollary uses the previous lemma vtk [9S], Q =

-
[; % andX = 1,andthefactthat
< arpia_|C d| [s'R's SRS
Q SWS‘[q Q} [STFtls SRS |

To formulate the dynamic programming recursion, we assumatoi(xx) =
%ka - >?k||§,k and eliminatewy, which results in the following formula.

a1 (X)) = min)i(Lnize %”Xk - X3, + %HYK - Cixlld + %||Xk+1 - A — bl -

(17.6)
Using the above corollary, we know that the solution is a gata function.
We use the identity

1% = X3, + 1Yk = Cixell + 11 — A — bl

1 1'[ const ¢RhB)T -y 1
= const+ | X1 | | (-RK) R (—AgR)T Xk+1 |5
X 5§ (-AIR R X

with R := Py + CJ QC« + AT RA ands’:= (PcX — CJ Qwk + AT Rhy). Based on
the corollary, withui'= X, the quadratic function is explicitly given by

1 8 .
1 (Xer1) = CONSE 5K 4 (R— (ATRTRATR) Xii1+X,; (—Rb + (ATRTR3).

We define the matriXP,.; = (R— (A[R)Tli‘lA[R), which is positive de-
finite due to the fact that the original quadratic functionswabsitive defi-
nite in (X, Xk+1)- To bring ax,1(X+1) into a more compact form, we define
X1 = —P Y (—Rh< +(ATR)T Ifrlé). We can then show that

1 2
k1 (Xer1) = §||Xk+1—>7k+1”pk+l + const

as an immediate consequence of the following basic lemma.
Lemma 17.3. If P > O andx = —P~'g then{x"Px+ g™ x = ||x — X||2 + const

Disregarding the constants, we have described an algotidtgenerate the
dataPy,1 and x«,, that are necessary to represent the negative logarithm of
the PDFP(X,ly), i.€. ax:1(X+1). The only inputs to the algorithm are the data
describing the negative logarithm of the PDF of the priooinfation,P, and
Xk, as well as the measuremept



17.5 Recursive Bayesian Estimation of the Last State 323
17.5 Recursive Bayesian Estimation of the Last State

Very often, one is only interested in estimating the lastestg , not in the
whole trajectory. For this aim, a technique that is very Ento dynamic pro-
gramming can be used that is callRdcursive Bayesian Estimatiohhe idea

is to recursively compute the conditional PDF of the stqte given all mea-
surementsp, . . ., yo. We note that the only memory of the system is the state
Xn, and that the latest measuremgnhelps us to learn more about the PDF of
Xn. For these reasons, one can derive the following identity.

POtoealYo. - Yi) = f Pt 11X P - - Yi)
= f P(Xn+1|Xn, Wn) P(Xn’ WhnlYo, - - - » yn) dxndwp,

=j; P(Xn, WnlYo, - - - » Yn) dXn0Owp

(%0, Wn)=Xns+1

_ f P, WnlYo, - - - » Yn-1) P(Yn| %, Wn)
)= POAIY0s -+ Yn-1)

dx,dwy,

= const- ff P(Xn, WnlYo, - - - » ¥Yn-1) P(Yn|Xn, Wn) dXndwi,

n(Xn,Wn)=Xn+1

= const: ff P(Wn)P(XnlYos - - - » Yn-1) P(YnlXn, Wn) dXadwy

(X, Wn)=Xn41
= const f e P(Xalyo, . . . , Yn1)€ PO I h)) gy .
i

(X0, Wn)=Xn.1
a7.7)

The result is a recursive formula to compiRE,.1lYo, . . ., Yn) from the last
measuremeny, and fromP(X,|yo, ..., Yn-1). There are many ways to repre-
sent the probability densitP(Xnlyo,...,Yn-1). One way would be to use a
fine grid in state space which creates many rectangular \edumach of
which represents a constant probability density. Anothe&y would be to use
“Gaussian-Mixtures”, i.e. to represeB{xy|yo, . . . , Yn-1) by a sum of Gaussian
PDFs. Yet another way would be to sample the PDFs,aindw;,, by using
“particles” each possibly with some weight, and then prapaghe particles
through the system dynamics and to modify their weights itiog to the fac-
tor e *0h-& W) that depends on how compatible each particle is to the actual
measurement. Particle resampling allows one to let veryaligble particles
“die” and save computation speed.

