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I’d rather study fluids than swim in them.

-Fizzy
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1 defining dilation and vorticity

Let’s define two thermodynamic state variables that describe the evolution of a flow field.

The first of these state variables is the dilation ϑ := ∇ ·u. The dilation is the divergence of the velocity at any point
within the flow field. The dilation describes the change of the fluid velocity along a set of axes, or - in alternate
terms, the normal strain experienced by the fluid element. In doing so, it describes how much the fluid’s volume
is compressed into and expanded out-of itself. That is, the dilation describes the compressibility of the fluid. This
can be seen, by considering an incompressible context when the flow has constant density, such that conservation
of mass without sources or sinks ∇ · (ρu) = 0 requires that ϑ = 0.

The second of these state variables is the vorticity ω := ∇×u. The vorticity is the curl of the velocity at any point
within the flow field. That is, the vorticity is twice the angular velocity of an infinitessimally small1 fluid element.
As a fluid element is not a rigid body, its angular velocity contains pure-rotation about some arbitrary point, as
well as spin about the fluid element iself.

The fluid can be considered as a giant multibody problem, where each of the individual fluid elements within the
multibody problem has its rotation both forced by and damped by the friction of viscosity. The damping process
may seem intuitive - after all, doesn’t friction typically act to damp velocities? - while the forcing process may
seem counter-intuitive to our macro-scale lifes. But, we should remember that this also happens on our scales.
Consider that when spinning a top2, the torque to accelerate the top’s rotation comes from friction with our hands,
and the torque to decelerate the top comes from viscous skin-friction with the air.

Let’s consider a fluid under a shearing velocity gradient. Across a shear-layer, a fluid element will experience
a shearing deformation that elongates the edge in the faster stream respective to the edge in the slower stream.
If this fluid is viscous, and there is no counter-acting shear deformation orthogonal to the axis that will oppose
rotation, the fluid element will resist this deformation by rotating locally. Then, shear-layers and their consequent
shear-stresses will tend to be associated with non-zero vorticities.

Returning to the picture of a fluid as a multibody problem of fluid elements, a fluid element would be vorticity-
free if, either, the fluid has no rotation at all, or if the spin of the element perfectly balances the rotation of the
element about any external point. That is, a flow with curved streamlines can be vorticity-free, as in the case of
fluid travelling down a drain, where the individual fluid elements keep their orientation in space.[15] In contrast, a
flow with straight streamlines can have non-zero vorticity, as in the case of a boundary layer, as evidenced by the
shear-strain on the fluid layers.

Using an explanation expanded from Branlard[5], Helmholtz’s vorticity equation3 can be used to classify the

1Remember, all flow modelling derived from or based on the Navier Stokes equations has already assumed that fluids are continuoums, and
not collections of molecules.

2a the little wooden body-of-rotation frequently used to demonstrate gyroscopic effects
3To get Helmholtz’s vorticity equation, start with the compressible Navier-Stokes(
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Finally, the divergence of a curl (∇ ·ω) vanishes, and we reshuffle sides.
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processes in a fluid that drive and damp the vorticity:

Dω
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+
1
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︸ ︷︷ ︸
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, (1)

where D
Dt is the material derivative, F is a forcing term, ρ is the fluid density, p the static pressure, and τ is the

stress caused by viscosity when a fluid element is deformed. With respect to the labels:

• ’convection’ indicates the rate of change of the vorticity as it travels with the flow;

• ’stretching’, that vorticity becomes stronger if the flow accelerates in the direction of the vorticity and be-
comes weaker if the flow decelerates along the vorticity;

• ’dilation’, that changing the density of fluids can create vorticity;

• ’n.c. forces’, that because the curl of conservative forces is necessarily zero, only non-conservative forcing
contributes to this term;

• ’baroclinicity’, the degree of mixing in the fluid due to skew4 between the pressure gradient and density
gradient; and

• ’viscous shear stress’, the rotation described previously to occur for imbalanced counter-acting shear stresses.

2 defining a vortex

You may have noticed that the word ”vorticity” resembles the word ”vortex” that is colloquially used to refer to
spinning fluid structures, such as tornados. This resemblance is not coincidental. A vortex is defined5 as a structure
of concentrated vorticity.

This is admittedly a fairly tautalogical definition, analogous to saying that some conductor is a structure of con-
centrated current. That is, defining a tube-like vortex based on its vorticity distribution is equivalent to defining a
wire by the current that is running through it.

Notice that the current running through a given conductor may be strong, or may be 0A; it may be variable in time
or unevenly distributed, as in circuits with multiple closed loops. Similarly, the vorticity within a conductor can
have various strengths and be distributed unsteadily in time and non-uniformly in space.

Just as the current within the wire is invisible and only the wire is visible - vorticity itself is not visible. If we can
on occasion see a vortex, it is because the fluid within that specific vortex has collected a high concentration of
suspended particles such as water droplets or dust particles.

Further, as metal conductors can take whatever shape in which they are manufactured, vortices can also take
arbitrary shapes. That we tend to think of vortices as tube-like structures or rings constructed from tube-like
structures has more to do6 with which vortices will accumulate enough particles to make themselves visible, then
any characteristic tube-like shape.

All of this is to say that we should not have preconcieved notions about what defines a vortex, except that it contains
vorticity, which is by definition related to circulatory motion within fluids.

3 using dilation and vorticity to define some flow assumptions

One benefit we get from having defined the dilation and the vorticity, is that certain typical flow assumptions can
be written in their perspective. While these flow assumptions are not needed immediately, their presentation can

4For an example of vorticity caused by baroclinicity, picture the air-water interface on the ocean’s surface. Strong horizontal winds are
caused by a driving pressure gradient, which is orthogonal to the vertical density gradient over the water. This produces rotation in the fluid
elements near the ocean surface, which shows up as waves. Ocean waves are examples of the classic Kelvin-Helmholtz instability, that can
occasionally also be seen atmospherically.

