
i
i

“ex5” — 2017/5/28 — 22:36 — page 1 — #1 i
i

i
i

i
i

Exercises for Lecture Course on Numerical Optimal Control (NOC)
Albert-Ludwigs-Universität Freiburg – Summer Term 2017

Exercise 5: Algorithmic Differentiation

Prof. Dr. Moritz Diehl, Dimitris Kouzoupis, Andrea Zanelli

The aim of this exercise is to gain experience with the two modes of algorithmic differentiation
discussed in the class.

1. Forward and backward algorithmic differentiation: Consider the following discrete-time
dynamical system:

xk+1 = xk + h((1− xk)xk + uk), (1)

where xk ∈ R and uk ∈ R are the state and control input of the system respectively and h is a
constant parameter (you can think of it as the time step of an explicit Euler integrator). We
are interested in simulating the dynamics forward for N steps starting from the initial value
x0 = x̄0 and computing the derivatives of the obtained states with respect to controls:

∂xi

∂uj−1

, ∀i, j = 1, ..., N. (2)

(a) Fix x̄0 = 0.5, N = 50, h = 0.1 and uk = 1, ∀k = 0, . . . , N −1. Using CasADi, implement
the function Φ : RN → RN that maps controls to the obtained state trajectory

x = Φ(u), (3)

where x and u denote the vector of stacked states and controls respectively. Define a
CasADi function that outputs the Jacobian of x with respect to u

x =
∂Φ(u)

∂u
. (4)

You will use the output of this function as a reference for your implementations in the
rest of the exercise.

(1 point)

(b) Implement a MATLAB function forw AD that takes as input a vector containing the
values for u and returns the derivative ∂xN

∂uN−1
using forward algorithmic differentiation

(AD). Check that the result provided by your implementation is equal to the correspon-
ding entry in the output obtained with CasADi.

(2 points)

(c) Analogously, implement a MATLAB function back AD that takes as input u and re-
turns the derivative ∂xN

∂uN−1
using backward AD. Check that the result provided by your

implementation is equal to the corresponding entry in the output obtained with CasADi.

(2 points)

(d) Implement now a function J FAD that takes as inputs u and a scalar m and, using forward

AD, computes the last m rows of the Jacobian ∂Φ(u)
∂u

containing the derivatives of the
last m states in the simulation with respect to the all the controls. Again, validate your
results against the reference output. Hint: notice that, because of the way forward AD
builds the evaluation of ∂xi

∂uj
, the derivatives of previous states ∂xk

∂uj
,∀k < i are already

available after having computed ∂xi

∂uj
.

(2 points)

1



i
i

“ex5” — 2017/5/28 — 22:36 — page 2 — #2 i
i

i
i

i
i

(e) Analogously, implement a function J BAD that takes as inputs u and a scalar m and

computes the last m rows of the Jacobian ∂Φ(u)
∂u

using your implementation of backward

AD. Hint: notice that, because of the way backward AD builds the evaluation of ∂xi

∂uj
, the

derivatives of xi with respect to previous controls ∂xi

∂uk
,∀k < j are already available after

having computed ∂xi

∂uj
.

(2 points)

(f) Which of the two implementation do you expect to be more performant for small values
of m? Which one for high values of m? Why?

(1 point)

(g) Run your implementations for m ranging from 1 to N and measure the execution time
using the MATLAB functions tic and toc. For this simulation choose h = 0.01 and
N = 500. Plot the obtained execution times as a function of m. Do the results validate
your considerations from the previous question?

(1 point)

This sheet gives in total 11 points

2