The problem of all approaches mentioned above is that thigrslike dy-
namic programming, from the “curse of dimensionality”, tleey are diicult
to apply for state spaces of nontrivial dimensions (not eighan e.gny = 6).



324 Moving Horizon Estimation

For this reason, very often one chooses to approximate theitaanal PDF
with a single Gaussian, and to use some form of linearizatiopropagate
the PDF through the system dynamics. This approach leadet&xtended
Kalman Filter (EKF), that is a generalization of the Kalmahef equations
to nonlinear systems. An approach that is very closelyedl&t the EKF, but
which uses a very specific form of sampling instead of theesydinearization,
is called the Unscented Kalman Filter (UKF).

17.6 Estimation of Last State for Linear Systems with
Gaussian Noises

One interesting special case is, again, the linear systéim@aussian measu-
rement and state noises. We regard the same setup as befmy® if17.4), but
instead of solving the trajectory estimation problem gigémeasurementg
which was equivalent to the QP (17.5), we now want to propatiee PDFs
P(XnlYo, . . ., Yn-1) for the current state given only the previous measurements
For this we use the Bayesian estimation framework (17.%),aqply it to the
special case where we start with a Gaussian distributieryvie assume that

1 _
P(XalYo, - - ., Yn-1) = const: eXFJ(—EHXn - anllzan)

where the two data items, andP,, describe the Gaussian PDF completely, up
to a constant. We deliberately use the same names for thesgiamtities like
before in the dynamic programming solution of the lineardya#c trajectory
estimation problem, because they will turn out to obey thmesaropagation
rule, i.e. they are identical. The recursion formula

PO 2lYos . -+ Yn) = CONSt f P PO - -+ Y1) P(YolXos W) e

fn(Xann):XrHl

becomes in this special case the following expression:

_1 2 _Lix —x 12— Ly.— 2
P(uetlyos . . . Yo) = CONSE: f & SR - 0=, o 3I3n-Coelly g
Ao

Xn+0n+Wn=Xn1

= const: fe*%”/*ﬂxﬁbn%ﬂllée—%Hxn—x’nlléne—%uyn—cm% dx,

= const: fe_%(”AnXn‘*'bn_xmleR"'Hxn_)?n”%n+”yn_cm||é) an.



17.7 Kalman Filter and Extended Kalman Filter 325

The exponent in the last line is the same expression as we éfadebin
Eqg. (17.6), and can therefore, following Corollary 17.2wrédten as

2 7112 2

1AnXn+bn = Xn:1llg + 1% = Xallp, + [IYn — Cxallg
v 2 2
= const+ [ Xns1 — >(n+1||pn+1"‘ (IM+MXn1 + Xn”ﬁ

using the same definitions &,,1 andX,;1 andR as before, and whera and

M are a constant vector and matrix of suitable dimensionsweatould, but
do not want to write down in detail here, as their values atgelevant. Using
this identity and the fact that a sum of exponentials traaslato a product,
we can further simplify the integral above to obtain thedaling expressions.

_1 X2 _1 2
P(Xn+1lYo, - - ., Yn) = const- e 21—l fe 2 MM a1 +Xnllg dx,

=const

— const: g 2Pl

Here, we have used the fact that the integral is constantbedtis the integral
over a Gaussian distribution with variable mean value bostant covariance
matrix. The value of such an integral is indeed independgtiteolocation of
the mean, and therefore independentxgfi. This simple fact is the reason
why the recursive Bayesian estimation of the last statesgaxactly the same
result — up to a constant — as the arrival-cost computatiardynamic pro-
gramming. We remark that this identity is only true for linegstems with
Gaussian measurement noise and state disturbances. Aestinig subject for
future research is to investigate the general nonlinearoor@aussian case
and to compare the PDF that is implied by the dynamic prograagirompu-
tation of the arrival cost with the PDF resulting from theuesive Bayesian
estimation of the last state.

