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Abstract

In this master thesis different real-time control algorithms are developed that allow
miniature race cars to drive autonomously around a predefined race track in a time-
optimal fashion. The performance of the different methods is evaluated in simulation,
as well as experimentally validated on a real-world test setup at LMS, A Siemens
Business, our industrial cooperation partner. We propose to use advanced control
methods for the complex task of time-optimal autonomous driving: both linear and
nonlinear model predictive control are investigated as control methods. The linear
methods presented are heuristic in nature, the nonlinear methods are an attempt to
directly solve the time-optimal problem.

In a mechatronic system that operates in the millisecond range, such as the race
cars we use, it is a computational challenge to calculate the next control action before
the next data comes in, especially for the nonlinear control methods. In order to
reach the computational deadline, we propose to use the ACADO Code Generation
tool, which auto-generates tailored C-code that implements the real-time iteration
scheme. A comparison is made between the different methods presented in this thesis.
Using the developed methods, we are able to greatly reduce the lap time of the race
car.
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Chapter 1

Introduction

In the past few years, various Advanced Driver Assistance Systems (ADAS) have
been introduced in commercial passenger vehicles, such as semi-autonomous parking
systems, autonomous cruise control, or last-second crash prevention systems. Trig-
gered by these technological advances, full automated driving of vehicles is becoming

a reality.

In the following sections, we present a general framework for this master thesis,

and briefly introduce the state-of-the-art.

1.1 Autonomous driving

According to a recent report on road safety by the World Health Organiza-
tion (cf. [39]), 1.2 million people die in a traffic accident each year, which
makes it the 10th leading cause of deaths overall. The main cause in these
accidents is a human error, or human negligence (e.g. driving under influence).

Both the UN General Assembly and the Euro-
pean Union have set goals to vastly reduce traffic
casualties by 2020. One of the most promising
solutions is to take out the human aspect and
switch to autonomous passenger vehicles.

Apart from the potentially increased safety,
the transition to commercial autonomous passen-
ger vehicles will have a tremendous impact on
our daily lives. Instead of lining up in congestion,
commuters can use their traveling time more use-
fully. Points of critique on self-driving cars are
increased congestion, privacy (as the car needs
to communicate with the grid) and legal issues
(who is to blame when an accident does occur
with an autonomous car? [9]).

Figure 1.1: An example of an Ad-
vanced Driver Assistance System:
automated parking. Source: !

'http://images.thecarconnection.com/lrg/volvo-autonomous—parking_100430956_1.jpg



1. INTRODUCTION

Autonomous and semi-autonomous ground vehicles are an interesting topic for
both industry and academic research. The famous ARGO project [8] from Universita
di Parma was one of the first succesful academic project on autonomous driving,
in the late 1990’s. The car was instrumented with artificial vision cameras and
a personal computer to automatically manage the steering wheel on routes along
public highways. The Autonomos project [4] of Freie Universitat Berlin is another
example of the succesful development of autonomous cars in an academic setting
with commercial cooperation partners.

A lot of projects on autonomous
driving are in development in industry.
In 1980, Mercedes-Benz was the first
to develop an autonomous road vehi-
cle. It drove on empty highways at
speeds around 100 km/h. In the 1990s,
the Defense Advanced Research Projects
Agency of the US Department of De-
fense (DARPA) created an autonomous
land vehicle that was able to drive cross-
country. Since then they organized their
Figure 1.2: Stanford Stanley, winner of the famous DARPA Grand Challenge, a com-
DARPA Grand Challenge in 2005. petition for autonomous vehicles. In the
Source: 2 last years, almost all car manufacturers

are busy developing some sort of self-
driving car that can maneuver in real-
world traffic. However, the technical details are proprietary and thus rarely published.
Examples of car manufacturers and high-tech companies working around autonomous
ground vehicles are Volvo, BMW, Mercedes, Google, Hyundai, Toyota, and Nissan.

Developing autonomous cars and testing them are very cost-intensive activities.
In an attempt to have an experimental testing environment that serves as a validation
but is nevertheless feasible on a reduced budget, a small-scale setup is instructive
in the comparison of different algorithms for autonomous driving. One of the
pioneering groups adopting this strategy are the members of the ORCA (Optimal
RC Autonomous racing, [31]) project at ETH in Ziirich. They do research on optimal
controlled race cars on a scaled setup, similar to what will be used in this thesis. For
a clear overview, refer to [36] or [40].

A crucial part of any of these (semi-)autonomous systems is the control system.
Often, a traditional control approach is used. In [§], the steering system was based on
a classical proportional (P) controller. More recently, proportional-integral-derivative
(PID) controllers are used in [29] for lateral steering in lane changing, in [3] for
planning the velocity profile of a car, and in [28] for lane keeping.

The autonomous or semi-autonomous systems present in these cases work well
in their particular use case, but more challenging situations may require more
sophisticated control algorithms, such as model-predictive control (MPC) [34]. The

2http://www.extremetech.com/



1.2. Time-optimal Driving

approaches presented in [6] [I5], [20] use various model simplification techniques to
reduce the computational complexity of MPC. Particularly for the task of fully
autonomous driving, (nonlinear) MPC permits the use of first-principle models
(available from literature) that accurately predict the driving behavior even in
extreme conditions. Consequently, MPC for autonomous driving has received growing
attention in the research community over the past years.

1.2 Time-optimal Driving

In this context of autonomous driving, an interesting question is how to exploit
available look-ahead information (for example from digital maps and GPS data) to
operate a car optimally with respect to energy consumption, comfort, and time. Due
to the natural antagonism of safety and speed in driving, a challenging question may
be how to control the car at high velocities while satisfying limitations, such as the
boundaries of a race track. Therefore, the target of this master thesis is time-optimal
autonomous driving.

Time-optimal MPC approaches have received notable attention in the area of
robotics for path following, e.g. [37] and the references therein. There however, the
geometric path to be tracked in a minimum-time fashion is predetermined, which
renders the problem significantly simpler than the driving problem, where the exact
path to be taken by the vehicle is part of the optimization.

Previous attempts at minimum-time driving, based on advanced control strategies
exist: in [35], a nonlinear vehicle model with decoupled lateral and longitudinal
dynamics was used in minimum lap time problem formulation. In [26], a virtual
environment was used to simulate minimum-time behavior. In these approaches,
however, only offline open-loop solutions were computed. In [7] a cascading controller
scheme was used, generating trajectory references from a simple geometric model
and tracking these using a higher-detail model.

In this thesis, instead, we directly use a one-level approach, solving the nonlinear
MPC problem with an approximated economic cost function in real-time. The
great challenge is the tight real-time bounds imposed on computational times, which
make it necessary to reformulate the problem so as to allow for the use of efficient
algorithms.

1.3 Goals

The focus of this thesis lies on controlling model cars on time-optimal trajectories.
The goal of the thesis is to develop a real-time feasible time-optimal controller based
on existing control methods, software tools and vehicle models.

Developed algorithms will be evaluated experimentally on a 1:43 scaled race car
setup of our cooperation partner LMS, A Siemens Business. Using such a downscaled
setup fits into the paradigm of rapid prototyping: testing the performance of MPC
controllers under more realistic conditions without the need for cost-intensive full-
scale test vehicles and proving grounds. Furthermore, the small-scale setup can be

3



1. INTRODUCTION

used as a demonstrator for LMS to show potential clients the current status of design
of on-line methods for autonomous driving in particular, and real-time control in
general.

This master thesis text is structured as follows. In Chapter [2| the experimental
setup is described in detail. The inner workings of every element of the closed control
loop (vision system, state estimation, control calculation, actuation of the RC car) is
explained, as well as the software project that implements these components. Next,
the candidates for the vehicle and tire models used in this thesis are described in
Chapter [3] The main computational challenge in a high-speed environment such
as the setup that we intend to use, is to calculate the next control action before
the new state measurement comes in. The available computational methods and
corresponding software packages are listed in Chapter [4

The second part of the text consists of a detailed explanation and analysis of the
results of the three developed algorithms. In Chapter [5], we base ourselves on the
existing linear MPC method and extend it with an on-line heuristic path planning
optimization. Because we want to make use of a nonlinear vehicle model, the real-time
feasibility of the nonlinear MPC methods used on this setup in particular, is assessed
in Chapter [} In Chapter [7] the nonlinear time-optimal MPC method is introduced.
It employs a transformation of coordinates in order to render the calculations more
simple. The results are compared to the methods mentioned above. Chapter [§
concludes the text.



Chapter 2

Experimental Setup

In cooperation with LMS, A Siemens Business, an experimental setup is made
available for carrying out real-world experiments on miniature race cars (scale 1:43).
There are two experimental setups. One is kept on site at LMS for development, the
other is shown at conferences around the world. The small-scaled setup used in our
experiments is shown in Fig. The race cars are 1:43 miniature race cars from
the dNano series of Kyosho. The race track on which the model car drives features a
chicane, a U-turn and a longer straight section (see Fig. . In this chapter, the
different components of the race car system will be described. At the start of the
master thesis, the vision system is fully operational, the control algorithm is linear

MPC tracking.

(a) The experimental setup at LMS.

miving direction >
0 O
-0.2

14
16

-0.5 0 05 1
x (m)

(b) The test track used to experiment with the car
control algorithm. The dimensions are approxi-
mately 2.5 m by 2 m

Figure 2.1: Details of the experimental setup



2. EXPERIMENTAL SETUP

controller plant

Figure 2.2: Schematical view of the feedback loop in the experimental setup.

2.1 Feedback loop

A feedback scheme of the setup is depicted in Fig. At all times, infrared radiation
is shed on the track by an infrared lamp mounted above the track. As the car drives
on the track, the infrared sensor captures the reflection of the infrared radiation of
the reflective markers on the model car. The vision processing unit (VPU) receives
the camera images and estimates from them the current state vector (position and
velocities) using a Kalman filter. The estimate Z is used by the vehicle control unit
(VCU) to calculate the next control action u. Each component of the experimental
setup will be briefly described in greater detail in the following paragraphs. The
technical details of the setup and its components can be found in appendix [A]

2.2 Vision system

The vision system is in charge of capturing and processing images of the track, in
order to come up with an estimate for the current state of the race car. This vehicle
state consists of the position, velocity, orientation and angular velocity of the car.

2.2.1 Camera

There are two types of cameras that can be used to capture the vehicle driving on
the track: an infrared camera and a color camera.

The infrared light comes from an infrared lamp (LED lamp) mounted on a
horizontal bar approximately 2 m above the track. The infrared camera, which is
placed next to the infrared lamp, captures images of the track at a chosen fixed
rate between 50 Hz and 150 Hz and sends them to the computer over a USB 3.0
connection. If not noted otherwise, the fixed sampling rate of this camera will be
100 Hz, which results from a trade off between vision accuracy and computational
effort for the image processing. The reflection of infrared light on three reflective
markers placed on the car results in bright blobs on the camera images, which are
processed in grayscale.

6



2.3. Control system

An RGB camera can also be used to capture the car’s behavior. This camera
captures three channels (red, green, blue) at 50 Hz. This approach has the advantage
that the vision system is more robust, because the total area of the car is now
captured instead of the three smaller reflective markers.

2.2.2 The VPU process

The vision processing unit (VPU) receives a camera image, thresholds it, and extracts
the position and orientation of the car. In the case of the infrared camera, this is
done by performing some geometrical calculations on the triangular placing of the
reflective markers on the car. On the RGB images however, a bounding box is drawn
around the brightest pixel. This rectangle represents the car, and the position and
orientation can be extracted directly from this rectangle. In the next step, we use
a Kalman filter to estimate the current state of the vehicle. The state vector is
then sent over to the control process. After this is done, the VPU waits for another
camera image, which guarantees that the vision system runs at a fixed rate (50 Hz
or 100 Hz depending on which camera is used).

The VPU uses a Kalman filter (see [25] for a detailed description) for the filtering
of noisy and missing measurements. These missing measurements result from the
fact that the detection is not perfect: external factors such as sunlight, warm halogen
spots or a person walking around the track can cause the car to go by unnoticed. In
a Kalman filter, a model is included. In our case, it is that of a point mass moving
at a constant speed. The possible accelerations of the vehicle are considered as
noise on the constant motion. In future work, this model might be extended to a
more sophisticated vehicle model (e.g. a bicycle model), or moving to an Extended
Kalman filter. Another possibility would be to incorporate this filtering into the
moving horizon paradigm and switch to Moving Horizon Estimation (MHE).

2.3 Control system

The vehicle control unit (VCU) takes the vehicle state coming from the VPU to
determine the next control action. This is done by the methods presented in Chapters
@] and m The vehicle states (position, orientation, velocity and angular velocity) are
sent over from VPU to VCU via UDP communication between these two processes.
The output of the Vehicle Control Unit is the steering angle and the throttle.

