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ML estimation

he modelling assumprion:

e For all possible parameter values:

RS, MAXIMUM LIKELIHOOD AND BAYESIAN ESTIM

R e Compute likelihood of the given
| observation

e Pick the most likely!
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Ferris Wheel

sin(a) ~ — 0.1
sin(a + 30°) ~ 0.6
sin(a + 60°) ~ 0.9
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Ferris Wheel

sin(a) + ¢, = —0.1
sin(a + 30°) + €, = 0.6

sin(a + 60°) + €3, = 0.9
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Matlab demo

% Defining a nonlinear model M
M = @(a) sin(a + pi/6 * [0 1 2]")

% Our noise covariance matrix
C = diag(0.5%2 * [1 1 1])

% Square root of the covariance

S = sqrtm(C)

% Measurements

y = [-0.1, 0.6, 0.9]"

% The optimally weighted residual function
R = @(a) inv(s) * (M(a) - y)

% Likelihood

% (During the lecure, I forgot the "0.5" below. Sorry about that! /Per)
P = @(a) exp(-0.5*sum(R(a) .*2))
%

A vector of values to try for the angle a
as = -pi:0.01:pi;

% Evaluate p for each element of the vector
% Note: Matlab automatically "broadcasts" opearations like exp, * and + across dimensions
ps = p(as);

Alternatively, we could have written:
ps = arrayfun(p, as);

o° o°

Another way would be:
pPs = zeros(size(as));
for i=l:length (ps)

ps(i) = p(as(i));
end

o° o o° o0 o

% Plot p as funcition of a
plot(as, ps)

% Find the maximum and its location:
[pmax, ix] = max(ps)
a = as(ix)
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e The Gauss-Newton method:

e Linearise the residual function at a point
your best guess

 Solve a linear least squares problem
Find a better guess

e Repeat!

Okt 11 = Oy — J(G9) ' R(O)
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Wien we formulete 2d solve  nonliness leas: weaeed 1o wse m tine
i e o keibood ximte. 1 et 10 o thin, we 43 st wchor of model essuremns
satch residuals y — M (6] by using a - usually diagomal - geess X, of the covaniance maurix of the aoise. in
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ander w cbtain the scaled residual vecwe R(9) <= 37°% (M(9) - y) such that the mavimem lkelihood estimase
4 = 8* is obuained by the solztion of the apeimizatin problem

# = aogmin S IR(S)IE (5.30)
e

Note that the residual funcrion R maps from R7 w0 R, and et most soution aigorithims feguire the uses 1o pass
this function R(9) —)mJ not e objective function f(6) = 31 R(6)| - 10 the wobver. We want %0 answer throe

qestions in s sect

o How i we saive e poslisear Jeast uares optimization peoblem (5.30) i practice?
« How can we abeain an estimane of the covarisncs matrix of the parameer estimase?
 How can we assess i the modelling assumprions, in particular on e nase, were correet?

We will answer the three questions in the following theee ssbsections

551 The Gauss-Newton Algorithm

o sonlinear e sqares robicnsare like MAT-
LAR's Locynon] . which expect the user 0 o 3 a inii oess for e parameter § - which we call §: in
.wm.mm R-RE - RY peeithms can csly guaran o-
. Staniag at the inital puess 6 n~ penerate a sequence of Meraes that we call B, 6,
54 vostor i the space R and tht we use recunguiar parcatheses -4, in he indes in onder 1o distn-
e it from she componet index. A bassc reguisemen of al algonthass Is that they should conves o 6
tha sagisties at least the £t onder necessary opemality condition, L., 10 & point that sazisties ¥ /(67) ~ 0. Most
algorithms ace vasizats of the so-called Gasss-Newton method described next, thocgh oéien these varkaats come
under very differens aames sach 25 "Levenberg- Marguasnd Algociha™ or “Trst-Region-Refleciive Method”

Tdea:  Bocase we know very well Bow 10 sobve Bacar least squares peoblems and because all nonlineas functions
can locally be apgeosimaiod by their first order Tayloe series, a sirsghtforwand.
sqgres geotiem hased on e finearization al a solution guess 6.4, in oeder o
Maee concresely. for sy soleekn guess ) we bave @ R(6) — R(64 )

20d i we use the fins onder Tayke series to formalese a lincar least squires proddem in order
obesin the expre:

-6l 531)

=i} +

THOGN TGN () O
J(0%) () I8 RiBx)
“RB)

Nete that the fieration above Is caly well defined if the Jacoblan matrix J{$e) Is of fall rank, bus thas in peac-
tical implementaticas, small algocihm modificstions easure that each lteratkn s well defaod. With the sbove
expression., we have aiready defined the basic Gazss-Newton algorishen. One can show that - If the
Gauss-Newtoa algocshm comverges linearly 10 & stasionary poins: 6 wih Uf(6%) = 0, But & peood of this result Is
beyand our interest bere.

wever. 8 onder 1o understand the algoeithm  bit better and to see at lesst why the algoeithm doss oot move
away froes  stationary pois, i s wseful 20 Jook sk explici exgeessics for @ derivatives of the cbjective function

s2 CHAPTER 5. MAXIMUM LIKELIHOGD AND BAYESIAN ESTIMATION

1) (536)
v IR (8)R, J(6)” RiS; (531
v 1) 6) J(8) + YV RAGR9) (539)