17.7 The Kalman Filter and the Extended Kalman Filter
Equations

Let us summarize again, from a user perspective, the reeuadjorithm to
compute the arrival cost — or, equivalently, the negatigafdhm of the condi-
tional PDF — for linear systems with Gaussian noises. Tlgerahm was first
derived by Rudolf E. Kalman and is therefore called the Kalfilser.

Input data: An initial meanx, and inverse covariande,, a measuremert,
with inverse measurement noise covariaQoef noisevi and matrixC, in the



326 Moving Horizon Estimation

measurement modg}, = CnX, + Vq,, the matrixA, and drift termby, in the
propagation modek,.; = AnXn + by + W, and an inverse covarianéeof the
state noisenv,. We note that we might have chosé€nandR to depend om
without changing the algorithm. The following set of realued vectors and
matrices forms thus the input of the algorithm:

()?n, Pn, Qs Cn, An, bn, R)

Computational steps: Compute the intermediate quantities
Ri=Py+C QG+ AJRA, and $:= (PpX, — C] Qyn + ATRIy),
as well as the result

Prip i= (R— (AnTR)Tﬁe-lA;R) and g1 = -P-L (—Rb1 + (A,IR)TF”Q—lé).

Output data: A meanXx,,; and inverse covariancB,,; that represent the
conditional PDRP(Xn+1lYo, - - - » Yn), OF, alternatively, the arrival-coat,, 1 (Xn+1)-

The Extended Kalman Filter

The Extended Kalman Filter (EKF) applies the same algoritmonlinear
systems of the form

Xne1 = F(Xn) +Wn  and vy, = g(xn) + Vn
by linearizing the nonlinear functionsandg at the currently most probable
value, namely ax,. This means that we use the following linear models:
_, of _ _
Xne1 = T(Xn) + 2= () (X = Xn) + Wh
and
_, 0g9,_ _
Yo = 9(%n) + (9_)((Xn)(xn — Xn) + Vn.

To bring the data into exactly the same format as the above&alfilter equa-
tions require, we define the corresponding Kalman filter irffata as follows:

f_ _ _
A= T %) and by = 1) - A,

as well as
ag,— _ _
Cni= a—x(xn) and yn =Yy, — 9(%) + CnXn.
After the Kalman filter computations, the new mean vatye is obtained, and
can be used as the linearization point for the next step dEkfe



References

[1] ACADO Toolkit. httpy//www.acadotoolkit.org, 2009-2016.

[2] J. Albersmeyer and M. Diehl. The lifted Newton method and its applicdtion
optimization.SIAM Journal on Optimizatiqr20(3):1655-1684, 2010.

[3] U.M. Ascher and L.R. Petzold.Computer Methods for Ordinary Perential
Equations and Dferential-Algebraic EquationsSIAM, Philadelphia, 1998.

[4] B. Bank, J. Guddat, D. Klatte, B. Kummer, and K. Tamméan-Linear Parame-
tric Optimization Birkhauser Verlag, 1983.

[5] R. Bellman.Dynamic programmingPrinceton University Press, 1957.

[6] A. Bemporad, F. Borrelli, and M. Morari. Model Predictive ContBased on
Linear Programming - The Explicit SolutionEEE Transactions on Automatic
Control, 47(12):1974-1985, 2002.

[7]1 A. Bemporad, F. Borrelli, and M. Morari. Min-max Control of Cdrained Un-
certain Discrete-Time Linear SystemEEE Transactions on Automatic Contyol
2003. in press.

[8] A. Ben-Tal and A. NemirovskilLectures on Modern Convex Optimization: Ana-
lysis, Algorithms, and Engineering Application@lume 3 ofMPSSIAM Series
on Optimization SIAM, 2001.

