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Model Predictive Control of Power Converters

Classification

Direct control

——= Controller —>>{ System F—>

T

Direct manipulation of switch position:

- Manipulated variable: u € Z™

Control methods:

« Reference tracking (finite control set MPC):
enumeration or sphere decoding

« Bounds (MPDxC): branch and bound

= Optimized pulse patterns: QP solver or algebraic
manipulation

T. Geyer: MPC of PE: control and optimization
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Indirect control

——= Controller —>> Modulator —= System F—>

1 .

Indirect manipulation of switch position:

- Manipulated variable: v € R™

Control methods:

- Reference tracking: linearization, QP solver or
explicit solution



Model Predictive Control of Power Converters
Outline

Long-horizon direct MPC
= Integer optimization problem
= Sphere decoding

- Case study

Indirect MPC
= Modular multilevel converter
= Controller formulation

= Simulation results
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Long-Horizon Direct MPC
Case Study

NPC converter with LC filter and ind. machine:

5
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Control objectives:

/X Y& YK
Z

A
NH

* Regulate inverter currents, capacitor voltages and
stator currents along their references

y* =) ()" (5" with aB-components
* Minimize the switching frequency
Assessment:
« Two coupled 3 order systems

* Short horizons lead to poor performance
(due to the undamped system resonance)

* Long horizons are mandatory

T. Geyer: MPC of PE: control and optimization
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System resonance:

Bode magnitude plot:
(inverter voltage v, to stator current i)
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Model Predictive Control of Power Converters
Outline

Long-horizon direct MPC

- Integer optimization problem

Indirect MPC

Assessment of control methods for power converters

Conclusions and outlook
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Long-Horizon Direct MPC
Derivation of the Integer Program

- Consider the discrete-time linear time-invariant system with integer inputs

:I:(é + 1) = A:B(Z) + Bu(ﬁ) where ¢ € R™, u € Z™, y € R™ ry:*::> Controller f==>{ Sysem =2
y(0) = Cx(0) L
- Consider the quadratic cost function 4
k+N—-1 ;\ Past Horizon .
J=3" [l +1) —y(t+ DI + Al Au(0)]3 - N
EZI{T \ \/ / G \/ B e _.7*._. 5 or—
Tracking error Penalty on Yo{k) Uy (k)
(deviation from reference) control effort tere () _I_Lf_‘_
Iy —ylly = '~ 9)TQW —y)  Au(t) = u(t) - u(t—1) e . .
Ay >0 kok+1 k+N

- Consider the input constraints

ull) e YW=k, . k+N—1 O 0 OUu
[Au(f)]|o0 <1 O O O
O 0 O

Example of an input set: & = {—1,0,1}°
. , . A =| n
;.)_C;}:i)ﬁgol\gc of PEl. gﬁgggl and optimization “ ' "



Long-Horizon Direct MPC
Optimization Problem

k+N-1
minimize 3 - ly*(E+1) = y(E+ llg + Ml Au(d)]l;
=k

subject to x({+ 1) = Ax({) + Bu({)
yl+1)=Cx({+1)
Au(l) =u(l) —u(l —1)
ul) e
|Au(l)||oo <1, W =k,....k+ N —1

With
- The sequence of manipulated variables U (k) = [uT (k) uT(k+1) ... T (k+N - 1)]T
- The sequence of reference values Y*(k) = [y*T(k + 1) y*T(k+2) ... y*T(k+ N)]*

The optimization problem is a function of
- The “parameters” x(k),u(k —1),Y*(k)

- The optimization variable U (k)

T. Geyer: MPC of PE: control and optimization
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Long-Horizon Direct MPC
Objective Function in Vector Form

- The objective function in vector form:

J =T+ o =Y (k) = Tx(k) = YU(K)|| + Al [SU () — Bu(k - 1)|;

- After some algebraic manipulations:

J =UY(k)HU (k) + 207 (k)U (k) + 0(k)

- Where « H=Y7QY +),STS
H € R3VX3N ig the Hessian matrix
It is a function of A, B, C and )\,
It holds that H = HY, H = 0 for \, > 0

e O(k)=-YTQ(Y*(k) — Tx(k)) — \ySTEu(k — 1)
O (k) € R?" is a time-varying vector
It is a function of x(k), u(k — 1) and Y * (k)

o 0(k) = |IY" (k) = T (k)5 + Aul[Buk - 1|3
6(k) € R is a time-varying scalar

Soonrota O S opumeaton Can we rewrite the problem to solve it more easily?