5See [23] for an explanation of why there is not yet a formal mathematical definition for a vortex.
6also a small amount to do with the fact that the tube-like elementary solution is easy to compute, see section 13...
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be used as examples of what ϑ and ω mean practically speaking. Further, the presentation of these assumptions
here allows for their uninterrupted use later on.

The typical flow assumptions mentioned here are: irrotationality, where the vorticity is zero; incompressibility,
where the dilation is zero; and inviscidness, where the fluid viscosity is zero. When all three of these assumptions
is made, the fluid is said to be potential.

Mathematically, this is stated as:

potential:

irrotational: ω = 0,
incompressible: ϑ = 0,
inviscid: ν = 0,

(2)

where ν is the kinematic viscosity of the fluid.

While these characteristics can apply to any given fluid element within a domain, they are usually assumed to
apply only to the external flow far from any solid boundaries within the flow. For example, flow is assumed to be
externally potential if the flow far from solid boundaries is laminar and not circulating, slow compared to the speed
of sound, and has behavior driven mainly by inertial forces.

From an engineering perspective, the flow can be assumed to be externally incompressible and inviscid when,
respectively, the Mach number is less than 0.6 and the Reynolds number approaches infinity. Arguing for external
irrotationality is more difficult, and is usually done by arguing that the sources of vorticity described in (1) are
negligible.

The Mach number Ma is explicitly defined as the ratio between the characteristic flow speed u∗ and the speed of
sound a of the medium. That is:

Ma =
u∗
a

=
u∗√

γairRairT∗
,

where γair is the adiabatic constant of the fluid, Rair is the specific gas constant, and T∗ is the characteristic temper-
ature of the flow. For standard, dry-air, γair = 1.4 and Rair = 287J/kg/K.

The Reynolds number Re is explicitly defined as the ratio between the intertial forces and the viscous forces in a
flow. That is, for a characteristic length `∗, a characteristic flow speed u∗, a characterisic flow kinematic visocity
ν∗, the characteristic flow dynamic viscosity µ∗, the characteristic mean-free-path of a fluid molecule `∗, Kµ a
constant for homogenous gases, and the characteristic root-mean-squared velocity of a fluid molecule u∗ [1]:

Re =
u∗`∗
ν∗

=
u∗`∗ρ∗

µ∗
=

u∗`∗
Kµ u∗`∗

.

A potential flow solution has the curious property of being found to be a minimum kinetic energy state. This is
formally written7 in Kelvin’s minimum kinetic energy theorem.

7The derivation of Kelvin’s minium kinetic energy theorem can be found in multiple sources, but is here reproduced from [7].
Assume that there are two incompressible velocity fields that satisfy the same normal boundary conditions in a simply connected domain V :

the irrotational u0 = ∇φ and the rotational uω . We can specify that uω = u0 +u∆, for some arbitrary difference u∆. Since both u0 and uω

have the same normal boundary conditions, then the normal component of u∆ must be zero along the boundary ∂V .
Then, the kinetic energy of the irrotational T0, rotational Tω and difference T∆ flow fields can be found as:

T0 =
ρ

2

ˆ
V
u0 ·u0dV, Tω =

ρ

2

ˆ
V
uω ·uω dV, T∆ =

ρ

2

ˆ
V
u∆ ·u∆dV.

We can substitute the addition expression of uω here to give:

Tω =
ρ

2

ˆ
V
(u0 +u∆) · (u0 +u∆)dV =

ρ

2

ˆ
V
u0 ·u0 dV +

ρ

2

ˆ
V
u∆ ·u∆ dV +ρ

ˆ
V
u∆ ·u0 dV = T0 +T∆ +ρ

ˆ
V
u∆ · (∇φ) dV.

Now, the chain rule says that ∇ · (φu∆) = u∆ · (∇φ)+ φ∇ ·u∆. Further, incompressible conservation of mass says that ∇ ·u0 = ∇ ·uω =
∇ ·u∆ = 0. This gives:

Tω = T0 +T∆ +ρ

ˆ
V

∇ · (φu∆)−φ∇ ·u∆ dV = T0 +T∆ +ρ

ˆ
V

∇ · (φu∆) dV.

We can here apply the divergence theorem:

Tω = T0 +T∆ +ρ

ˆ
∂V

φ (u∆ · n̂) ds,

where we see that the remaining integral must vanish, because we know that the normal component of u∆ is zero along the boundary ∂V .
Since T∆ is a kinetic energy, it must be positive. That means that Tω = T0 +T∆ ≥ T0.
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Theorem 1 (Kelvin’s minimum kinetic energy theorem). Of all incompressible velocity fields that satisfy the same
normal boundary conditions in a simply connected domain, the irrotational velocity field will have the lowest
kinetic energy.

Note that we will not assume any of the three potential flow assumptions unless explicitly stated.

4 the boundary layer, or where we might apply the previously-defined
flow assumptions

You may have noticed that the above definition of ’external flow’ was vague about what it means to be ’far’ from
solid boundaries. This section intends to expand on the statement of ’far’.

Let’s make a thought experiment of an infinite domain that contains only one solid object of finite dimension.

If we take a molecular8 view of the solid boundary, we see that the surface must be jagged, at least where the
body’s molecules stick together. Then, the molecules of the fluid travelling immediately next to the boundary will
get caught by the jagged molecules of the boundary. The fluid molecules immediately next to the boundary can
have no velocity9 with respect to the solid boundary’s velocity. This is called the no-slip condition, and indicates
the significant influence of friction on the flow near the wall.

However, infinitey far away from the solid body, the fluid flow must have recovered to its free-stream values. For
fluids that can be modelled as incompressible continua, we see that the influence of the body on the flow must
decrease continuously between the boundary and infinitely far away.

At some distance δ normal to the wall, the flow will have ’mostly’ recovered to the freestream velocity, such that:

u(δ ) = fδu∞, (3)

using the freestream velocityu∞ and an arbitrarily large fδ ∈ [0,1] for example fδ = 0.99. Empirical approximation
methods for δ can be found in almost every general aerodynamics textbook, including [16].