Using some of the above expressias, the erations of the Gauss-Newton algorihes can be written as
By = B~ Box(64) 7' O (6s

11 s bs s, 15 expactod o opiniion algaiben, s e sgritn woukd st movs s o 3
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maix B, (9) i calied the Gawas-Newton P approximarion. Note @ it is a positive semidefinite matrix,
but ot secessarily positive definite. In variasts of the Gauss-Newson metbeod, for example i the Leventeng-
Marquarck ;xunn—; e Gaasy-Newton Hnu\rv gion is firs uvmrv.br.l st then mexdifed i the actua
ha the Hessiaa o that the steps
rezmain szall um..p- for e e nder Taylor s 10 ool sppronimetion ofthe acheal fenction
Iadepentens of which alporithm Is used, 2t the end of the call of the optimization solver, the solver will retaen
avabse 6 that is s approximate local misimices of £(6). We will use % s the maximam-likcibood estimate,
e s 1o 0. lateresingly. & s useful o also cbtain from the sgors - or 50 fecompuic aficowards - the
mverse Garsss-Newton Hossian Hon (§%) ', bocasse it can serve as appeasimation of e covatiance matrix of @is
estimae

552 Estimating the Covariance Matrix and Extracting its Relevant Entries

‘The easies: way t0 cbtain 2 rosgh estimate of the covarizace marix X; of the parameter estimate 9° wosld be %0
‘assume thes the bacarizaskia of R & the solution is the coemect model. and that all the statstical assumprions we
made in @e formulation of the function R were Coerect, e., that we Indeed had Gusssian nose wih covanance
s lincae Ieast s anabysin, we could then direstly use Boa(6°) ' as paameser
covariance marix. Note that, dse 0 the scaling in the exgeessicn R(6) = £, 7 (3(8) - y). oer assumpeion
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following detaled matrix expeessica:
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Teking the square root of the vanances yiekds e sundard deviations, sach that the final resalt of the whale
parameter estimation procedase cosld be presented by caly 24 nehers in the foem

for i=1,....d

553 Checking the Optimal Residual Vector

Because the whale analysls & this section is hased o e measaremment data this we use foe the estmmation, we
will ot be able w complesely answer e guestion of madel valldaticn, namely if o model is sble 1o make valid
predictions foe new situatias. For model validon, we would need another set of measurement daia @4t were
Dot isvoived in the estimation procedure, for example a new experiment that s performed after the estimation
procedare is finished, or a previeusly oondusted experiment that was kept sesret durisg the parameter estimation

3 o parar dimative,
Is 50 look & the resideal vaises K, (6°) foe « = 1,.... N. If we plot them as & feacsion of . they shoald Jook
like & sequence of random aumbers. 13 order to check s @ more detads, cne typically creaies sad ploss 2
histogram of the resatusd valugs K, (6°). If the bisaogram fooks like the hisiopram of 2 260 mesa Gaussie with
uns variance, e model assumptions 0n the sysiem and nolse are likely 9 be comect. If aot, some pant of the
‘madeling sssmptions was probably wrong. One shosd then think hard and change the system or poise model
+ the parameter estimation procedsee, based on the same data, bt o & differest mo

OR 2
O+ = argmm 2HR On)) + o5 & Oixy) (0 — G[k])“2

-

=.J(0[k]

= argmm 2” — J(O) O + R(Opy) + J(Ox)) 6 ”Z

...Ccf4.2 ...

O) ' I (Ox)) " T (Ok)) " (T (Opry) Op

= O — (J(6w)) " (1))~ T (Bx) " R(Bw))

Note: We do not use the Hessian of R

K)))
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When we fomulsse 2nd solve 2 nonliness leas: e, we aeed 10 we
 find e mavmem likelibood extimate. 13 ander to do this, we £rst scale e vector of model.zeasuremsnt-
misemaich residuals y M (6) by using 2 - usually diagonal - geess X, of the covaniance mainix of the aoise. in
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v) such that the maximua Nkelibood estimase

Note that the residual funcrion R maps from RY w0 R, and @t most sebuticn aigorithms require the user to pass
this function R(9) - aad not e objective function £(6) = 4| A6 - 10 the skver. We want %o answer throe
questions in s wection:

@ How do we salve the nonliscar least squares optimization peoblem (5,30) in practice?
‘@ How can we cbeain an estimane of the conariance matrix of the parameer estimae?

 How can we assess f the modelling assumprions, in paricular on e nase, were correct?

We will answer in the ol A
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tha saisties at least the fest onder necessary opemality condition, L., 10 & poin: that sazisties ¥ f X
akgochms are varizats of the so-called Gusss-Newlon method described nexs, thozgh ofen these valants come
under very differens aames sach 25 "Levenberg- Marguasnd Algociha™ or “Trst-Region-Refleciive Method”

Tdea:  Bocasse wo know very well bow o sbve lisear least sqarnes peoblims and because all nonlineas functicas.
an locally be appeosimated by their first order Tayloe serics, a siraightforwand idea wosld be to solve a lincar lcast

sqgares peoblem hased on the linearization at a solution guess 64, in ceder hulurl & besier wolution garss ..,

Maee concresely. for sy soleekn guess bz we bave &t R(6) — R(64 Sy} +O(16 - 84 |3).
20d i we use the first onder Tayke series to formulase a linear leas: iq\u::\ pmN:m in order
obesin the expression

find 6.1, we

N
SIROIE = 5 > Ri(6)?

