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Overview 

• Parameter Estimation Problems 

            Example: Urethane Reaction 

            Differential Equation and Optimal Control Models & Data  

            Optimization Boundary Value Problems 

  

• Structure Exploiting Numerical Methods for  

             Optimization Boundary Value Problems 

 

• The Direct Multiple Shooting Method for Parameter Estimation 

• The Generalized Gauss Newton Method 

• Assessment of the Statistical Error of the Parameter Estimates 

 

• "Proof of Concept" and "Real World“ Applications 

 



Parameter Estimation: Match Model to Data 

M(p)  model response    

h        data                            

  

 

 

 

 

 

 



Classroom Example: The Reaction of Urethane 



The Reaction of Urethane 



The Reaction of Urethane 

• highly nonlinear Arrhenius kinetics 

• 8 unknown parameters p   

DAE model 

Measurements from different experiments with  

 

• 3 measurement methods (A,C/D,E) with different variances 

• different control functions u(t): temperature, feed 1, feed 2 

• different control variables q: initial molar numbers, reaction volume 

Structured nonlinear parameter estimation problem 



A General Problem Formulation 



Model: Ordinary Differential Equations  (ODE) 

          

p: (unknown) system parameters (PE) to determined 

q: control parameters, u: control functions (given) 

y states 

+ further constraints: initial or boundary condtions, positivity … 
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or:  Optimal Control Problems 
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observed process is result of an optimization, e.g. in gait analysis 



The Experimental Data 

• measurements   
                                 

 

 

• measurement functions bij, with add'l calibration parameters  

• measurement errors eij 

• from multiple experiments, under varying conditions 

• instationary states 

• stationary 

• bifurcations  
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each has specific model! 
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may comprise a priori information on parameters as “pseudo-measurements” 



The Parameter Estimation Problem (DAE) 
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The Multiple Experiment Case (DAE) 
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determine p and xk  (k=1,...,# exp) 
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boundary value 

problems 



The Choice of Norms 

• least squares norm: Legendre 1805, 

Gauss 1809 

(normally distributed measurement error) 
 

 

 

 

 

 

 but much can be said in favour of 
•    -norm: Boscovic 1758, Laplace 1812 

robust against outliers 

(Laplace-distributed measurement error) 
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Direct Methods for Constrained Parameter Estimation 

 



Direct "All-at-Once" Optimization  

Boundary Value Problem (BVP) Methods 

• the IVP approach: "single shooting" 

• integrate DAE over whole interval to yield x(t;x0,p) 

  resp., solve OCP for given , p 

• eliminate all - infinite - variables in favour of 

unknown parameters , p,  

• plug into suitable optimizer 

 

 

 



"all-at-once" 

Direct "All-at-Once" Optimization  

Boundary Value Problem (BVP) Methods 

• the IVP approach: "single shooting" 

• integrate DAE over whole interval to yield x(t;x0,p) 

  resp., solve OCP for given , p 

• eliminate all - infinite -  variables in favour of 

unknown parameters , p,  

•plug into suitable optimizer 

 

 

• the BVP approach: discretize the DAE/OCP, and solve 

simultaneously 

• optimization problem  

• discretized BVP as equality constraint or 

  necessary conditions for discretized OCP  

plus further constraints 

 in one loop            



 
Bock, Bär, Schl. '78, '81, '83, '87 ff 

Bock, Eich, Schl. '88, Kostina '01, '04, Kircheis ‘16 

parameterize/discretize DAE by the 

multiple shooting method, i. e., 

• choose suitable mesh    

           t0 < t1 < ... < tm = tf  

• introduce state variables at nodes ti 

                                                                                 

as additional optimization variables 
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PARFIT 

The Direct Multiple Shooting Method for 

Parameter Estimation in DAE 

 

alternatives:  
collocation on finite elements, 
finite differences, ... 

Biegler 



                  

•   integrate relaxed DAE on multiple shooting subintervals [ti, ti+1] 

 

 

 

 

 

 

 

 

• jumps and relaxation terms must vanish at the solution                                                                                                                                                                                   

additional continuity and consistency conditions replace DAE 
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Result:  

Constrained Nonlinear Least Squares Problem 

X = (p,s0, s1,...,sm) 

parameters and states 
 

solution by Newton-type methods 

 

where ΔXk solves a constrained linear least squares problem (CLLS) 
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Block-Sparse Structures of Jacobian 

• super-structures from multiple experiments 

• structure from multiple shooting 

• sub-structures from spatial discretization of PDE 

• sub-sub-structures from sparse state equations  

 

 

 

 

 

 

 

 

# experiments 1 - 100                              # multiple shooting points                       
     typically10 - 40 

must exploit special block structures         condensing 



FAQ: Why Multiple Shooting? 

