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Abstract—This paper addresses the real-time control of
autonomous vehicles under a minimum traveling time objective.
Control inputs for the vehicle are computed from a nonlinear
model predictive control (MPC) scheme. The time-optimal
objective is reformulated such that it can be tackled by existing
efficient algorithms for real-time nonlinear MPC that build on
the generalized Gauss-Newton method. We numerically validate
our approach in simulations and present a real-world hardware
setup of miniature race cars that is used for an experimental
comparison of different approaches.

[. INTRODUCTION

In the past few years, various advanced driver assistance
systems (ADAS) based on conventional control schemes
have been introduced in commercial passenger vehicles, such
as semi-autonomous parking systems, autonomous cruise
control, or last-second crash prevention systems. While these
systems work rather well in their typical use case, chal-
lenging situations may require more sophisticated control
algorithms, such as model-predictive control (MPC) [19], cf.
[4], [8], [12]. Particularly for the task of fully autonomous
driving (nonlinear) MPC permits the use of first-principle
models that accurately predict the driving behavior even in
extreme conditions.

Consequently, MPC for autonomous driving has received
growing attention in the research community over the past
years. Some earlier attempts were due to [9], [8], [13],
[15], and include experimental validation. These approaches
use various model simplification techniques to reduce the
computational complexity. In [11], [23] the use of tailored
nonlinear MPC algorithms was proposed to render real-time
feasible significantly higher-fidelity vehicle models, featuring
14 differential states and a Pacejka-type tire model; however,
only simulation results are provided. All these approaches
have in common that they aim for reference-tracking, i.e.,
road-following objectives while satisfying certain safety con-
straints.
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In this paper, by contrast, we target time-optimal driving.
Due to the natural antagonism of safety and speed in driving,
MPC formulations that aim for minimum-time driving while
satisfying limitations, such as the boundaries of a race track,
seem particularly challenging. Additionally, minimum time
objectives do not naturally fit into the class of least-squares
objectives for which highly efficient algorithms exist, such
as the ones used in [11], [23].

Time-optimal MPC approaches have received notable at-
tention in the area of robotics for path following, cf., e.g. [22]
and the references therein. There however, the geometric path
to be tracked in a minimum-time fashion is predetermined,
which renders the problem significantly simpler than the
driving problem, where the exact path to be taken by the
vehicle is part of the optimization.

Existing advanced control based attempts to minimum-
time driving include [17], [20]. There, however, only offline
open-loop solutions were computed. In [5] a cascading
controller scheme was used, generating trajectory references
from a simple geometric model and tracking these using a
higher-detail model. In this paper, instead, we directly use a
one-level approach, solving the nonlinear MPC problem with
an economic cost function in real-time. The tight real-time
bounds imposed on computational times make it necessary to
reformulate the problem so as to allow for the use of efficient
algorithms.

We provide real-world experimental results of the pro-
posed nonlinear MPC scheme from a miniature race-car
setup that is detailed in the paper. We propose this approach
as a compromise for rapid prototyping of MPC controllers
under more realistic conditions without the need for cost-
intensive full-scale test vehicles and proving grounds.

The rest of the paper is organized as follows: in Section II,
the vehicle model is described, based on previous work.
The reformulation of the vehicle dynamics into spatially
dependent coordinates is be developed in Section III, together
with a corresponding time-optimal objective formulation.
The algorithmic tools used for the solution of the nonlinear
MPC problem in real-time are briefly reviewed in Section IV.
In Section V the experimental setup with miniature race
cars is described. The results of our method are presented
in Section VI, and Section VII concludes the paper.

II. VEHICLE MODEL

In this paper, experimental results are obtained on a real-
world setup (cf. Section V) with small-scale electric race
cars. Due to the limited availability of model parameters for
miniature cars (particularly regarding road-tire interaction)



Fig. 1: Bicycle vehicle model.