. R g .
Ay = w)+ a6 — )| 53
By Ri6) + 55 i, 5.31) z_ 1
& _
2
= wrgmins| - J(0) By + RiBy) + J(8) 6 ;
= ()T I 64T () B - RB))
- (J(8) " I(Bwy)) " I(u)) RiB;
- J(0)) R(6)
Note thet the iteration above is caly well defined If the Jacoblan matrix J($4) Is of fll rank, bust that in prac-
tical implementasicas. small atgorihm modifications easure at each lterution Is wel defaed. Wb the shove — — I
expression, we have siready defined the basic Gazss-Newton algonihes. One can show that - If & convespes - the S— - - —
Gauss Newton abgonthm converges linearly 10 & staionary poirs & with V{(6°) ~ 0, bat & peocd of this result s
beyond out interest bere

However, ia onder to understand the algoeithm 2 bit betser andto see 2t least why the algocithm does Dot move
‘away from a stationary point, & is useful 1o Jook at explics expeessicas for e dervatives of the cbjective function
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1. which are given by

JO)J(0)+)  V*Ri(9)Ri(9)

1o = (536) v i 1
216 = - —
:Ban (6)
B = H6) I8+ VRO (538
3079

I

Using some of the above expressias, the erations of the Gauss-Newton algorihes can be written as

G = B = Box(6) ™' OS(0,)

Tt can be seea, as expected from a optimization algoriém, @t the algoeithm w
siationary poink with V£ (ly) = 0. Bst the imverted matrix By (62))~" i front
chasen differeatly. 1f ane would choose the inverse of he exact Hessian matrix,
e so-calied Newsa method; differen choices of Hessan appeoximation give tise W different members in the
cliss of so-catied Newsan-fype the tamily of G thods. The
matrix By, (8) s calied the Gauas Newton Hessian approximtion. Note St It is & positive semidefinite matrix,

3 not mave away from &
e gradient coud also bo

bt et secesarily postive defnite. In variasts of the Ganss-Nowion metbed, for example in the Leventurg-
Manquar al e G Hessian is first computed bt G modifhed in the actusl
essnre that the H definie o that the steps

eesain sl enough fo the s ondr Taylorserses fo resain  pood sppronimetion of e acteal function

of which algoeithm Is used, at the end of the call of the optimization solver, the solver will retaen
a ub.c 6° that is s approximate local misimizer of £(6). We will use it as the maximam-likclibnood estimate,
< U tateresiagly, % bs sseful 0 sk cbiain fr0m the MfgOCEIE — 01 0 fecompuae afterwasd - the
irvrn G Newton ewsan 7 in(87) ", becamse it can
estimane.
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“The easies: way o0 cbtain 2 rough estmate of the coveriace marix ; of the parameter estimate 8° wosld be 0
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e parameser estimaion, cae often only wses the diagesl eniries from i
 the variances o7 of the fespactive parameter componeats 6. & seen in the
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Teking the square reot of the vanances ylelds e sundand deviations, sach that the fimal resalt of the whale
parameter estimation procedase cosld be presented by caly 24 nemmbers In the foem
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Because the whae analysis & this section is ased co e meascrement data thes we use foe the estimation, we
will ot be able w complesely answer e guestion of madel valldaticn, namely if o model is sble 1o make valid
predictions foe new situstioas. For madel validaton, we would need another set of measurement data Sat were
ot isvoived i the estimation procedure, for example a now experimens tha is performed afier the estimation
rocedur s finished, or a previeusly coodusted experiment that was kept secret durisg the prameter estimation
procedere and was just reserved for model ulnhtm
However, what we can do with the o gl P i 3
is 80 look a% the resideal vases B.{6°) foe { = 1,..., N. If we plot them as a foaction of (. they should Jook
like & sequence of random aumbers. 13 order to check s @ more detads, cne typically creaies sad ploss 2
histoprass of the resadust valuss. K, {6°). If the Bisaogram fooks like the hisiogram of 2 260 meea Gaussiaa with
un variance, e model assumptions 0 the sysiems and nolse are likely % be comect. If aot. some pan of the
modelling ssssmptions was probably wrong. One showld then think hard and change the system or nose model
and resiat the parameter estimation procedsee, based on the same data, bet o » difereat model
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Matlab demo

0 = |al

The Jacobian of the R function:
= @(a) inv(S) * cos(a + pi/6 .* [0 1 2]"')

Iterations of the Gauss-Newton algoritm:

a - JdJ(a) \ R(a)

a - J(a) \ R(a)

a - J(a) \ R(a)

a - J(a) \ R(a)

