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Lecture Energy Systems: Hardware and Control - Control Part
University of Freiburg – Winterterm 2017/2018

Exercise 4: Discrete-Time State Space Control in MATLAB/Octave
Prof. Dr. Moritz Diehl, Dr. Gianluca Frison and Benjamin Stickan

The exercise is based on the scripts ex2 octave.m (Octave version) and ex2 matlab.m (Matlab version).
In this exercise, we will work with the mass-spring system. It consists on a chain of m masses (all of mass 1) connected

each other with springs (all with spring constant 1). The first and the last mass are also connected to walls, through spring
with spring constant 1. Forces can act on the first p masses.

This is a linear system described by the set of m second-order linear ordinary differential equations

q̈1 = −2q1 + q2 + f1

q̈i = qi−1 − 2qi + qi+1 + fi i = 2, . . . , p

q̈i = qi−1 − 2qi + qi+1 i = p+ 1, . . . ,m− 1

q̈m = qm−1 − 2qm i = m

where qi is the deviation form the equilibrium point of the i-th mass and fi is the force acting on the i-th mass.
This system can be transformed into a system of 2m first-order linear ordinary differential equations by introducing

the velocities vi = q̇i for each mass

q̇i = vi i = 1, . . . ,m

v̇1 = −2q1 + q2 + f1

v̇i = qi−1 − 2qi + qi+1 + fi i = 2, . . . , p

v̇i = qi−1 − 2qi + qi+1 i = p+ 1, . . . ,m− 1

v̇m = qm−1 − 2qm i = m

We choose as state vector the vector x(t) ∈ Rnx (with nx = 2m) where the first m components are the deviations of
the masses qi and the last m components are the velocities of the masses vi. The control vector u(t) ∈ Rnu (with nu = p)
contains the forces fi acting on the first p masses. We assume that we can measure the displacement and the velocity of
each mass, and therefore the output of the system is equal to the state, y(t) = x(t).

Using these definitions, the mass-spring system can be written as the state space system

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

where

Ac =

[
0m×m Im×m
Tm×m 0m×m

]
, Bc =

 0m×p
Ip×p

0(m−p)×p

 , Cc = I2m×2m

where T is the m×m tridiagonal matrix

T =



−2 1 0 . . . 0

1 −2 1
. . .

...

0
. . . . . . . . . 0

...
. . . 1 −2 1

0 . . . 0 1 −2


In this exercise, we will choose a system with m = 4 masses and p = 3 forces. Therefore, the state-space system has

size nx = 8 and nu = 3.

1. Is the continuous time system stable? Is it controllable? Why?

Hint: you may want to use the commands eig and rank.

2. It is easy to discretize the continuous-time state space system by using the c2d command. In order to do so, you
can create the continuous-time state space system by using the command sys, and afterwards pass it to the c2d
command in order to get the discrete-time state space representation

xk+1 = Axk +Buk

yk = Cxk
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As sampling time, you can choose Ts = 0.5 seconds

Is the discrete time system stable? Is it controllable? Why?

3. Compute a closed-loop simulation of Ns = 50 steps of the discrete time system, starting with initial state

x0 =


2.5
2.5
0
...
0


and using zero as control input at all steps.

Plot the result in 3 figures, one for the displacements, one for the velocities and one for the forces. What is the
behaviour of the system? Is that expected? Why?

Hint: you may want to use the commands dlqr and dare.

4. Compute the gain K of the discrete time LQR regulator, choosing the penalty matrices Q = Inx×nx
and R =

2 · Inu×nu
. Compute the matrix A−BK describing the dynamic of the closed-loop system. Is it stable?

Use K to compute the control input to use in the closed-loop simulation at each simulation step. Plot the result
in 3 figures, one for the displacements, one for the velocities and one for the forces. What is the behaviour of the
system? Is that expected? Why?

Now you can try to change the values of Q and R. How is the behaviour of the closed-loop system changing?

At each simulation step n, compute the performance index

Jn =
1

s
x>nQxn +

1

2
u>nRun

and then compute the cumulative closed loop cost

JNs =

Ns−1∑
n=0

Jn

Is the value of JNs
changing with Ns?

5. Now let’s introduce saturation the control input, such that the control input takes value in the interval uk,i ∈[
−0.5 0.5

]
.

Compute the input using LQR as in point 4., and then apply the saturation before using it in the simulation. Plot the
result in 3 figures, one for the displacements, one for the velocities and one for the forces. What is the behaviour of
the system? Is that expected? Why?

How does the closed loop cost change with respect to the one in point 4.?

6. In this point, you will use MPC to compute the control input to use in the closed-loop simulation. For now, you can
fix the control horizon to N = 2. In MPC, the input saturation is part of the problem formulation, expressed as a
constraint that is explicitly taken into account in the computation of the optimal control law.

Rewrite the MPC problem as a QP and use a QP solver (as e.g. quadprog in Matlab or qp in Octave) to solve it.
Extract the input value at the first stage 0 and use it in the closed-loop simulation. Plot the result in 3 figures, one
for the displacements, one for the velocities and one for the forces. Compare with point 5. for different values of
N . What are the differences?

Plot the entire solution of the QP and compare it with the closed-loop simulation, and repeat for different values of
N . What do you see?

Compute the closed loop cost and compare it with the value computed in 5. for different values of N . Is it larger or
smaller?

Measure the average time needed to solve a QP during the simulation, and plot it for different values of N . What
do you observe?
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