Parameter Unit Physical meaning Value
C1 - geometrical (I-/(I- + Iy)) 0.5
Cy m~1  geometrical (1/(lr +1f)) 17.06

Cm,q m/s%2  motor parameter 12.0
Cins 1/s motor parameter 2.17

ro 1/m second order friction parameter 0.1
Cirg m/ 52 zero order friction parameter 0.6

TABLE I: Bicycle Model Parameters

and due to the fact that the underlying physics differ slightly
from passenger cars, we use a rather simple model, similar to
the one used in [21]. In particular, road-tire interaction and
load transfer are neglected in this paper, yielding a rather
standard slip-free bicycle model, which we briefly describe
in the following. The extentsion of the proposed work to
higher fidelity models such as the one proposed in [23] is
the object of ongoing research.

A. Time dependent car model

The chassis is modeled as a rigid body, described by the
global position of its center of gravity in the X-Y plane, its
global orientation 1) and its absolute velocity v, see Fig. 1.
The model equations thus read:

X =wvcos(yp + C19), (1a)
Y = vsin(y) + C16), (1b)
P =040y, (1¢)
0= (Cpmy — Cryv)D — Cryv? — Cpy — (v6)?C2CE, (1d)

where 6 and D we denote the steering angle and the
dutycycle applied to the DC motor, respectively. Parameters
C. are explained in Table I. Assuming a small steering angle
0, we used the following approximations, cf. [21], [18]:

¥ R, v =~ vCid.

The car velocity is then given by v? = (v%)2 + (v¥)2.

Equations (1a)-(1c) follow from the kinematics of the rigid
body. The longitudinal dynamics in (1d) depend on the duty-
cycle D and a commonly used approximation [14] for the
resistive force, which consists of a constant and a second
order term in the velocity.

Fig. 2: Definition of the coordinate system used in the spatial
reformulation of the vehicle dynamics. The s coordinate
denotes the arc-length along the track. Source: [11].

B. Spatial Reformulation

Model (1) is a dynamic system with time being the
independent variable. A reparameterization is therefore re-
quired to render time an optimization variable. We propose
to employ the transformation to spatial coordinates from
[11] for this purpose. Consequently, track limitations become
simple (convex) state bounds, which are independent of the
vehicle speed.

We state the spatial transformation for completeness. Ve-
hicle coordinates in the global frame are denoted by [X, Y]T.
We project these X —Y coordinates on a curve o, given as a
reference trajectory and parametrized by its arc length o(s).
States X, Y and v can be replaced by

e’ =cos(¢?)(Y —Y7) —sin(¢p?)(X — X7), and
ew = 711 - 1/107

where [X?,Y?]T and 97 are the position and orientation of
the reference point on the path given by s, see Fig. 2. If we
assume that the car is not at rest at any time instant ($ > 0),
then it holds for the state vector £ = [e¥, e¥, v, 1] that
d¢ dédt 1.
!
= —= — — = — 2
¢ ds dtds ég’ @

where 5 is defined in (1).

In order to compute the vehicle speed with respect to the
reference, $, note that from Fig. 2 we have

07 = (p” —e¥) )7, and

07 =" cose?¥ —vY sine?,

where p? is the radius of local curvature of o. The velocity
along the path, $, is then given by

§=p71)° = 1_% (v® cos(e¥) — v¥ sin(e?)).

r
Note that e¥ < p? always needs to be fulfilled in order to
guarantee uniqueness of the projection onto the centerline.
This essentially means that the car needs to drive sufficiently
close to the reference when the curvature is high.



