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Lecture Energy Systems: Hardware and Control - Control Part
University of Freiburg – Winterterm 2017/2018

Exercise Sheet 1 with solutions
Prof. Dr. Moritz Diehl, Dr. Gianluca Frison and Benjamin Stickan

For questions on the exercise please contact Benjamin Stickan (benjamin.stickan@imtek.uni-freiburg.de)

Within the control part of the ”Energy Systems: Hardware and Control” course there will be 45 min. exercise ses-
sions after each lecture. The exercises are guided by tutors and will contain some MATLAB-based tasks. Therefore, a
MATLAB installation including the Control System Toolbox is needed.

Getting started

1. Except MATLAB is not yet installed on your computer, the first thing you need to do is install it. Detailed installa-
tion and licensing instructions can be found at
https://www.rz.uni-freiburg.de/services-en/beschaffung-em/
software-en/matlab-license
Remember that the Control System Toolbox is required.

2. If you are new to MATLAB, the first thing you will appreciate is the extensive help system. You can simply type
doc into the console and the documentation opens. If you type doc plot, you will find a detailed description of
function plot.

3. Here are some useful commands for the exercises:
hold on/off
figure
close all
clear
clc

Problem 1: Dynamical System, ODE, Simulation and Solution
A simple pendulum is sketched in figure 1. The point-
mass m is fixed to a solid, massless rod of length
l, which is connected to a frictionless hinge on the
other side. All movements take place in the verti-
cally oriented x-y-plane and the gravitation g acts in
y-direction.

(a) Derive the equation of motion for the pendulum
and note it in the shape α̈ = f(α). How do the
mass or the length determine the motion of the
pendulum?

E =
1

2
ml2α̇2 +mgl(1− cos(α))

dE

dt
= 0 conservation of energy

α̈ = −g
l

sin(α)

(b) What are the states x, which are needed to com-
pletely describe the system?

x =

[
α
α̇

]
=

[
x1
x2

]
(c) Convert the ODE to the system of equations ẋ =

f(x).

ẋ =

[
α̇
α̈

]
=

[
α̇

− gl sin(α)

]
=

[
x2

− gl sin(x1)

]

α

x

y

l

m

Figure 1: Sketch of a simple pendulum
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(d) Simulate the motion of the pendulum for 10 seconds using different initial values x0. Therefore write a function
function dx = nonlin_pendel(t, x) which implements the system of equations. For the simulation
use lsode and the following constants: l = 1 m, g = 9.81 m

s2 . Solution see problem1.m.

(e) What characterizes steady states? Calculate the steady states for the pendulum.

ẋ
!
= 0

0 =

[
x2

− gl sin(x1)

]
⇒ x2ss = 0, x1ss = n · π with n ∈ Z

xss =

[
n · π

0

]
(f) Linearize the system at the steady state xss = [0, 0]> and write the system of equations in the shape ẋ = Ax +Bu

and y = α = Cx. Compute the state space matrices A,B and C.

ẋ =

[
∂f1
∂x1

(xss)
∂f1
∂x2

(xss)
∂f2
∂x1

(xss)
∂f2
∂x2

(xss)

]
x

=

[
0 1

− gl cos(x1ss) 0

]
x =

[
0 1

− gl cos(0) 0

]
x =

[
0 1
− gl 0

]
x

(g) Compare the linear and the nonlinear system via simulations using increasing initial values for α(0) ranging from
π/8 to π.

With increasing α(0) the linear approximation gets worse. But for control tasks we want to keep our system close
to a desired state, so the linearization is a good simplification and thus an important and very useful tool. For plot
run problem1.m

Problem 2: Buck-converter, Modelling and Stabilization
1. The electrical circuit sketched below shows a simplified buck-converter with a constant load at the output. The

system can be described in state-space representation as

ẋ = Ax + Bu, y = Cx, D = [0],

u := v, y := vC .

v(t)

iL(t) L iR(t)

vC(t)

iC(t)

Cf Rl

(a) Derive the the I/O-ODE (Input/Output-Ordinary Differential Equation) for the given circuit using equations

iC = Cf
dvC
dt

, vL = L
diL
dt

and iR =
vC
Rl

(Hint: Use Kirchhoff’s voltage law for inductors and current law for capacitors)

v = vC + vL = vC + L · (i̇C + i̇R)

v̈C +
1

RlCf
v̇C +

1

LCf
vC =

1

LCf
v

(b) Convert the I/O-ODE to state space representations, i.e. set up the A,B,C,D-matrices for

ẋ(t) = Ax(t) + Bu(t) (1)
y(t) = Cx(t) + Du(t) (2)

using

(i) the control canonical form.
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ẋ =

[
0 1
− 1
LCf

− 1
RlCf

]
x +

[
0
1

]
u

y =
[

1
LCf

0
]
x

(ii) the observer canonical form.