[9] D. Bertsekas.Dynamic Programming and Optimal Contralolume 1. Athena
Scientific, 3rd edition, 2005.

[10] D.P. Bertsekas.Dynamic Programming and Optimal Contralolume 1 and 2.
Athena Scientific, Belmont, MA, 1995.

[11] D.P. Bertsekas and J.N. Tsitsiklideuro-Dynamic ProgrammingAthena Scien-
tific, Belmont, MA, 1996.

[12] J.T. Betts. Practical Methods for Optimal Control and Estimation Using Nonli-
near Programming SIAM, 2nd edition, 2010.

[13] L. T. Biegler. Solution of dynamic optimization problems by sucogsguadratic
programming and orthogonal collocatidbomputers and Chemical Engineering
8(3—4):243-248, 1984.

[14] Lorenz T. BieglerNonlinear ProgrammingMOS-SIAM Series on Optimization.
SIAM, 2010.

[15] L.T. Biegler and J.B Rawlings. Optimization approaches to nonlimeadel pre-
dictive control. InProc. 4th International Conference on Chemical Process Con-
trol - CPC IV, pages 543-571. AIChE, 1991.

327



328 References

[16] J. Bjornberg and M. Diehl. Approximate robust dynamic programming aAd r
bustly stable MPCAutomatica 42(5):777-782, May 2006.

[17] J. Bjornberg and M. Diehl. Approximate dynamic programming for genemaifo
robustly stable feedback controllers. In H. G. Bock, editbodeling, Simulation
and Optimization of Complex Processes: Proceedings of the Third httenal
Conference on High Performance Scientific Compytpages 69-86. Springer
Berlin Heidelberg, 2008.

[18] H. G. Bock, M. Diehl, E. A. Kostina, and J. P. Séber. Constrained optimal
feedback control of systems governed by largeedéntial algebraic equations. In
Real-Time and Online PDE-Constrained Optimizatipages 3—22. SIAM, 2007.

[19] H. G. Bock, M. Diehl, D. B. Leineweber, and J.P. Sudiér. Hificient direct mul-
tiple shooting in nonlinear model predictive control. In F. Keil, W. Mackens
H. Vo, and J. Werther, editorScientific Computing in Chemical Engineering I
volume 2, pages 218-227. Springer, 1999.

[20] H. G. Bock and K. J. Plitt. A multiple shooting algorithm for direct solutiain
optimal control problems. IfProceedings of the IFAC World Congregmges
242-247. Pergamon Press, 1984.

[21] H.G. Bock. Randwertproblemmethoden zur Parameteridentifizierung in Syste-
men nichtlinearer Dferentialgleichungenvolume 183 oBonner Mathematische
Schriften Universitit Bonn, Bonn, 1987.

[22] S. Boyd and L. VandenbergheConvex Optimization University Press, Cam-
bridge, 2004.

[23] K.E. Brenan, S.L. Campbell, and L.R. Petzolthe Numerical Solution of Initial
Value Problems in Ordinary Qfierential-Algebraic Equations North Holland
Publishing Co., Amsterdam, 1989.

[24] K.E.Brenan, S.L. Campbell, and L.R. Petzditimerical solution of initial-value
problems in dfferential-algebraic equationsSIAM, Philadelphia, 1996. Classics
in Applied Mathematics 14.

[25] A.E. Bryson and Y.-C. HoApplied Optimal Control Wiley, New York, 1975.

[26] C. Buskens and H. Maurer. SQP-methods for solving optimal controllgmna
with control and state constraints: adjoint variables, sensitivity analydisesat-
time control. Journal of Computational and Applied Mathematit20(1-2):85—
108, 2000.

[27] H. Chen and F. Allgwer. A gquasi-infinite horizon nonlinear model predictive
control scheme with guaranteed stabilifjutomatica 34(10):1205-1218, 1998.