2.3.1 Real-time computer

Both the VPU and the VCU are two concurrently running processes on a real-time
computer. This desktop computer runs Debian LINUX 7.0 "Wheezy’ with its RT
Preempt real-time kernel patch installed. This guarantees soft real-time properties:
priorities of different processes can be assigned, but no hard timing constraints can
be imposed. Tasks with higher priority are given an advantage over other tasks by
the scheduler of the operating system. In our system, the vision processing system is
given the highest priority, in order to ensure as fixed a sampling rate as possible.



2. EXPERIMENTAL SETUP

| | |

10% Duty Cycle

50% Duty Cycle "square wave”

UL

90% Duty Cycle

Figure 2.3: Dutycycle as input to the model car. Source:!

2.3.2 Communication and local control of the race car

The control inputs are sent to the car via a wireless connection. The steering angle is
an action that can be immediately translated by the actuators on the car. However,
we can not set the torque on the rear axle directly. Instead, we can control the
dutycycle of the DC motor. This is the fraction of the time that the input voltage to
the DC motor is ’high’ (see Fig. . A negative value for D drives the rear axle
backward. Two types of race car interfaces are available, which will be described
subsequently.

The first is a classical Kyosho dNano model car which is steered by a manual
controller. This manual controller’s integrated circuit is modified to receive signals
from the real-time computer. The conversion from digital signals (coming from
the digital output card of the computer) to analog signals (going to the manual
controller) is done by a data acquisition board (DAQ).

The other type of interface is a dNano race car that has been extended with
a custom communication module, such that the control signals can be sent over
an Asynchrounous Connection-Less Bluetooth (ACL) communication link. The
real-time computer uses an off-the-shelf Bluetooth dongle to communicate with the
onboard antenna.

The disadvantage of the first setup is the high cost of the DAQ board. However,
this way of using the cars allows for quick replacement of broken race cars, whereas
in the second setup, each new car has to be extended with a custom Bluetooth
interface.

It is the Bluetooth communication interface that will be used in the remaining

chapters of this thesis, as the second experimental setup is not currently present at
LMS.

'wiki.bildr.org/images/thumb/3/35/Duty_cycle.png/300px-Duty_cycle.png



2.4. Software architecture

uetooth Antenna

 Bluetooth dongle (USB)|

Figure 2.4: The Bluetooth race car interface.

2.4 Software architecture

The software that implements all of the above, is self-written C++ code, designed
in a modular way. For example, the vison processing unit (VPU) and the vehicle
control unit (VCU) are two different processes and thus completely independent.
The VPU was already present at the start of the master thesis, the VCU was written
from scratch. The one-way UDP communication from VPU to VCU, which consists
of current estimate of the state vector, is the only interconnection between the two
processes. This is an example of loose coupling in the architecture.

Inside of the VCU, the modularity principle is carried out further, with each class
performing a single, coherent task. See Fig. for a schematic description. The
main.cpp code implements the main control loop:

1. Wait for current state estimate from the VPU,
2. Calculate the necessary track data starting from this estimate,
3. Compute the next control action and apply it to the miniature race car.
It makes use of the following classes:
e trackParser.cpp: Reads the geometrical track data from file and parses it.
e controller.cpp: Calculates the next control action.

e RCdriver.cpp: Transforms the calculated control actions into suitable signals
to be sent to the car.
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Vision Processing Unit Vehicle Control Unit

main.cpp ‘ main.cpp
\
\
\

threshold.cpp UDPalient.cpp

v trackParser.cpp
D carFinder.cpp
Y

camera
image kalmanFilter.cpp controller.cpp

u

UDPserver.cpp ) 4

RCdriver.cpp

Figure 2.5: The architecture of the race car software.

e UDPclient.cpp: receives and parses the UDP packets coming from the vision
System.

The modularity shows its advantages in the controller.cpp and RCdriver.cpp
classes: the existing controller (e.g. MPC controller) can be replaced by a new
controller without having to change anything to the main program; and the type of
communication (via a DAQ card or via Bluetooth) is encapsulated in RCdriver. cpp.
The software architecture and the information flow is depicted schematically in Fig.
2.0)
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Chapter 3

Vehicle and Tire Models

Central to any form of model-based automotive control is the vehicle model. Different
ground vehicle models exist, from very simple pure kinematic models to full-scale
multibody vehicle models. In the following, a 'model’ will always mean an ODE
model. A challenging component in any vehicle model is the modeling of road-tire
interactions which are dealt with by tire models. First, some common tire models
will be described, followed by the different vehicle models relevant for this thesis.

For all models, we assume a rear-wheel driven car, with front-wheel steering,
such as the dNano cars in the experimental setup. The global coordinates of the car
(measured in the center of gravity, CG) at each point in time are given by (X,Y),
and the orientation of the car with respect to the positive X-axis is ¢ (see Fig.
. Attached to the car is a local moving coordinate system (z,y), with the z-axis
aligned with the longitudinal axis of the car. The rotational velocity is denoted by w
(both for the global and local coordinate systems).

yaw axis y

-
-

Figure 3.1: Global coordinate system (X,Y’) and local coordinate system attached
to the car’s center of gravity (x,y). Source: [36].

11



3. VEHICLE AND TIRE MODELS

Figure 3.2: Decoupling of the tire forces. Side view (left) and front view (right).
Source: [306].

3.1 Tire models

As a car drives, the tires almost always stay on the ground, resulting in a contact
force. This interaction force between road surface and tire surface can be modeled in
different ways. The decoupled tire force model will be treated first, the combined
model is explained afterwards. The discussion of different tire models will be mainly
based on [36], [27] and [32].

3.1.1 Decoupled tire models

For simplicity, it is common practice to decouple the tire force into a longitudinal
and lateral force component (see Fig. [3.2)).

Longitudinal forces The longitudinal slip coefficient is defined as

8= M7 (3.1)
Uy
with wy, ry as in Fig. and v, is the longitudinal component of the velocity of
the car. In acceleration, the product wy,ry, is slightly higher than v, (a so-called
burnout), and the resulting slip coefficient /3 is positive. When the car brakes, g
becomes negative. The longitudinal tire force is modeled as a function of this slip
coeflicient:

ﬂong = f(/B) (32)

Lateral forces Also the lateral tire forces can be modeled as a function, but now
the independent variable is the slip angle « (see Fig. . It is the angle between
the direction of the tire and the velocity of the midpoint of the wheel. Thus, the
lateral tire force becomes

Flay = f(Oé) (33)

A first possible approximation to longitudinal tire forces is f(3) = 0. Although
very simple, it is an often used assumption on longitudinal tire forces on front

12



3.1. Tire models

Figure 3.3: Detail of the car’s geometry with steering angle § and slip angle o. The
velocity vy denotes the velocity of the middle of the tire. Source: [36].

wheels, in cars that are rear-wheel driven. Another possible approximation is a linear
function, with a saturation:

06/8 for |CB/B’ < Hong,max

. (3.4)
Slgn(/B)Flong,max for |CBB’ > F’long,max

Flong(ﬁ) = {

As above, the lateral tire force can be neglected (Floy = 0), or it can be modeled
as a linear function with a saturation:

—CaOé for |Caa| < Flat,rnax

Fiat () = { : (3.5)

_Sign(O‘)-Flat,maX for |Coza| > ﬂat,max

where the minus sign comes from the definition of « in Fig. 3.3

Another very well known model for tire forces is Pacejka’s so-called Magic formula
[32): it is a semi-empirical law which works well in a variety of tires and operating
conditions. The Magic formula is as follows:

— Fat(a) = Dsin(C arctan(Ba — E(Ba — arctan(Ba)))), (3.6)

where B is the stiffness factor, C' and E are shape factors and D is the peak factor.
Its characteristic shape is depicted in Fig. [3:4 Note again the minus sign in the
lateral tire force because of the definition of a.

3.1.2 Combined tire models

A more realistic approach to tire forces is to realize that tire force is limited, so
longitudinal and lateral forces have to ’share’ grip, they become dependent on each

13



3. VEHICLE AND TIRE MODELS

Figure 3.4: Left: Pacejka’s original Magic formula for tire contact forces. Right:
Simplified formula with E = 0. Source: [27]

other. The tire forces lie inside the ellipse

2 2
£ B
long + lat <1. (37)
-Flong,max ﬂat,max

3.2 Vehicle models

In the following paragraphs, we consider three vehicle models. Note that this
discussion does not seek to be complete, but presents some vehicle models that are
of special interest to this particular master thesis.

3.2.1 Four wheel vehicle model

In [18], a four-wheel vehicle model is used for real-time obstacle avoidance. A more
detailed discussion of this model can be found in [41]. The four wheels of the vehicle
are modeled as independent bodies. Furthermore, the heave (vertical) motion of the
car is neglected, but the load transfer on the different wheels is taken into account.
A detailed depiction of the geometry can be found in Fig.

Besides the three degrees of freedom of the rigid vehicle body, the rotational
dynamics of each wheel are also included in the vehicle model. A Pacejka tire
model (cf. section [3.1)) is employed to model the road-tire interaction, taking into
account the load transfer during handling, under the assumption of an infinitely stiff
suspension.

Due to the limited availability of model parameters for miniature cars (particularly
regarding road-tire interaction) and the slightly different underlying physics, we use
a reduced model for control in this context. In particular, road-tire interaction and
the load transfer are neglected in this thesis, yielding a rather standard slip-free
bicycle model, which we briefly describe in the following.

14
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Figure 3.5: Four-wheel vehicle model with load transfer. Source: [I§].

3.2.2 Bicycle model

A bicycle model simplifies a four-wheel car’s geometry to a two-wheel geometry, as
can be seen in Fig. 3.6 The symmetry of the appearing forces is inferred from the
lateral symmetry of the geometry of most cars.

Let us write the dynamics of the car in terms of velocities, and let us project
them onto the moving (z,y) coordinate system attached to the car (see Fig. [3.1):

miy = Fp, — moyw (3.8a)
moy = Fy + mugw (3.8b)
Lo = M., (3.8¢)

where w is the yaw rate of the car around the z-axis. Note that the z-axis remains
the same in both the local and global coordinate systems. The forces F, and Fy,
aligned with the longitudinal and lateral directions of the car respectively, come from
a summation of tire forces (front and rear), air drag and roll resistance. Since the
dNano cars are rear-wheel driven, we assume that F}jone = 0.

We can combine these equations of motion with the kinematic model of the point
mass, projected on the (z,y) coordinate system, to obtain a complete set of equations

15



3. VEHICLE AND TIRE MODELS
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=

Figure 3.6: Geometry for the bicycle model. Source: [36].

for the bicycle model:

X = vy cos(¢)) — vy sin(1) (3.92)

Y = v, sin(¥) + v, cos(1)) (3.9b)

b =w (3.9¢)
1

Vg = E(Fm; + Farag — Fplat sin(d) — moyw) (3.9d)
1

by = E(Fw + Ff1at c0s(8) + mugw) (3.9e)

W =l Ffar cos(6) — . Fpy, (3.9f)

where f,r means front and rear respectively, ¢ is the steering angle, and Fiyag is
the driving resistance, a combined effect where air drag and roll resistance are the
dominating contributions. A common approximation to this resistive force can be
found in the book of Giancarlo Genta [22]:

Fdrag =—Cyo — CT‘2U§' (3.10)

The coefficients C,o and C}o are to be determined experimentally. Note that the
lateral forces on the front tires can be modeled with any of the tire models discussed
above.

3.2.3 Slip-free bicycle model

As both the race track and the tires of the model race cars are made of rubber (rubber
on rubber results in high value for the friction coefficient), we assume a slip-free
vehicle model in this master’s thesis. It is valid under the following assumptions, as
is explained in [306]:

e The tire force limit is never exceeded,
e The slip angles oy and «, are small (see Fig. ,

e The steering angle § is small.
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3.2. Vehicle models

Table 3.1: BicYCLE MODEL PARAMETERS

Parameter Unit Physical meaning Value
4 —  geometrical (/1) 0.5
Cy m~!  geometrical (1/1) 17.06
Cm, m/s?>  motor parameter 12.0
Cm,y 1/s  motor parameter 217
Cr, 1/m  second order friction parameter 0.1
Cro m/s?  zero order friction parameter 0.6

Under these assumptions, we can use two approximations. The first is steady
state turning, which means that the lateral component of the velocity at the rear
wheels is zero. The second approximation is

Uy RV (3.11)

vy RU—0 (3.12)

see Fig. [3.6]

Using these approximations, we come to the slip-free bicycle model central in
this thesis (see also [36]):

X = wvcos(ip + C16) (
Y = wsin(y 4+ C16) (

Y =v35Cy (3.13¢
@IleD—Can’U—CrQUQ—CTO - (1)(5)202 Cl. (3.13(1

By 6 and D we denote the steering angle and the dutycycle applied to the DC motor,
respectively. A summary of model parameters C. and their respective interpretation
can be found in Table 3.1l

In this chapter, different physical vehicle and tire models available from literature
were introduced. On-line data like slip angle is often hard to estimate. Furthermore,
with computational complexity in mind, we favor simple vehicle models. Therefore,
we choose to employ a slip-free bicycle model (cf. Eq. ) in the rest of this
master thesis.
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Chapter 4

Computational methods for
real-time optimization

4.1 Model Predictive Control

As of today, PID control remains the most widely used control technique in the
majority of application areas for automatic control. However, more advanced control
algorithms such as model predictive control (MPC) have been developed since the
1960s. MPC is already succesfully applied in the chemical process industry, where
rather slow dynamics (sampling times of seconds or even minutes) allow for complex
control calculations. Recently, a number of contributions to real-time nonlinear
model predictive control (NMPC) theory and applications have led to an increasing
interest in this technique for fast mechatronic systems [I1l, 16, [37]. In the area of
autonomous ground vehicles, MPC has become an attractive method for the tracking
of feasible trajectories. All this serves as a motivation to use the MPC paradigm
for our purposes. The following introduction to MPC is based on the book by Jim
Rawlings and David Mayne [34].

