exercise session 3

Rachel Leuthold and Moritz Diehl Wind Energy Systems, Summer-Semester 2018

Albert-Ludwigs-University, Freiburg, Germany

June 6, 2018

1 questions from you...

2 concept questions

a question from you...

what's a residual, anyways?

what's a residual, anyways?

consider:

you have two functions f(x) and g(x) that should be equal...

 \ldots and you want a function R that says 'how close to equal' f(x) and g(x) actually are

R is the residual

what's a residual, anyways?

consider:

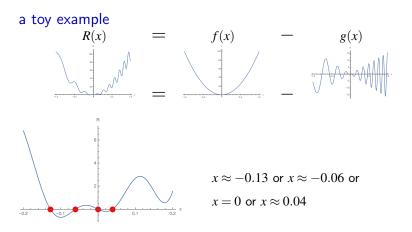
you have two functions f(x) and g(x) that should be equal...

 \ldots and you want a function R that says 'how close to equal' f(x) and g(x) actually are

R is the residual

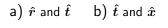
what are the options for R?

$$R = \frac{f(x)}{g(x)} - 1 \quad \text{ or } \quad R = f(x) - g(x) \quad \text{ or } \quad R = \frac{f(x) - g(x)}{h(x)} \quad \text{ or } \quad \dots$$


 \dots then, chose the *R* that is 'easiest' for your purpose!

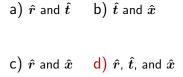
that's nice. what do we do with R? use rootfinding (or minimization) on R(x) = 0 to solve f(x) = g(x).

that's nice. what do we do with R? use rootfinding (or minimization) on R(x) = 0 to solve f(x) = g(x).



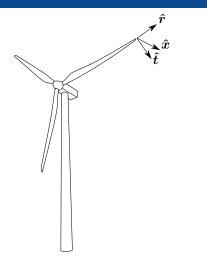
concept questions!

which components of induction actually exist physically?

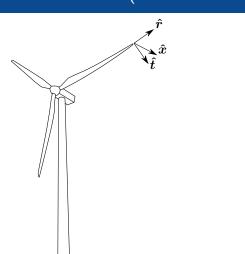


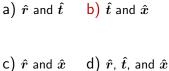
c) \hat{r} and \hat{x} d) \hat{r} , \hat{t} , and \hat{x}

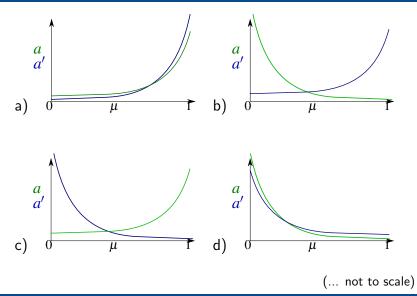
which components of induction actually exist physically?



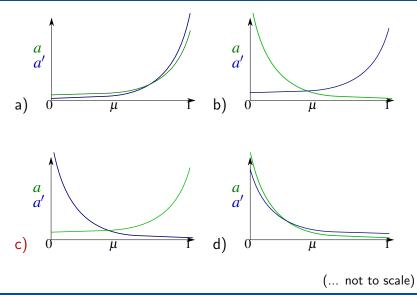
which components of induction have we modelled (so far in WES)?






c) \hat{r} and \hat{x} d) \hat{r} , \hat{t} , and \hat{x}

which components of induction have we modelled (so far in WES)?



which is a reasonable distribution?

SCO

which is a reasonable distribution?

SCO

about the homework

50

1d		2d		2e	
i	Paul Daum	i	Karima Saddedine	i	Cristina R. Alberdi
ii	Irene Franzetti	ii	Sebastian Pascual	ii	Erisa
iii	Aksel Pettersen	iii A	Nick Garder	iii	Simon Gramatte
iv	Di Mu	iii B	Axel Hecht	iv	Valentin Czisch
v	Julian Wilmers	iii C	Naveen Guruprasad		

Exercise 1: Classic Momentum Theory

0

-SCO irborne Wind Energy

30

40

50