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Recall: our personal energy consumption: 5 kW

e a typical European needs 5 kW
(1 kW electricity + transport + heating ...)

e this equals 120 kWh, or 12 litres of petrol, per day

* one return flight from Europe to China consumes 5 kW: one large
about 1200 litres of kerosene per person (~100 days) electric heater,

switched on from

[MacKay 2009. wikipedial birth to death



Recall: capacity factor of wind and solar equals about 20%

5 MW installed capacity deliver on average about 1 MW.
This would be enough to cover all energy needs of 200 people.



What is needed for 5 MW installed power ?

Solar in Southern Europe: area of 125 m x 200 m
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What is needed for 5 MW installed power ?

Wind in North Sea:
turbine of 150 m height

turbine and tower weigh 700 tons




What is needed for 5 MW installed power ?

Wind in North Sea:
turbine of 150 m height

turbine and tower weigh 700 tons
Could we harvest wind power in high altitudes with less material ?



A turbine of 500m height is difficult to build

Long lever arm leads to large torque
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A turbine of 500m height is difficult to build
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A turbine of 500m height is difficult to build
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A turbine of 500m height is difficult to build
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Metamorphosis of a Wind Turbine

HIGHWIND



Crosswind Kite Power

- kite flies fast loops in crosswind

direction

- very strong force on tether

But where could a generator be driven ?
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Variant 1: On-Board Generator

- attach small wind turbines to kite
- cable transmits power

Pros:
- light, high speed generators
- propeller can be used to start and land

Cons:
- cable needs to transmit power

- generator and power electronics add
weight
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Variant 1: On-Board Generator — Artistic Vision [D 1992]
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Variant 2: Generator on Ground (Pumping Cycle)
Cycle consists of two phases:
- Power generation phase:
- Fly kite fast, have high force
- unwind cable
- generate power
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Variant 2: Generator on Ground (Pumping Cycle)
Cycle consists of two phases:
- Power generation phase:
- Fly kite fast, have high force
- unwind cable
- generate power

- Retraction phase:
- Slow down kite, reduce force
- pull back line
- consume power

j Pro: all electric parts on ground
Con: slowly turning generator

(...well, this variant leads to particularly
personal discovery o beautiful nonlinear optimal control
date: 3.10.2005 ] problems...)
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Miles Loyd’s Formula

J. ENERGY VOL. 4,NO.3
ARTICLE NO. 80-4075

Crosswind Kite Power 1 98_0
Miles L. Loyd*
Lawrence Livermore National Laboratory, Livermore, Calif.

power P 9 C 2

/ .
air density P — — p A U’ CL L
wing area A 2 7 CD
wind speedw)

_ wing area of 1 m2 generates 40 kW power
Lift-over-drag ( Ct ) (at 13 m/s wind speed and L/D of 15).

ratio (L/D) . Same efficiency for both variants.
‘D
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Which roll out speed is optimal ?

Remark: kite flies much faster

in crosswind direction...

Maximum power reached at 1/3 of wind speed

ower =
tether P roll out
, tension x speed speed
tension
0,8
.

0,6

0,4

0,2

1/3 of wind speed w
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How fast does the kite fly compared to the real wind ?

real wind w . ., 0
remaining wind $w

—_—
. m— —
A
speed of kite v = %%W
apparent wind
— g force Fi, = %,OAV2 @3

power = roll out speed x force

P=3w - 3pAVC \35 P:%/)Au CL<§:L>
‘D




How much is 40 kW per m2 ?

More realistic estimate: wing produces full power only 25% of a year,
so we get about 10 kW per m2.

Two people need 1 m2

wing surface to cover all
their energy needs ! 1 m2 wing surface corresponds to 250 m?

of photovoltaic cells in Southern Europe

[master students Wouter Vandermeulen and Jeroen Stuyts]
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AWE Vision: replace tons of steel and concrete...
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AWE Vision: replace tons of steel and concrete...