[28] G. B. Dantzig.Linear Programming and ExtensionBrinceton University Press,
1963.

[29] G. De Nicolao, L. Magni, and R. Scattolini. Stability and RobustnessarfliN
near Receding Horizon Control. In F. Agrer and A. Zheng, editordonlinear
Predictive Control volume 26 ofProgress in Systems Theppages 3-23, Basel
Boston Berlin, 2000. Birkauser.

[30] M. Diehl. Real-Time Optimization for Large Scale Nonlinear Procesgelsime
920 of Fortschritt-Berichte VDI Reihe 8, Mel3-, Steuerungs- und Regelurigstec
nik. VDI Verlag, Dusseldorf, 2002. PhD Thesis.

[31] M. Diehl and J. Brnberg. Robust dynamic programming for min-max model
predictive control of constrained uncertain systefEEE Transactions on Auto-
matic Contro| 49(12):2253-2257, December 2004.



References 329

[32] M. Diehl, H. G. Bock, and J. P. Sdbdler. A real-time iteration scheme for non-
linear optimization in optimal feedback contro8IAM Journal on Control and
Optimization 43(5):1714-1736, 2005.

[33] M. Diehl, H. G. Bock, J. P. Schier, R. Findeisen, Z. Nagy, and F. Adlger.
Real-time optimization and nonlinear model predictive control of prasess
governed by dferential-algebraic equations. Journal of Process Contrpl
12(4):577-585, 2002.

[34] M. Diehl, H. J. Ferreau, and N. Haverbekefi&ent numerical methods for non-
linear MPC and moving horizon estimation. In L. Magni, M.D. Raimondal an
F. Allgdwer, editorsNonlinear model predictive controtolume 384 of_ecture
Notes in Control and Information Sciencg@sages 391-417. Springer, 2009.

[35] M. Diehl, R. Findeisen, and F. Allgver. A stabilizing real-time implementation
of nonlinear model predictive control. In L. Biegler, O. Ghattas, M. Hein
schloss, D. Keyes, and B. van Bloemen Waanders, edRaal-Time and Online
PDE-Constrained Optimizatiqmpages 23-52. SIAM, 2007.

[36] M. Diehl, R. Findeisen, F. Allgwer, H. G. Bock, and J. P. Séder. Nominal
stability of the real-time iteration scheme for nonlinear model predictivérabn
IEE Proc.-Control Theory Appl152(3):296-308, 2005.

[37] Moritz Diehl, Hans Georg Bock, Holger Diedam, and Pierre-Briceb#r. Fast
Motions in Biomechanics and Robotieslume 340, chapter Fast Direct Multiple
Shooting Algorithms for Optimal Robot Control, pages 65—93. SprirR{#6.

[38] Moritz Diehl, Lalo Magni, and Giuseppe De NicoladfiEient NMPC of unstable
periodic systems using approximate infinite horizon closed loop costingual
Reviews in Contrgl28(1):37-45, 2004.

[39] H.J.Ferreau, H. G. Bock, and M. Diehl. An online active setegwpto overcome
the limitations of explicit MPC.International Journal of Robust and Nonlinear
Control, 18(8):816—830, 2008.

[40] H.J. FerreaugpOASES User's Manug2007-2011. httgawww.qpOASES.org

[41] R. Findeisen and F. Aligwer. Computational Delay in Nonlinear Model Pre-
dictive Control. Proc. Int. Symp. Adv. Control of Chemical Processé®CHEM,
2003.

[42] R. Franke.Integrierte dynamische Modellierung und Optimierung von Systemen
mit saisonaler WarmespeicherunghD thesis, Technische Univegitimenau,
Germany, 1998.

[43] P.E. Gill, W. Murray, and M.A. Saunders. SNOPT: An SQP alganifor large-
scale constrained optimization. Technical report, Numerical AnalygioR87-
2, Department of Mathematics, University of California, San Diego,dla,JCA,
1997.