TABLE II: STATES AND CONTROL INPUTS OF THE SPATIAL
VEHICLE MODEL

State  Unit  Description
e¥ m Deviation from centerline
e? rad Yaw angle relative to path
v m/s  Absolute velocity
t S Time
Control Range Unit  Description
o [-0.44, 044] rad  Steering Angle
D [-1,1] - Dutycycle of DC motor

We obtain the spatial dynamic system as:

e¥(s) = (vsin(e¥) + v Cy & cos(e?))/s (3a)
eV (s) =1)/5 — k7 (s) (3b)
v'(s) =0/3 (3e)
#(s) = 1/3, 3d)

where x7(s) = 1/p7(s) is the local curvature of the track.
Note that the states in the global coordinate system can
always be recovered by

X = X7 — e¥ sin(
Y =Y — e cos(
b=y e

A summarizing list of the states and inputs of the spatial
model can be found in Table II.

7)

(8
¥7)

IIT. NONLINEAR MPC FORMULATION
A. Trajectory Tracking

For tracking a reference, the receding horizon optimal
control problem subject to track and input limitations then
reads:

min ) 6 + ) )l
+1160s5) = Ger(s )7
st &(s) = f(s,€(s),u(s)) “)
e’(s) € [ef(s), el (s)]
u(s) € [0r, 0v] x [-1,1]
£(0) = &,
where ¢ = [e¥,e¥,v,t]T is the state vector and u =
[6,D]T is the control input vector. The interval [so,sy]

is the prediction horizon and ||-|| is the Euclidean norm
with weighting matrices @, R, P, respectively. The road
boundaries are denoted by €Y (s), ef;(s). Note that the ODE

dg

system is stated in terms of its spatial derivatives £’ = o
S
cf. (3).

B. Time-optimal formulation

For an approximate solution of the time-optimal driving
problem, we aim at minimizing the time required for the race

car to reach the end of the fixed-length spatial prediction

horizon,
tf |
T = / 1dt = / - dr . &)
t() So S(T)

For prediction horizons which tend to infinity, this ob-
jective tends to the goal of driving time-optimally. As a
consequence, long horizons are expected to yield a good
approximation of the original problem in practice.

In order to allow for the use of efficient algorithms
which rely on least-squares formulations and the generalised
Gauss-Newton method, we propose to modify the objective
formulation as follows.

Observation 1: Let all track data be fixed. Let T* be
the minimum time required by a vehicle that satisfies the
dynamics and constraints of Problem (4). Then, for any
0 < Tiet < T, the global optimum (if existent) of the
optimization problem

HT_Trcngt
&( ) ( )T
s.L. £'(s) = f(s,&(s),u(s))
e’(s) € [e7.(s), efr(s)] ©)
u(s) € [0r,0u] x [—1,1]
£(0) = &o,

(€,40), satisfies 7' = T™*.

By providing a suffciently small (i.e., infeasible) “target
time” Tyt we can therefore have an approximate time-
optimal MPC formulation in least-squares form. Note that,
by fixing the sampling grid, the existence of a KKT point is
given under rather mild conditions.

IV. SOLUTION METHOD

We adopt the software framework based on the ACADO
Toolkit [1] that was already successfully used for high-speed
nonlinear MPC of autonomous vehicles in [23].

In particular, we use the ACADO Code Generation tool
[16], which is an open-source software environment that
exports an instance of the Real-Time Iteration Scheme, which
is based on Bock’s multiple shooting method, (see [3], [6]
for the algorithmic details) tailored to the model dynamics of
the MPC problem. The exported solver is provided as self-
contained plain ANSI C code, and includes an explicit Runge
Kutta integrator of order 4, an efficient condensing algorithm
[2], as well as a static memory version of the parametric QP
solver qpOASES [10].

V. EXPERIMENTAL SETUP

One of the main contributions of this paper is the vali-
dation of the proposed methods on an experimental setup
with small-scale race cars. A brief description of this setup
is given in the following. In our experiments, we use the
Kyosho dNaNo model race cars in their 2008 version. Mea-
surements on the car’s current position (X,Y’), orientation
() velocity (v) and yaw rate (¢)) are obtained through a
custom-made camera-based infrared sensing system with a
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Fig. 3: Schematical view of the experimental setup.