• key property: discretized states as add'l optimization variables 

• allows better initial guesses, using information about 

process, which helps avoid "far away" local minima  

• reduces nonlinearity, even down to one-step convergence 

• is numerically stable, suitable even for highly unstable, 

e.g. chaotic dynamics 

• efficient parallel implementation  

• adaptive accuracy discretization strategies  

• add'l advantage of multiple shooting 

• state-of-the-art solvers for DAE applicable    

• treatment of discontinuities (hybrid systems)                                    

e.g. phase changes, hysteresis, ...  

"adaptive accuracy" 

realized through 

integrator 



An Unstable Test Problem 



Unstable Test Problem  

• state equations: 

 

 

 

 

• special solution for "true" parameter value            : 

 

 

                                                                                 

 
 

• pseudo random measurement noise,  = 0.05  
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Unstable Test Problem - Single Shooting 

initial trajectory with p=1, and with p=float() in 64 bit 

initial value problem is extremely ill-conditioned! 

fails! 



µ =60, i.e. error propogation over [0,1] is 1027 -  highly unstable! 

Error propagation: exp(+/- µt)! 

Eigenvalues of                           are 

Unstable Test Problem - General Solution 



Unstable Test Problem - Multiple Shooting 

initial trajectory for p=1  -  convergence after 4 iterations 

parameter estimation problem is well-conditioned! 

works! 



Efficiency of Boundary Value 

Problem Methods 
Theorem 

Assumptions 

         Dense exact data for all states available  

         Model equations linear in parameters 

         Initial guesses for states: given data 

         Length of multiple shooting (resp. collocation) intervals  

Then 

         One step convergence to true parameter value  

0  h

*p

)(*001 hOpppp 

Reduction of Nonlinearity by Decoupling 

Advantages of BVP approach also in case of non-dense noisy data  



Lotka-Volterra Problem 
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x1: predators 

x2: preys 

DE linear in par‘s 

Data:  σ = 5% 

Lotka-Volterra: Model and Data 



Convergence 

after 20 iterations 

Convergence  

after 4 iterations 

Single Shooting Multiple Shooting 

Comparison: Single vs. Multiple Shooting 

Initial guesses 
p1 = 0.5       p2 = 0.5   

p3 = -0.5      p4 = -0.2   



Initial guesses:                       Solution: 

p1 = 0.5  p2 = 0.5                   p1 = 1.01 ±0.02   p2 = 1.01 ±0.03 

p3 = -0.5  p4 = -0.2                   p3 = 0.99 ±0.02   p4 = 1.01 ±0.03 

Lotka-Volterra: Solution with Multiple Shooting 

Initial Trajectory Solution Trajectory 



Some Algorithmic Features 



 

 

 

 

 

 

 

 

 

 

 

 

 

the crucial requirement for practical use: 

numerics must be "derivative-free" for the user! 

• adaptive integrators for ODE and relaxed DAE 

• fast and error controlled computation of 1st and    

  higher order derivatives 
• combining “automatic differentiation" of 

model equations and  

• “internal differentiation" of adaptive 

discretization scheme 

• treatment of implicitly given discontinuities 

and jumps in dynamics 

• in forward or reverse (adjoint) mode 

 

Bauer et al. '98 

Albersmeyer '05 

Kirches '06 

e.g. DAESOL, 

RKFSWT 

Evaluation of CLLS 

Computation of 1st and Higher Order Derivatives 



Parallel Evaluation and Decomposition 

1. Evaluation of functions and gradients: parallel on interval level 

2. Parallel condensing 

  

treatment of 

staircase system  

 

Variants: Orthogonal transformations for unstable systems 

               Block Gauss elimination for  stable systems 

log(m) - algorithm 



 
Fast Sequential Solution 

  
Reduced Generalized Gauss Newton 

Use initial, multipoint, DAE consistency conditions, ... 

to reduce number of directional derivatives of IVP solutions to minimum 

  

Idea: 
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Computation of solution mf 

1. DAE consistency 

2. Continuity 

Insertion of solution mf 
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1)   # :Gradients (# 

# Needed directional derivatives = # Degrees of freedom + 1 
 PDE 



 
Treatment of Condensed System 

Large-scale linear constrained system is  reduced to 

condensed system in n variables 

 number of states + parameters     n  small ! 

Detection of ill-posedness, rank deficiency regularisation strategies 

n 

n 

Solution:          Modifications of „Adaptive Method“ (Gabasov, Kirillova, Kostina, ... 