[44] A. Griewank and Ph.L. Toint. Partitioned variable metric updatesdige struc-
tured optimization problem$\lumerische Mathemat;il89:119-137, 1982.

[45] A. Griewank and A. WaltherEvaluating DerivativesSIAM, 2 edition, 2008.

[46] J. Guddat, F. Guerra Vasquez, and H.T. Jondramametric Optimization: Singu
larities, Pathfollowing and JumpsTeubner, Stuttgart, 1990.

[47] A. Helbig, O. Abel, and W. Marquardt. Model predictive controt bn-line opti-
mization of semi-batch reactors. Rroceedings of the American Control Confe-
rence (ACC)pages 1695-1699, Philadelphia, 1998.



330 References

[48] G.A. Hicks and W.H. Ray. Approximation methods for optimal cohfiystems.
Can. J. Chem. Engngd9:522-528, 1971.

[49] B. Houska, H. J. Ferreau, and M. Diehl. ACADO toolkit — an opeurse frame-
work for automatic control and dynamic optimizatid@ptimal Control Applica-
tions and Methods32(3):298-312, 2011.

[50] C.N. Jones and M. Morari. Polytopic approximation of explicit mqztedictive
controllers.|IEEE Transactions on Automatic Conty@l5(11):2542—-2553, 2010.

[51] W. Karush. Minima of Functions of Several Variables with Inequalitis Side
Conditions. Master’s thesis, Department of Mathematics, Universityhafa@o,
1939.

[52] S.S. Keerthi and E.G. Gilbert. Optimal infinite-horizon feedbaeksléor a gene-
ral class of constrained discrete-time systems: Stability and movingemogig-
proximations.Journal of Optimization Theory and Applicatiqris? (2):265-293,
1988.

[53] P. Kramer-Eis and H.G. Bock. Numerical Treatment of State and Controt Co
straints in the Computation of Feedback Laws for Nonlinear Control Rrable
In P. Deuflhard et al., editot,arge Scale Scientific Computingages 287—-306.
Birkhauser, Basel Boston Berlin, 1987.

[54] H.W. Kuhn and A.W. Tucker. Nonlinear programming. In J. N&n, editor,
Proceedings of the Second Berkeley Symposium on Mathematical Staiigtics
Probability, Berkeley, 1951. University of California Press.

[55] D. B. Leineweber, I. Bauer, A. A. S. Safer, H. G. Bock, and J. P. Scider. An
efficient multiple shooting based reduced SQP strategy for large-scalendyna
process optimization. (Parts | and II)Computers and Chemical Engineering
27:157-174, 2003.

[56] D. B. Leineweber, A. A. S. Séfer, H. G. Bock, and J. P. Scider. An dficient
multiple shooting based reduced SQP strategy for large-scale dynaotiesgr
optimization. part Il: Software aspects and applicati@@smputers and Chemical
Engineering 27:167-174, 2003.

[57] W. C. Liand L. T. Biegler. Multistep, Newton-type control stratedi@sconstrai-
ned nonlinear processeBhem. Eng. Res. De&7:562-577, 1989.

[58] W.C. Li and L.T. Biegler. Newton-Type Controllers for ConstdnNonlinear
Processes with Uncertaintylndustrial and Engineering Chemistry Research
29:1647-1657, 1990.

[59] L. Ljung. System identification: Theory for the Us@rentice Hall, Upper Saddle
River, N.J., 1999.

[60] J. Mattingley, Y. Wang, and Stephen Boyd. Code generation &adiag horizon
control. InProceedings of the IEEE International Symposium on Computer-Aided
Control System Desigipages 985-992, Yokohama, Japan, 2010.

[61] D. Q. Mayne and H. Michalska. Receding horizon control of n@dinsystems.
IEEE Transactions on Automatic Contr@5(7):814-824, 1990.

[62] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaeronstrained
model predictive control: Stability and optimalityAutomatica 26(6):789-814,
2000.