Fig. 4: The experimental setup.

sampling speed of 100 Hz. The feedback scheme of the setup
is depicted in Fig. 3.

State measurements are obtained from a Kalman filter,
which also accounts for possibly missing measurements that
may arise from sensor defaulting due to external influences.
The Kalman filter algorithm assumes a point mass vehicle
model to estimate the position, orientation and velocity of
the car.

The controller runs on a desktop computer featuring
Debian LINUX 7.0 *Wheezy’ with its RT Preempt real-
time kernel patch installed that implements soft real-time
guarantees.

The control inputs are sent to the car via a wireless connec-
tion. The dNano race cars have been extended with a custom
communication module, such that the control signals can
be sent over an Asynchrounous Connection-Less Bluetooth
(ACL) communication link. Further technical details can be
found in Appendix A. The considered race track features a
chicane, a U-turn and a longer straight section with the car
is travelling in clockwise direction. An overview of the setup
is shown in Fig. 4.

VI. RESULTS

In this section, the performance of the trajectory tracking
and the time-optimal driving formulation is compared, both
in simulation and in real-world experiments.

A. Simulation

All simulations are carried out using the ACADO Code
Generation tool in MATLAB. The same nominal dynamics
were used for the simulation.

Trajectory
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Fig. 5: Comparison of time-optimal driving at different target
velocities.

a) Trajectory Tracking: The centerline of the track
is taken as reference path. For the reference speed, three
scenarios have been considered, v, = 1.0m/s, 2.0m/s,
and 4.0 m/s. The spatial prediction horizon is fixed to 1.0 m,
composed of N = 20 intervals. The weighting matrices are
chosen as follows:

Q = diag([gev, v » @, ¢:]) = diag([1,0.01,0.1,0]),
R = diag([rs,7p]) = diag([107*,107%]), P =Q

The centerline is tracked exactly at all selected reference
velocities. This is due to the absence of model-plant mis-
match, but also due to the simplicity of the model which
lacks the influence of slip and thus is able to turn at an
arbitrarily high speed.

b) Time Optimal Formulation: In this formulation, the
objective tracks the reference on the final time ¢.¢. In order
to improve the numerical reliability of the algorithms used,
a tracking term is kept in the objective function with very
small weights. The weighting matrices are given by

Q = diag([5-107%,1071°,1071°,10719)),
R = diag([1072,10717)),
P = diag([10719,1071°, 10719, 1)).

The performance of the car with this formulation is shown
in Fig. 5 for several laps, where it can be seen that the cost
function allows the car to deviate from the centerline in order
to minimize the time tracking error. As expected, the car
now increasingly cuts the corners. As the target time T is
decreased, the car turns more aggressively (Fig. 5).

The performance in terms of speed is plotted in Fig.
6. We can see that for a target time T, = 0.33s the
vehicle speed is not tracking an average speed. The optimizer
exploits the freedom to travel at higher speeds in some parts
of the track to track the given time, regardless of tracking
the centerline. Due to the engine-induced constraint on the
maximum velocity of the model cars, this effect cannot be
observed anymore for a target time of 0.24s (i.e. slightly
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Fig. 6: Comparison of time-optimal speed profiles. The
dashed lines are the velocities which correspond to the target
times Tt on a horizon of 1 m. Also the velocity constraint

at 4m/s is shown.

infeasible target time), where the constraint becomes active
thus limiting the freedom in choosing the vehicle speed.