ẋ =

[
0 − 1

LCf

1 − 1
RlCf

]
x +

[
1
LCf

0

]
u

y =
[

0 1
]
x

(c) Now derive matrices A , B , and C for the state vector given as x :=
[
iL vC

]ᵀ
.

Inductor current:
diL
dt

=
vL
L

Express vC by utilizing Kirchhoff’s voltage law:

vL = v − vC

⇒ diL
dt

=
v

L
− vC

L

Capacitor voltage:
dvC
dt

=
iC
Cf

Express iC by utilizing Kirchoff’s current law:

iC = iL − iR = iL −
vC
Rl

⇒ dvC
dt

=
iL
Cf
− vC
CfRl

State-space representation:

ẋ =

[
diL
dt
dvC
dt

]
=

[
0 −1

L
1
Cf

− 1
RlCf

]
︸ ︷︷ ︸

A

x +

[
1
L
0

]
︸︷︷︸
B

v︸︷︷︸
u

C =
[
0 1

]
(d) Derive the characteristic polynomial. Evaluate the eigenvalues of the system for L = 4.7 mH, Cf = 100 µF

and

i. Rl =∞ Ω

ii. Rl = 100 Ω

Is the system BIBO-stable in both cases?

Characteristic polynomial:

p(λ) = det(λI−A)

= det

[
λ 1

L
− 1
Cf

λ+ 1
RlCf

]
= λ2 +

λ

RlCf
+

1

LCf

Roots of the characteristic polynomial:

• Rl =∞ Ω:
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λ2 +
1

LCf

!
= 0

⇒ λ = ± i√
LCf

≈ ± i 1.46 · 103

Re(λi) = 0 for all eigenvalues.
⇒ system is undamped and therefore not BIBO-stable.

• Rl = 100 Ω

λ2 +
λ

RlCf
+

1

LCf

!
= 0⇒ λ = − 1

2RlCf
± i

√
− 1

4R2
l C

2
f

+
1

LCf
≈ −50± i 1.46 · 103

Re(λi) < 0 for all eigenvalues.
⇒ system is damped and therefore BIBO-stable.

(e) Write down the time constant τ in seconds and the resulting oscillating frequency in Hz for both values of Rl.

(Hint: In this example, the time constant τ is a measure for the amplitude decay (damping) and is defined
as τ = − 1

Re(λ) . The oscillating frequency is defined as f0 = ω0

2π = |Im(λ)|
2π )

• Rl =∞ Ω:
Time constant τ :

τ = − 1

Re(λ)
= −∞ms

Oscillating Frequency:

ω0 = |Im(λ)| = 1√
LCf

f0 =
ω0

2π
≈ 232.15 Hz

• Rl = 100 Ω
Time constant τ :

τ = − 1

Re(λ)
= 2CfRl = 20 ms

Oscillating Frequency:

ω0 = |Im(λ)| =

√
− 1

4R2
l C

2
f

+
1

LCf

f0 =
ω0

2π
≈ 232.01 Hz

(f) Create a new MATLAB script and define variables L = 4.7 mH, Cf = 100 µF and Rl = ∞. Also define
matrices A , B , C and D = 0 according to task (1c).

(g) Use the ss(A,B,C,D) command to create a state-space model sys_ol and evaluate the systems step
response with the step(sys,Tfinal) function (Tfinal = 0.1 s) for

i. Rl =∞ Ω

ii. Rl = 100 Ω

(h) Is the system controllable and/or stabilizable?

C =
[
B AB

]
=

[
1
L 0
0 1

CfL

]
det(C) =

1

CfL2
6= 0
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The system is fully controllable and therefore also stabilizable.

2. Now we want to introduce a state feedback with gainK to stabilize the system in the case where no load is connected
(Rl = inf).

(a) Where do the two poles have to be shifted to obtain the following characteristics for the closed-loop system?:
τ = 10 ms, f0 = 100 Hz

Re(λ1/2) = −1

τ
= −100

Im(λ1/2) = ± 2f0π ≈ ± 628.3185

(b) Use the MATLAB function place(A,B,p) to calculate the corresponding feedback vector K and imple-
ment the system matrix Acl as well as the closed-loop model sys_stable for the stabilized system.

Acl = A−BK

(Bcl = B,Ccl = C)

(c) Simulate sys_stable with the step() command and verify frequency and damping is as desired.
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