20-Feb-2018 | Sli



Long-Horizon Direct MPC
Objective Function in Vector Form

- Starting with
J=U(k)YHU (k) + 207 (k)U (k) + 0(k)

- we “complete the squares”
J=(Uk)+H'Ok) HUEK) +H 'Ok) — 0T (k)H 'O(k) + 0(k)

- /
hd

- and write the obj. function in the quadratic form Independent of U(k)
T
J = (U(k) o UunC(k>> H<U<k) - Uunc<k>>

- with the unconstrained solution U (k) = —H '@ (k) Real-valued vecior
A function of x(k), u(k-1) and Y*(k)

- The Hessian H is symmetric and positive definite for A, > 0
=> A unique invertible and lower triangular matrix V exists which satisfies V'V = H

= This leads to optimization problem

J=[VU(k) = VUue(k)|[3

. , . 4L 1B D
T. Geyer: MPC of PE: congilland optimization " .. .'
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Derivation of the Integer Program
Reformulated Optimization Problem

Uopi(k) = arg min ||[VU (k) — VU ue(k)|[3
U (k) y

subject to-U (k) € U

1Aw(O)]|oo <1V =F, ..., k+ N —1

Switching sequence (optimizer)
UE) = [ul(k).. uT(k+N -1 Uuwclk) = -H 'O (k)

Integer-valued vector IF:QeaI—\_/aIuefd ViCtork e
, 3N unction of x(k), u(k-1) an

Unconstrained solution

The optimization problem amounts to finding the integer vector U(k) that
minimizes the Euclidian distance to U (k) in the space spanned by V

V is the generator matrix (withV?V = H)

T. Geyer: MPC of PE: control and optimization
ide 12
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Model Predictive Control of Power Converters
Outline

Long-horizon direct MPC

- Sphere decoding

Indirect MPC

Assessment of control methods for power converters

Conclusions and outlook
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Solving the Integer Program
Example: Optimization Problem with & € {-1,0,1}"

U in the orthogonal coordinate system

U in the transformed coordinate system

15 (only the first two dimensions are shown) 0.06: (only the first two dimensjons are shown)
o
1 o o o 0.04 PY
o
0.5 0.02
o
0 ® ® ® 0 °
o
-0.5 -0.02
o
1 ° ° ° -0.04 4 .
-1.5 -0.06: ;i
-1.5 1 -0.5 0 0.5 1 1.5 -0.06 -0.04 -0.02 0 0.02 0.04 0.06
“Generator” matrix (for T;=25us, A,=103):
with V'V = H

T. Geyer: MPC of PE: control and optimization
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Solving the Integer Program
Example: Optimization Problem with & € {-1,0,1}"

in the orthogonal coordinate system in the transformed coordinate system
U inth th I dinat t Uinthet f d dinate syst
15 (only the first two dimensions are shown) 0.06: (only the first two dimensions are shown)
)
1 ® ® ® 0.04 PS
®
0.5 0.02
[ Sphere
0 ® ° \V/ 0 ° ~.
Uopi(k) ,
-0.5 o -0.02 ¢
UuHC<k> o \ VU““%)]{‘,)
1 ° ° ° 0.04 ® SN
-1.5 ; -0.06" -
-1.5 -1 -0.5 0 0.5 1 1.5 -0.06 -0.04 -0.02 0 0.02 0.04 0.06

In the transformed coordinate system:
- The optimal solution has the minimal distance to the unconstrained solution
- The optimal solution lies within a sphere (centered at the unconstrained solution)

Modified sphere decoder => solve the integer optimization problem

T. Geyer: MPC of PE: control and optimizatior "“
20-Feb-2018 | Slide 17



Solving the Integer Program
Sphere Decoder

Branch and bound algorithm

= Branching over the set of single-phase
switch positions U = {—1,0, 1} that meet
the switching constraint ||Au(¢)|] <1

