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Exercises for Lecture Course on Numerical Optimization (NUMOPT)
Albert-Ludwigs-Universität Freiburg – Winter Term 2018-2019

Exercise 2: Duality, Semidefinite Programming and Fitting Problems
(to be completed during the exercise session on Nov 16, 2018 or sent
by e-mail to messerer@tf.uni-freiburg.de before 2pm, Nov 23, 2018)

Prof. Dr. Moritz Diehl, Dimitris Kouzoupis and Florian Messerer

The goal of this exercise is to first train the derivation of dual problems and then to explore the potential of
Semidefinite programming by means of a practical example. The aim of the last exercises is to familiarize
with linear least squares fitting problems.

Exercise Tasks

1. Lagrange duality and dual problems:

(a) Derive the explicit form of the dual of the following logarithmic barrier problem:

min
x∈Rn

cTx−
n∑
j=1

log xj

s.t. aTx = b,

where a, c ∈ Rn and b is a scalar.
Remark: Problems using a logarithmic barrier as the one above will be at the core of interior
point methods that we will analyze later in this course.

(2 points)

(b) Consider the following mixed-integer quadratic program (MIQP):

min
x∈{0,1}n

xTQx+ qTx

s.t. Ax ≥ b,

where the optimization variables xi are restricted to take values in {0, 1}. Solving mixed-
integer problems is in general a challenging task, thus it is common practice to exploit conti-
nuous reformulations as the following:

min
x∈Rn

xTQx+ qTx

s.t. Ax ≥ b

xi(1− xi) = 0 i = 0, · · · , n− 1.

i. Is this reformulation convex? (1 point)
ii. A lower bound to the optimal solution can be computed by solving the (convex) dual

problem (not required here). Derive the explicit form of the dual of the continuous refor-
mulation.

(2 points)
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2. Regularized linear least squares: Given a matrix J ∈ Rm×n with arbitrary dimensions, a symme-
tric positive definite matrix Q � 0, a vector of measurements η ∈ Rm and a point x̄ ∈ Rn, calculate
the limit:

lim
α→ 0
a > 0

arg min
x

1

2
||η − Jx||22 +

α

2
(x− x̄)>Q(x− x̄). (1)

Hint: Use matrix square root and the Moore–Penrose pseudoinverse, i.e., SVD of a suitable matrix.

(3 points)

3. Truss design: Aim of this task is to design a truss topology with minimum compliance under the
influence of external forces. Assume we have the following structure with 6 nodes and 10 bars

with external forces fe. Under these forces, the nodes are displaced on the directions they are free to
move until a certain equilibrium is reached. We denote the vector of displacements with u. Our goal
is to find the optimal cross-sectional area xi of each bar i that minimizes the compliance f>e u of the
structure while respecting restrictions on the available material. The reaction forces that are caused
by the external load depend linearly on u via the stiffness matrix K(x), i.e., fr = −K(x)u. On the
other hand, at equilibrium, it should also hold fr = −fe. Taking also into account the constraints on
the materials, we end up with the following optimization problem:

minimize
u,x

f>e u (2a)

subject to: K(x)u = fe (2b)
0 ≤ xi ≤ xmax (2c)
m∑
i=1

lixi ≤ Vmax (2d)

where m is the number of bars, xmax the maximum cross-sectional area, li the length of bar i and
Vmax the maximum allowed volume for the structure. The stiffness matrix depends linearly on the
cross-sectional area of each bar via the relation K(x) =

∑m
i=1Kixi.

At first glance, Problem (2) seems like a hard, highly nonlinear problem. However, after some mani-
pulation, we can derive an equivalent convex problem in a form suitable for an SDP solver, namely:

minimize
x, α

α (3a)

subject to:
[
α f>e
fe K(x)

]
� 0 (3b)

Constraints (2c) and (2d) (3c)

(a) Show how problem (2) can be transformed to the equivalent problem (3). You will need to use
transformations similar to the previous exercise sheet as well as the Schur complement. Keep
in mind that matrix K(x) is strictly positive definite for stable structures.