..by a cable and optimal control
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Airborne Wind Energy Conferences 2010, 2011,...
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Categorization of crosswind systems

Ground-Based Generation

On-Board Generation

Fixed Wing AL/
s
~
.... Zl}
T
Soft Wing /\ (not efficient due to low speed)
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Categorization of crosswind systems

Ground-Based Generation

On-Board Generation

Fixed Wing

Soft Wing

(not efficient due to low speed)
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Categorization of crosswind systems

Ground-Based Generation

On-Board Generation

Power, ...

Fixed Wing AmpyxPower, Netherlands Makani power, California
SkySails, Hamburg; Enerkite, Berlin; TU
Soft Wing Delft, NTS, Torino, TU Munich, Swiss Kite (not efficient due to low speed)
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How to model Airborne Wind Energy systems ?

Uwe Ahrens
Moritz Diehl
Roland Schmehl Editors

-

Airborne Wind
Energy

@ Springer




Differential Algebraic Equation (DAE) Models of Tethered
Airplanes

For simple plane attached to a tether:

- 20 differential states (3+3 trans, 9+3 rotation, 1+1
tether)

- 1 algebraic state (tether force)
- 8 invariants (6 rotation, 2 due to tether constraint)
- 3 control inputs (aileron, elevator, tether length)

Sebastien Gros
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Nontrivial Topology 1: Rotation Start for Tethered Wings
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|dea: tethered planes can start and land
using a “flight carousel”

.......

[Horn, Gros, D., in

Airborne Wind Energy,
Springer, 2013]
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I Aim: Transition from Rotation to Power Orbit[




Nontrivial Topology 1: Rotation Start for Tethered Wlngs

|dea: tethered planes can start and land
using a “flight carousel”

“

Kurt Geebelen

Flight experiments in Leuven, with Kurt Geebelen Milan Vukov,
Andrew Wagner, Mario Zanon, Sebastien Gros, Greg Horn, Jan
Swevers
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Moving Horizon Estimation and Nonlinear

R w2 1«_;_
\, r Model Predictive Control on the Flight Carousel
Milan Vukov  (S@mpling time 50 Hz, using ACADO Code Generation)

Closed loop experiments
with NMPC & NMHE

HIGHWIND

UNI

FREIBURG
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Predictive Control of Kite Carousel in Freiburg

r N~ 20Hz/50ms sampling time using ACADO
o i ey, (o) ]
(Nonlinear MPC video from 13.12.2016 in Freiburg)
- (video by Ben Schleusener)
Jonas Schlangenhauf Thorbjoérn Jorger




Nontrivial Topology 2: Dual Kite Systems

Two airfoils circling around each other have less tether drag
can reach 40 kW/mz2 already with small devices
centrifugal forces compensate each other

Secondary tether

_ Secondary tether
Mario Zanon

Main tether

Airborne Wind Energy Based on Dual Airfoils

/ / Mario Zanon, Sébastien Gros, Joel Andersson, and Moritz Diehl

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 21, NO. 4, JULY 2013
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Nontrivial Topology 2: Dual Kite Systems

Two airfoils circling around each other have less tether drag
can reach 40 kW/mz2 already with small devices
centrifugal forces compensate each other




Startup Kiteswarms Ltd./GmbH in building 078 on our campus

TR —

/ \“ \ ‘\\\"u‘a;u‘
L

{

PN

)

)
)

Kiteswarms founder: Reinhart Paelinck
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AmpyxPower

o startup from TU Delft
* now about 40 permanent

staff
e financed via venture

capital
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Pumping Cycle to Harvest Wind Power
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Optimization of Ampyx- Type Pumping Cycle

by Giovanni Licitra and Greg Horn (using CasAD, ipopt, |50 collocation intervals)




Optimization of Ampyx- lype Pumping Cycle

long reel out phase (approximately 1/3 of wind speed) reel in phase

Giovanni Licitra (AmpyxPower) and  Greg Horn (Univ. Freiburg)
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AmpyxPower:

Autonomous Energy Harvesting Flight




Power Optimization for Low Wind Speeds
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Licitra, Sieberling, Williams, Ruiterkamp, Diehl 2016 (submitted to ECC) 49
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“Never landing”
costs only 0.5 %