The distance δ is called the boundary layer thickness, and separates the flow between the wall and ’infinitely-far-
away’ into two regions. The closer region is called the boundary layer wherein friction effects are definitely not
negligible. The region outside of δ is called the external flow, and is where external flow assumptions such as
external-irrotationality or external-inviscidness may or may not be reasonable.

This separation of our domain into a boundary layer and an external flow is relevant to the state variable vorticity
because viscous shear stress is one of the creation mechanisms of vorticity. Remember that shear stress τ(y) is
directly related to the shear gradient of the flow velocity:

τ(y) = µ
∂u
∂y

, (4)

for x̂ parallel to a wall, ŷ normal to a wall pointing out, y the height above the wall along ŷ, and u the x̂ component
of u.

Then, as noted by Prandtl[13], thin boundary layers require large shear stresses on the boundary layer fluid ele-
ments, to allow the flow to recover over the distance δ .

”If, however, the viscosity is very slight and the path of the flow along the surface is not too
long, then the velocity will have its normal value in immediate proximity to the surface. In the thin
transition [boundary] layer, the great velocity differences will then produce noticeable effects in spite
of the small viscosity constants.” [13]

However, for fluids with low viscosity, the shear stress may be negligible within the external flow. In many
engineering applications, the other mechanisms of vorticity creation may be similarly negligible in the external
flow.

8Molecular arguments are rare in fluid dynamics as models deriving from the Navier-Stokes equations all inherently assume that fluids
behave as continua.

9disregarding boundary layer suction or blowing
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Figure 1: a sketch showing negligible vorticity in the external flow and non-zero vorticity in the boundary layer

Effectively, then, the separation of the domain into a potential external flow and a boundary layer may split the
domain into a region with negligible viscosity and vorticity, and a region with significant viscosity and vorticity.
This is Prandtl’s boundary layer theory10.

Prandtl’s boundary layer is not immediately necessary to the next sections, but will show up again in section 11.

5 the vortex force, or why practical people are interested in vorticity

Vorticity is the curl of the velocity, and so must accelerate fluid elements perpendicular to the vorticity’s vector.
And, Newton’s laws requires that an acceleration of fluid elements implies the existence of a force on the surround-
ing fluid due to the vorticity. This force must be balanced by an equal and opposite force from the surrounding
fluid on the fluid element at the location of the vorticity.

The derivation and interpretations given in this section are inspired by section 2.3.7 of [5] and part B of [12].

Consider first, the differential form of the incompressible and invscid momentum conservation equation11 for
homogenous fluids, where the total pressure pt = p+ 1

2 ρ ||u||22:

ρ
∂u

∂ t
= ρk−∇pt +ρu×ω (5)

Notice here that k has units of m/s2, such that f = ρk is a force density.

Let’s simplify this problem by assuming that our fluid element is in equilibrium. That is, the flow is steady such
that ∂u

∂ t vanishes. Luckily, Bernoulli’s equation (pt = constant) is known to be valid for steady, incompressible,
and inviscid flows12 - and we have already made all of these assumptions previously.

Then, we can consider a type of ’free-body diagram’ of the force densities now acting on the fluid element. Notice
that there are only two remaining types of force densities. We have: a non-conservative force density f that we
have to apply externally if we want to preserve equilibrium, and a remaining force density that must be due to

10A historical perspective on the boundary layer theory and its clear importance in fluid dynamics is given in [2].
11Since ∇(a ·b) = (b ·∇)a+(a ·∇)b+a× (∇×b)+b× (∇×a), and the total pressure pt = p+ 1

2 ρ ||u||22, we can re-write the incom-
pressible and inviscid momentum conservation equations as:

Du

Dt
= k− ∇p

ρ

ρ
∂u

∂ t
+ρ(u ·∇)u = ρk−∇p

ρ
∂u

∂ t
= ρk−∇p− 1

2
ρ∇(u ·u)+ρu×ω

= ρk−∇

(
p+

1
2

ρ ||u||22
)
+ρu×ω

= ρk−∇pt +ρu×ω

12For confirmation that this does not also require irrotationality, see section 2.1, subsection ’Particular case of B1 and B2: homogeneous,
incompressible, perfect fluid’ of [5].

6



vorticity fv:

fv = ρu×ω. (6)

Though the naming may lead to confusion about the dimensions of the force density fv, this expression is known
as the vortex force. We can think of the vortex force as being the (negative) pressure gradient imposed by the entire
flow on the particular fluid element, due to the element’s own vorticity.

You’ll notice that, due to the cross product, the force density produced is perpendicular to the flow velocity at a
given point. This means that the vortex force is an expression of the ’lift’ on the fluid element, and does not include
drag effects other than the induced drag that is purely a re-direction of the lift vector.

This is particularly useful to us, if we consider the vorticity of the flow directly along the surface of a solid body,
the place where viscous shear-stresses in the boundary layer are most active at creating vorticity. The force exerted
by the surrounding fluid on the surface-layer fluid elements would then be transfered to the body as lift.

That is, the total lift force acting on the body due to the surface-layer vorticity - also called the bound vorticity -
can then be found as:

F =

ˆ
V
fv dV = ρ

ˆ
V
u×ω dV, (7)

provided that V is a control volume containing purely the body and the surface-layer fluid elements.

The take-away message here, is that the bound vorticity is responsible for the lift on the body. If the bound vorticity
changes, so will the lift, and vice-versa.

6 the flow field, or why impractical people are interested in vorticity and
dilation

These two state variables, dilation and vorticity, are relevant because they describe the nature of the flow, using
Helmholtz decomposition.

The following description and interpretation of Helmholtz and Helmholtz-Hodge decomposition is heavily inspired
by the review paper [4], in which can be found the proofs of the various theorems given in this section except for
the multiply connected Helmholtz-Hodge decomposition.

Theorem 2 (Helmholtz Decomposition). Consider a flow field within an infinite domain x∈R3, where the velocity
decays to zero towards the edges of this infinite domain. Then, the velocity in the flow field u(x) is uniquely
determined by the dilation of the fluid ϑ(x) and the vorticity of the fluid ω(x).