[63] A. M'hamdi, A. Helbig, O. Abel, and W. Marquardt. Newton-type deeling
Horizon Control and State Estimation. Pmoc. 13rd IFAC World Congrespages
121-126, San Francisco, 1996.



References 331

[64] J. Nocedal and S. J. WrighNumerical Optimization Springer Series in Opera-
tions Research and Financial Engineering. Springer, 2 edition, 2006.

[65] T. Ohtsuka. A continuatigleMRES method for fast computation of nonlinear
receding horizon controlAutomatica 40(4):563-574, 2004.

[66] M.R. Osborne. On shooting methods for boundary value prohlelournal of
Mathematical Analysis and Applicatiora7:417—-433, 1969.

[67] E.N. Pistikopoulos, V. Dua, N. A. Bozinis, A. Bemporad, and Mordri. On-line
optimization via df-line parametric optimization tool€omputers and Chemical
Engineering 24:183-188, 2000.

[68] L.S. Pontryagin, V.G. Boltyanski, R.V. Gamkrelidze, and E.Rksdénko. The
Mathematical Theory of Optimal Process#&%iley, Chichester, 1962.

[69] S. Sager, H. G. Bock, and M. Diehl. The integer approximatioarém mixed-
integer optimal controlMathematical Programming (Series, A)33:1-23, 2012.

[70] R. W. H. Sargent and G. R. Sullivan. The development of fficient optimal
control package. In J. Stoer, edit®oceedings of the 8th IFIP Conference on
Optimization Techniques (1977), Partiages 158-168, Heidelberg, 1978. Sprin-
ger.

[71] A. Schéfer, P. Kihl, M. Diehl, J.P. Sclilder, and H.G. Bock. Fast reduced multiple
shooting methods for nonlinear model predictive contf@hemical Engineering
and Processing46(11):1200-1214, 2007.

[72] A.A.S. Sctlafer.Efficient reduced Newton-type methods for solution of large-scale
structured optimization problems with application to biological and chemiaal pr
cessesPhD thesis, University of Heidelberg, 2005.

[73] J.P. Schbdder. Numerische Methoden zur Behandlung hochdimensionaler Aufga-
ben der Parameteridentifizierungolume 187 oBonner Mathematische Schrif-
ten Universiit Bonn, Bonn, 1988.

[74] Y. Shimizu, T. Ohtsuka, and M. Diehl. A real-time algorithm for nonéinee-
ceding horizon control using multiple shooting and continugoylov method.
International Journal of Robust and Nonlinear Contrd9:919-936, 2009.

[75] M. C. Steinbach. A structured interior point SQP method for nontigdimal
control problems. In R. Bulirsch and D. Kraft, editoSpmputation Optimal
Control, pages 213-222, Basel Boston Berlin, 1994. Bikser.

[76] M.J. Tenny, S.J. Wright, and J.B. Rawlings. Nonlinear modeHdfutive cont-
rol via feasibility-perturbed sequential quadratic programmi@pmputational
Optimization and Application®28(1):87-121, April 2004.

[77] T.H. Tsang, D.M. Himmelblau, and T.F. Edgar. Optimal contria golloca-
tion and non-linear programmingnternational Journal on Control21:763—-768,
1975.

[78] A. Wachter and L. Biegler. IPOPT - an Interior Point OPTimizer.
httpsj/projects.coin-or.orpopt, 2009.

[79] Andreas Véchter and Lorenz T. Biegler. On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programmihgthe-
matical Programming106(1):25-57, 2006.

[80] L. Wirsching. An SQP Algorithm with Inexact Derivatives for a DiteMultiple
Shooting Method for Optimal Control Problems. Master's thesis, Usityeof
Heidelberg, 2006.



332 References

[81] L.Wirsching, H.J. Ferreau, H.G. Bock, and M. Diehl. An onlir¢ive set strategy
for fast adjoint based nonlinear model predictive controlPiaprints of the 7th
Symposium on Nonlinear Control Systems (NOLCOS), Pret2diay .