4.1.1 Problem formulation

Model predictive control has its roots in the field of optimal control. The basic idea
of MPC is to use a dynamic model to predict the system’s behavior, and optimize
this behavior to obtain the best control decision at the current time. Usually, MPC
is carried out with a receding horizon: at each time step, the behavior up until some
time horizon is considered. The dynamic models, which are central to any form of
MPC, we will use are the ordinary differential equation (ODE) models

d§
dt :f(€7u7t> (41)
£(to) = o, (4.2)

in which £ € R" is the state, u € R™ is the input, the output y € RP, and t € R
is time. The state equations and the output equations are denoted by f and h,
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4. COMPUTATIONAL METHODS FOR REAL-TIME OPTIMIZATION

respectively. As can be seen in the equations above, the control actions of the MPC
controller depend on the current state & of the system.

This being said, we can proceed to the MPC problem formulation. MPC tries to
minimize a certain cost function, defined as

Va(€()u() = [ HE®) ue)it -+ Vy(e(n) (43)

with [(-) denoting the running cost and V the final cost. The optimal control problem
formulation of MPC to be solved at each sampling time is then

mgi(p)ifﬁ@)% Vr(&(+),u(-))

subject to £ = f(&,u), te0,T), (4.4)
£(0) = &

4.1.2 Motivation

A first contrast that MPC makes with more traditional controllers is the fact that the
control decisions are optimized with respect to a model. For instance, in PID, there
are no optimization features whatsoever (except maybe for the tuning of the gain
parameters). Another big advantage of MPC over conventional feedback controllers
(such as PID controllers) is the ability to handle constraints, by introducing them in
the control problem formulation. In a linear quadratic regulator (LQR) for example,
it is possible to put constraints on the control variables only (not the state variables),
but then the linearity of the problem is affected. A third beneficial property of MPC
is that it is model-based, allowing the prediction of future behavior of the system
model, where in other controllers the control action is often based on the tracking
error

e(t) = yree(t) — y(t), (4.5)

resulting in no lookahead features whatsoever.

4.1.3 Variants

There are different flavors of MPC: the easiest form is without doubt linear MPC.
Here, the system equations are assumed to be linear, and only a quadratic cost
function is allowed with linear constraints. It can be shown that linear MPC problems
can be transformed into a dense Quadratic Program (QP) [5], which can be solved
exactly at each time step. However, in this thesis, we choose to investigate nonlinear
MPC (NMPC) methods as well, in order to obtain more accurate predictions. In
this case, both the constraints and the cost function can be an arbitrary nonlinear
function in C?. Of course, this problem is much harder to solve numerically, in
particular in real-time applications in the microsecond range.

Often, linear or nonlinear MPC is used with a tracking formulation. An alternative
for this is Economic MPC [33]. This control technique has roots in the process
control of chemical plants. Usually, the most profitable setpoint or trajectory in the
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objective function is set externally (eg. some information management system or
prior data). However, with economic MPC, the controller directly optimizes the
economic performance of the process, rather than tracking to a setpoint or trajectory.
In the time-optimal method formulated in this master thesis, ’economic perfomance’
is translated to time: the higher the economic performance, the lower the time.

4.2 Linear MPC

While many real-world models are not linear, they can be locally approximated by a
linear model. Historically, linear models were used by MPC practicioners up until a
few years ago for the simple reason that nonlinear methods were computationally
infeasible.

Another important property of linear MPC is that, in principle, all linear MPC
formulations are convexr optimization problems, for which very efficient methods
exist. To be convex, a linear MPC problem must have a convex cost function, as
well as convex constraints on states and control variables. This is not uncommon in
practice: a least-squares cost function

1E(1)), u(t)) =[16() — &ret(®) [l +[|ult) — uret®) 5, (4.6)

combined with a time-invariant linear model

£(t) = AE(t) + Bult) (4.7)
and simple state and control bounds

§L S E(t) S ‘£U7 §L7 §U S Rn (488“)
ur, <u(t) <uy, up,uy €R™ (4.8b)

is an example of a convex linear MPC problem. Such an MPC problem can be
approximated as a QP (see section and can be solved efficiently.

For a computable solution to be possible, the above problem needs to be reduced to
a finite number of optimization variables. The discrete-time linear MPC optimization
problem amounts to

N-1
Igi?g"éf%zle kz:% Uk (&ky uk) + VN (EN) (4.92)
subject to €pr1 = Arér + Brug, k=0,...,N—1, (4.9b)
Ee 1 & < Feg kE=0,...,N, (4.9¢)
Eyrur < Fug k=0,...,N -1, (4.9d)
€0 = &init- (4.9¢)

In this formulation, N is the horizon length, [;(-) is the running cost and Vy the
final cost. Note that the system equations and the constraints are linear. If [ and
Vi are chosen convex, then the optimization problem becomes convex. Moreover, if
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4. COMPUTATIONAL METHODS FOR REAL-TIME OPTIMIZATION

the cost function is quadratic, the optimization problem is a quadratic programming
(QP) problem.

The linear MPC scheme then consists of repeating the following steps in one
sampling time:

1. Measure or estimate the current state &y,
2. Solve optimization problem (4.9¢)),

3. Apply the first control ug to the system.

4.3 QP solution method

A QP problem is a optimization problem with a quadratic cost function and linear
constraints (any number of p equality constraints and ¢ inequality constraints). The
vector of optimization variables, also called decision variables, is denoted by w € R".
A QP problem formulated in it’s most basic form is

. L 7 T
—w H 4.1
minimize Zw Hw +fw (4.10a)
subject to Eoquw = Feq (4.10Db)
Ew < F. (4.10c)

In the formulation, the matrix H is a nxn semi-positive definite matricx, or H € ST*".
The other matrices are Feq € RP*" E € R?*™ and the vectors f € R", Foq € RP, and
Foq € RY.

Several algorithms exist for solving convex QP problems; commonly used are the
interior point methods and the active set methods. In this master’s thesis, we will
use the gpOASES solver [I], which is an active set method and especially designed
for usage in MPC methods (both linear and nonlinear). Other available QP solvers
are FORCES [14] and qpDUNES [19].

qpOASES uses a so-called online active set strategy. An active set method solves
the QP problem by reducing the full set of constraints to a subset (the active set),
and selects constraints to be added to or removed from the active set in each iteration.
A detailed description of the algorithm can be found in [I7].

4.4 Nonlinear MPC

A disadvantage of linear MPC when used in a nonlinear setting is the need for an
adequate linearization. This linearized model is only valid close to the linearization
point. However, when changing to a nonlinear MPC formulation, instead of solving
one QP in each iteration, a nonlinear program (NLP) has to be solved. In general,
this NLP is non-convex, so we have no guarantee that the solution found by the
solver is a global optimum.
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We directly jump to the formulation of a generic NMPC problem:

N-1
minimize Z U (&k, uk) + V(En) (4.11a)
§1.-&N k=0
subject to &1 = &k, uk), k=0,...,N—1, (4.11b)
h(€x,ur) <0, k=0,...,N—1, (4.11¢)
€0 = &init- (4.11d)

Now, the functions I, Vi, f, h can be arbitrary nonlinear functions in C?, which
poses a computational challenge.

4.5 NMPC solution method

A succesful strategy for solving NMPC sufficiently fast and accurately is the RTI
scheme ([11]) which is based on sequential quadratic programming (SQP). This
scheme is presented briefly in the following. An overview of numerical methods for
nonlinear MPC can be found in [12].

4.5.1 Sequential Quadratic Programming

Consider the nonlinear optimization problem

min  V(()
¢ (4.12)
st. h(¢) <O0.

The idea of Sequential Quadratic Programming (SQP) is to solve by advancing
in the following way:

Ck+1 = Gk + 5P, (4.13)

until some converge criterion is met. The parameter 8 € [0, 1] determines the step
size. This can be calculated with a globalisation strategy like line search or the
trust-region method. The step p is the solution of the QP

1
min VV(Ge)'p+ 5p” Bp
st h(G)+ ?T?(Ck)p <0,

where B is the Hessian of (4.12]) at (; or an approximation thereof. An ill-conditioned
or indefinite Hessian can be regularized by adding Levenberg-Marquardt regulariza-
tion:

(4.14)

B=J'J+axlI,

where J is the Jacobian of (4.12)), and the regularization parameter o > 0. For more
algorithmic details, consult [30].
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4.5.2 The real-time iteration scheme

The real-time iteration (RTI) scheme for nonlinear model predictive control (NMPC)
was first proposed in [II]. A very simplified schematical view of this method is
shown in scheme |1}, see [11] for the details. The idea is to do as many calculations as
possible before obtaining the new data in each sampling time. From the moment the
data is available, the next control action is determined. In contrast to a regular SQP
scheme, the RTI scheme performs only one iteration per sampling time.

Scheme 1 RTT scheme (simplified)
repeat online:

1. Preparation Step
Linearization & Condensing
Wait for data (inital value)

2. Feedback Step
Calculate first control value by solving a QP
Apply control to plant
Shift variables

until

The 'condensing’ in step 1 is the procedure that reduces the size of the QP by
eliminating intermediary states. The computations in step 2 involve solving only one
QP, because the solution from the previous iteration is already a good approximation
to the solution of the NLP. The RTIT scheme has been applied succesfully in many
practical applications, for example a high purity distillation column [I3] or an
overhead crane [38].

4.5.3 ACADO toolkit

In this master’s thesis, we will make use of the ACADO software package [24] 23] [2].
This package is an algorithm collection for dynamic optimization; it contains solvers
for moving horizon estimation (MHE), nonlinear optimal control and nonlinear model
predictive control. The ACADO code generation tool (CGT) is of most interest to
us, as it produces self-contained C++ code which solves NMPC problems fast. The
code that the ACADO CGT produces is an implementation of the above described
real-time iteration (RTI) scheme.
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Chapter 5

Two-level linear MPC:
trajectory planning and tracking

At the start of the master thesis, the algorithm running on the experimental setup is
linear model predictive control (MPC) with a tracking formulation. The reference
trajectory tracked by the car is computed beforehand. The first algorithm we present
on our way towards time-optimality is an extension of this, namely linear MPC
tracking with on-line trajectory planning.

The resulting algorithm consists of two levels. The trajectory that is to be tracked
is determined by the upper level of the algorithm. On the upper level, the path that
will be tracked can be chosen as the shortest path or the path of least curvature. On
the lower level, linear tracking MPC is carried out. A similar algorithm was used in
[21] to simulate a passenger vehicle driving on an icy road.

This on-line computed path is a heuristic approach to the time-optimal problem
in the following way: if the path has minimum curvature, then the car needs to brake
as little as possible, resulting in a higher average velocity. Tracking the shortest path,
on the other hand, results in a shorter total distance driven by the car, resulting in a
lower time per lap.

The motivation to start with a heuristic method is the following: the linear
tracking algorithm proved to work on the experimental setup, so a natural extension
to this algorithm is to provide other reference trajectories, by on-line computation.

5.1 Linear tracking MPC

The existing method, prior to the start of the master’s thesis, is linear tracking
model predictive control. For completeness, this algorithm is explained briefly. For a
detailed description, consult [40].