- Bounding: consider solutions only within
the sphere of radius p(k):

VU (k) = VUune(k)|]2 < p(k)

If the radius is exceeded => certificate has
been found that the branch is suboptimal

» The sphere is tightened whenever a better
solution is found

T. Geyer: MPC of PE: control and optimization Fincke and Pohst: “Improved methods for calculating vectors of short length in a lattice, including a complexity analysis,”
20-Feb-2018 | Slide 19 Math. Comput., Apr. 1985

Example: search tree for 4" = {-1,0,1}°




Solving the Integer Program
Sphere Decoder

Branch and bound algorithm Number of nodes explored for 4" = {—1,0,1}*
- Branching over the set of single-phase 100 ; :
switch positions U = {—1,0, 1} that meet : |
the switching constraint || Au(f)||e <1 s0f L !
. . . - avetage |
- Bounding: consider solutions only within £ ol - ! .
the sphere of radius p(k): g - 95 fercentile
VU (k) = VU (k)| |2 < p(k) g 0l 98 percentilg
= - |
If the radius is exceeded => certificate has 20l : !
been found that the branch is suboptimal : :
- The sphere is tightened whenever a better % 15 "’"’“"QB”L 155 180 295
solution is found Number of nodes

The optimal solution is found in 80% of the cases by exploring only
one switching sequence => tight sphere / strong bounding

T. Geyer: MPC of PE: control and optimization Fincke and Pohst: “Improved methods for calculating vectors of short length in a lattice, including a complexity analysis,” “ l. ..
20-Feb-2018 | Slide 20 Math. Comput., Apr. 1985 FAIPp



Model Predictive Control of Power Converters
Outline

Long-horizon direct MPC

- Case study

Indirect MPC

Assessment of control methods for power converters

Conclusions and outlook
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Drive System with LC Filter
Case Study

NPC converter with LC filter and ind. machine:

5
20 @
[l (&

: B; N g—;—;—fWY\ . ;\@

= Zivsgft AYK KYK Xp

Y& NXE Y&

Control objectives:

/X Y& YK
Z

A
NH

* Regulate inverter currents, capacitor voltages and
stator currents along their references

y* =) ()" (5" with aB-components
* Minimize the switching frequency
Assessment:
« Two coupled 3 order systems

* Short horizons lead to poor performance
(due to the undamped system resonance)

* Long horizons are mandatory

T. Geyer: MPC of PE: control and optimization
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System resonance:

Bode magnitude plot:
(inverter voltage v, to stator current i)
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Drive System with LC Filter
Control Problem Formulation

k+N-1
Performance index: J = Z ly* (L +1) —y(l+ 1)||%2 + | |[Au(0)|[3
=k - ~ o ~ J
Tracking error Penalty on
(deviation from reference) switching effort
y =[] vl 1T Au(l) = u(l) — u(l - 1)
Output reference vectors: A q

* Capacitor voltage
Stator '\ws
current

Stator flux P

2

U;
Inverter
voltage

o
d

Rotor flux

T. Geyer: MPC of PE: control and optimization
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Drive System with LC Filter
Control Problem Formulation

k+N—1
Performance index: J = Z y* (¢ +1) —y(l+ 1)||22 + | |[Au(0)|[3
=k - B/
Tracking error Penalty on
(deviation from reference) switching effort
y =[] vl 1T Au(l) = u(l) — u(l - 1)
Model: z({ +1) = Az({) + Bu(l) with @ = [i7 vl 3. ! ]" € RS
y(£) = Cz(() TRV

Input constraints:  u(f) € {~1,0,1}*
[Au(l)|lo <1

The outputs are linear in the initial state vector x(k) and the
sequence of manipulated variables (the switching sequence)

Uk)=[ul (k) u'(k+1)...wT(k+N-1)]F

. , . 4\ 1B D
T. Geyer: MPC of PE: cqngglsand optimization "..l'
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Drive System with LC Filter
System Parameters and Current TDD

System parameters Current TDD vs switching frequency
10
YK WX Y&
*Q x¥% A¥& F95 . gl
A T B A -
IBEREEEE ===
v ¥R XYR ZYR Xfmgc_ s 6f
YK WX NK =
&
~ 4t

= MV induction machine: 3.3kV, 2MVA, 50Hz,
X;=0.25pu

- Filter: X,= 0.117pu, X, = 0.336pu, f,,, = 304Hz

- Sampling interval: T, = 125us

Long prediction horizons enable operation at switching
frequencies £, below 50% of the resonance frequency f...

