
MSI Lecture  
5.5 

Practical solution of the 
Nonlinear Least Squares 

Problem

Per Rutquist



ML estimation

• For all possible parameter values:


• Compute likelihood of the given 
observation(s)


• Pick the most likely!



Example problem

• Ferris wheel with (noisy) 
altimeters



Ferris Wheel

• Find the angle a !

sin(a) ≈ − 0.1

sin(a + 30∘) ≈ 0.6

sin(a + 60∘) ≈ 0.9



Ferris Wheel

• Assume that all ϵ are 
independent, and drawn 
from a normal distribution 
with zero mean and 
standard deviation 0.5 

• Find the most likely a !

sin(a) + ϵ1 = − 0.1

sin(a + 30∘) + ϵ2 = 0.6

sin(a + 60∘) + ϵ3 = 0.9



Matlab demo
% Defining a nonlinear model M 
M = @(a) sin(a + pi/6 * [0 1 2]') 

% Our noise covariance matrix 
C = diag(0.5^2 * [1 1 1]) 

% Square root of the covariance 
S = sqrtm(C) 

% Measurements 
y = [-0.1, 0.6, 0.9]' 

% The optimally weighted residual function 
R = @(a) inv(S) * (M(a) - y) 

% Likelihood 
% (During the lecure, I forgot the "0.5" below. Sorry about that! /Per) 
p = @(a) exp(-0.5*sum(R(a).^2)) 

% A vector of values to try for the angle a 
as = -pi:0.01:pi; 

% Evaluate p for each element of the vector 
% Note: Matlab automatically "broadcasts" opearations like exp, * and + across dimensions 
ps = p(as); 

% Alternatively, we could have written: 
% ps = arrayfun(p, as); 

% Another way would be: 
% ps = zeros(size(as)); 
% for i=1:length(ps) 
%    ps(i) = p(as(i)); 
% end 

% Plot p as funcition of a 
plot(as, ps) 

% Find the maximum and its location: 
[pmax, ix] = max(ps) 
a = as(ix)



• We cannot try all a.


• There are infinitely many.


• Let’s solve a least squares 
problem!



• The Gauss-Newton method:


• Linearise the residual function at a point 
(your best guess)


• Solve a linear least squares problem 
(Find a better guess)


• Repeat!

θ[k+1] = θ[k] − J(θ[k])†R(θ[k])



Note: We do not use the Hessian of R

… cf 4.2 …





Matlab demo

% The Jacobian of the R function: 
J = @(a) inv(S) * cos(a + pi/6 .* [0 1 2]') 

% Iterations of the Gauss-Newton algoritm: 
a = a - J(a) \ R(a) 
a = a - J(a) \ R(a) 
a = a - J(a) \ R(a) 
a = a - J(a) \ R(a) 
% ...after a few iterations we should have a good estimate of the 
% argmin of norm(R(a))^2 

θ = [a]



• How certain is our estimate?



• Works for linear systems and 
Gaussian distributions


• May work for nonlinear systems


• No guarantees!

Estimate:



a = 0 ± 0.07

In our case:



Matlab demo

sigma_est = sqrt( (R(a)'*R(a))/(length(y)-1) * inv(J(a)'*J(a)) ) 

% We can generate a "measurement" 
% by using M(0) as the "ground truth" and adding 
% random noise to it. 
% (Uncomment the line below to expermient with 
% estimating a from a different measurement.) 
% y = M(0) + S * randn(size(M(0))) 

% … and re-run the simulation



MOAR PARAMETERS!

• Maybe there’s an offset in 
all the measurements?


• Let’s introduce another 
parameter!



New ML problem

• All ϵ are independent, and 
drawn from a normal 
distribution with zero 
mean and standard 
deviation 0.5 

• Find θ = [a, b] !

sin(a) + b + ϵ1 = − 0.1

sin(a + 30∘) + b + ϵ2 = 0.6

sin(a + 60∘) + b + ϵ3 = 0.9



Matlab demo
M = @(a, b) sin(a + pi/6 * [0 1 2]') + b 

% Note, if you want to see this script produce useful estimates, 
% then the data would have to be drawn from a distribution with 
% a lot smaller variance. (That is: C should be smaller.) 
C = diag(0.5^2 * [1 1 1]) 

S = sqrtm(C) 

y = [-0.1, 0.6, 0.9]' 
%y = M(0, 0) + S * randn(size(M(0, 0))) 

R = @(a, b) inv(S) * (M(a, b) - y) 

p = @(a, b) exp(-0.5*sum(R(a, b).^2)) 

as = -pi:0.01:pi; 
bs = -3:0.01:3; 

ps = zeros(length(as), length(bs)); 
for i=1:length(as) 
  for j=1:length(bs) 
    ps(i,j) = p(as(i), bs(j)); 
  end 
end 

figure(1) 
% Plot integral of p over all b values, as function of a 
plot(as, sum(ps, 2)) 

figure(2) 
% Plot integral of p over all a values, as function of b 
plot(bs, sum(ps, 1)) 

figure(3) 
% Plot p as function of a and b 
contour(bs, as, ps) 

[pmax, ix] = max(sum(ps, 2)) 
a = as(ix) 

[pmax, ix] = max(sum(ps, 1)) 
b = bs(ix) 

t = [a, b]' 

J = @(t) inv(S) * [cos(a + pi/6 .* [0 1 2]'), [1 1 1]'] 
R2 = @(t) R(t(1), t(2)) 

t = t - J(t) \ R2(t) 
t = t - J(t) \ R2(t) 
t = t - J(t) \ R2(t) 
t = t - J(t) \ R2(t) 

C_est = (R2(t)'*R2(t))/(length(y)-2) * inv(J(t)'*J(t)) 

sigma_est = sqrt(diag(C_est))



a = − 0.14 ± 0.48

b = − 0.13 ± 0.41



Looking at the 
residuals

• Should resemble a sample from a normal 
distribution with unity variance

>> R(theta(1), theta(2)) 
ans = 

   0.46141 
  -0.65579 
   0.19438 