The tracking problem is solved by reformulating it as a requlation problem, which
means that we intend to drive the state vector to zero. To this end, we introduce
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the error state

Ze cos(?) sin(¢?) 0 0] | X —X°
|ye| _ |—sin(¥?) cos(»?) 0 0| |Y -Y°

=l T o 0 1 0| vyl (5-1)
Ve 0 0 0 1 v —v?

where the superscript 7 denotes a state belonging to the reference trajectory (in
this particular case, the centerline). Note that we switch from a global reference
frame (X,Y) to a local frame (z,y) attached to the car. The error state will be used
to formulate the error dynamics corresponding to the system in Eq. . This
will replace the original system dynamics. We can do so by introducing the system
dynamics into the error state formulation, which gives

Te vcos(e + C10) — v7 (1 — Kye)
: | Ye| vsin(ye + C10) — v7 (k)
$= ¢€ N v0Cy — VK (5.2)

Ve leD—Cm2DU—Cr2'U2_CTO—(Ufs)QCQCl—(IJ

with £ = w?/v? the curvature of the track. We collect the control inputs in the
vector u = [4, D]

Constraints The constraints on the input vector u = [§, D]? are the following:

—25-7 25-7
< < 5.3
180 — "7 180 (5:3)
-1<D,<1 (5.4)
The state constraints are given by
Aw—w/2 < ey < Aw+w/2, (5.5)

where w is the width of the track, and Aw is the distance between the current
position on the reference trajectory and the middle of the road (see Fig. |5.1)).
After linearization and discretization, we obtain the following linear MPC problem:

N N-1
. T T

min & Qrér + uy, Riug, (5.6a)

¢eR™ N ugRmuxN kz::l kz:%
subject to &pr1 = Agér + Brug, k=0...N—1 (5.6b)
eyk € [Aw —w/2, Aw + w/2], E=1...N (5.6¢)

—25- 25 -

up €[22 T 4], k=0...N—1. (5.6d)

180 7 180
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5.2. Linear MPC tracking: Results

Nominal Position

Aw

Car s |W/2

\J

Figure 5.1: Wall constraints on the car. Source: [40]

Weighting matrices The symmetric weighting matrices @, R allow for a distinc-
tion in tracking emphasis. State and control errors with a high weight are tracked
more closely. Often, these matrices are chosen diagonally, because weights on the
crossterms are not always physically meaningful. High weights on the position error
are selected to achieve the desired accurate tracking. A relatively high weight on
the velocity ensures a smooth driving. Following weighting matrices result in a
satisfactory behavior:

Qp = diag([1,1,107°,1])
Rj, = diag([8-107°,8-1077)).

5.2 Linear MPC tracking: Results

Some results of linear MPC tracking are presented here to serve as a point of
comparison of newly developed methods.

5.2.1 Simulation results

In tracking of the centerline, the goal is to keep the longitudinal and lateral position
error I, y. small. We employ a linearization of the bicycle model presented earlier
(Eq. as the model in the controller. The sampling time is chosen to be 0.01 s.
In Fig. the tracking performance of the linear MPC tracking method is shown.
The resulting trajectories can be seen in Fig.

From the figures, it is clear that the tracking performance deteriorates with
increasing reference velocity v.ef. For even higher speeds, the underlying QP problem
becomes infeasible.

5.2.2 Experimental results

The linear MPC tracking formulation is also tested on the experimental setup: the
results are shown in Figs. and Note that the tracking of the trajectory is
not very effective, even at a modest speed of 0.5 m/s. A comparison with nonlinear
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Figure 5.2: Comparison of linear MPC tracking the centerline at different reference
velocities.
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Figure 5.3: Comparison of the vehicle states and controls of linear MPC tracking of
the centerline at different reference velocities. The horizontal axis describes the path
advancement s.
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v _=05m/s v =1.0m/s
ref ref
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Figure 5.4: Linear MPC tracking at two different reference velocities. The centerline
is the reference trajectory.

methods will be given in Chapter [6] where the benefits of nonlinearities will be
demonstrated. At a higher reference velocity of 1.0 m/s, the car is not able to turn
quickly enough to avoid violating the path constraints. This is due to the model
nonlinearities that are not captured in a linear model. Also, there is a mismatch
between the simplified slip-less bicycle model and the real miniature race car.

The resulting states can be seen in Fig. The velocity is tracked closely; the
large peak is a measurement error. The position where this occurs is exactly perpen-
dicularly under the camera. It is often the case that there is a wrong measurement
at this particular position, due to reflection of light above the camera on the shiny
body of the car. Note also that steering angle in the experiment resembles that of
the simulation.

5.3 Trajectory tracking

Tracking of the centerline is never time-optimal. Instead of feeding the centerline to
the MPC tracking algorithm, we want to calculate a reference trajectory that differs
from the centerline in order to decrease the lap time of the car. This calculation
should be carried out on-line, resulting in a two-level MPC trajectory tracking
algorithm: at each time step, a trajectory is calculated, which is then tracked inside
an MPC tracking algorithm as explained in Eq. The planning algorithm
makes use of a longer prediction horizon than the tracking algorithm. The two-level
approach is depicted schematically in Fig. [5.6
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Figure 5.5: States and controls of linear MPC tracking. Also see Fig. .
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Figure 5.6: The two-level MPC trajectory planning algorithm.

5.3.1 Calculation of the trajectory

For the reference trajectory two choices are possible:

1. The path of least curvature: the car is able drive as ’smooth’ as possible. In
this way, the car does not need to slow down much in the corners.

2. The shortest path: the total length of the traveled path is shorter, so we can
expect the total time needed to be smaller as well.
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5.3. Trajectory tracking

Figure 5.7: Model of the track and the vehicle trajectory.

Both paths described above are the result of an optimization problem. The
elements needed in the optimization problem formulation are

c(s) = [ze(s), ye(s)]F € R?, Track centerline, (5.7a)
r(s) € R?, Right hand border, (5.7b)
I(s) € R?, Left hand border, (5.7¢)
A(s) =1(s) —r(s) Lateral deviation, (5.7d)
w(s) € R, Track width, (5.7e)
p(s) =7r(s) + a(s)A(s), a(s) € [0,1]  Vehicle trajectory. (5.7f)

These quantities are plotted in Fig. In the following paragraphs, the computation
of the reference trajectories is described.

Least curvature trajectory The local curvature of a smooth trajectory is defined
as follows (see [10] for the details):

[1P"(s) x p'(s)]l
P (s)I1°

Accordingly, the problem of minimizing the aggregate trajectory curvature can
be formulated as:

k(s) = (5.8)

L
mn(l;(lll)nze C :/0 k(s)ds (5.9a)
subject to 0<a(s) <1 , Vsel0,L] (5.9b)
p(s) =r(s) + a(s)A(s). (5.9¢)
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‘ —— Least Curvature —— Shortest Pa(h‘

Figure 5.8: Two trajectories planned on-line by the trajectory planner.

Shortest path trajectory Using the notation presented in (5.7, the problem of
finding the minimum length trajectory can be formulated in continuous space as

follows:
L
mini(n)ﬁze / V()2 +yp(s)? ds (5.10a)
a(- 0

subject to 0<a(s)<1 , Vsel0,L] (5.10b)

p(s) =r(s) + a(s)A(s), (5.10¢)
where p(s) = [z,(s), yp(s)]”, 2},(s) = 8%;(8) and similarly y,(s) = 8%5(5) and L is
the length of the track along the centerline.

The continuous problem formulation can be discretized, resulting in a QP problem.
The details of this method can be found in [10].

5.4 Two-level algorithm: Results

The two-level method explained above has been implemented in MATLAB/Simulink.
All the simulations were carried out in this environment. The relevant MPC solving
code is exported to C++-code with the Simulink Coder tool, and inserted in the
existing software running on the race car setup.

5.4.1 Simulation Results

The reference trajectories computed in problems and are displayed in
Fig. Note that the solution of the shortest path problem is generally close to
the borders and touches it at some points. The least curvature solution has a much
rounder profile, and touches the outside boundary at the top of the track.

The MPC tracking performance will be compared to the linear MPC tracking
algorithm.
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Figure 5.9: The vehicle states and control inputs of the car tracking the least
curvature path.

Tracking of least curvature path

As we can see in Fig. the velocity can be substantially higher than for centerline
tracking. At the end of the trajectory, the velocity can be as high as 3 m/s.

The resulting trajectory is plotted in Fig. From this plot it is apparent that
the car gains the most speed in the longer straight section at the top of the track,
whereas it needs to slow down a lot in the chicane (on the right).

Tracking the shortest path

We show the results of the shortest path tracking in Fig. As can be seen, the
car needs to turn more swiftly: the steering angle § varies much faster than when
tracking the least curvature path. This has an impact on the velocity of the race car,
the velocity can not be tracked closely at all times. Setting the reference velocity
even higher results in infeasibilities in the optimization routine.

Lap times

In Tab. we can see that the trajectory planning methods outperform tracking
of the centerline. In conclusion, we can say that our heuristic methods resulted in
faster race performance.
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Figure 5.10: The resulting least curvature trajectory at vy = 3.0 m/s. The velocity
of the car is encoded with colors.
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Figure 5.11: The resulting trajectory by tracking the shortest path around the track.
The reference velocity is vres = 2.0 m/s.
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Figure 5.12: The vehicle states 1 and v and control inputs of the car tracking the
shortest path around the track. See Fig. for the trajectory.

Table 5.1: COMPARING LAP TIMES BETWEEN THE DIFFERENT LINEAR METHODS IN
SIMULATION.
LC=least curvature, SP=shortest path

Algorithm Lap time
Linear MPC tracking (vyef = 2.0 m/s) 4.3 s
Two-level MPC (LC, vyt = 3.0 m/s) 39s
Two-level MPC (SP, vy = 2.0 m/s) 4.0 s

5.4.2 Experimental results

The experimental results for the two heuristic methods will be presented in this
section.

Tracking of least curvature path

In Fig. the resulting trajectory and reference trajectory for the path with the
least curvature is shown with a reference velocity of 2.2 m/s. However, as can be seen
from the remaining states and controls in Fig. this velocity is never attained.

Tracking of the shortest path

The problem of tracking the shortest path around the track has to be altered slightly
in proceeding from simulation to experiment: the width of the car has to be taken in
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Figure 5.13: Experimental results of the MPC planning and tracking algorithm. The
least curvature path is shown, together with the actual car trajectory, encoded with

the car velocity in color.
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Figure 5.14: Experimental results of the MPC planning and tracking algorithm with
the least curvature path as reference. The states 1) and v and the control inputs are

shown. See Fig. for the resulting trajectory.
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Figure 5.15: Experimental results of the MPC planning and tracking algorithm. The
shortest path around the track is shown, together with the actual car trajectory,
encoded with the car velocity in color. Note that a margin had to be introduced due
to the width of the car (shown as a red rectangle).

Table 5.2: COMPARING LAP TIMES BETWEEN THE DIFFERENT LINEAR METHODS IN
SIMULATION.
LC=least curvature, SP=shortest path

Algorithm first lap time | average lap time
Linear MPC tracking (veef = 0.5 m/s) 17.6 s 17.5s
Two-level MPC (LC, vpef = 2.2 m/s) 8.8s 8.0s
Two-level MPC (SP, vyer = 2.0 m/s) 9.1s 8.95 s

account, so a small margin of 4.0 cm is added to the track. In Fig. and Fig.
[5.16] the experimental results of the planning-tracking MPC algorithm can be seen.
From Fig. |5.15] we can see that the velocity is somewhat lower than in tracking the
least curvature path, (maximum velocity 1.2 m/s vs. 1.6 m/s). Moreover, the car
needs to turn sharper, resulting in a steering angle bound that is active longer than

in the least curvature tracking (compare Fig. to Fig. |5.14]).

Lap times

We make the same comparison of the lap times as in simulation, in Tab. [5.2] In
contrast to the simulations, the shortest path planning algorithm results in the fastest
lap times, both in the first lap and on average. Note also the much larger difference
between centerline tracking and the more advanced methods. This is due to the
low reference velocity we were bound to set in the experiment as higher reference
velocities resulted in violations of the road boundaries.

We can conclude this chapter by observing that the heuristic linear MPC methods
are indeed faster than pure linear MPC tracking of the centerline. This holds both
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Figure 5.16: xperimental results of the MPC planning and tracking algorithm with
the shortest path as reference. The states ¥ and v and the control inputs are shown.

See Fig. for the resulting trajectory.

in simulation and experiment.
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Chapter 6

Nonlinear MPC tracking

All methods presented in the previous chapter are linear methods. However, linear
MPC has the disadvantage that we have to choose a point of linearization, usually
the steady state of a system, in our case, the centerline of the track. Around this
linearization point, the linearized model accurately describes the nonlinear model.
However, the farther we move away from the linearization point, the less the linear
model is an accurate description of the underlying nonlinear model.

Therefore, nonlinear methods are investigated in this chapter. These nonlinear
methods allow for more accurate solutions, but pose a bigger computational challenge
than linear methods. To assess the feasibility of a NMPC solver, we design a simple
tracking model-predictive controller and analyse its behavior both in simulation and
on the real-world setup.

6.1 NMPC Tracking

As a control objective, the distance of the state and control input vectors to the state
and input reference is penalized. The most common choice is a least-squares penalty,
because efficient methods for such a cost exist (see section [4.5.3). The nonlinear
tracking problem then becomes

g(n)l’lur%) /t:f Hg(T) - gref(T)Hfg +Hu(7') - uref(T)H?z dr (6.1a)
+etts) - ettt (6.1b)

st ) = S0, u(t) (6.10)
u(t) € [0r,6v] x [-1,1] (6.1d)

£(0) = &. (6.1¢)
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Recall that our model is (see section [3.2.3))

X =wvcos(¢ + C16)

Y = wvsin(¢ + C19)
b =0v8Ch
o = Cpyy D — Cppy Dv — Cpov® — Cpy — (v38)2C, Cy,

and consists of four states and two inputs
X
Y 0
&= W ,u—[D]. (6.2)
v

The steering angle range [0, dy] is

25T 25w

[5L,5U] - [_ﬁso’@]’

as before.