T. Geyer: MPC of PE: control and optimization "“
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Penalty matrix on output var.s Q = diag(1,1,5,5, 150, 150)

Drlve SyStem Wlth LC Fllter Penalty on switching A, = 0.28

. « Sampling interval 7, = 125 s
Ste ady-State O pe rat| on - Prediction horizon N = 15

Inverter currents

Capacitor voltages Stator currents

Time (ms) Time (ms)

Switch positions Stator current spectrum

1 o L o . I I i i 4 0-04
SN 1T L N
-1t : : 1 0.03¢
08 1 Device f,, = 303Hz |
06l O_mTI_ULI__ILﬂJ_”_[ ol
-1f ' : : | F
0.4}
1t - 1 0.01f ] 1
02} OM | Harmonics below 0.008 pu (0.:3%)|
-1 R S S S o il eiabilibins s 1
00 5 10 15 20 O 5 10 15 20 0 500 1000 1500 2000
Time (ms) Time (ms) Frequency (Hz)
Z&iﬁ;o’\gc of PElzgﬁQgg'oa”d optimzation  Gever, Karamanakos and Kennel: “On the benefit of long-horizon direct model predictive control for drives with LC filters”, “I;H‘

ECCE, USA, Sep. 2014



Penalty matrix on output var.s Q = diag(1,1,5,5,150, 150)

Drlve SyStem Wlth LC Fllter Penalty on switching A, = 0.28

Sampling interval 7., = 125 s

TO rq u e Ste pS = Prediction horizon N =15

Inverter currents Capacitor voltages Stator currents
L N
0.5 0.5} -
0 0 il
05 -0.5¢ ]
-1t . -
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Time (ms) Time (ms) Time (ms)

Torque Switch positions

! | ‘ | | During transient, reduce penalty
from diag(1,1,5,5,150,150)

to diag(1,1,5,5,15,15)

I

075 _
: Device fg, = 300Hz
|

! 1
I ! ol = Almost no overshoot
i 1} = Settling times of < 3ms
0257 : 1 = Constant switching frequency
. . .
[ 0 = Inversion of voltage (subject
L e . . .
0 | : ! | 1 | ‘ . . to switching constraint)
0 10 20 30 40 50 0 10 20 30 40 50
Time (ms) Time (ms)
T. Geyer: MPC of PE: control and optimization C ' . . i ) ) L ;l i' 14
20-Feb-2018 | Siide 31 Geyer, Karamanakos and Kennel: “On the benefit of long-horizon direct model predictive control for drives with LC filters”, \ "'

ECCE, USA, Sep. 2014



Penalty matrix on output var.s Q = diag(1,1,5,5,150, 150)

Drlve SyStem Wlth LC Fllter Penalty on switching A, = 0.28

« Sampling interval 7. = 125 us
TO rq u e Ste pS « Prediction horizon ¥ =15

Inverter currents Capacitor voltages Stator currents

0.5

Ape TS SRR CRR 2 R , ‘ ‘ , , ‘ ‘ ,
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Time (ms) Time (ms) Time (ms)
Switch positions Switch positions (zoomed in)
¢
|
[
0.75F 4 _
! Device f,, = 300Hz
I -
L}
05 .............. l: 0 L
1
| -1t
i
0.25F b
. 1 1 .
L
! ! AT 1
o i -1 -1
0 0 20 30 40 500 0 20 30 40 50 9 10 3 12 13 14
Time (ms) Time (ms) Time (ms)
T eyl ¢ of PElzgﬁQgg'Za”d optimzation  Gever, Karamanakos and Kennel: “On the benefit of long-horizon direct model predictive control for drives with LC filters”, “i; is

ECCE, USA, Sep. 2014



Drive System with LC Filter
Assessment

Advantages Bode magnitude plot:

