
i
i

“ex10” — 2017/7/25 — 17:19 — page 1 — #1 i
i

i
i

i
i

Exercises for Lecture Course on Numerical Optimal Control (NOC)
Albert-Ludwigs-Universität Freiburg – Summer Term 2017

Exercise 10 (Bonus): Model Predictive Control

Prof. Dr. Moritz Diehl, Andrea Zanelli, Dimitris Kouzoupis

Consider the following optimal control problem:

min
x(t), u(t)

1

2

∫ T

0

x(t)TQcx(t) + u(t)TRcu(t) dt +
1

2
x(T )TPx(T )

s.t. x(0) = x̂0

ẋ(t) = f(x(t), u(t)), t ∈ [0, T ]

− ū ≤ u(t) ≤ ū,

(1)

where

f(x(t), u(t)) :=

[
x2(t)

−x1(t) + (0.3x2(t) + 1)u(t)

]
(2)

and x̂0 = [1, 3]T is the initial state of the system. In this exercise, we will design two receding
horizon controllers using either an exact solution to the discretized version of (1) or an approximate
scheme called Real-Time Iteration.

1. (a) Set up a script that, using CasADi, discretizes (1) using multiple shooting and solves
the resulting problem using IPOPT. The discretized problem should have the following
form:

min
x, u

1

2

N−1∑
i=0

(
xT
i Qxi + uT

i Rui

)
+

1

2
xT
NPxN

s.t. x0 = x̂0

xi+1 = f(xi, ui), i = 0, ..., N − 1,

− ū ≤ ui ≤ ū, i = 0, ..., N − 1.

(3)

Discretize the dynamics with an explicit RK4 integrator, use a horizon of T = 3, N = 20
intervals and cost matrices Q = P = diag(10, 0.1) and R = 0.1. Fix the control bound to
ū = 5. Choose the step-size of the integrator to be h = 0.15 (no intermediate integration
steps). Plot the obtain state and control trajectories over time in two separate plots
(group state trajectories in the first one). Use stairs for the control trajectory. We will
refer to the obtained solution as open-loop solution.

(2 bonus points)

(b) Using the code from point (a), set up a script where the system is controlled in closed-
loop by applying the first optimal control input u∗

0 and shifting the prediction horizon
forward in a receding horizon fashion. Plot the obtained trajectories on top of the open-
loop ones. When controlling the system, a new optimization problem will be formulated
and solved based on the current measured or estimated state of the system x̂0. In this
way, the trajectories can be adjusted in order to compensate for disturbances.

Consider the nominal case where no disturbances occur and the behavior of the system
can be predicted exactly using the model in (2), are the closed-loop trajectories going
to be different than the open-loop ones computed at point (a)? Motivate your answer.
Hint: in order to solve several instances of problem (3) for different x̂0, recall that you
can define a parametric optimization problem in CasADi as follows:

1



i
i

“ex10” — 2017/7/25 — 17:19 — page 2 — #2 i
i

i
i

i
i

1 % Create an NLP solver
2 prob = struct('f', J, 'x', w, 'g', g, 'p', x 0);

where the parameter p can be fed to calls to the solves without having to define a new
problem.

(2 bonus points)

(c) Since solving nonlinear optimization problem online can be rather computationally de-
manding, schemes are present in the literature that exploit approximate solutions. In the
following, you will implement the so-called Real-Time Iteration (RTI) scheme, which re-
lies on the solution of a single convex quadratic problem (QP) that locally approximates
the optimal control problem (3). In order to do so, consider the following formulation:

min
x, u

1

2

N−1∑
i=0

(
xT
i Qxi + uT

i Rui

)
+

1

2
xT
NPxN

s.t. x0 = x̂0

xi+1 = Ai(xi − x̃i) + Bi(ui − ũi) + fi, i = 0, ..., N − 1,

− ū ≤ ui ≤ ū, i = 0, ..., N − 1,

(4)

where (x̃, ũ) represent the linearization point at which the local approximation is com-
puted. Notice that the nonlinear discretized dynamics have been replaced by a local
time-varying model obtained by computing a Taylor series expansion of first order of the
RK4 equations. Once a solution to the QP is obtained, the first control input is applied to
the system and the linearization point is updated using the obtained state-input vector.
Implement the RTI scheme in CasADi and solve the resulting QPs with qpOASES. Plot
the closed-loop trajectories in the same figure used for point (a) and (b). Hint: in order
to compute the linearized model in a simple way, you can store the expressions defining
the equality constraints in a vector g and compute directly its Jacobian with the CasADi
function jacobian. Moreover, in order to avoid redefining a new problem at every itera-
tion, you can define a parametric problem that has not only x̂0 as a parameter, but also
the linearization point (x̃, ũ):

1 G = Function('G', {w, x0 hat},{g});
2 JG = Function('JG', {w, x0 hat},{jacobian(g,w)});
3

4 wk = MX.sym('wk',length(w),1); % Define linearization point
5 g l = G(wk, x0 hat) + JG(wk, x0 hat)*(w - wk);
6 H = kron(eye(N), diag([diag(Q);diag(R)]));
7 H = diag([diag(H);diag(Q)]);
8 J = 1/2*w.'*H*w;
9

10 p in = [wk;x0 hat];
11

12 qp = struct('x',w, 'f',J,'g',[g l],'p', p in); % Allocate QP solver
13 solver = qpsol('solver', 'qpoases', qp);

(4 bonus points)

(d) Shorten the prediction horizon used in point (b) and (c) from N = 20 to N = 5, keeping
h = 0.15. How does the performance of the two controllers change?

(2 bonus points)

This sheet gives in total 10 bonus points

2