...after a few iterations we should have a good estimate of the
argmin of norm(R(a)) "2
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When we fomulsse 2nd solve 2 nonliness leas: e, we aeed 10 we cal optisn
5 find the mavimam lkelibood eximate. 13 onder %0 do this, we st scale e vector of model-zessuremeat
sach residuals y - M (6] by using 2 - usually diagonal - geess X, of the covariance mainix of the oise. in
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ander w cbtain the scaled residual vecwe R(9) <= 37°% (M(9) - y) such that the mavimem lkelihood estimase

9 is obuained by the soletion of e Optmizatas probles

= angmin 5 IR(9)1E 5.30)
e

Note that the residual funcrion R maps from RY w0 R, and @t most sebuticn aigorithms require the user to pass
this function R(} ~ ad not the objective fanction (6) = 3| R{6)| - 10 the sobver, We want %0 answer three
questions in Gis sostion:

o How do we salve e maslisear beast squares opfimization peoblem (5.30) in practice?
@ How can we obtain an estimane of the covariance matrix of the parameser estimane”

© How can we assess If the modelling assumprions, in parsicular on e naise, were coerect?

We will answer q in the .

551 The Gauss-Newton Algorithm

s pmlu'l. oalinar Icast obl like MAT-
LAR's . which expect the user 0 peovide an inital ocss for the paramter § — which we all 6. in
this section — and a pointer R-RE - RY Ipocithms can coly guaramice t find Jo-
ol ik, Staniag atth il guess s, ey geocrse 3 equcnse of e hat we call By, ... Noss
that cach 5 isa vestor i the space K

geshit from At
St saisties at leatth st ondes necessacy opemality condition, L. 0. poin: hat sasisties ¥ f(6°) ~ 0. Most
akgochms are varizats of the so-called Gusss-Newlon method described nexs, thozgh ofen these valants come
under very differens aames sach 25 "Levenberg- Marguasnd Algociha™ or “Trst-Region-Refleciive Method”

Wdea:  Bocae we know very well bow o sobve sear least sqanes peoblems and because all nonlinear functions
can locally be apgeonimated by thei firs order Taylee serics, a srasghtforwand idea wosld be to solve a lincar least
sqares peodiem hased on e lincarization at 2 solution gucss 6.4, in ceder 8 oblain a betier solution Ferss 4.
Mare concresely, for sy salution guess iz we have St (6] — Rifa ) + 28(0,)(9 - 84, 6~ 0x3).
a0 i we use the firs order Taykoe series 1o formulse o linear least squares peodlem in order 30 find 6, ), we
oesin the expression
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Note thes the heratica above s caly well defined f the Jacoblan matrix J{8) Is of fall rank, bus that in peac-
tical impiementatioes. small algorithm modificazions easure @at each lterasion Is well defaed. With the shove
expression., we have aiready defined the basic Gazss-Newton algorishen. One can show that - If & converpes - the
Gauss-Newtoa algocshm comverges linearly 10 & stasionary poins: 6 wih Uf(6%) = 0, But & peood of this result Is
beyone out interest bere

However, 18 onder to m.gm.m: mr alwnmm 2 bit besmer and o ses at least why the .w.mm does oee
‘away from a stationary poin, of the objective function

CHAPTER 5. MAXIMUM LIKELIHOGD AND BAYESIAN ESTIMATION

1. which are given by

1o = (536)
vIE - (537
V) - I6) I+ YV ROR, (s3%)

o2

Using some of the above expressias, the erations of the Gauss-Newton algorihes can be written as

By = B~ Box(6) ' VS (8)

Tt can be seea, as expected from s optimization algoriém,
seaionacy ok with V1 (B} = 0. Bok the imvetod mairix Ry ()~ 2 front of e gradicnt coud also be
chonen differently. 1f one would choose the lverse of e exact Hessian matrix, ., one woskd cbtain
e so-calied Newsa methad; differen choices of Hessan appeaximation give tise t umm mesbers i te
cliss of so-catied Newsan-fype the tamily of G d The
matrix By, (8] s calied the Gauss-Newton Hessian approvimation. Note @ It is & positive eietae matrix,
bt et secesarily postive defnite. In variasts of the Ganss-Nowion metbed, for example in the Leventurg-
Marguach sgoriden. s O on Hessian 157 giom s first compated bt then medifed in the actual
that the H definine or that the steps
remin seall m..g for the st ander Taylor series 10 remain a pood spproximation of e actsal function.
Iadepentens of which alporithm Is used, 2t the end of the call of the optimization solver, the solver will retaen
a uhv 6* that is  approximate local misimicer of (). We will use % as the maximam-likcliood estimate,
L - Batcresingly. & s useful 0 aso cbtain from the Algor - or 50 fecompuie aficrwards - the
e s Newton Hewan T ()1 ocouse 31 serve s appeasimation of e covariance matrix of Gis
estimate

the algorithm waskd not move away from &

552 Estimating the Covariance Matrix and Extracting its Relevant Entries

‘The casicst way to cbtain 2 rosgh estimate of the covarissce matrx X of he parameter esimate ° wonld be t0
assume thet the baearization of £ o the solution i e coerect model. and that all he sttsticl assumprions we
made in @ formulation of the function  were correst Le., that we Indeed had Gasssian soise with covariance
arin e lincar Ieast sqeares analysis, we could then directy use Hix(6%) ! as parameer
covariance matrix. thaz, dse 0 the scaling in the expeession R(6) = £, ¥ (M(6) - ), oer assumpeion
o e s of e e v compones i 2oy st o e s of . ot
e, e eal vale the onder of N, ~

ing and i we expect | R(9%) 1§
e ‘«:m T e, e, e e e s om e 1 bt O sl v o1 g
swise comariamor E,, sech i e site of the squared rosidual | R(9°) 3 can be different from N — . Becasse s
is easy 1 correes, we follow ¢ of Sextion 47, 3 in peactioe we the p e