(2 points)
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(b) Solve problem (2) with CasADi and IPOPT using the provided template and functions. Take
xmax = 200 and Vmax = 105. Carefully decide how to initialize the decision variables. Not
every initialization will work.

(2 points)

(c) At the moment CasADi does not support any SDP solver. To solve problem (3) we will use
YALMIP instead. Similar to CasADi it provides a flexible syntax/symbolic framework for
formulating optimization problems and passing them to solvers.
Download https://github.com/yalmip/YALMIP/archive/master.zip and un-
zip it to the MATLAB directory or any directory of your choice. In MATLAB navigate to this
directory and run >> addpath(genpath(’yalmip-master’)) in the command line
(adapt to foldername if necessary). Test the installation via >> yalmiptest. To save the
path beyond your current MATLAB session, run >> savepath.
As SDP solver we will use SDPT3. Clone or download and extract the zipped folder from
https://github.com/SQLP/SDPT3 into the MATLAB directory or any directory of
your choice. Run the file install_sdpt3.m to install followed by >> savepath to make
the installation permanently available.
Solve Problem (3) with YALMIP and SDPT3 using the provided template and functions.

(3 points)

4. Linear L2 fitting: Assume we have a set of N noisy measurements (xi, ỹi) ∈ R2 onto which we
would like to fit a line y = ax+ b. This task can be expressed by the optimization problem:

min
a,b

N∑
i=1

(axi + b− ỹi)2 = min
a,b

∥∥∥∥J (ab
)
− ỹ
∥∥∥∥2
2

. (4)

As discussed in the lecture, the optimal solution of (4) can be calculated explicitly by solving the
linear system:

JTJ

(
a
b

)
= JT ỹ, (5)

(a) Generate the problem data. Take N = 30 points in the interval [0, 5] and generate the true
outputs yi = 3xi + 4. Add Gaussian noise with zero mean and standard deviation 1 to get the
noisy measurements ỹi and plot the results. Hint: lookup linspace and randn commands,
e.g. via using help randn or doc randn in the command line. If you want a reproducible
’random’ sequence, you can use rng.

(1 point)

(b) Write down matrix J . Calculate the coefficients a, b in MATLAB using Equation (5) and plot
the obtained line in the same graph as the measurements.

(2 points)

(c) Introduce 3 outliers in your measurements y and plot the new fitted line in your plot.
(1 point)

(d) Solve question 2(b) with CasADi and compare the results.
(1 point)

You will need the measurements y (both with and without outliers) and the matrix J for the next
task.
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5. Linear L1 fitting: In this task we want to fit a line to the same set of measurements, but we use a
different cost function:

min
a,b

N∑
i=1

|(axi + b− yi)|. (6)

This objective is not differentiable, so we will need auxiliary variables to form an equivalent pro-
blem. We introduce the so-called slack variables s1, . . . , sN and solve instead:

min
a,b,s

∑
i

si (7a)

s.t. − si ≤ axi + b− yi ≤ si, i = 1, . . . , N, (7b)
− si ≤ 0, i = 1, . . . , N. (7c)

(a) Problem (7) is a Linear Program. In order to solve it with linprog, the native LP solver of
MATLAB, we need to bring it to the form:

min
z
fT z (8a)

s.t Az ≤ b (8b)
Cz = d (8c)
lz ≤ z ≤ uz, (8d)

Write matrix A and vectors f, b on paper. Order your variables as z = [a, b, s1, . . . , sN ]. Use
matrix J from the previous exercise to define A.

(2 points)

(b) Solve the problem using the measurements y from the previous exercise (both with and without
outliers) and plot the results against those of the L2 fitting. Which norm performs better?

(1 point)

(c) Solve Problem (7) with CasADi and compare the results.
(1 point)

This sheet gives in total 24 points
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