The symmetric weighing matrices @), R and P allow for a distinction in tracking
importance. As we are trying to track the centerline at a constant speed, the largest
elements will be Q1.1, Q22 and Q4.

A time-dependent reference for all states and controls is inserted in the optimiza-
tion routine. This reference is calculated offline, and is read from file.

The Xiyef, Yrer and vpef references are fixed by the track geometry. The reference
velocity wvpes was chosen at 1 m/s, which is a reasonable velocity for the miniature
race cars.

It is not directly clear which values to choose for the control references d,ef, Dyet-
The most simple choice would be d..f = 0, Dot = 0. For the steering angle 4, the
value Orad is reasonable because the steering angle range is symmetric around this
value. However, for the duty cycle D, a reference value of 0 is equivalent to the car
being at rest. Inserting a zero reference at all times, the control actions enter the
cost function as||d]| and || D|| and large values for these quantities are thus penalized.
Adding such a control regularization is common because large control actions are
often considered harmful as they might damage the system.

Another possibility is to simulate the behavior of the car offline and insert the
resulting § and D of this simulation as a reference into the on-line control problem.

6.2 NMPC Tracking with input rates

In the trajectory tracking form of NMPC, it is not entirely clear which values for
the reference of the control input to get the best tracking behavior. It is better to
penalize the change in input, as the control inputs become smoother. Therefore, we
have to include the derivatives of the control inputs into our problem formulation.
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This model reformulates the original controls § and D as states, resulting in the
following optimization variables:

X
Y
| A6
0
D
We restate the model as

X =wcos(¢p + C16) (6.4a)
Y = wvsin(y + C16) (6.4b)
Y =0v3Cy (6.4c)
& = CpyyD — Crpy Dv — Cpov* — Cpy — (v6)2 Cy Cy (6.4d)
b=A¢ (6.4¢)
D =AD. (6.4f)

Introducing the input rates in the objective function results in the following
NMPC problem formulation:

ain [ 1) = )l + 120, D |7 ar

2
+ettn) - gertts)|

' (6.5)
5.t E(t) = f(E(t),u(t))

6, D]" € [61,60] x [~1,1]

£(0) = &.

6.3 Results

The methods described above have been implemented in the ACADO interface for
MATLAB. To run the code on the real-time computer at the experimental setup,
ACADO allows for the automatic generation of source code to C++, which is called
from software routines based on earlier code as used in Chapter

First, we will make a comparison between linear MPC tracking and nonlinear
MPC tracking. Next, we will consider the performance of the formulation with input
rates. The following results are obtained with a sampling time of Ty, = 0.02 s, and a
prediction horizon N = 20 (see eq. (4.11d))).

6.3.1 Simulation results

The need for control regularization, is depicted in Fig. [6.1] where we used the
weighing matrix Q = diag([1,1,107°,1]) and R = diag([0,0]). As can be seen, the
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Figure 6.1: Tracking performance of a formulation without control regularization.

NMPC tracking performance is satisfactory, as the trajectory almost coincides with
the reference. However, the control inputs oscillate at high frequency. This is often
an undesirable feature.

Therefore, we introduce some weights on the control inputs as well. A set of
well-performing weights is

Q = diag([1,1,1075,1]), R = diag([107%,107%)). (6.6)

Inserting the control rates into the control problem results in very similar behavior
as in the results without input rates. The results can be seen in Fig. where we
used the weighing matrices

Q = diag([1,1,107°,1,1071°,1071%]), R = diag([10~*,1079)). (6.7)

Indeed, the control inputs §, D appear to be smoother when we weight their
derivatives, respectively (see Fig. .

Although weighing the control input rates lowers the variability of the corre-
sponding controls, the tracking performance is very similar, except for the velocity
.

6.3.2 Experimental results

The simulation results are helpful in tuning the weights and other parameters in the
MPC problem. Nevertheless, the main emphasis of this thesis remains the real-world
setup. Next, the experimental results will be analyzed.
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Figure 6.2: Comparison of the tracking performance with or without the input rates
taken into consideration.
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Figure 6.3: Close-up of the control inputs of Fig.
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Figure 6.4: Comparison between simulation of the NMPC tracking problem and
experimental results. In ’experiment 1’, we used the same weights as in simulation,
with resulting unsatisfactory performance. In ’experiment 2’, the weights are adapted
in order to obtain more satisfactory results.

NMPC tracking First, NMPC has been run on the experimental setup with ex-
actly the same NMPC tracking problem formulation and parameters as in simulation
and compare the experimental results with the simulation. The experimental results
are given in Fig. [6.4] together with the simulation results for comparison. As can
be seen from this plot, the control inputs are not weighted enough, resulting in an
unstable behavior. Therefore, a different controller with weights

Q = diag([1,1,1075,1]), R = diag([1072,107!]) (6.8)

is proposed (also shown in Fig. [6.4)).

The above findings are even clearer from looking at the resulting trajectories
(Fig. : the nervous behavior of the experimental controller with the simulation
weights is deregatory for the tracking performance. The trajectory of the controller
with the adapted weights is delivering a trajectory much closer to the centerline.

NMPC tracking with input rates We repeat the same exercise for the NMPC
tracking formulation with inclusion of the control input rates in the objective function.
In this case, the algorithm with the weights on the input rates used in simulation
were not able to steer the car around the track: the car crashes into the border of
the track before the first corner. Also here, the input rates have to be weighted more
in order to obtain satisfactory results. The new weights are

Q = diag([1,1,1075,1,107° 10719)), R = diag([1073,107%)). (6.9)
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Car Trajectory

X (m)
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Figure 6.5: Comparison of the trajectories between simulation of the NMPC tracking
problem and experimental results. Experiment 2 is the one with the adapted weights.

As can be seen from Fig. the car trajectory is even closer to the reference
than in the NMPC tracking without input rates. A reason for this is that weighing
the 2-norm of the steering angle § penalizes large values relatively more than small
values, as it is a quadratic penalty. However, in the input rate formulation, norm of
the steering angle is not penalized, only its rate of change.

At the bottom left of Fig. [6.7] the trajectory moves a bit to the outside. The
cause of this is not entirely clear. It may well be due to a detection error in the
vision system, hence the oscillation in the steering angle around t = 14 s (Fig. .

As a conclusion, we can state that the NMPC tracking with input rates performs
best on the experimental setup. In going from simulation to experiment, the controller
had to be modified only slightly (mostly increasing the input weights). In simulation,
there is not much of a difference between both methods.

If we compare the nonlinear MPC tracking (without weights on the derivative of
the inputs) presented in this chapter to the linear MPC tracking of the centerline (see
section , we can state that the nonlinear methods performs in a much better way
in experiment (compare Fig. to Fig. . As this nonlinear method is feasible in
real-time, we can now extend this method and proceed to time-optimal control.
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Figure 6.6: Comparison between simulation of the NMPC tracking problem with
input rates and corresponding experimental results. In ’experiment 1’ we used
the same weights as in simulation, with resulting unsatisfactory performance. In
‘experiment 2’, the weights are adapted in order to obtain more satisfactory results.

Car Trajectory

X (m)

‘ —— simulation —— experiment 1 —— experiment 2 —— - reference‘

Figure 6.7: Comparison of the trajectories between simulation of the NMPC tracking
problem with input rates and experimental results. Experiment 2 is the one with
the adapted weights.
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Chapter 7

Time-optimal MPC

The main goal of this thesis is to design a time-optimal control algorithm, validated
on an experimental setup. Time-optimal MPC is a more difficult problem than
trajectory tracking, because minimum time objectives do not naturally fit into the
class of least-squares objectives for which highly efficient algorithms exist, such as
ACADO, as used in [I8, [42]. In this chapter, this algorithm will be introduced and
described in detail.

7.1 Spatial reformulation

Model is a dynamic system with time being the independent variable. A
reparameterization is therefore required to render time an optimization variable. This
allows us to introduce time in the objective function of the optimization algorithm. We
propose to employ the transformation to spatial coordinates from [I§] for this purpose.
Track limitations become thus simple (convex) state bounds, which are independent
of the vehicle speed. Furthermore, if the track limitations were constraining the
track to a single curve, the time-optimal driving problem would even be a convex
optimization problem, cf. [37].

Using a spatial reformulation of the dynamics, the horizon can be specified as a
function of space instead of time. This mimics the behavior of real-world driving:
drivers usually look ahead a certain distance instead of looking some time interval
into the future.

We state the spatial transformation for completeness. Vehicle coordinates in the
global frame are denoted by [X,Y]?. We project these X —Y coordinates on a curve
o, which is the reference trajectory, parameterized by its arc length o(s). Instead of
states X, Y and ¢ we obtain

e’ =cos(¥?)(Y = Y7) —sin(¢?)(X — X7), and
e =y -y

in the spatial dynamic system, where [X°,Y°]7 and v are the position and orienta-
tion of the reference point on the path given by s, see Fig.
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Figure 7.1: Definition of the coordinate system used in the spatial reformulation
of the vehicle dynamics. The s coordinate denotes the arc-length along the track.

Source: [18].

If we assume that the car is not at rest at any time instant ($ > 0), then it holds
for the state vector &€ = [ e¥ e¥ v t ] that

d¢ dédt 1.
!/
===—=—== 7.1
¢ ds dtds .ég’ (7.1)
where € is defined in (3.13).
In order to compute the vehicle speed with respect to the reference, $, note that

from Fig. [7.1] we have

v7 = (p” —¢¥) ¢, and

v =" cose? — oY sine?,
where p? is the radius of local curvature of o. The velocity along the path, $, is then
given by

a
§=p7Y° = pU’O_ o (v" cos(e?) — v¥ sin(e?)).

We obtain the spatial dynamic system as:

e¥(s) = (V" sin(e¥) + v¥ cos(e?)) /s (7.2a)
e”'(s) = /5 — K7(s) (7.2b)
V'(s) =0/ (7.2c)
t'(s) =1/3, (7.2d)
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Table 7.1: STATES AND CONTROL INPUTS OF THE SPATIAL VEHICLE MODEL

State Unit Description

eY m  Deviation from centerline
e? rad Yaw angle relative to path
v m/s Absolute velocity

t S Time

Control Range Unit Description
) [-0.44, 0.44] rad Steering Angle
D [-1,1] - Dutycycle of DC motor

where k7(s) = 1/p7(s) is the local curvature of the track. Note that the states in
the global coordinate system can always be recovered by

X = X7 — €Y sin(¢9)
Y =Y —¢€Y cos(v?)
b=y e,

A summarizing list of the states and inputs of the spatial model can be found in
Table [T

7.2 Offline solution

In order to have a reference to compare the online computed solutions with, we
would like to have an offline computed time-optimal trajectory. To this end, we use
the fmincon optimization routine in the MATLAB Optimization Toolbox.

The time-optimal trajectory is the curve that is driven by the car in the least
amount of time on one lap of the race track. The optimal trajectory is continuous
and periodic. The driven trajectory will converge to a trajectory that stays the same
each lap: the trajectory converges to a stable limit cycle. The solution is computed
in the following way.

The trajectory on one lap with length L is discretized in N intervals, resulting
in N + 1 nodes. On each node, we define a state vector &, and on each interval, we
define a control action u, which is constant throughout the interval. Each state and
control input looks as follows:
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Figure 7.2: Periodic solution that minimizes the total lap time. See Eq. (7.5]).

We introduce additional periodicity constraints

| [e%
egj = e}/\)f . (7.4)
Vo UN

Because time always moves forward, it is not included in these periodic constraints.
The time-optimal trajectory is the solution to the following optimization problem:

r?in tn
st €(s) = f(5,€(5) u(s)), s € [0,]
e¥(s) € [e¥(s), e}, (s)], s€0,L]
u(s) € [61,00] x [-1,1], s€]0,L] (7.5)
el e
&l = b
Vg UN

The solution is shown in Fig. [7.2] Note that this minimum-time solution resembles
the shortest path solution of Chapter [5l The algorithm wins a lot of time by cutting
corners, eg. in the chicane. Here, the length of the path along the centerline is 2.36 m,
whereas the time-optimal path of the car has a length of 0.70 m. In Fig. [7.3] the
states and controls of the time-optimal MPC problem are shown with their bounds.
Note that the angle error state e¥ can become quite large, but this is not a problem:
this occurs in places where the car crosses the centerline almost perpendicularly.