] Sphere decoding exploits the problem (inverter voltage v; to stator current i)
60

structure => low computational burden
. . 40
- Part of the problem is solved offline _ 300l
=> generator matrix B 2>~ J\
. . . ) \\‘~.~
- Simple controller design with one loop S o —1\
=> active damping loop not required % " \
= 240 Hz
Performance 40 f
= Long horizons reduce the current 60
distortions by an order of magnitude " Frequency *°

- Can operate at switching frequencies
below the resonance frequency
=>f,,=120 vs f =304 Hz

- MIMO approach
=> excellent transient response (<3ms)

Minimal inverter
switching frequency
with linear controller

Minimal inverter
switching frequency
with MPC

The power electronics community focuses almost exclusively on the horizon one case
=> sphere decoder enables long horizons

T. Geyer: MPC of PE: control and optimization "“ == ==
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Drive System with LC Filter
Assessment

Limitations
= The Hessian matrix must be time invariant

- Sphere decoding is restricted to linear
systems with integer inputs

- Even-order harmonics limit the applicability
to grid-side converters

Further reduction of the computation time

= Preprocessing
=> well-conditioned generator matrix

= Allow for suboptimal solutions
=> impose upper bound on the solution time

- Project the unconstrained solution onto the
convex hull
=> tight sphere during transients

T. Geyer: MPC of PE: control and optimization
20-Feb-2018 | Slide 34

0 10 20 30 40 50
Harmonic order n

Other extensions
- FPGA implementation
- Terminal weight
- State constraints (e.g. on currents)
- Voronoi diagrams
- Shaping of the harmonic spectrum
i

A\ HD HB
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Model Predictive Control of Power Converters
Outline

Long-horizon direct MPC

Indirect MPC

= Modular multilevel converter

Assessment of control methods for power converters

Conclusions and outlook
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Modular Multilevel Converter

T0

1 1
5Rac 3Lac

pology

1 1
3Rac 3L

L3

D

T. Geyer: MPC of PE: control and optimization
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Modular Multilevel Converter
Control Problem

- MMC:

= Dc-link current iy,

= Internal currents; branch currents and
circulating currents

= Storage: energy per branch

= Output: load current i, uq

= Actuator: number of modules inserted per branch

T. Geyer: MPC of PE: control and optimization ‘\ I;H
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Model Predictive Control of Power Converters
Outline

Long-horizon direct MPC

Indirect MPC

= Controller formulation

Assessment of control methods for power converters

Conclusions and outlook
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MPC of Modular Multilevel Converters
State-Space Model

=> Linearized continuous-time model:

dif) — AL (to)x(t) + Bu(to)u(t) + £.(to)

y(t) — Cir::":(t)

. T SRS, » ) T
with state vector @ = |i1...%4 lgc VT ... V5 Vga Ugs

input vector u = [&ﬂq can &?I.S]T Change in the insertion indices
- - X T
output vector Y = [iq i5 VT ... V5]

=> Discrete-time model:

x(k + 1) = Aa(to)z(k) + Ba(to)u(k) + f 4(to)

\ \

Time-varying system matrices Time-varying offset vector

T. Geyer: MPC of PE: control and optimization
20-Feb-2018 | Slide 41
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MPC of Modular Multilevel Converters
Control Method

State vector ¢ 4 branch currents

» dc-link current "

» Grid voltages

* 6 sums of cap. voltages
Model predictive current and capacitor voltage control

CB-PWM CB-PWM CB-PWM
Balancing Balancing Balancing
control control control
Switching Switching Switching

commands commands

T. Geyer: MPC of PE: control and opti@@¢T M AN dS
2

20-Feb-2018 | Slide 4

Output vector reference

* grid currents
* 6 sums of cap. voltages

Linear model predictive
control with quadratic
objective function and
equality constraints => QP

Insertion indices [0, 1]