The Helmholtz decomposition takes some universe that only contains fluid. This fluid is generally still, but is
moving in the interior of this universe. Then, by knowing the dilation and vorticity within this all-fluid universe,
we have completely described the velocity of the fluid. This means that with some help from the Navier-Stokes
relations and thermodynamic relations, the dilation and the vorticity uniquely contain all of the information needed
to describe this all-fluid universe.

However, we’re not only interested in all-fluid universes, because solid constructions such as humans cannot in-
habit all-fluid universes. Luckily, there is an addendum to the Helmholtz decomposition that is valid in bounded
domains.

Theorem 3 (Helmholtz Decomposition in a Bounded Domain). Consider a flow field within a simply-connected
domain x ∈Ω⊂R3 with a boundary ∂Ω, whose inwards facing normal unit vector is called n̂. Then, the velocity
in the flow field u(x) is uniquely determined by the dilation of the fluid ϑ(x), the vorticity of the fluid ω(x), and
the velocity normal to the boundary at the boundary n̂ ·v(x∂ ) for x∂ ∈ ∂Ω.

Now, we have some finite domain, which is simply connected but might wrap around a pocket containing a relevant
geometry such as a lifting surface as in Figure 2. If we know the dilation and the vorticity within the domain, and
the normal component of the velocity everywhere on the boundary of the domain, then we have uniquely described
the velocity within the domain.
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Ω

∂Ω

Figure 2: A simply-connected domain Ω around Fizzy, with its boundary ∂Ω where Helmholtz decomposition
could be applied. The gaps between Fizzy and the bound boundary, as well as between the two sides of the shed
boundary, have been exaggerated for visibility. In reality, these gaps should be infinitessimally small.

As mentioned, we need to know the normal velocity component along each of the three segments of ∂Ω. First, the
normal velocity component has to be known along the external boundary of the domain, which might be far enough
upstream or downstream of the lifting surface to have recovered to the freestream. Second, the normal component
must be known along the boundary of the pocket, which we can call the bound boundary for consistency with
future notation. If the bound boundary is wrapped around some solid object without suction or blowing, then the
no-normal condition will hold along the bound boundary so that the normal component of the velocity is zero.

There is a third section of ∂Ω where the normal velocity component must be known: the portion of the boundary
behind the bound boundary where the simply connected domain abuts itself. Again, for reasons that will later
become apparent, we will call this portion of the boundary the shed boundary. The placement of the shed boundary
is an engineering decision, as there are an infinite number of possible locations.

A natural criteria for the selection of this location is that the normal velocity component should be zero. If there
is no normal component to the velocity, then the velocity must be parallel to the boundary, implying that the shed
boundary lays on a stream-surface of the flow. It then becomes apparent that the bound boundary is not so much
determined by the surface of the object within the pocket, as by the stream-surface around the object. Then, the
shed boundary stream-surface is the continuation of the bound boundary stream-surface. Notice that this implies
that the connection point between the bound boundary and the shed boundary is not inherently located at the
trailing edge, but wherever the suction-surface stream-surface first meets the pressure-surface stream-surface.

If we are interested in the case of multiple airfoils within our modelled universe, as is obviously the case for a
multiple-kite system, then we need to be sure that this decomposition will also work for multiply-connected do-
mains. That Helmholtz decomposition does hold for multiply-connected domains is shown in [8], with a theorem
that is summarized as follows.

Theorem 4 (Helmholtz Decomposition for Multiply Connected Domains). Consider a continuous flow field within
a multiply-connected domain x ∈ Ω⊂ R3 with a boundary ∂Ω that is piecewise smooth. Then, Ω can be divided
into a finite number of simply-connected domains Ωi, each with their own flow fields. Then, the velocity in each
flow field u(xi) is uniquely determined by the dilation of the fluid ϑ(xi), the vorticity of the fluid ω(xi), and the
velocity normal to the boundary at the various boundary n̂ ·v(x∂ ,i) for x∂ ,i ∈ ∂Ωi. Together, the flow fields of the
various sub-domains will give the full flow field.

To this point, we have described the various Helmholtz decompositions as relevant purely to aerodynamics. But, it
is important to realize that these decompositions are not possible because of some magical property of fluid flows,
but are true of all vector fields. This is stated below.

Theorem 5 (Helmholtz Hodge Decomposition (HHD)). Consider a vector field ξ(x) within a simply-connected
domain x∈Ω with a boundary ∂Ω, whose inwards facing normal unit vector is called n̂. The divergence ∇ ·ξ and
curl ∇×ξ of the vector field are known, as is either the normal component along the boundary ξn(x∂ ) = n̂ ·ξ(x∂ )
or the tangential compontent along the boundary ξt(x∂ ) = n̂× ξ(x∂ ) for x∂ ∈ ∂Ω. Then, the vector field is
uniquely determined as the sum of irrotational vector field Φ, ie. ∇×Φ = 0, and an incompressible vector field
Ψ, ie. ∇ ·Ψ = 0:

ξ = Φ+Ψ.
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Further, the irrotational vector field is the gradient of a scalar potential φ such that Φ = ∇φ , and the incompress-
ible vector field is the curl of a vector potential ψ such that Ψ = ∇×ψ.

We can decompose any ”sufficiently smooth” vector field into a curl-free and a divergence-free part. If we assume
that the velocity field u is sufficiently smooth, then this Helmholtz decomposition defines a scalar potential φ and
a vector potential ψ, such that:

u= ∇φ +∇×ψ (8)

The velocity at a given point has three degrees of freedom, and the scalar potential has one degree of freedom, so
we typically also remove one degree of freedom from the vector potential. This additional condition is called the
gauge condition, where ∇ ·ψ = 0.