[82] V. M. Zavala and L. T. Biegler. The advanced step NMPC controgtimality,
stability and robustnesg&utomatica 45:86—93, 2009.



	Preface
	Introduction: Dynamic Systems and Optimization
	Dynamic System Classes
	Continuous Time Systems
	Discrete Time Systems
	Optimization Problem Classes
	Overview, Exercises and Notation
	Exercises

	Root-Finding with Newton-Type Methods
	Local Convergence Rates
	A Local Contraction Theorem
	Affine Invariance
	Tight Conditions for Local Convergence
	Globalization
	Exercises

	Nonlinear Optimization
	Important Special Classes
	First Order Optimality Conditions
	Second Order Optimality Conditions
	Exercises

	Newton-Type Optimization Algorithms
	Equality Constrained Optimization
	Local Convergence of Newton-Type Methods
	Inequality Constrained Optimization
	Globalisation Strategies
	Exercises

	Calculating Derivatives
	Algorithmic Differentiation (AD)
	The Forward Mode of AD
	The Backward Mode of AD
	Algorithmic Differentiation Software
	Exercises

	Parameter Estimation
	Parameter Estimation via Least-Squares Penalties
	Alternative convex penalties
	Exercises

	Discrete Optimal Control
	Optimal Control Problem (OCP) Formulations
	Analysis of a Simplified Optimal Control Problem
	Sparsity Structure of the Optimal Control Problem
	Exercises

	Dynamic Programming
	Dynamic Programming in Discrete State Space
	Linear Quadratic Problems
	Infinite Horizon Problems
	The Linear Quadratic Regulator
	Robust and Stochastic Dynamic Programming
	Interesting Properties of the DP Operator
	The Gradient of the Value Function
	A Discrete Time Minimum Principle
	Iterative Dynamic Programming
	Differential Dynamic Programming
	Exercises

	Continuous Time Optimal Control Problems
	Formulation of Continuous Time OCP
	Problem reformulation
	Multi-stage Problems
	Hybrid problems
	what else ? 
	Overview of Numerical Approaches
	Exercises

	Numerical Simulation
	Numerical Integration: Explicit One-Step Methods
	Stiff Systems and Implicit Integrators
	Orthogonal Collocation
	Sensitivity Computation for Integration Methods
	Second-order sensitivities
	Exercises

	The Hamilton-Jacobi-Bellman Equation
	Dynamic Programming in Continuous Time
	Linear Quadratic Control and Riccati Equation
	Infinite Time Optimal Control
	Exercises

	Pontryagin and the Indirect Approach
	The HJB Equation along the Optimal Solution
	Obtaining the Controls on Regular and on Singular Arcs
	Pontryagin with Path Constraints
	Properties of the Hamiltonian System
	Connection to the Calculus of Variations
	Numerical Solution of the TPBVP
	Exercises

	Direct Approaches to Continuous Optimal Control
	Direct Single Shooting
	Direct Multiple Shooting
	Direct Collocation method 
	A Classification of Direct Optimal Control Methods
	Direct Methods for Singular Optimal Control Problems 
	Exercises

	Optimal Control with Differential-Algebraic Equations
	What are DAEs ?
	Differential Index of DAEs
	Index reduction
	Direct Methods with Differential-Algebraic Equations
	Exercises

	Model Predictive Control and Moving Horizon Estimation
	NMPC Optimization Problem
	Nominal Stability of NMPC
	Online Initialization via Shift
	Outline of Real-Time Optimization Strategies
	Exercises

	Parametric Nonlinear Optimization
	Parametric Nonlinear Programming
	Critical Regions and Online Active Set Strategies
	Exercises

	Moving Horizon Estimation
	State and Parameter Estimation Problem Formulation
	The Trajectory Estimation Problem
	DP for the Trajectory Estimation Problem
	Linear Quadratic Trajectory Estimation
	Recursive Bayesian Estimation of the Last State
	Last State for Linear Systems with Gaussian Noises
	Kalman Filter and Extended Kalman Filter

	References