In Fig. [7.4] the trajectory is plotted with the positions where the states and
controls meet their limit (the bounds become active). The bounds for e, are active at
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4.1
4 — —
39
@
Esg
>
37
36
2 4 6 8 0 2 4 6 8
s (m) s (m)

3§ (rad)

Figure 7.3: States and controls of the periodic solution that minimizes the total lap

time. See eq. (7.5)).

every corner, as can be seen from the trajectory. The remaining bounds are plotted
on top of the trajectory.

Almost at every point of the track, a bound is active. This is to be expected,
because of time-optimality. The velocity bound is active almost everywhere. The
lower and upper bounds on the steering angle are active while turning sharply, as in
the first corner (top right). The dutycycle is at its limit in each curve.

7.3 Online solution

In a real-time context, sampling times are too short to calculate the solution to an
optimization problem such as at every time step. Consequently, the solution
of the time-optimal problem on an entire lap is brought down to the solution of a
receding horizon control problem. In such a problem, the scope of the optimization
problem is reduced to a fixed horizon. In the context of time-dependent models, the
horizon length becomes an optimization variable. For a solution of the time-optimal
driving problem, we aim at minimizing the time required for the race car to reach
the end of the fixed-length spatial prediction horizon,

t, S, 1
T = fldt:/f.—df. (7.6)
to S0 3(7—)

For sufficiently long prediction horizons, this finite horizon objective approximates
our goal of driving time-optimally.
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Active bounds

Figure 7.4: Plot of the active bounds at different positions on the trajectory.

The receding horizon optimal control problem then becomes:

m1n T = /
Jsu(’)

s.t. S) = f( ( 7“(3)), S € [SO,Sf]
H(s) € [hlsh e, € lsossy) &
(8) [5L¢5U] [ 1 1] s e [SO,Sf]
£(0) = &.

For an efficient implementation (note that ACADO Code Generation only allows
a least-squares type objective), we further use the following objective formulation.
Let T* be the minimum time required by a vehicle that satisfies the dynamics and
constraints of Problem . Then, for any 0 < Tyet < T, the global optimum of
the optimization problem

min 1T —Tet]|2, (7.8a)
£C)u(),T

st €(s) = F(s,€(5), uls), selsos]  (7.80)

e’(s) € [e(s), efr(s)], s € [s0, s¢] (7.8¢)

u(s) € [0, ou] x [-1,1], s € [s0, 5] (7.8d)

5(0) = 507 (786)
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(€,4), satisfies T' = T*.
By providing a suffciently small (i.e. infeasible) “target time” Tief we can therefore
have an approximate time-optimal MPC formulation in least-squares form.

7.4 Results

Using ACADO Code Generation, a solver for the NMPC problem described above (eq.
(7.8])) is developed and tested both in simulation (Matlab) and on the experimental
setup (custom C++ code).

7.4.1 Simulation results

On the model race cars, there is a speed limit, i.e. when the car drives with full
power supplied to the DC motor. In simulation, this is enforced by adding an extra
constraint

v(s) € [0,Umax], S € [s0,5¢], (7.9)

with vmax = 4.0 m/s, for the 1:43 model race cars used in the experiments.

Numerous simulations were tried where the weight of all other states and controls
than time was set to (almost) zero. However, unstable trajectories were the outcome.
A solution might be to introduce Levenberg-Marquardt regularization (see section
. We choose however to re-introduce all states and controls into the objective,
weighting the time variable at the end of the prediction horizon ¢y the most, and
weighting the other states and controls only slightly.

In Figs. and [7.6], the resulting trajectory and optimization variables are
shown, respectively (blue curve). The samples are spaced ss = 0.05 m apart along
the centerline, the number of intervals over the horizon is set to N = 20, resulting in
a horizon length of 1 m. The weights used are

Q = diag([5-107%,1071%,10719,10719)),
R = diag([1073,10710)), (7.10)
qtN =1.

The trajectory differs from the offline computed solution in the following ways: in
the chicane, the car does not cut the corners as sharp as one would like, it swings a
great deal to the side. Also, the steering behavior is less aggressive. This is due to
the regularization on the steering angle and the short prediction horizon.

In both figures[7.5] and [7.6] the green curve plots the result of the same algorithm,
but with a longer prediction horizon of 2.0 m (number of intervals N = 40). As we
can see in Fig. the lap time of the algorithm with the longer prediction horizon
is slightly lower. Also the maximum velocity can be attained for longer than before.
The control inputs have a similar behavior in the two simulations.

Looking at the resulting trajectories in Fig. we see that the car drives a path
that is closer to the offline optimization algorithm, that used a prediction horizon of
one entire lap (cf. Fig[7.2). This is most apparent in the chicane (on the right) and
the U-turn (bottom-middle).

53



7. TIME-OPTIMAL MPC

Trajectory

X(m)

‘ —— prediction horizon N = 20 —— prediction horizon N = 40‘

Figure 7.5: Comparison of the influence of the prediction horizon on the trajectories
of the simulation of the on-line time-optimal problem.
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Figure 7.6: Comparison of the influence of the prediction horizon on the states and
controls of the simulation of the on-line time-optimal problem.
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7.4.2 Experimental results

Using the spatial reformulation, the sampling of the control intervals is done in space
instead of time. In experiment however, we encounter the problem that the vision
system runs at a fixed sampling in time (50 Hz). Consequently, the spacing of the
control intervals need to be spaced closer to each other than 0.05 m, as in simulation,
because the car will not advance 0.05 m each sampling time (this would imply a
speed of 2.5 m/s). Therefore, samples of length 0.02 m are chosen. The number of
prediction intervals is chosen to be N = 30 to obtain a reasonable horizon length of
0.60 m.

As seen in the experimental results in Chapter [6] in order to obtain satisfactory
results, the weight matrices Q and R need to be tuned accordingly. The end time
gty Temains the most heavily weighted, although for good performance, the weights
are chosen as such:

Q = diag([gev, Gov, @v, @) = diag([107%,107191071% 5. 1073]),
R = diag([rs, 7p]) = diag([8 - 107°,107%)), (7.11)
Gy = 102

The results of the time-optimal MPC formulation with the above parameters are
shown in Fig. |7.7] If we compare with the simulation results (Fig. , we see that
the trajectories are quite similar. The car drives as close as possible to the insides of
most curves, as in simulation (the car width is not shown here). By looking at the
states and controls in Fig. we can see that the steering behavior is aggressive.
However, increasing the weight on the steering angle results in a crash of the car,
because large values for the steering angle are then penalized more relatively, causing
the car not to turn fast enough.

In Fig. [7.9] the predicted trajectories and the actual trajectory of the car are
compared in the chicane, as this is the most challenging part of the race track. At the
start of the first corner of the chicane, the actual trajectory of the car is more curved
than the actual trajectory. However, going into the second corner, the predicted
trajectory is flatter. Going into the third corner, the predicted one is curvier once
again. This predicted vs. actual trajectory mismatch is due to the short prediction
horizon.

Therefore, we increase the length of the prediction horizon. This can be done in
two ways: either we increase the sampling of the control intervals s;, or we increase
the number of intervals N. As from the discussion before, it is not an option to
increase ss much, so instead we choose to extend the horizon by switching to N = 50
control intervals along the prediction horizon.

In Fig. [7.10] the actual trajectory is indeed closer to the predicted trajectory,
because of the longer horizon. The resulting trajectory is plotted in and the
system states and controls are compared with the shorter horizon solution in Fig. [7.§
It can be seen that the longer horizon results in superior performance: compare the
moderate deviation to the left-bottom border in Fig. with the larger deviation
on the same spot in Fig. [7.7] With the longer horizon, the coming straight section
is visible at an earlier stage and therefore the turn can be taken more sharply.
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Figure 7.7: Trajectory driven by the real car using time-optimal MPC. The velocity

of the vehicle is encoded with colors.
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Figure 7.8: States and controls while running the experimental setup using time-

optimal MPC.
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—— car position
——— predicted trajectory|
—— car trajectory

Figure 7.9: Predicted vs. resulting trajectory of the car.

Comparing the velocity in Fig. the time-optimal MPC algorithm with longer
horizon results in a higher velocity in most parts on the track. This, in combination
with the shorter total length of the path driven with the longer horizon, results in a
lower lap time (Fig. bottom left).

7.4.3 Computational timings

As the vision system of the car runs at a fixed rate (50 m/s or 100 Hz), it is important
to keep the computation time of our control loop below this limit. We therefore
measure the computation time of ACADO using the built-in ACADO functions
tic(*timer) and toc(*timer). The results are shown in the boxplots in Fig. [7.12
As can be seen, for the shorter horizon algorithm, the computation time is well below
the 0.01 s limit. For the longer horizon however, the median computation time is
close to 0.01 s. Furthermore, there are quite a lot of outliers beyond 0.02 s. In the
most extreme case, almost three measurement updates are missed. Therefore, a
larger number of intervals than N = 50 is dangerous, as the car is not able to act on
the fresh data until the computations are done.

7.4.4 Lap times

The most important performance criterium is the lap time of the car. The lap times
of all the methods presented in this thesis are shown in Tab. As can be seen,
the time-optimal method with the longer horizon is faster than the variant with
the shorter prediction horizon. The fastest algorithm to drive the car remains the
two-level algorithm with the least curvature path.
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———predicted trajectory
——car trajectory
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Figure 7.10: Predicted vs. resulting trajectory of the car for an time-optimal MPC
formulation with a longer horizon of 1.0 m. For comparison, look at Fig. @
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Figure 7.11: The trajectory driven by the car for a time-optimal MPC formulation
with a longer horizon of 1.0 m.
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Figure 7.12: Computational times for one call of the feedbackStep() function of
ACADO. The red horizontal line denotes the median, the + markers denote outliers.

Table 7.2: COMPARING LAP TIMES BETWEEN THE DIFFERENT METHODS IN SIMULA-
TION.
LC=least curvature, SP=shortest path

Algorithm first lap time | average lap time
Linear MPC tracking (veef = 0.5 m/s) 17.6 s 17.5s
Two-level MPC (LC, vper = 2.2 m/s) 8.8 s 8.0 s
Two-level MPC (SP, vper = 2.0 m/s) 9.1s 8.95 s
Time-optimal MPC (horizon 0.6 m 8.4 s 8.3 s
Time-optimal MPC (horizon 1.0 m 8.3s 8.2s
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Chapter 8

Conclusion

This master thesis developed different methods for autonomous driving for small-scale
radio-controlled race cars. The time-optimal problem was tackled in two ways. First,
a set of heuristic linear MPC algorithms structured in two levels was presented.
Afterwards, a more advanced one-level nonlinear MPC method for time-optimal
control using a nonlinear bicycle model was developed. The real-time feasibility of
the resulting algorithm was confirmed.

The main contribution of this thesis is the development of new methods that
resulted in a significant decrease in lap time in comparison with linear MPC centerline
tracking existing formerly at the setup, and the implementation of a real-time
controller that can be used on an experimental setup. Furthermore, the use of
nonlinear MPC and the ACADO software on a setup of this kind is, to our knowledge,
a new result.

Outlook

Starting from here, different paths for further research can be investigated.

Improvements Several improvements to the developed methods can be proposed.
As the plant-model mismatch is the highest in the curves (the car is not able to turn
sharply enough), the time-optimal MPC formulation can be extended with a velocity
constraint depending on the maximum lateral acceleration of the vehicle, and the
curvature of the track. Also, the objective function of the time-optimal formulation
can be made to contain only the time at the end of the horizon.

Model The physical model remains a crucial part of any model-based control
method. Often, the unsatisfactory performance of the car in this thesis, was due
to the inability to very precisely predict the future behavior of the car. Extensions
to more involved vehicle models (such as those presented in Chapter [3|) are surely
worth an investigation, because a more accurate model results in a more accurate
prediction of the car’s behavior.
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8. CONCLUSION

Other solvers ACADO, in combination with gqpOASES, uses a condensing tech-
nique to reduce the problem dimension of the MPC problem. However, other solvers,
like qpDUNES or FORCES, do not condense the problem but instead exploit the
structure resulting from the full MPC problem. In this way, a longer horizon can be
attained. This will make it possible to reduce the lap times.