R{8")
)

_umm J(E

1f ame wanis 1o express the ressX of e paramescr estimsion, coe often onily s the diagosal etries from @is
matrix, which conkain, for{ = 1,..., d, the variances o of the espective parkmeter compoaeats & & seen inthe
following detasled matrix expeessica:

R

5.5 PRACTICAL SOLUTION GF THE NONLINEAR LEAST SQUARES PROBLEM

Teking the  squre oot of the variances ylelds the sundard deviations, sach that the final resa: of the whale
par scimation procedare cosld be presented by aaly 24 nembess in the form

2, for i=1,....d

6 -

553 Checking the Optimal Residual Vector

Because the whaie analysis @ this section is hased ca the measeremen: data thas we use fo the estamation, we
will ot be able w complesely answer e guestion of madel valldaticn, namely if o model is sble 1o make valid
predictions foe new situatias. For model validon, we would need another set of measurement daia @4t were
e isvalved in the estimation procedure, for example a new experiment that s performed after the estimation
procedsee is finished, or a previeasly coadusted experimen that was kept sesret durisg the furameter estimation
proceduee and was jus eservedfor model vliduion

Hawever, what we can do with the agle exp 3 P i .
Is 50 look & the resideal vaies K, (6°) foe § = 1,. 1f we plot them as a feaction of £, they should Jook
like & sequence of random aumbers. 13 order to check s @ more detads, cne typically creaies sad ploss 2
histograms of the resadusd valuss K, (6°). If the bisoogram looks like the hesxogram of 2 2600 meea Gaussiaa with
uns variance, e model assumptions 0n the sysiem and nolse are likely 9 be comect. If aot, some pant of the
‘madeling sssmptions was probably wrong. One shosd then think hard and change the system or poise model
and restart the parameter estimation procedsee, based on the same data, bet o & differeat medel

e How certain is our estimate?
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5.5 Practical solution of the Nonlinear Least Squares Problem

When we fomulsse 2nd solve 2 nonliness leas: e, we aeed 10 we cal optisn
5 find the mavimam lkelibood eximate. 13 onder %0 do this, we st scale e vector of model-zessuremeat
sach residuals y - M (6] by using 2 - usually diagonal - geess X, of the covariance mainix of the oise. in

5.5 PRACTICAL SOLUTION OF THE NONLINEAR LEAST SQUARES PROBLEM s

ander w cbtain the scaled residual vecwe R(9) <= 37°% (M(9) - y) such that the mavimem lkelihood estimase

9 is obuained by the soletion of e Optmizatas probles

= angmin 5 IR(9)1E 5.30)
e

Note that the residual funcrion R maps from RY w0 R, and @t most sebuticn aigorithms require the user to pass
this function R(} ~ ad not the objective fanction (6) = 3| R{6)| - 10 the sobver, We want %0 answer three
questions in Gis sostion:

o How do we salve e maslisear beast squares opfimization peoblem (5.30) in practice?
@ How can we obtain an estimane of the covariance matrix of the parameser estimane”

© How can we assess If the modelling assumprions, in parsicular on e naise, were coerect?

We wil answer q inthe 4
pr
551 The Gauss-Newton Algorithm
L »\B mn expect the uscr 0 peovide a0 {nitinl gwess for e pacameter & — which wo call ey in
this section ~ and!wmln R:Ré = RY Ipoeithms can caly guaramiee te Jo-
cal ke, Statiag at the intial uess 6, Bey generate 3 eguense of weriies that we call 0 .s 1oBhe. .. Noge
that cach 8, isa vostor i the \rnx
that satisfies at least the fst onder necessary opcimality condhion, L., 10 a polnt o saistes V. F167) = 0. Most
algorchms ane vaniaats of the so-called Gassss-Newton method described next, though ofien tese variants come

Wdea:  Bocae we know very well bow o sobve sear least sqanes peoblems and because all nonlinear functions
can locally be apgeonimated by thei firs order Taylee serics, a srasghtforwand idea wosld be to solve a lincar least
sqares peodiem hased on e lincarization at 2 solution gucss 6.4, in ceder 8 oblain a betier solution Ferss 4.
Mare concresely, for sy salution guess iz we have St (6] — Rifa ) + 28(0,)(9 - 84, 6~ 0x3).
a0 i we use the firs order Taykoe series 1o formulse o linear least squares peodlem in order 30 find 6, ), we
oesin the expression
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Nete that the iieration above Is caly well defined if the Jacoblan matrix J{$) s of fall rank, bus that in peac-

tical impiementatioes. small algorithm modificazions easure @at each lterasion Is well defaed. With the shove
expression., we have already defined the basic Gazss-Newton algoneen. One can show that - f & coaveres - -
Gauss-Newtoa algocshm comverges linearly 10 & stasionary poins: 6 wih Uf(6%) = 0, But & peood of this result Is
beyone out interest bere