We can take the divergence and the curl, separately, of (8), to get:

∇ ·u= ∇
2
φ = ϑ (9)

∇×u= ∇×∇×ψ = ∇(∇ ·ψ)−∇
2ψ =−∇

2ψ = ω (10)

Based on Helmholtz-Hodge decomposition, these combination of these equations - the Poisson equation on dilation
(10), the Poisson equation on vorticity (10), the gauge condition, and the known normal velocity at the boundary
of the domain - will uniquely describe the flow field within the domain Ω:

∇
2
φ (x) = ϑ for x ∈Ω, (11a)

−∇
2ψ (x) = ω for x ∈Ω, (11b)

∇ ·ψ (x) = 0 for x ∈Ω, (11c)
n̂ · (∇φ(x)+∇×ψ(x)) = un(x) for x ∈ ∂Ω, (11d)

7 assuming incompressibility gives a Poisson equation for vorticity

If we assume that the flow is incompressible (ϑ = 0), then the scalar potential φ will disappear from (11) to give
the form of:

−∇
2ψ (x) = ω for x ∈Ω, (12a)

n̂ · (usol(x)+∇×ψ(x)) = un(x) for x ∈ ∂Ω, (12b)

provided that usol is some solenoidal velocity field. This solenoidal velocity field is typically used to satisfy the
boundary conditions on the external boundaries of the domain, which - for example - may be far enough away
from the obstacle in the flow that uniform freestream flow conditions apply.

The induced velocity has a singularity when the Biot-Savart expression is evaluated on a point within the domain
(x= x′). This is especially problematic in numerical approximations of the integral. There’s a discussion of how
to regularize the Biot-Savart expression both before and after integration in sections 41.8 of [5].

There are a number of strategies for solving the Poisson equation for vorticity (12a) with its boundary conditions
(12b). The first option is to solve the problem directly, typically with a Fast Poisson solver13 The second option, is
to recognize that ∇2 is a linear operator. This means that elementary solutions to (12a) can be stacked in order to
match the boundary conditions (12b), using a principle called superposition. Superposition is incredibly appealing
if the appropriate elementary solutions are known, as the procedure leads to highly parallelizable solutions. Some
relevant elementary solutions are described in section 13.

8 the Biot-Savart integral, or how to solve the Poisson equation

The vector potential can be found by solving the Poisson equation (12a) with the boundary conditions (12b). For
an evaluation point x ∈ Rn and the location of a source x′ ∈ Rn, it is known that a Poisson partial differential

13See [11].
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equation of form ∇2F(x) = f (x), will have the solution:

F(x) =

ˆ
G(x,x′) f (x′)d3x′, (13)

G(x,x′) =

{
− 1

2π
log ||x−x′||2 , for x ∈ R2,

− 1
4π

1
||x−x′||2

, for x ∈ R3.
(14)

Here, G(x,x′) is the Green’s function that solves the partial differential equation ∇2G(x,x′) = δ (x−x′). [21]

For the domain Ω, this gives a solution to the vector potential Poisson equation as:

ψ(x) =
1

4π

ˆ
Ω

ω(x′)

||x−x′||2
d3x′ (15)

In order to evaluate the Neumann boundary conditions (12b), we can take the curl of (15):

ui(x) = ∇×ψ(x) = 1
4π

ˆ
Ω

∇× ω(x′)

||x−x′||2
d3x′, (16)

where ui is the induced velocity, the portion of the velocity field determined by the vorticity distrbution.

With some vector identies - A×A×A = 0 and ∇× (ab) = a(∇×b)+ (∇a)×b - and the recollection that the
vorticity is the curl of the velocity, the curl of the vector potential, (16) can be simplified into the classical 3D
Biot-Savart relationship:

ui(x) =−
1

4π

ˆ
Ω

(x−x′)
||x−x′||32

×ω(x′) d3x′. (17)

Notice that the influence of the vorticity decreases asymptotically with radius in this solution - the requirement
previously specified for the scalar potential φ(x) to be constant.

It remains to specify the boundary conditions that will determine ω(x) for x ∈Ω, applying (17) into (12b):

n̂(x) ·

(
usol(x)−

1
4π

ˆ
Ω

(x−x′)
||x−x′||32

×ω(x′) d3x′, for x ∈ ∂Ω

)
= un(x) (18)

If you remember that the time evolution of ω must satisfy (1), we see that solving (18) is not a trivial challenge.
Luckily, there are some cases that help us to simplify the problem.

9 physical considerations that simplify the Biot-Savart integral, or the
classical vorticity theorems

9.1 vorticity at separation: the Kutta condition

The first way that we might simplify the Biot-Savart expression concerns locations where the vorticity is known to
be zero. This is true wherever the flow separates from a body, as is explained in this section.

At a separation point the boundary layer separates from the body. This occurs because the pressure gradient beyond
the separation point is strong enough to force the flow to travel in the ’upstream’ direction. What we see, then,
is that flow before the separation point is moving ’downstream’ close to the wall, where flow after the separation
point is moving ’upstream’ close to the wall.14 Such a switch in flow direction close to the wall requires that there
be a point where the wall-parallel velocity asymptotically approaches zero at the wall. By squeezing the ’upstream’
and ’downstream’ points closer together around the separation point, we see that this point of stationary near-wall,
wall-parallel velocity must occur at the separation point itself.

14More specifically, this is true on average. Separated flow are characterized by strong turbulence, whose eddies make it impossible to say
that any given flow element must necessarily be moving in any particular direction.
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u

u
u

attached flow separated flowat separation point

locally at the separation point, ∂u
∂y = 0

zero vorticity at separation point

u
x x x

y yy

⇓

Figure 3: A sketch of wall-parallel flow velocity in the boundary layer at separation, as explanation of the Kutta
condition. Here, u is the wall-parallel x̂ component of the velocity and v is the wall-normal ŷ component, such
that u= u x̂+ v ŷ.

Consequently, at the separation point:

∂u
∂y

∣∣∣∣
xsep

= 0. (19)

Among other practical effects, this means a solid boundary experiences no shear-stress at the separation point.

On another note, provided that the wall is impermeable, we see that the no-through condition requires that the
wall-normal velocity be everywhere zero along the wall. As the separation point is on the wall, we know that :

∂u
∂y

∣∣∣∣
xsep

= 0. (20)

From these two statements, it must be true that the curl of the velocity is zero at the separation point. That is:

ω|xsep
= 0. (21)

This argument (sketched in Figure 3) can be extended to three dimensions when following a separation line.

