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Exercises for Course on Modeling and System Identification (MSI)
Albert-Ludwigs-Universität Freiburg – Winter Term 2019-2020

Exercise 4: Weighted Linear Least-Squares
(to be returned on Nov 27, 2019, 8:30 in HS 00 036 (Schick-Saal),

or before in building 102, 1st floor, ’Anbau’)

Prof. Dr. Moritz Diehl, Tobias Schöls, Naya Baslan, Jakob Harzer, Bryan Ramos

The aim of this sheet is to strengthen your knowledge in least squares estimation and introduce some basic
properties about quadratic functions and how they relate to weighted linear least-squares.

Exercise Tasks

1. ON PAPER: We would like to find the parameters θ̂LS of a linear model yk = φk · θ + εk, where
εk ∼ N (0, σ2

ε ) is an additive i.i.d. zero-mean Gaussian noise that perturbed a series of N scalar
measurements y = [y1, . . . , yN ] ∈ RN . From the lecture we know that θ̂LS can be computed using
least-squares:

θ̂LS = arg min
θ

1

2
‖y − Φθ‖22

where Φ ∈ RN×d. Assume that σ2
ε is known.

(a) Define the matrix Φ and state the closed form solution of least squares problem. θ̂LS = . . .

(b) Calculate the covariance of the least squares estimate. cov
(
θ̂LS

)
= . . .

Hint: Recall from Exercise 2 that the covariance matrix of a vector-valued variable Y = AX + b
for a constant A ∈ Rm×n and b ∈ Rm is given by cov (Y ) = A cov (X)A>.

(2 points)

2. ON PAPER: Consider a series of N scalar measurements y = [y1, . . . , yN ] ∈ RN and a linear model
yk = φk · θ + εk, where εk ∼ N (0, σ2

k) and all σ2
k, k = 1, . . . , N can be different, e.g. time

depending. The measurements thus are perturbed by additive independent zero-mean noise that is
not identically distributed. In order to give a lower weight to the measurements with stronger noise,
we introduce a weightning positive definite matrix W ∈ RN×N . Consider the following weighted
least-squares optimization problem (WLS)

min
θ∈Rd

1

2
‖r‖2W =

1

2
r>Wr (1)

where r = [r1, . . . , rN ] ∈ RN is the vector of the prediction errors rk = yk − φk · θ , the regression
vectors are denoted by φ1, . . . , φN ∈ Rd and the unknown parameters by θ ∈ Rd .

(a) Please re-write the WLS optimization problem (1) as an unweighted LLS problem, i.e. specify
ỹ and Φ̃ such that

min
θ∈Rd

1

2
‖ỹ − Φ̃θ‖22 = min

θ∈Rd

1

2
r>Wr

(1 point)

Hint: The reformulation found above and (1) are equivalent, use either one for (b) and (c)

(b) Is it a convex problem? Prove it. (1 point)

(c) Analytically solve the optimization problem. (1 point)
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3. Recall the resistance estimation example from the last exercise sheet. Again, we consider the fol-
lowing experimental setup:

i(k)

R

+ −
E

V

u(k)

We assume that only our measurements of the voltage are corrupted by noise, i.e. we make the
following model assumption:

u(k) = R0i(k) + E0 + nu(k) σ2
k = c · k, k = 1, . . . , Nm

where nu(k) ∼ N (0, σ2
k) follows a zero-mean Gaussian distribution.

You are given the data of Ne students, each of them performed the same experiment where they
measured the voltage u(k) for increasing values of i(k), k = 1, . . . , Nm.

Unfortunately, the fan of your measuring device is broken. Thus, it starts heating up over the course
of the experiment which decreases the accuracy of your measurements such that later measurements
are much noisier than earlier ones.

(a) ON PAPER: On Grader we already provided a plot showing the measurements from all stu-
dents. What do you observe?
To account for the decreasing accuracy of your measuring device, you decide to assume that
the noise variance σ2

k is proportional to the timestep k, i.e.

σ2
k = c · k, k = 1, . . . , Nm,

for some fixed value of c (you may start by chossing c = 1). How do you make use of this
assumption when applying weighted linear least-squares? (1 point)

(b) MATLAB: For student 1, perform both linear least-squares (LLS) and weighted linear least-
squares (WLS) to obtain estimates of the parameter θ0 = [E0, R0]

>. Plot the data of student 1,
as well as the fit obtained from LLS and WLS in a single figure. (1 point)

(c) ON PAPER: What do you observe? (1 point)

(d) MATLAB: For each student d = 1, . . . , Ne, compute θ(d)LLS and θ(d)WLS. (1 point)
(e) MATLAB: Estimate the mean and covariance matrix of the random variables θLLS and θWLS by

calculating the sample mean θ̄∗LS = 1
Ne

∑Ne

d=1 θ
(d)
∗LS and the sample covariance matrix Σ∗LS that

is given by

Σ∗LS =
1

Ne − 1

Ne∑
d=1

(
θ
(d)
∗LS − θ̄∗LS

)(
θ
(d)
∗LS − θ̄∗LS

)>
.

Here ∗LS refers to LLS and WLS. (1 point)

(f) MATLAB: Plot θ(d)LLS and θ(d)WLS, d = 1, . . . , Ne, where the x-axis corresponds to the estimated
R values and the y-axis corresponds to the estimated E values.
Plot the mean and 1σ-confidence ellipsoids for both θLLS and θWLS in the same figure.(1 point)

(g) ON PAPER: What do you observe? (1 point)
(h) ON PAPER: In part (b) we assumed that the measurement noise is proportional to k. Does

θWLS depend on the choice of the proportionality factor? Why (not)? (1 point)

This sheet gives in total 11 points.
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