However, 18 onder to m.gm.m: mr AINm!(m 2 bit besmer and o ses at least why the .w.mm does oee
away fram a stationary point of the objective function
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1. which are given by

1o = (536)
vIE - (537
V) - I6) I+ YV ROR, (s3%)

o2

Using some of the above expressias, the erations of the Gauss-Newton algorihes can be written as

Box(6x) ™ O f(0) *

Tt can b seen, s expected from 3 optimization algorim, @ the algorithm wosd not move away from & — —y—

Gaony =&

seaionacy ok with V1 (B} = 0. Bok the imvetod mairix Ry ()~ 2 front of e gradicnt coud also be . .
chasen differently. 1f ane would choose the inverse of e exact Hessian manx, , one would cbtain —_——
e so-catied Newian method; differens chouces of Heswaan appeatsation ghve fise an mg—kﬁ in the
class of so-calied Newton-fype the family of Ge di. The

matrix By, (8] s calied the Gauss-Newton Hessian approvimation. Note @ It is & positive eietae matrix,
bt et secesarily postive defnite. In variasts of the Ganss-Nowion metbed, for example in the Leventurg-
Marquardk al A e G on Hessian appraxizmaion is first compssed it then modified in the actual
that the H definine or that the steps
remin seall m..g for the st ander Taylor series 10 remain a pood spproximation of e actsal function.
Iadepentens of which alporithm Is used, 2t the end of the call of the optimization solver, the solver will retaen
a uhc 6* that is  approximate local misimicer of (). We will use % as the maximam-likcliood estimate,
L - Batcresingly. & s useful 0 aso cbtain from the Algor - or 50 fecompuie aficrwards - the
e s Newton Hewan T ()1 ocouse 31 serve s appeasimation of e covariance matrix of Gis
estimane
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‘The casicst way to cbtain 2 rosgh estimate of the covarissce matrx X of he parameter esimate ° wonld be t0
assume thet the baearization of £ o the solution i e coerect model. and that all he sttsticl assumprions we
made in @ formulation of the function  were correst Le., that we Indeed had Gasssian soise with covariance
arin e lincar Ieast sqeares analysis, we could then directy use Hix(6%) ! as parameer
covariance matrix. thaz, dse 0 the scaling in the expeession R(6) = £, ¥ (M(6) - ), oer assumpeion
o e s of e e v compones i 2oy st o e s of . ot
e, e eal vale the onder of N, ~

ing and i we expect | R(9%) 1§
e ‘«:m T e, e, e e e s om e 1 bt O sl v o1 g
swise comariamor E,, sech i e site of the squared rosidual | R(9°) 3 can be different from N — . Becasse s
is easy 1 correes, we follow ¢ of Sextion 47, 3 in peactioe we the p e

e In our case:

1f ame wanis 1o express the ressX of e paramescr estimsion, coe often onily s the diagosal etries from @is
matrix, which conkain, for{ = 1,..., d, the variances o of the espective parkmeter compoaeats & & seen inthe
following detasled matrix expeessica:

R

a=0=x0.07

5.5 PRACTICAL SOLUTION GF THE NONLINEAR LEAST SQUARES PROBLEM

Teking the  squre oot of the variances ylelds the sundard deviations, sach that the final resa: of the whale
par scimation procedare cosld be presented by aaly 24 nembess in the form

2, for i=1,....d
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553 Checking the Optimal Residual Vector

Because the whaie analysis @ this section is hased ca the measeremen: data thas we use fo the estamation, we
will ot be able w complesely answer e guestion of madel valldaticn, namely if o model is sble 1o make valid
predictions foe new situatias. For model validon, we would need another set of measurement daia @4t were
e isvalved in the estimation procedure, for example a new experiment that s performed after the estimation
procedsee is finished, or a previeasly coadusted experimen that was kept sesret durisg the furameter estimation
proceduee and was jus eservedfor model vliduion

Hawever, what we can do with the agle exp 3 P i .
Is 50 look & the resideal vaies K, (6°) foe § = 1,. 1f we plot them as a feaction of £, they should Jook
like & sequence of random aumbers. 13 order to check s @ more detads, cne typically creaies sad ploss 2
histograms of the resadusd valuss K, (6°). If the bisoogram looks like the hesxogram of 2 2600 meea Gaussiaa with
uns variance, e model assumptions 0n the sysiem and nolse are likely 9 be comect. If aot, some pant of the
‘madeling sssmptions was probably wrong. One shosd then think hard and change the system or poise model
and restart the parameter estimation procedsee, based on the same data, bet o & differeat medel




Matlab demo

sigma_est = sqrt( (R(a)'*R(a))/(length(y)-1) * inv(J(a)'*J(a)) )

oe

We can generate a '"measurement"

by using M(0) as the "ground truth" and adding
random noise to it.