The physical requirement that smooth separation implies zero vorticity at the separation location is called the Kutta
Condition. You can convince yourself that fluids do - in fact - separate smoothly by admiring the beautiful photos
of [17].

9.2 vortex transport rules: Helmholtz’s first vorticity theorem

Another consideration to help simplify the problem above is to assume that the structures containing vorticity - the
vortices defined nebulously in section 2 - convect with the flow. This is Helmholtz’s first vorticity theorem, with a
proof given in section 2.6.3 of [5].

Theorem 6 (Helmholtz’s First Vorticity Theorem). For an inviscid and incompressible fluid experiencing only
conservative body forces, vortices are material structures that convect with the flow.

That is, if the location of a freely-convecting vortex is xv(t), then we can express an ordinary differential equation
describing the evolution of xv in time:

ẋv(t) = usol(t)+ui(xv, t), (22)

where ui is the flow field determined by the Biot-Savart integral (17). This may not seem like much of a simplifi-
cation, but it gives a necessary translation between the vorticity’s material derivative expressed by (1) in terms of
a vortex’s location.

11



9.3 vorticity evolution in externally incompressible and inviscid flow with conservative
forces: Kelvin’s circulation theorem

The third consideration that may be useful concerns the flux of vorticity through a surface, such as a cross-section
of Ω.

This flux of the vorticity - called circulation Γ - through a surface S bounded by the closed contour ∂S, is defined
as:

Γ =

ˆ
S
ω · n̂ dS =

˛
∂S
u ·ds. (23)

From this definition of circulation, we get15 Kelvin’s circulation theorem.

Theorem 7 (Kelvin’s circulation theorem). For an inviscid and incompressible flow with conservative body forces,
the material derivative of the circulation around a fluid curve is zero:

DΓ

Dt
= 0.

Kelvin’s circulation theorem says that depending on the properties of the external flow, circulation is a conserved
quantity from a Langrangian standpoint.

If we can find some domain containing an obstacle in an externally-potential flow, through which the vorticity flux
is zero at some point in time, then, total circulation over that surface will remain zero as its boundary deforms
with the flow. That is, if there ever was a previous time where the fluid within Ω was at rest, and therefore was
vorticity-free with zero circulation around ∂Ω, then the total circulation around the boundary must always be zero.

10 Kutta, Helmholtz and Kelvin walk into a bar, or vortex shedding from
separation locations

In Sections 5 and 9.3 we’ve made two statements that would appear to contradict each other. That is:

15Kelvin’s circulation theorem is derived here with the parameteric derivation given in section 4.9.1 of [6].
First, let’s parameterize the closed space-curve ∂S = {s(t) | t ∈ [0,1]}. Since ∂S is closed, we know that the boundaries s(0) = s(1) and

u(s(0)) = u(s(1)) are periodic.
This re-phrases the line integral of the circulation as:

Γ =

ˆ 1

0
u · ∂s

∂ t
dt.

Then, we can take the time derivative of the circulation as:

DΓ

Dt
=

ˆ 1

0

Du

Dt
· ∂s

∂ t
dt +
ˆ 1

0
u · ∂u

∂ t
dt =

ˆ 1

0

Du

Dt
· ∂s

∂ t
dt +

1
2
[u ·u]10 .

Notice that the periodic conditions of u will make the second term vanish.
We can get the material derivative of the velocity from the incompressible and inviscid momentum equation:

Du

Dt
= k− ∇p

ρ
=−∇K− ∇p

ρ
,

since k has been specified to be a conservative force density, and is therefore the gradient of a potential K.
Applying the material derivative of the velocity back into the circulation derivative, we find:

DΓ

Dt
=−
ˆ 1

0

(
∇K +

∇p
ρ

)
· ∂s

∂ t
dt

At this point, we remember the gradient theorem which tells us that:

f (s(α))− f (s(β )) =
ˆ

α

β

∇ f (s(t)) · ∂s

∂ t
dt

Consequently, we can apply periodicity to say that:
DΓ

Dt
=−

[
K +

p
ρ

]1

0
= 0.
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• the lift on an airfoil - which is definitely not constant - is determined by the bound vorticity within V ⊂ Ω,
and

• that the flux of vorticity through any cross-section16 of our full domain Ω is conserved over time for inviscid
and incompressible flows.

How can we reconcile that the vorticity within a portion of Ω varies while there is a constant flux of vorticity
through a cross-section of the entire domain?

The change in bound vorticity of V must be compensated by an equal-and-opposite change in the vorticity of Ω\V .

Further, this compensatory vorticity - called shed vorticity - that is created within Ω\V should be created so that
Kutta’s condition from 9.1 is satisfied. The logical idea, then, would be to introduce the shed vorticity into Ω\V
from the separation locations17 such that the vorticity at the separation locations always sums to 0.

After the shed vorticity has been released, it can be convected downstream by the flow as required by Helmholtz’s
first theorem.

In this way, the shed vorticity enforces conservation of angular momentum in the flow, even as the lift on the airfoil
changes.

11 the lucky case of an externally-potential flow with a thin boundary
layer

If we are particularly lucky, we will have both an externally-potential flow and a thin boundary layer.

The externally-potential flow assumption argues that the domain Ω can be divided into two parts: ΩBL and ΩEF,
and that the contribution to the Biot-Savart integral of the entire external flow domain ΩEF is negligible. This is
shown in Figure 4, and gives a reduction in the relevant integration domain of the Biot-Savart integral.That is:

ui(x) =−
1

4π

ˆ
Ω

(x−x′)
||x−x′||32

×ω(x′) d3x′ =− 1
4π

ˆ
ΩBL

(x−x′)
||x−x′||32

×ω(x′) d3x′. (24)

ΩEF
∂ΩBL

ΩBL

∂ΩEF

Figure 4: Separating the domain Ω around Fizzy into an external flow domain ΩEF (dashed) which does not
contribute to the Biot-Savart integral, and a boundary layer ΩBL (solid) which does contribute to the integral.