B. Experimental Validation

Using the experimental setup described above, we assess
the performance of the considered methods in a real-world
environment.

a) Trajectory Tracking: The driving at different refer-
ence velocities is plotted in Fig. 7. Here, we use the same
weighting matrices as in simulation. We can see that for a
velocity of ver = 1.0m/s, the tracking is quite satisfactory,
with only a larger deviation in the lower right hand corner.
This is due to the fact that the real car is not able to turn as
swiftly as the model. The discontinuities in the measurements
come from the vision system, which is not always able to
capture the car accurately. When measurements are missing,
the Kalman filter provides a rough prediction of the position
of the car, but once the car is seen again by the vision system,
the position is corrected in a discontinuous fashion. At a
slightly higher reference speed, ver = 1.2m/s, the car still
manages to complete the lap, but gets dangerously close to
the track boundary twice. At an even higher reference speed,
the car crashes after the first corner.

b) Time Optimal Driving: To compare the time-optimal
approach with trajectory tracking in experiments, we choose
a target time of T = 0.24s. The results are displayed
in Fig. 8. Note that the time-optimal driving induces the
car to drive on the inside of a curve when entering
it and on the outside when exiting. The weights need
to be tuned slightly in experiment: the new weights are
Q = diag([1074,1071°,1071°,5 . 1073]), R = diag([8 -
107°,1074)), P = diag([1071°,10719, 10710, 102)).

The lap times of the tracking scheme is 9.11 s, while the
one of the time-optimal approach is 8.21 s. Both times refer
to periodic trajectories, which are obtained after an initial
transient of several rounds.

Comparing the closed-loop trajectory with the predicted
trajectory, one can see that the prediction performance of

Trajectory
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Fig. 7: Comparison of trajectory tracking on the experimental
setup at different reference velocities.

Fig. 8: Comparison of the performance of trajectory tracking
and time-optimal driving on the experimental setup. Note
that for tracking vef = 1.0 m/s and Tier = 0.24 s for time-
optimal driving.

trajectory tracking time—optimal drivind

the bicycle model (1) is quite satisfactory, see Fig. 9. Here,
a close-up of the chicane, which is considered the most
challenging part of the track, is shown.

The lap times and the computational times obtained with
prediction horizons N = 30 and N = 50 are shown in Tab.
III for different horizon lengths. It can be seen that, for the
current setup, a long horizon N = 50 does not improve
the lap time dramatically compared to a shorter horizon
N = 30. Future work will aim at using higher fidelity
models, for which a longer prediction horizon might be
necessary. As the horizon length increases, the computational
times increase dramatically. This is a known limitation of
the condensing/qpOASES approach; the use of structure-
exploiting sparse QP solvers, such as qgpDUNES [?] or
FORCES [7] are envisaged in the future to significantly
reduce the computational times for long horizons.
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Fig. 9: Predicted vs. actual trajectory of the car for a time-
optimal MPC formulation with a horizon of 1.0 m.

Prediction horizon length Computational time (ms) | Lap time (s)
N =30 1.8 8.3
N =50 9.2 8.2

TABLE III: Computational times and resulting lap times for
the time-optimal method for different horizon lengths.

VII. CONCLUSION

In this paper, we experimentally compared different time-
optimal nonlinear MPC formulations based on least squares
objectives in a setup of small-scale model race cars. We
employed a nonlinear bicycle model in a reformulation to
spatial coordinates to this end and proposed an infeasible-
time-tracking objective for the best practical results.

The real-world experiments showed that this approach has
potential, but the bicycle model proved insufficient at high
velocities due to slip effects not being modelled. Ongoing
research includes the transition to a higher fidelity model,
like the one used in [23] and the use of structure exploiting
QP solvers [?] that showed to be well suited for long
prediction horizons.

APPENDIX A: TECHNICAL DETAILS OF THE LMS SETUP

[Infrared camera: ] PointGrey Flea 3 Infrared Camera
Imaging: 1280x1024 at 100 FPS
Connection with computer: USB 3.0
[Computer: ] Real-time Debian system
Intel Core 13-3220 @ 3.3 GHz
OS: Debian 7.0 *Wheezy’
Kernel: Linux 3.8.13 with Preempt RT Patch
Driver software: ni_pcimio from Comedi library
[Race Car: ] Kyosho dNaNo FX-101 ASF2.4GHz System
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