Power at specific wind speed
X

Frequency of occurrence per year

Contribution to yearly production

[study with 5.5m wing span plane]
Blue: 52,27 MWh, red 0,27 MWh.
Average power: 6 kW (tether drag)
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Under construcﬂon AP 3 (IZ m vvmgspan)

|




Plans for 2022: AP 4 with catapult start




Plans for 2022: AP 4 with catapult start




SkySaills:




SkySails

e Startup since 200 |

B e oplc

* traction kites for vessels

* since 201 | also power generation

* financed by private investors and subsidies




SkySaills:
soft kites wrth ground-based generator




and partly Umv Freiburg, using CasADi/ipopt

- Initialization with experimentally
lteration 1, Loyd factor 14.7 % flown orbit
- Optimization improves from 15%
to 25% of Loyd’s limit
* large time losses due to slow
retraction phase

winch speed (m/s), steering (norm)

0 20 40 60 80 100 120 140 160 180
time (s)

50 Y
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Small-Scale Functional Model (S0kW peak power)

~ ground station




Makani Power:
Rigid wing with on-board generator




Makani Power

e Californian start-up since 2006

J-A40 BEeisle

* fixed wings with on-board generators
2 Siace A0 5 part of Google X
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Makani Power: turbines on-board allow
take-off and landing as quadcopter




maximize Zwo 0, T;,) " Py (x1) /TkP(xk(t), X ) dt

0.x1,. .. m()ur,  m(),T1,. m =1 0

subject to xi(t) = f(xx(t), ur(t), 0, xp, 1), t € (0,1
0 > h(xg(t),ux(t),0,t), t € (0,7
c(xx(0),xx(T)) =0, C(xx£(0))=0

0 c0O.




Makani power: yearly power output optimisation

by Greg Horn, Univ. Freiburg, and Thomas Van Alsenoy, Makani
‘\\ \
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optimizing lots of kites

params:

AcSysP

£ pTetherLength0 = 144,00
- pRCore = 2,18e-3
- pAreaCond = 2,40e-6

- pBrYOffset = -2,50e-2

3

cut in / cut out: 3,00 / 25,00 [m/s] y v

p \'\ e =
arbit times: [10.00, 9.03, 7.10, 5.78, 4.78, 3.14, 6.24, 6,08, 5.94, 5.83, 5eliss Beah, .63, 5.6l 6o56. 5,567 5,53, b
o2

wind speeds: [3,00, 4,16, 5,32, 6,47, 7,63, 8,79, 9,95, 11,11, 12,26, 13743 14.58{/15.74, /?;ﬁ' 18,05, B.QI:

powers: [1048,42, 4064,67, 9434,21, 17824,51, 29634,04, 31738,88, 31738,88. 31738,55% é:BB, 31739, 88:~31738.68, 31738 173 2 S8, 31738,88, 31738,88]
regularization: [27,13, 70,90, 119.49, 178,51, 218,47, 0,39, 0,29, 0,27, 0,27, 0,27, 0,29, 0,3050,32, 0,34,70,36.

weights: [0,038. 0,096, 0,107, 0,110, 0,106, 0,097, 0,084, 0,069, 0,055, 0,042, 0,031, 0,021, 0,014, 0,0US=_0,006.

objs: [-38,98, -381,70., -994,82, -1941,11, -3121.76, -3072,00, -2664,04, -2205,18, -1747,06, -1327,37, -968,59, . < 2 =20,09, -5,26]

scaled obj: -2,03278e0

mean yearly power: 20,391 KW

mean yearly regularization: 63,531







Makani Power: 600 kWV utility scale wing
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Makani 600 kW System Tests in 201/




Makani 600 kW System Tests in 201/




SOLARIMPU |

Solarimpulse + Crosswind = !

Question:
ow much more power would a makani
plane with solar cells on the wing deliver ¢

50 % | 0% 2% 0.5%



Conclusions

* Airborne wind energy promises power densities up to
40 kW per mZwing area

* nonlinear optimal control can answer relevant design
and control questions
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