If the boundary layer is thin, then the domain ΩBL will be much smaller than Ω. Frequently, this thinness can be
exaggerated such that ΩBL ≈ ∂ΩBL, implying a decrease in the dimensionality of the required integration.

That is:

ui(x) =−
1

4π

ˆ
∂ΩBL

(x−x′)
||x−x′||32

×ω(x′) d2x′. (25)

16deforming with the fluid
17You can convince yourself that the shedding of vorticity from separation locations is physical, and not just convenient mathematical

trickery, by looking at the experimental photos published - for example - at the back of [16], or by dragging a spoon through a pot of broth.
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Typically, what we mean by ’thin’ requires that the flow remain fully attached18 to the body until it separates at
the trailing edge. An example of the various domains and boundaries in the case of such a thin boundary layer, is
shown in Figure 5.

ΩEF ∂ΩBL

ΩBL

∂ΩEF

Figure 5: A depiction of the lucky case with an external potential flow in ΩEF and boundary ∂ΩEF (dashed) - and
a thin boundary layer in ΩBL with boundary ∂ΩBL (solid), around Fizzy.

Such a combination of externally-potential flow and a thin boundary layer implies a significant savings of compu-
tational effort when solving the flow boundary problem (18).

12 general procedure of a Biot-Savart superposition solution, or how typ-
ical vortex methods work

As previously mentioned, one way to solve (18) is with the superposition of many elementary solutions to the (17)
until the boundary conditions are satisfied. The elementary solution vortices must be chosen to match the expected
geometry of the vorticity distribution within the domain.

The position of the vortices at any point in time is determined by solving an initial value problem, by integrating
the derivative (22) from the vth vortex’s known location at some time tv.

The vorticity distribution within the vth vortex has a specific number of degrees of freedom depending on the type of
elementary solution vortex. For vortices with constant vorticity distributions, there is only one degree of freedom
that can be used to describe the vorticity distribution: a vortex strength γv. If the flow is externally-inviscid, γv
remains constant over time; otherwise, the vortex strength will decrease19 in time as viscous dissipation robs the
vortex of energy .

In the case of an elementary solution with uniform vorticity distribution and externally potential flow, the vth vortex
is defined by four values: the three position coordinates xv and the vortex strength γv defined at some time tv. We
need to determine these values for each vortex v ∈ V such that the boundary conditions (no-normal flow through
the bound and shed boundaries) are satisfied.

This arranging problem is typically simplified by placing some of the vortices (v∈B⊂ V ) at the very inside of the
solid object’s boundary layer where the flow relative to the body is zero. These bound vortices are discretizations
of the bound vorticity and have a simplified velocity ODE:

ẋv(t) =
∂

∂ t
(∂Ω(xv, t)) (26)

Some subset (possibly the full subset) of the remaining vortices (v ∈ S ⊂ V such that S ∩B = /0) have their
positions at time tv chosen to ensure that the Kutta condition (21) is satisfied at all separation locations. The
way this is accomplished, practically speaking, is to place the vth vortex at the nth separation location at time tv:
xv(tv) = xsep,n(tv). This is done so that all n ∈N separation locations are covered.

18In yet another example of potentially-confusing naming conventions, ’fully attached’ means one flow attachement point, typically near the
leading edge of an airfoil, and one flow separation point, almost always at the trailing edge of an airfoil.

19Numerically, this should satisfy whatever simplified version of (1) is desired.
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The no-normal condition is satisfied over the shed boundary as a natural result of allowing the vortices of S to
convect freely. That is, a converged solution will move the shed vortices with the flow, such that there cannot
be any velocity difference between the the shed vortices and the immediately-surrounding fluid. The converged
locations of the shed vortices will then end up marking the position of the shed boundary.

With a finite number of elementary vortices, we cannot satisfy the infinite boundary conditions given by a con-
tinuous boundary in a continuous time interval. As such, we chose some finite set of evaluation times, as well as
positions along the bound boundary to place bound vortices. In the end, the number of unknowns for all |V | vor-
tices should be equal to the number of boundary conditions enforceable - counting both the no-normal conditions
as well as the Kutta conditions. This description gives the general procedure for many members of the family of
vortex methods.

One common member of the vortex method family is the vortex lattice method, in which quadrilateral vortex rings
of constant vortex strength are tiled over a wing surface as well as the infinitely-thin shed-boundary that describes
the flow shed from the wing’s trailing edge. A sketch of such a vortex placement is given in Figure 6.

x̂

ẑ
ŷ

Figure 6: A sketch of a vortex lattice for a finite length wing. The angle of attack is exaggerated for visibility.

13 elementary solutions to the Biot-Savart integral

Due to the linearity of the ∇2 operator, known solutions to the Poisson equation relating the vector potential and
the vorticity (12a) can be superposed to find the solution which will satisfy the boundary conditions (12b) at any
point in time. As a result, elementary solutions to the Biot-Savart integral (17) are very useful.

These elementary solutions are - by virtue of implying a concentration of vorticity - vortices. It is important to
remember however that not all vortices are elementary solutions. Vortices are only elementary solutions if it is
possible to analytically integrate the Biot-Savart integral over their geometry and vorticity distribution.

In the following section, some relevant elementary solutions are presented.

13.1 line-segment (filament) of constant vorticity distribution

In the case of a line-segment of constant vorticity distribution, the vortex has the parametric curve:

x′ = x′0 + t(x′1−x′0), for t ∈ [0,1], (27)

such that the vorticity within the domain Ω will only be non-zero over the line-segment x′.

Then, the vorticity field on that domain of the segment is parallel to the segment, with a magnitude ω . From
the vorticity carried within the vortex and the segment length of the vortex, a combined vortex strength γ can be
defined 20

20Recall that we defined a quantity called circulation Γ =
´

S ω · n̂ dS that is conserved in externally-inviscid and incompressible flows with
conservative body forces.
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ω(t) = ω
dx′

dt
/

∣∣∣∣∣∣∣∣dx′dt

∣∣∣∣∣∣∣∣
2
= γ

dx′

dt
= γ(x′1−x′0) (28)

Notice that ω is - by the definition of this scenario - constant in t. So that the cross product can be moved outside
of the integral.