State estimation An accurate state estimation is needed for an accurate prediction
of the vehicle’s state. Thus, switching from a Kalman filter to an extended Kalman
filter (EKF) or moving horizon estimation (MHE) can be the subject of further
research. In combination with a more advanced vehicle model, also the estimation
of the vehicle model or tire model parameters could be a promising option for
performance increase.
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Appendix A

Technical details of the
experimental setup

Infrared camera: PointGrey Flea 3 Infrared Camera
Imaging: 1280x1024 at 100 FPS
Connection with computer: USB 3.0

RGB camera: xiQQ MQ013CG-ON Camera
Imaging: 1280x1024 (1.3 MPixel) at 50 FPS
Connection with computer: USB 3.0

Computer: Real-time Debian system
Intel Core i3-3220 @ 3.3 GHz
OS: Debian 7.0 "Wheezy’
Kernel: Linux 3.8.13 with Preempt RT Patch

Bluetooth link: Asynchrounous Connection-Less Bluetooth (ACL) communica-
tion link

Race Car: Kyosho dNaNo FX-101 ASF2.4GHz System

RC-controller: PERFEX KT-18 Transmitter 2.4GHz
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Appendix B

Master thesis paper

Below, the master thesis paper is included.
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Ontwerp van een Tijdsoptimale Regelaar voor Modelracewagens

Robin Verschueren

Abstract—Dit artikel bespreekt een real-time regelaar voor
het tijdsoptimaal controleren van autonome voertuigen. De
controlesignalen worden berekend met een niet-lineaire, mo-
delgebaseerde predictieve regelaar (model predictive control,
MPC). Een aangepaste herformulering van de tijdsoptimale
doelfunctie is ontwikkeld om het gebruik van bestaande, ef-
ficiente algoritmes voor niet-lineaire MPC mogelijk te maken.
De validatie van deze aanpak gebeurt zowel in een numerieke
simulatie-omgeving, als aan de hand van een experimentele
proefopstelling met racewagens op schaal.

I. INLEIDING

In de voorbije jaren hebben verschillende Advanced Driver
Assistance Systems (ADAS) hun intrede gedaan in personen-
voertuigen. Voorbeelden hiervan zijn het Anti-lock Braking
System (ABS) en Electronic Stability Control (ESC) die te
vinden zijn in de voertuigen van bijna alle autoconstructeurs.
Meer recent nog kwam Toyota in 2010 met een autonoom
parkeersysteem [16] en introduceerde Volvo in 2012 ’pla-
tooning’ [14], waarbij auto’s op automatische wijze een
leidersvoertuig volgen. De bovengenoemde semi-autonome
systemen zetten de technologie op weg naar compleet auto-
nome personenvoertuigen, die binnenkort een realiteit zullen
zijn.

Een centraal onderdeel in elk autonoom systeem is het
regelsysteem. De regelaar zorgt ervoor dat het systeem
zich gedraagt zoals verwacht. In het geval van autonome
voertuigen is dit zelfstandig rondrijden, de grenzen van
de weg niet overschrijden, zich aan een bepaalde snelheid
houden, obstakels ontwijken, enz. De meest in de prak-
tijk gebruikte regeltechniek is de proportionele-integrerende-
differentiérende regelaar (PID). Bij deze techniek introdu-
ceert men een foutensignaal

e(t) = y(t) = yrer(t) (1)

in functie van de uitgang y(t) van het systeem en het
referentiesignaal y,e¢(t). De regelactie u(t) wordt berekend
als volgt:

de(t)
dt -

Deze techniek vertoont echter een aantal gebreken: ten eerste
is een PID regelaar niet modelgebaseerd, er wordt enkel
naar de uitgang y(t) gekeken zonder rekening te houden
met de interne toestand van het model. Een ander nadeel
is dat er geen rekening wordt gehouden met beperkingen

¢
u(t) = Kpe(t) + K; / e(r)dr + Ky (2)

Robin Verschueren, Tweede Master Wiskundige Ingenieurstechnieken
robin.verschueren@student.kuleuven.be

Promotor: Prof. Dr. Moritz Diehl. Begeleiders: Stijn De Bruyne, Janick
Frasch, Mario Zanon

Thesis in samenwerking met LMS, A Siemens Business, Haasrode.

op controlesignalen en systeemrespons. Ten slotte is er bij
PID geen sprake van optimalisatie: het is niet duidelijk of de
berekende controle-actie u(t) een goede keuze is of niet.

Model Predictive Control (MPC) is een regeltechniek
die tegemoetkomt aan deze tekortkomingen. Deze techniek
baseert zich op een dynamisch model en maakt op basis
daarvan een voorspelling van het verloop van de interne
toestand x(t) van dit model afhankelijk van de gekozen
controle-actie u(t). De systeemrespons kan vervolgens ge-
optimaliseerd worden om een gegeven doelfunctie V' te mi-
nimaliseren. De eerste actie van de optimale inputsequentie
u wordt vervolgens aangelegd aan het systeem, waarna de
hele procedure zich herhaalt in de volgende tijdsstap. Echter,
in real-time toepassingen (zoals autonoom rijden) is het een
uitdaging om MPC aan hoge bemonsteringsfrequentie uit te
voeren.

Enkele van bovengenoemde ADAS zijn gebaseerd op
traditionele regeltechnieken, zoals PID. Daarnaast heeft MPC
sterk aan populariteit gewonnen in het onderzoek naar au-
tonome voertuigen, voornamelijk door de nood aan een
betrouwbare voorspelling van het rijgedrag. In [4], [8], [9]
werd MPC al succesvol toegepast op autonoom rijden. Hier
werden modelvereenvoudigingen gebruikt om de computati-
onele complexiteit van MPC te verlagen. In [6], [18] echter,
wordt een meer geavanceerd voertuigmodel gebruikt, waarbij
het toch mogelijk blijft om in real-time de controle-acties te
berekenen. Daarvoor werd op maat gemaakte, hoogperfor-
mante C-code voorzien, maar enkel simulatieresultaten zijn
beschikbaar om de regelperformantie na te gaan.

In de eerdergenoemde publicaties was het doel telkens
het volgen van een referentie. Dit artikel, daarentegen,
beschouwt tijdsoptimaal rijden. Doordat er een duidelijk
conflict is tussen veiligheid en snelheid bij het besturen van
wagens, lijkt het ontwerp van een tijdsoptimale regelaar die
voldoet aan de veiligheidsbeperkingen (bv. de rand van de
weg), een bijzondere uitdaging.

Tijdsoptimale formuleringen in MPC hebben aandacht
gekregen in trajectvolgen in de robotica, zie [17]. Daar
echter, is het pad dat de robotarm moet volgen op voorhand
gekend, en kan het probleem geschreven worden als een
convex optimalisatieprobleem. Dit is aanzienlijk eenvoudiger
op te lossen dan het probleem van autonoom rijden, omdat
het pad daar online moet berekend worden.

Bestaande resultaten in tijdsoptimaal rijden met een gea-
vanceerde regeltechniek zijn te vinden in [11], [13], maar
hier werden enkel open-lus oplossingen berekend. In [2]
werd een gelaagde regelarchitectuur van twee regelaars voor-
gesteld, waar een eerste regelaar het traject plant, dat gevolgd
moet worden door de tweede regelaar.



Fig. 1.

Tweewielig voertuigmodel.

In deze paper stellen we integendeel een ééntrapsregelaar
voor, waarbij we een niet-lineair MPC (NMPC) probleem
oplossen in real-time. Niet enkel tonen we simulatieresul-
taten, de ontwikkelde algoritmes zullen geévalueerd worden
op een experimentele proefopstelling, bij LMS, A Siemens
Business, in Haasrode. Deze aanpak past in het kader van
‘rapid prototyping’, waarbij een algoritme op kleine schaal
getest wordt, zonder nood aan kostintensieve testmodellen en
proefterreinen.

De rest van dit artikel is als volgt gestructureerd: eerst
wordt er in sectie II ingegaan op het voertuigmodel dat werd
gebruikt bij de experimenten. In sectie III en IV wordt het
optimalisatieprobleem geformuleerd en oplossingsmethoden
aangereikt. Sectie V beschrijft de experimentele setup, de
resultaten van de experimenten worden besproken in VI en
sectie VII concludeert het artikel.

II. VOERTUIGMODEL

In [6] werd een voertuigmodel met inbegrip van de wiel-
en ophangingsdynamica voor de vier wielen gebruikt in
autonoom rijden gebaseerd op niet-lineaire MPC in simu-
latie. In dit artikel beschouwen we experimenten uitgevoerd
op een proefopstelling bestaande uit op afstand bestuurbare
racewagens en een parcours op schaal. Vanwege de beperkte
beschikbaarheid van modelparameters voor miniatuur race-
wagens, in het bijzonder de interactie tussen de banden en
de weg, kiezen wij ervoor om een gereduceerd model te
gebruiken in het regelsysteem. We verwaarlozen de band-
weg interactie, en de lastoverbrenging, resulterend in een
slipvrij tweewielig voertuigmodel (bicycle model), wat hierna
in het kort besproken wordt.

A. Tijdsafhankelijk voertuigmodel

Het chassis van de wagen is gemodeleerd als een stijf
lichaam, gekarakteriseerd door zijn positie in het globaal
assenstelsel X —Y, zijn ori€ntatie ¢ en zijn absolute snelheid
v, zie Fig. 1.

De inputs voor het model zijn de stuurhoek ¢ en de
dutycycle D aangelegd aan de DC motor. De dutycycle is
de fractie van de bemonsteringstijd van de motor dat het
voltage over de motor hoog is. Een hogere dutycycle komt

Parameter  Eenheid  Fysische betekenis Waarde
C1 - geometrisch (I /1) 0.5
Cs m~1 geometrisch (1/1) 17.06

Cm, m/ 52 motorparameter 12.0

Cms 1/s motorparameter 2.17

ro 1/m tweede-orde wrijvingsparameter 0.1

Crq m/s? nulde-orde wrijvingsparameter 0.6
TABLE I

MODELPARAMETERS VAN HET BICYCLE MODEL

overeen met een groter moment geleverd op de achteras van
de wagentjes.
De modelvergelijkingen zijn als volgt:

X =wvcos(yp + C16) (3a)
Y = vsin(y) + C16) (3b)
=080 (3¢)

O = CpyD — Cppy Dv — Crav?® — Cpy — (v8)* Oy CF.
(3d)

Hierin gebruikten we de volgende veronderstellingen, cf.
[15], [12],

v¥ AW
vWe~vCid
1)2 _ (Uz)Q + (Uy)2

Een samenvatting van de modelparameters C. is gegeven
in Tabel I.

B. Spatiale herformulering

Model 3 is een dynamisch systeem met tijd als onathan-
kelijke veranderlijke. Omdat we van de tijd een optimali-
satievariabele willen maken, is een transformatie van vari-
abelen nodig. We gebruiken de transformatie naar spatiale
coordinaten zoals die gebruikt werd in [6]. Een voordeel van
deze transformatie is dat de beperkingen op de grenzen van
de weg een constante worden, onafthankelijk van de toestand
van de wagen op dat moment.

We vermelden hier de spatiale transformatie voor volledig-
heid. De voertuigcoordinaten in het wereldassenstelsel wor-
den gegeven door [X, Y]T. We projecteren deze codrdinaten
op een curve o, het referentietraject, geparametriseerd door
zijn booglengte o(s). We vervangen de toestanden X, Y en
1) door

e’ =cos(?)(Y —Y?) —sin(¢p?)(X — X7), and (4a)
e’ =997, (4b)

waar [X°,Y?]T en 9% de positie en de oriéntatie van het

referentiepunt op het pad zijn (zie Fig. 2). De variabele s,
gebruikt om het referentietraject te parametriseren, geeft de
vooruitgang langs het pad weer. Als we aannemen dat de
wagen altijd in beweging is op elk tijdstip (s > 0), geldt er
voor de toestandsvector & = [ ¥ e¥ v t ] dat

L de dedr 1

f—&—&&—gfy o)



Fig. 2. Definitie van het coordinatenstelsel gebruik in de spatiale herfor-
mulering van het voertuigmodel. De s-coordinaat geeft de booglengte langs
het parcours aan. Bron: [6].

TABLE I
TOESTANDEN EN INPUTS VAN HET SPATIALE VOERTUIGMODEL

Toestand  Eenheid  Beschrijving
eY m Afwijking van de middenlijn
e? rad Hoek ten opzichte van het pad
v m/s Absolute snelheid
t s Tijd

Input Bereik Eenheid  Beschrijving
4 [-0.44, 0.44] rad Stuurhoek
D [-1,1] - Dutycycle van de DC motor

waarbij § kan afgeleid worden uit (3) en (4).

Nu rest er ons nog een uitdrukking van $ in functie van de
toestanden van het voertuigmodel te bepalen. Uit de tekening
in Fig. 2 halen we

v = (pa - ey) 1/}07 and

07 =" cose?¥ — Y sine?,

mat p? de lokale kromtestraal van o. De snelheid van de
wagen langs het referentie pad, $, is gegeven door

(o

e (v” cos(e?) — v¥ sin(e?)).

é:pgljjs:p

Het dynamische systeem met spatiale herformulering is dan

e¥(s) = (v=sin(e?) + v¥ cos(e?))/s (6a)

eV (s) = /5 — k7 (s) (6b)

v'(s) =0/5 (6¢)
t'(s)=1/s, (6d)

waar k7(s) = 1/p°(s) de lokale kromtestraal van het

parcours is. De toestanden in het globale assenstelsel kunnen
ten allen tijde berekend worden als

X = X7 — e sin(¢7)
Y =Y —eY cos(¢y?)
b=y e

Een samenvattende tabel van toestanden en inputs van het
spatiale model kan gevonden worden in Tab. II.