                        Orthogonal Transformations & Active Set Strategies and Elimination 
2
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Regularisation Strategies 

Equality constrained underdetermined linear system 

• Determine rank nr (nr  < n) of linear system, e.g. in course of decomposition 

 

• Determine solution manifold                      (C full rank nr ,              ) 

 

• Solve minimum norm problem 

 

 

 

 

• Constrained linear least squares or linear programming problem, resp. 

 

• Note: In      case 0-components can be expected!  
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Convergence of Constrained Gauss-Newton 

• active set constant near solution  equality constrained problem 

     convergence proof based on 2 principal assumptions: 

 

 

 

 

 

 

• local linear convergence of full step method with asymptotic rate   

• advantage: method not attracted by large residual local minima X*,  

     so called "statistically unstable" minima - cannot be interpreted as   

continuous deformation of "true parameter" ! 

• global convergence: by efficient new strategies based on "affine 

invariance" principles - guarantee full step in local domain of 

convergence 
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Statistical Assessment of Solution 

 



Statistical Sensitivity Analysis for Constrained Case 

• need to know uncertainty of parameter estimate  X*(e  depending 

on measurements errors 

 

 

 

 

 

 

• first order expansion: 

 

• covariance matrix approximation: 
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Statistical Sensitivity Analysis for Constrained Case 

• confidence ellipsoid G, includes “true value” with                              
error probability 

 

 

 

 

 

 

 

• Lemma: G can be enclosed by confidence box 

 

 

 

• need to compute only          , "standard deviations" of parameters 
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basis for optimum experimental design 



Applications 



Transport and Degradation of Xenobiotics in Soil  

in cooperation with 



Transport and Degradation of Xenobiotics in Soil  

 Investigation of fate of xenobiotics 

 

 Expensive lysimeter experiments 

for registration 

 

 To be replaced by computer 

experiments 

 

 Here: parameter estimation 

 

 Later: optimal mini-lysimeter 

experiments 

 optimal irrigation 

 optimal solute application 

 Optimal sampling 

Altmann-Dieses, Bock, Schl., Richter '02 

mini-lysimeter 



Field experiment: Water Transport (K. Aden) 

 loamy sand without vegetation   

 time-domain reflectrometry (TDR): hourly readout 

 measurements of water content θ in 7, 15 and 20 cm 

 period: Oct 28, 1997 - Dec 13, 1997 



PDE-Model: Richards Equation 

 Initial condition: Linear interpolation of 𝜃7cm, 𝜃15cm, 𝜃20cm at the start of 

     experiments (Oct 28, 1997) 

 Upper boundary: Dirichlet condition (TDR data in 7 cm) 

 Lower boundary: Dirichlet condition (TDR data in 20 cm) 



Transport and Degradation of Xenobiotics in Soil 

Result: Estimates for n, ∝ and Ks 

 



Identification of Cerebral Palsy Gaits 



Cerebral Palsy Gaits 

before surgery                          after surgery 

... K. Hatz in coop with S. Wolf (Orthopedics HD) 

Assumption: Movement is optimal 

Task: Find suitable optimal control problem! 



Identification of Cerebral Palsy Gaits 

Model for patient‘s motion: 

 

• 48 states   : 3 global coordinates,  

  3 global angles, 18 local joint angles 

 (generalized coordinates), and the  

  corresponding velocities  

• 18 controls u 

•  constrained multibody system 

•  formulated with  

   HuMAnS Toolbox (INRIA, France) 

q

q

patient data from Orthopedics Lab, 

resp. Deleva data 
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MBS dynamics 

control/path constraints  
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Inverse Optimal Control for  

                                   Cerebral Palsy Gaits 

Possible criteria Ck: stability, energy, duration,... 

 

Challenges: discontinuities  and jumps in states,  large-scale, ... 

Optimal control model 



 

 

 

 

Efficient Direct All-at-Once Approach 
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after discretization of optimal control problem with direct multiple shooting 

Multiple Shooting  

discretization 

KKT conditions 

objective regularization 

large-scale constrained ls-problem with complementarity condition 

x:=(s,w) 

s  multiple shooting variables 

w  control variables 

L  Lagrangian 

λ,µ adjoints 



Measurements for Cerebral Palsy Gait 

Vicon data 



Identified Cerebral Palsy Gait 

measured gait                          identified gait 

very good 

agreement 



Measured and Estimated CP Gait 

green: measured gait     blue: estimated optimal OCP gait 

... K. Hatz 



Summary 

 Parameter Estimation in Differential Equations 

 Optimization Boundary Value Problems 

    Hierarchical Optimization Problems 

 Direct Multiple Shooting 

 Some Applications 

Ongoing work 

Numerical Tools for Inverse Optimal Control 

Nonlinear Optimum Experimental Design 

Dual Control: Experimental Design in Control 



Thank you very much for your attention! 