When (27) is substituted in the Biot-Savart integral (17), it gives the following integral:

ui(x) = − γ

4π

(ˆ 1

0

(x−x′(t))
||x−x′(t)||32

dt

)
× (x′1−x′0) (29)

= − γ

4π

(
(x−x′0)

ˆ 1

0

1

||x−x′(t)||32
dt− (x′1−x′0)

ˆ 1

0

t

||x−x′(t)||32
dt

)
× (x′1−x′0) (30)

= − γ

4π

(ˆ 1

0

1

||x−x′(t)||32
dt

) (
(x−x′0)× (x′1−x′0)

)
(31)

Notice that as the cross product is distributive and (a−b)× (a−b) = 0, the cross product of the first and second
legs of a triangle will be equivalent to the cross product of the first and third legs. That is, (a− b)× (c− b) =
(a−b)× (c−a). Then, the above cross-product can be written in a more symmetrical fashion:

ui(x) =
γ

4π

(ˆ 1

0

1

||x−x′(t)||32
dt

) (
(x−x′0)× (x−x′1)

)
. (32)

The integral above can be evaluated as:

ˆ 1

0

1

||x−x′(t)||32
dt =

 (x′0−x′1) · (x−x′0)+
∣∣∣∣x′0−x′1∣∣∣∣22 t(∣∣∣∣x−x′0∣∣∣∣22 +2

(
(x−x′1) · (x−x′0)−

∣∣∣∣x−x′0∣∣∣∣22) t +
∣∣∣∣x′0−x′1∣∣∣∣22 t2

) 1
2
· · ·

1∣∣∣∣(x−x′0)× (x−x′1))
∣∣∣∣2

2

]t=1

t=0

(33)

When evaluated and separated, this gives:

ˆ 1

0

1

||x−x′(t)||32
dt =

(x′1−x′0) ·
(

x−x′0
||x−x′0||2

− x−x′1
||x−x′1||2

)
∣∣∣∣(x−x′0)× (x−x′1))

∣∣∣∣2
2

(34)

=

(∣∣∣∣x−x′0∣∣∣∣2 + ||x−x′1||2)∣∣∣∣x−x′0∣∣∣∣2 ∣∣∣∣x−x′1∣∣∣∣2 (∣∣∣∣x−x′0∣∣∣∣2 ∣∣∣∣x−x′1∣∣∣∣2 +(x−x′0) · (x−x′1)
) . (35)

after some manipulation21.

Let’s take a plane S that is perpendicular to the vortex filament’s orientation, and find the corresponding circulation. Since the normal vector is
parallel to the vortice’s orientation, and consequently the vorticity; and since the vorticity is uniform within the vortex, we see that:

Γ = ||ω||2 Av = γ
∣∣∣∣x′1−x′0

∣∣∣∣
2 Av,

where Av is the cross-sectional area of the vortex filament.
We see then that if a vortex filament stretches over time (that is,

∣∣∣∣x′1−x′0
∣∣∣∣

2 increases) while Γ and γ remain constant, that the cross-sectional
area of the filament must decrease. That is, the so-called ’core’ radius of a vortex must be inversely proportional to the square root of the
filament length.

21Starting from (34), we can rearrange and expand the dot product. This gives:

ˆ 1

0

1

||x−x′(t)||32
dt =

(
(x−x′0)− (x−x′1)

)
·
(

x−x′0
||x−x′0||2

− x−x′1
||x−x′1||2

)
∣∣∣∣(x−x′0)× (x−x′1))

∣∣∣∣2
2

=

(
||x−x′0||

2
2−(x−x

′
1)·(x−x

′
0)

||x−x′0||2
+
||x−x′1||

2
2−(x−x

′
0)·(x−x

′
1)

||x−x′1||2

)
∣∣∣∣(x−x′0)× (x−x′1))

∣∣∣∣2
2
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When these pieces are re-assembled, we find the induced velocity field due to the vortex filament to be:

ui(x) =
γ

4π

 (∣∣∣∣x−x′0∣∣∣∣2 + ||x−x′1||2)((x−x′0)× (x−x′1))(∣∣∣∣x−x′0∣∣∣∣22 ∣∣∣∣x−x′1∣∣∣∣22 + ∣∣∣∣x−x′0∣∣∣∣2 ∣∣∣∣x−x′1∣∣∣∣2 (x−x′0) · (x−x′1))
 . (36)

This derivation method is chosen to provide some framework to integrations of the Biot-Savart over other geome-
tries, because the solution - found using a different derivation mainly based on angle identities - is widely published
in descriptions of vortex methods such as [10].

We can expand this with Lagrange’s identity (||a×b||22 = ||a||
2
2 ||b||

2
2− (a ·b)2) and multiply the denominator to give:

ˆ 1

0

1

||x−x′(t)||32
dt =

(
||x−x′1||2

||x−x′0||
2
2−(x−x

′
1)·(x−x

′
0)

||x−x′0||2||x−x′1||2
+
∣∣∣∣x−x′0

∣∣∣∣
2
||x−x′1||

2
2−(x−x

′
0)·(x−x

′
1)

||x−x′0||2||x−x′1||2

)
∣∣∣∣(x−x′0)

∣∣∣∣2
2

∣∣∣∣(x−x′1)
∣∣∣∣2

2−
(
(x−x′0) · (x−x′1)

)2

With some factoring:
ˆ 1

0

1

||x−x′(t)||32
dt =

(∣∣∣∣x−x′0
∣∣∣∣

2 + ||x−x′1||2
)(∣∣∣∣x−x′0

∣∣∣∣
2 ||x−x′1||2− (x−x′0) · (x−x′1)

)∣∣∣∣x−x′0
∣∣∣∣

2

∣∣∣∣x−x′1
∣∣∣∣

2

(∣∣∣∣(x−x′0)
∣∣∣∣2

2

∣∣∣∣(x−x′1)
∣∣∣∣2

2−
(
(x−x′0) · (x−x′1)

)2
)

Finally, notice that (a2−b2) = (a+b)(a−b).
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