(Uncomment the line below to expermient with
estimating a from a different measurement.)

y = M(0) + S * randn(size(M(0)))

o° o° o° oP°

o°

oe

. and re-run the simulation
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New ML problem

sin(a) +b+¢,=-0.1
sinfa+30°)+b+¢6,=0.6

sin(a+60°) + b +¢;,=0.9

e All € are independent, and
drawn from a normal
distribution with zero
mean and standard
deviation 0.5
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Matlab demo

M = Q(a, b) sin(a + pi/6 * [0 1 2]') + b

Note, if you want to see this script produce useful estimates,
then the data would have to be drawn from a distribution with
a lot smaller variance. (That is: C should be smaller.)

= diag(0.5%2 * [1 1 1])

Q) o° o° o°

0
I

sqrtm(C)

y [-0.1, 0.6, 0.9]"
%y = M(0, 0) + S * randn(size(M(0, 0)))

R = @(a, b) inv(S) * (M(a, b) - y)

P = @(a, b) exp(-0.5*sum(R(a, b).*2))
as = -pi:0.01:pi;

bs = -3:0.01:3;

ps = zeros(length(as), length(bs))

for i=1l:length(as)
for j=1l:length (bs)
ps(i,j) = p(as(i), bs(j));
end
end

figure (1)
% Plot integral of p over all b values, as function of a
plot(as, sum(ps, 2))

figure (2)
% Plot integral of p over all a values, as function of b
plot(bs, sum(ps, 1))

figure(3)
% Plot p as function of a and b
contour (bs, as, ps)

[pmax, ix] = max(sum(ps, 2))
a = as(ix)

[pmax, ix] = max(sum(ps, 1))

b = bs(ix)
t = [a, b]"
J = @(t) inv(S) * [cos(a + pi/6 .* [0 1 2]'), [1 1 1]1']

R2 = @(t) R(t(1), t(2))

- J(t) \ R2(tv)
- J(t) \ R2(t)
- J(t) \ R2(t)
- J(t) \ R2(v)

o ot ot
o nn
o ot

C_est = (R2(t) '*R2(t))/(length(y)-2) * inv(J(t)'*J(t))

sigma_est = sqrt(diag(C_est))



5.5 Practical solution of the Nonlinear Least Squares Problem

When we fomulsse 2nd solve 2 nonliness leas: e, we aeed 10 we
© find the mavimsam lkelibood eximate. 13 onder %0 do this, we st scale e vector of model-messuremeat-
sach residuals y - M (6] by using 2 - usually diagonal - geess X, of the covariance mainix of the oise. in

5.5 PRACTICAL SOLUTION OF THE NONLINEAR LEAST SQUARES PROBLEM s

(8) ~ ) such thas the maximsm lkelibood estimase
9° is obusined by the salation of the optimization problezs

ander w cbtan the scaled resadual vecwe R(9)

= angmin 5 IR(9)1E 5.30)
e

Note that the residual funcrion R maps from RY w0 R, and @t most sebuticn aigorithms require the user to pass
this function R(9) - aad not e objective function £(6) = 4| A6 - 10 the skver. We want %o answer throe
questions in Gis sostion:

o How do we salve e maslisear beast squares opfimization peoblem (5.30) in practice?

o How can we cbeain an estimane of the o ix of the p

© How can we assess If the modelling assumprions, in parsicular on e naise, were coerect?

We will answer q in the foll .

551 The Gauss-Newton Algorithm

I s sonlinear lcast bl like MAT:
LAR's . which cxpeet the user 0 peovide an iniinl pocss for e parameter § — which we call 5
tissecicn - andapuitir o hefmction - R — R Mook avslable algciths can caly uarace o find -
cal msiena. Starting at the initil guess 6, Sey generate a sequence of Merues that we call ., 6., 8. Nogs
that cach 85, is a vestor i the space R and et we use rectangelar parcatheses -5 in e index in onder 1o distin-
geshit from Abasic 1l algorithans is. wapoint§”
th vt e s s cnder Rcemmey cpemliy condiln, L o8 polk st ©f(6°) ~ 0. Most
algocithms are varizats of the so-called Gasss Newlon method described next, thozgh ofien these varkats come
under very differens aames sach 25 "Levenberg Marguasdt Algocihan or “Trust Reglon Refleciive Method”

Wdea:  Bocae we know very well bow o sobve sear least sqanes peoblems and because all nonlinear functions
can locally be apgeonimated by thei firs order Taylee serics, a srasghtforwand idea wosld be to solve a lincar least
sqares peobiem hased on e linearization at 2 solutio
Mare concresely, for sy salation guess ;) we have St (8] ~ Rifa) + Sy} + O(16 - 04 |8),
a0 4 we use the firs onder Tayke series 1o formalise a linear leas squxxap«alkmmu&r find 6, ), we
oesin the expression

-6, 531

= Ry} + J(8) 0 |

E) (J(6s) 0y
J(830)" I () 8)) R(B)
J(0)) R(6) (5.39)

Nete that the iieration above Is caly well defined if the Jacoblan matrix J{$) s of fall rank, bus that in peac-
tical impiementatioes. small algorithm modificazions easure @at each lterasion Is well defaed. With the shove
expression., we have aiready defined the basic Gazss-Newton algorishen. One can show that - If & converpes - the
Gauss-Newtoa algocshm comverges linearly 10 & stasionary poins: 6 wih Uf(6%) = 0, But & peood of this result Is
beyone out interest bere