III. NIET-LINEAIRE MPC FORMULERING
A. Trajectvolgen

In [18] werd een niet-lineaire MPC formulering voor
autonoom rijden geintroduceerd voor het volgen van de mid-
dellijn van een circuit. Het terugtredende-horizonprobleem is
dan:

sy
min | ) = e+ ) = ) e
2
+ Hf(Sf) - 5ref<5f)Hp
s.L. £'(s) = f(s,€(s),u(s)), s € [s0,5¢]
e’(s) € [e¥ (s), el (s)], s € [sg, sf]
U(S) € [5La5U] X [7171]7 ERS [SOan]
5(0) = &o,
(7
waar & = [e¥, e, v,t]T de toestandsvector voorstelt en
u = [§, D]T" de vector van regelinputs. Het interval [so, s ]

is de predictiehorizon en |-|| de Euclidische norm met
gewichtsmatrices @), R, P. De grenzen van de baan zijn
aangeduidt met €Y (s), e7;(s). Merk op dat het stelsel gewone
differentiaalvergelijkingen geformuleerd is met spatiale afge-

leiden &' =
gebeurt de bemonstering nu in de ruimte in plaats van in de
tijd. Deze wordt aangegeven met monsters van lengte s.

— (zie (6)) in plaats van tijdsafgeleiden. Voorts

B. Tijdsoptimale formulering

Voor een benaderende oplossing van het tijdsoptimaal
probleem, trachten we de tijd te minimaliseren die de auto
nodig heeft om het einde van de horizon

ty Sf 1
T= / 1dt = / ——dr (8
to So S(T)

te bereiken. Voor een voldoende lange predictiehorizon,
verwachten we dat deze aanpak een goede benadering is
van tijdsoptimaal rijden. Omdat efficiénte methoden bestaan
voor NMPC formuleringen met een kleinste-kwadraten kost-
functie (zie sectie IV), gebruiken we verder de volgende
formulering:

min ||T—Tmf||3t

&()u(),T N

st €)= fls,E(5)uls), s € [so,57)
e?(s) € [e7 (s), ef;(s)], s € [so,s7] @
u(s) € [6r,0u] x [-1,1], s € [so, S¢]
£(0) =&

Door het kiezen van een voldoende lage referentietijd Tief
hebben we een benaderende methode voor tijdsoptimaal
rijden in een NMPC formulering met een kleinste-kwadraten
doelfunctie.

IV. OPLOSSINGSMETHODE

We maken gebruik van software gebaseerd op de ACADO
Toolkit [1], dat eerder al gebruikt werd voor snelle niet-
lineaire MPC in de context van autonoom rijden in [18].
Uit deze toolkit gebruiken we de ACADO Code Generation
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Schematische weergave van de experimentele setup.

Fig. 3.

tool [10], dat toelaat om automatisch code te exporteren
die een implementatie bevat van het Real-time Iteration
Scheme (RTI), op maat gemaakt voor de dynamica van het
model in het MPC probleem. Dit RTI-schema laat toe om
NMPC problemen efficiént op te lossen, gebruik makend
van multiple shooting, zie [3] voor de algoritmische details.
De geéxporteerde ANSI C-code bevat daarnaast ook een
efficiénte Runge-Kutta integrator van orde 4 en een in
geheugen beperkte versie van de QP solver qpOASES [5].

V. EXPERIMENTELE SETUP

Eén van de belangrijkste bijdragen in dit artikel is de
experimentele validatie van de numerieke methodes op een
proefopstelling op schaal 1:43. In wat volgt wordt deze
setup kort besproken. In de experimenten wordt gebruikt
gemaakt van de Kyosho dNaNo modelwagens. Metingen van
de huidige positie (X,Y), oriéntatie v, snelheden vx, vy en
hoeksnelheid ) worden gedaan met behulp van een visiesys-
teem op basis van een RGB-camera met een frequentie van
50 Hz. De opstelling wordt schematisch voorgesteld in Fig.
3.

Omgevingsfactoren zoals zonlicht kunnen ertoe leiden dat
er geen meting van de wagen plaatsvindt. Daarom worden
de metingen gefilterd door een Kalman filter, zodat er toch
steeds nuttige data voorhanden is. Het Kalman filter algo-
ritme gebruikt een puntmassamodel van de wagen om de
positie, oriéntatie en snelheid van de wagen te schatten.

De regelaar loopt op een dekstop computer met Debian
LINUX 7.0 "Wheezy’ met de RT Preempt real-time kernel
patch geinstalleerd dat een soft real-time uitvoering van het
visiesysteem garandeert.

De controle-inputs worden met behulp van een Bluetooth-
dongle naar de auto gezonden, waarop een Bluetooth-antenne
op geplaatst is. Verdere technische details zijn aangegeven in
appendix A.

Het gebruikte racecircuit bestaat uit rechte stukken en
bochten van 90°. Het parcours heeft o.a. een chicane, een
U-bocht en een langer recht deel. Een overzicht van de setup
is getoond in Fig. 4.

VI. RESULTATEN

In deze sectie worden de resultaten van trajectvolgen en
tijdsoptimaal rijden geanalyseerd en vergeleken, zowel in
simulatie als in experiment.

Fig. 4. De experimentele proefopstelling.
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Fig. 5. Toestanden en inputs bij trajectvolgen in simulatie op drie
verschillende referentiesnelheden.

A. Simulatie

Alle simulaties worden uitgevoerd in MATLAB, gebruik
makend van de ACADO Code Generation Tool. Het model
dat gebruikt wordt is voor trajectvolgen en tijdsoptimaal
rijden hetzelfde, net als de spatiale predictiehorizon die
is vastgelegd op 1.0 m, opgedeeld in N = 20 controle-
intervallen.

Voorts simuleren we de topsnelheid van de wagentjes door
een extra beperking aan te leggen op de snelheid:

v(s) € [0, Umax); S € [s0,5f].

Voor de miniatuurwagentjes ligt deze op ca. vpmax = 4 m/s.

1) Trajectvolgen: De middellijn van het parcours is
gekozen als referentiepad. De diagonale gewichtsmatrices
worden gekozen als @ = diag([1,0.01,0.1,0]), R =
diag([107%,1074)), P = Q.

De resultaten voor simulatie op verschillende referentie-
snelheden ver = 1.0m/s, 2.0m/s, en 4.0 m/s zijn getoond
in Fig. 5. Zoals blijkt uit de figuren is het resulterende
traject zeer dicht bij de middellijn: de afwijking van het
referentietraject is nooit meer dan 1 cm. Ook de snelheid
wordt zeer accuraat gevolgd, op alle refentiesnelheden. Hoe
hoger de refentiesnelheid, hoe hoger ook de resulterende
dutycycle D.
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Fig. 6. Traject bij tijdsoptimaal rijden in simulatie. De snelheid is
aangegeven in kleur.

2) Tijdsoptimaal rijden: Bij tijdsoptimaal rijden verande-
ren de gewichten substantieel: de tijd aan het eind van de pre-
dictichorizon (met gewicht ¢;, ) wordt het meest gewogen,
terwijl de andere gewichten een pak lager liggen, echter niet
nul, omdat regularisatie nodig is om een onstabiele oplossing
te vermijden. Een adequaat stel gewichten hiervoor zijn

Q = diag([10719,10710, 10719 10719)),
R = diag([107210717]),
QtN = 1

De referentietijd aan het eind van de predictiehorizon is
gekozen als 0.24 s

Het resulterende traject met snelheidsprofiel is weergege-
ven in Fig. 6 en de resterende variabelen zijn vergeleken
met die van trajectvolgen in Fig. 7. Zoals men kan zien, is
het traject erg verschillend van de centerlijn. Op sommige
plaatsen rijdt de auto tegen de grenzen van de baan. Uit
Fig. 7 blijkt inderdaad dat tijdsoptimaal rijden resulteert in
een lagere eindtijd dan trajectvolgen aan maximum snelheid
(grafiek rechtsboven): de tijd voor één rondje is 2.07 s
tegenover 2.19 s voor trajectvolgen. Het tijdsoptimaal rijden
volgt minder de maximale snelheid, maar haalt zijn tijds-
winst echter uit bochten afsnijden. Dit is duidelijk uit de
chicane (rechterdeel van het parcours). Ook de grenzen op
de dutycycle D zijn actief op sommige posities langs het
parcours.

B. Experimentele resultaten

We testen de twee methodes vervolgens uit op de experi-
mentele setup. Omdat er sprake is van een discrepantie tussen
systeem en model (slip wordt niet gemodeleerd) moeten we
de referentiesnelheid voor trajectvolgen een flink stuk lager
leggen dan in simulatie. Bij hoge snelheden kan de regelaar
niet vermijden dat de auto tegen de zijkanten botst. We
kiezen daarom een referentiesnelheid van 1.0 m/s.

Het visiesysteem werkt aan een vaste frequentie van
50 Hz. Dit komt bij een snelheid van 1.0 m/s overeen met
een bemonstering in de ruimte van s; = 0.02 m in de ruimte.
Omdat we dezelfde predictiehorizon willen behouden als in
simulatie (lengte 1.0 m), delen we de horizon op in meer
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Fig. 8. Vergelijking tussen traject bij trajectvolgen en tijdsoptimaal rijden

uitgevoerd op de experimentele proefopstelling.

controle-intervallen (/N = 50). Merk op dat dit op de rand
is van wat computationeel mogelijk is binnen de gegeven
bemonsteringstijd: de mediaan van de berekeningstijden ligt
op 0.01 s, met uitschieters tot 0.06 s. In dit geval betekent
dat drie metingen verloren gaan terwijl de volgende controle-
actie berekend wordt.

De resultaten van tijdsoptimaal rijden op de proefop-
stelling wordt vergeleken met experimentele resultaten van
trajectvolgen in Fig. 8 en Fig. 9. Merk op dat bjj tijdsoptimaal
rijden de auto de bochten afsnijdt, het duidelijkste voorbeeld
hiervan is in de chicane (rechterkant van Fig. 8). De totale
eindtijd van de tijdsoptimale methode is ook lager dan die
van trajectvolgen; de snelheid ligt op de meeste plaatsen
langs het parcours ook hoger bij tijdsoptimaal rijden. Wel
is de stuurhoek bij trajectvolgen minder nerveus. De resul-
terende tijd voor één ronde langsheen het parcours is 9.1 s
voor trajectvolgen en 8.4 s voor tijdsoptimaal rijden.

VII. CONCLUSIE

In dit artikel werd een tijdsoptimale niet-lineaire MPC
regelaar voorgesteld voor autonome voertuigen. Bovendien
werd de real-time haalbaarheid aangetoond op experimentele
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Fig. 9. Vergelijking tussen de toestanden bij trajectvolgen en tijdsoptimaal
rijden in experiment.

wijze op een proefopstelling op schaal. We gebruikten een
niet-lineair tweewielig voertuigmodel in spatiale codrdinaten,
die een eenvoudige tijdsoptimale formulering toeliet. Op
deze manier zijn we in staat het tijdsoptimaal probleem
te formuleren met een kleinste-kwadraten doelfunctie. De
experimenten tonen aan dat deze aanpak adequaat werkt in
real-time, hoewel de afwezigheid van slip in ons model een
onvoldoende hoge snelheid toelaat. Verder onderzoek omvat
dan ook de overgang naar meer geavanceerde voertuigmo-
dellen, alsook het gebruik van spaarse QP solvers die een
langere predictiehorizon mogelijk maken [7].

APPENDIX A: TECHNISCHE DETAILS OVER DE
EXPERIMENTELE SETUP

[RGB camera: | xiQ MQO13CG-ON Camera
Imaging: 1280x1024 (1.3 MPixel) at 50 FPS
Connection with computer: USB 3.0
[Computer: | Real-time Debian system
Intel Core i3-3220 @ 3.3 GHz
OS: Debian 7.0 *Wheezy’
Kernel: Linux 3.8.13 with Preempt RT Patch
Bluetooth connection: Asynchrounous Connection-Less
Bluetooth (ACL) communication link
[Race Car: ] Kyosho dNaNo FX-101 ASF2.4GHz System
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Time-optimal race car driving

Motivation
Advanced Driver Assistance
Systems  (ADAS) and full
autonomous driving are a
reality in passenger vehicles
(cf. Volvo, Toyota, Google).
Properties:

+ Constrained system

* Highly nonlinear

+ Fast dynamics

- need for advanced control
technique: Model Predictive
Control

Goals

+ Time-optimal MPC
+In real-time
* On real-world setup

Results

Three algorithms have been
developed:

+ Two-level linear MPC
(trajectory planning + tracking)
+ Nonlinear tracking MPC

+* Nonlinear time-optimal MPC
with spatial reformulation
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Technology
Model:
*+ Nonlinear dynamics
* 6 DOF physical model
* 2 inputs: throttle and steering
Experimental setup:
* 1:43 miniature race cars
+ 8.7 m car track
+ RT infrared vision system
Software: ACADO (Matlab/C++)
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