Carrier-based PWM

Number of modules to be
inserted per branch

Balancing of the module
capacitor voltages within
each branch

Switching commands sent
to the branch modules

b



MPC of Modular Multilevel Converters
MPC Formulation

System model: Cost function:
3Ra 3lee o k4+N,—1
[ [ * Jy = Z (y*(0) - y(())TQ(y*(f) —y(¢)) Output reference tracking
(& G (& vz Us =k
() N ol w[] bt Ny =1 T o .
7 . Jy = Z (Au(ﬂ)) RAu(/) Changes in insertion
Ly Lin , o —r indices
A Qg i1 Y iy k4+N,—1
A .
N B Js= > A€+ AcliC @)l Soft constraints
ig Y iy =k
Ly Ly Ly + Vg =
C) T e . Constraints:
Cs Z Ca :. Cs +r Hard constraints on
3R tla - - - 0= u(ﬁ) =1 insertion indices
— D &,
Linearized discrete-time MMC model: \ / Soft Cotns”a(‘j”;s ?_”kbramht
currents and dc-link curren
z(k+1) = A(ty)x(k) + B(to)u(k) + b(to) \ | WA
—¥max Imax
y(k) = Cx(k) ﬁl « Insertion indices ] ¢
* Sums of capacitor voltages _
« Branch currents / Soft constraints on sums
« Dc-link current | : . ot of capacitor voltages
« Grid currents * Grid voltage e
* Sums of capacitor voItagesJ
* Branch currents . . .
_— min J;+J,+J; subj. to model and constraints => QP ‘“"
T. Geyer: MPC of PE: control and optimization . .

20-Feb-2018 | Slide 43 Lo .
Model predictive current control of modular multilevel converters, ECCE, USA, Sep. 2014



MPC of Modular Multilevel Converters
Solving the QP

= Prediction horizon Np:6

- Manipulated variables: 6 N, ~ Dimension of QP: 108

- Slack variables: 12 N, b

= Problem formulation: MPT Toolbox 3.0

Gurobi
Optimization

= QP solution: Gurobi

MPT Controller

T. Geyer: MPC of PE: control and optimization ‘\ I; ==
de 44
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Model Predictive Control of Power Converters
Outline

Long-horizon direct MPC

Indirect MPC

- Simulation results
Assessment of control methods for power converters

Conclusions and outlook

T. Geyer: MPC of PE: control and optimization A I; I;
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MPC of Modular Multilevel Converter
Grid Currents

Active power steps from 1 to 0 and back to 1pu

0 20 40 60 80 100 120 140
Time (ms)

(a) Three-phase grid current 2,

E: control an
Slide 53

b



MPC of Modular Multilevel Converters
Power Step from P=0 to 1pu

Real and reactive power: Currents in upper branches: Insertion indices in upper branches:
T T T T T T T J T T T T T T T T ' ! ! ! ! ! ! ! !
1- S ~ 1
05_ e 4 05, B
0.25_ T '0.5 . . . : . 0.25 . H
N - Branch current constraint | without Recpoming unstabl
0 Q | ., at+/-1.1puare met | 0 —\ :
975 100 1025 105 1075 110 975 100 1025 105 1075 110 975 100 1025 105 1075 110
Time (ms) Time (ms) Time (ms)
Three-phase grid currents: Dc-link current: Circulating current in phase leg a:
l, lz. l

_do-link current constraint
at +/- 7_1.1p:u met

975 100 1025 105 1075 110 975 100 1025 105 1075 110 975 100 1025 105 1075 110
Time (ms) Time (ms) Time (ms)

T. Geyer: MPC of PE: control and optimization i‘ ii ii
20-Feb-2018 | Slide 54 G. Darivianakis, T. Geyer and W. v. d. Merwe: “Model predictive current control of modular multilevel converters”, ECCE, Sep. 2014



MPC of Modular Multilevel Converter
Concluding Remarks

= MMC is MIMO control problem

- Soft and hard constraints can be imposed in MPC
=> allows for aggressive controller tuning
=> very fast response during transients

- Receding horizon policy => robustness

But: - Optimization problem is time varying

= T, = 1/5000 = 200us is little time to solve the QP

T. Geyer: MPC of PE: control and optimization
20-Feb-2018 | Slide 58



MPC of Modular Multilevel Converter
Concluding Remarks

- MPC scheme is applicable to any MMC setup (circuit parameters, phase configuration and
number of modules)

- MPC outperforms most of the existing control approaches for the MMC, particularly during
transients

- Operation of the converter within safe operating limits is ensured under all circumstances
- Overshoots in the capacitor voltages and branch currents are avoided
= Very low current THD of about 0.5%