However, ia onder to understand the algoeithm 2 bit betser andto see 2t least why the algocithm does Dot move
‘away from a stationary point, & is useful 1o Jook at explics expeessicas for e dervatives of the cbjective function
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1. which are given by
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Using some of the above expressias, the erations of the Gauss-Newton algorihes can be written as

By = B~ Box(6) ' VS (8)

Tt can bs seom 5 cxpected from s optisaion g, e te sgoem woukd ot mvs avay o »
seationary ok with Vf(8) = 0. But e et coud alw be
chasen differeatly. If one would choose the lnverse of e exact Hessian matrix, e worsd cbtain
e so-caied Newson mevhod; differen: choices of Hessan appeaxenation give fise umm mesbers i te
cliss of so-caied Newtanfype opis the tamily of G d The
matrix By, (8] s calied the Gauss-Newton Hessian approvimation. Note @ It is & positive eietae matrix,
bt et secesarily postive defnite. In variasts of the Ganss-Nowion metbed, for example in the Leventurg-
Marquardk al A e G on Hessian appraxizmaion is first compssed it then modified in the actual
hat the Fi definine or that the steps

eesain sl enough fo the s ondr Taylorserses fo resain  pood sppronimetion of e acteal function
Iadepentens of which alporithm Is used, 2t the end of the call of the optimization solver, the solver will retaen
a uhc 6 that is a3 approximate local misismizer of £(8). We will use % & the maximemlikelibood estimate,
- Batcresingly. & s useful 0 aso cbtain from the Algor - or 50 fecompuie aficrwards - the
Newton Hewian Hon (6%, bocrese # can serve as appeasimation of @ covariance matrix of @i

imverse Gl.:»s-
estimane

552 Estimating the Covariance Matrix and Extracting its Relevant Entries

‘The casicst way to cbtain 2 rosgh estimate of the covarissce matrx X of he parameter esimate ° wonld be t0
assume thet the baearization of £ o the solution i e coerect model. and that all he sttsticl assumprions we
it in e formulation of the function R were Cormec, 2. that we indeed had Gsssian bosse wih covariance
marin X, Folkming @ lincsr Ieast sqearcs anabysis, we oould then directly use Hix(6%) ! as parameser
covariance marix. thas, dse 0 the scaling in the cxpeessicn R(6) = £, ¥ (M(6) - ), oer assumprion
i b tha e e f the residual veckor compOnens s 0t oy unties, bt as n she s o ans. For s
s, e oyl e el e e

L. we cxpect | R(9%) 14
-h\.we-l |n§r«m4" T peacice, bowever, we 1";1\(‘-.4.): un cros i eximmting e abclote e of G
i e s R(6°)13 from N —d. Becase s
35 casy 10 correct, we follow g of Section 4.7, sd in we the p etizric

"‘LL.,‘,,I )

1f ame wanis 1o express the ressX of e paramescr estimsion, coe often onily s the diagosal etries from @is
‘matrix, which coneain, for i = 1,  the variances o7 of the fespactive parameter componeats 6. & seen in the
following detasled matrix expeessica:

5.5 PRACTICAL SOLUTION OF THE NONLINEAR LEAST SQUARES PROBLEM

Teking the square reot of the vanances ylelds e sundand deviations, sach that the fimal resalt of the whale
parameter estimation procedase cosld be presented by caly 24 nemmbers In the foem

2, for i=1,....d

6 -

553 Checking the Optimal Residual Vector

Because the whaie analysis @ this section is hased ca the measeremen: data thas we use fo the estamation, we
will ot be able w complesely answer e guestion of madel valldaticn, namely if o model is sble 1o make valid
predictions foe new situatias. For model validon, we would need another set of measurement daia @4t were
e isvalved in the estimation procedure, for example a new experiment that s performed after the estimation
procedsee is finished, or a previeasly coadusted experimen that was kept sesret durisg the furameter estimation
procedere and was just reseved for mode validation.

Hawever, what we can do with the iagle exp 3 P i .
Is 50 look & the resideal vaises K, (6°) foe « = 1,.... N. If we plot them as & feacsion of . they shoald Jook
like & sequence of random aumbers. 13 order to check s @ more detads, cne typically creaies sad ploss 2
histograms of the resadusd valuss K, (6°). If the bisoogram looks like the hesxogram of 2 2600 meea Gaussiaa with
uns variance, e model assumptions 0n the sysiem and nolse are likely 9 be comect. If aot, some pant of the
‘madeling sssmptions was probably wrong. One shosd then think hard and change the system or poise model
and restart the parameter estimaticn procedure, based on the same data, bet on & difforeat model
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5.5 Practical solution of the Nonlinear Least Squares Problem

Whe
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D AND BAYESIAN EST

Using sce

55 PRACTICAL SOLUTION OF THE NONLINEAR LEAST SQUARES PROBLEM 53

Looking at the
residuals

>> R(theta(l), theta(2))
ans =

0.46141
-0.65579
0.19438

e Should resemble a sample from a normal
distribution with unity variance