- Low device switching frequency of less than 400Hz

T. Geyer: MPC of PE: cqngglgand optimization "“ ==

20-Feb-2018 | Slid



Model Predictive Control of Power Converters
Outline
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Assessment of the Control Methods
Field / Voltage Oriented Control with SVM

Advantages:

= Very well understood and widely used

= Discrete and deterministic harmonic
spectrum

g A B

Rotor field oriented control:
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‘I 71[}4‘ (1’ \
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Assessment of the Control Methods
Direct Torque / Power Control

Advantages: Direct torque control:

= Very robust W
- Very fast dynamic response

- Few system parameters

Disadvantages:

- Significant harmonic distortions o [l oS S o N

. Non-deterministic harmonic spectrum : PR OO s = LN

- Works poorly at very low pulse numbers R e e

- Requires high sampling frequency L% >

- (Deadlocks) ’r’

T, ¥, J

S
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Assessment of the Control Methods
Direct MPC with Bounds (MPDxC)

Advantages:

- Very fast dynamic response

- Robust

- Simple tuning (for MPDCC and MPDPC)

Disadvantages:

- Non-deterministic harmonic spectrum
- Requires high sampling frequency

- Conceptually difficult

- Deadlocks

Comment:

- Branch and bound enables the use of long
prediction horizons

T. Geyer: MPC of PE: control and optimization
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Model predictive direct torque control:
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Assessment of the Control Methods
Direct MPC with Reference Tracking

Advantages: Current control:

= Conceptually simple

Past Horizon

= Very fast dynamic response

- Suitable for higher-order systems

Disadvantages:

> 1
- Non-deterministic harmonic spectrum
- Requires high sampling frequency . —
Ls Minimization of u -
. . = cost function I ~
= Tuning difficult A
Prediction of
trajectories
Comment: £
| i
- Sphere decoding enables the use of long l; 1
prediction horizons »
— Observer @
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Assessment of the Control Methods
MPC Based on Optimized Pulse Patterns (MP3C)

Advantages:
- Low harmonic distortions per switching effort

- Harmonic spectrum is discrete, deterministic
and can be shaped

- Fast dynamic response (with pulse insertion)

Disadvantages:

- Inflexible (OPPs are precomputed): non-
uniform voltage steps, unbalanced load,
additional control objectives (such as control
of NP potential)

- Conceptually difficult

- Computation of OPPs is time consuming for
multilevel converter and high pulse numbers

- Switching frequency is integer multiple of the
fundamental frequency

T. Geyer: MPC of PE: control and optimization
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Model predictive pulse pattern control:
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Assessment of the Control Methods

Indirect MPC

Advantages:

- Well established / studied MPC framework

= Discrete and deterministic harmonic
spectrum

Disadvantages:

= Solving the QP in real time is challenging

Comments:
- Largely unexplored

= Suitable for “complex” systems and relatively
high pulse numbers
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Indirect MPC for MMC:
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Model Predictive Control of Power Converters

Classification

Direct control

——= Controller —>>{ System F—>

T

Direct manipulation of switch position:

- Manipulated variable: u € Z™

Control methods:

« Reference tracking (finite control set MPC):
enumeration or sphere decoding

« Bounds (MPDxC): branch and bound

= Optimized pulse patterns: QP solver or algebraic
manipulation

T. Geyer: MPC of PE: control and optimization
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Indirect control

——= Controller —>> Modulator —= System F—>

i .

Indirect manipulation of switch position:

- Manipulated variable: v € R™

Control methods:

- Reference tracking: linearization, QP solver or
explicit solution



Model Predictive Control of Power Converters
Outlook

Domain

knowledge

(power electronics,
customer needs, etc)

Computation

(numerical optimization,
embedded systems)

Control and
estimation

Challenges: Challenges:
= Control of optimized pulse patterns = Integer optimization

\ = Combination of constrained (time-domain) = Numerical optimization on
and frequency-domain control embedded hardware

T. Geyer: MPC of PE: control and optimization
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Model Predictive Control of Power Converters
Vision

Develop new control methods that

- fully utilize the hardware capability and/or

- reduce the hardware requirement

of power electronic systems

ooooooooo
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