
Numerical Optimal Control with DAEs

Lecture 13: Periodic Optimal Control with DAEs
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Periodic OCP

Periodic OCP:

min
x(.),u(.)

φ (x (.) ,u (.))

s.t. F (ẋ (t) ,x (t) ,u (t)) = 0

h (x(t),u(t), t) ≤ 0

x (0)− x (tf) = 0

Free initial/terminal conditions...

... but they have to match !!
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x(.),u(.)

φ (x (.) ,u (.))

s.t. F (ẋ (t) ,x (t) ,u (t)) = 0

h (x(t),u(t), t) ≤ 0

x (0)− x (tf) = 0

Free initial/terminal conditions...

... but they have to match !!

Examples of applications:

Simulated moving bed

Filtration processes

Low-Density Polyethylene Process

Cyclic motions (robotic and mobile
applications)

Airborne Wind Energy systems
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NLP from Multiple-Shooting - Periodic OCP

OCP:

min
x(.),u(.)

φ (x (.) ,u (.))

s.t. F (ẋ (t) ,x (t) ,u (t)) = 0

h (x(t),u(t), t) ≤ 0

x (0)− x (tf) = 0
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φ (x (.) ,u (.))

s.t. F (ẋ (t) ,x (t) ,u (t)) = 0

h (x(t),u(t), t) ≤ 0

x (0)− x (tf) = 0

f (xk ,uk) integrates the dynamics F
over the time interval [tk , tk+1]
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NLP from Multiple-Shooting - Periodic OCP

OCP:

min
x(.),u(.)

φ (x (.) ,u (.))

s.t. F (ẋ (t) ,x (t) ,u (t)) = 0

h (x(t),u(t), t) ≤ 0

x (0)− x (tf) = 0

f (xk ,uk) integrates the dynamics F
over the time interval [tk , tk+1]

NLP with w = {x0,u0, ..., xN−1,uN−1,xN}

min
w

Φ(w)

s.t.
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Periodic OCP & Multiple-shooting - Sparsity pattern

Equality constraints...

g (w) =







x0 − xN

f (x0,u0)− x1

...

f (xN ,uN−1)− xN−1
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Periodic OCP & Multiple-shooting - Sparsity pattern

Equality constraints...

g (w) =







x0 − xN

f (x0,u0)− x1

...

f (xN ,uN−1)− xN−1







... pattern of the constraints Jacobian

Ordering w = {x0,u0, ...,xN−1,uN−1,xN}

w

g (w)

∇g (w)T
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Periodic OCP & Multiple-shooting - Sparsity pattern

Equality constraints...

g (w) =







x0 − xN

f (x0,u0)− x1

...

f (xN ,uN−1)− xN−1







Observe that we have lost the
”classical” banded structure of
multiple-shooting !! The same

happens with direct collocation...

... pattern of the constraints Jacobian

Ordering w = {x0,u0, ...,xN−1,uN−1,xN}

w

g (w)

∇g (w)T
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Periodic OCP & Multiple-shooting - Sparsity pattern

Equality constraints...

g (w) =







x0 − xN

f (x0,u0)− x1

...

f (xN ,uN−1)− xN−1







Observe that we have lost the
”classical” banded structure of
multiple-shooting !! The same

happens with direct collocation...

... pattern of the constraints Jacobian

Ordering w = {x0,u0, ...,xN−1,uN−1,xN}

w

g (w)

∇g (w)T

Structure-exploiting solvers dedicated to direct optimal control are not all designed
for taking in the ”off-band” block !! Have that in mind when selecting tools for solving

periodic optimal control problems using direct methods...
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A simple but problematic Periodic OCP
Consider the π-OCP:

min
x(.),u(.)

1

2

∫ 1

0

u(t)2

s.t. ẋ = u

[
0 −1
1 0

]

x,

x (1)− x (0) = 0
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A simple but problematic Periodic OCP
Consider the π-OCP:

min
x(.),u(.)

1

2

∫ 1

0

u(t)2

s.t. ẋ = u

[
0 −1
1 0

]

x,

x (1)− x (0) = 0

Solution of the ODE reads as:

x (1) = R (θ)x (0) , θ =

∫ 1

0

u(t)dt

where

R (θ) =

[
cos θ − sin θ
sin θ cos θ

]
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]

x,

x (1)− x (0) = 0

Solution of the ODE reads as:

x (1) = R (θ)x (0) , θ =

∫ 1

0

u(t)dt

where

R (θ) =

[
cos θ − sin θ
sin θ cos θ

]

π-constraint becomes:

π = [R (θ)− I ]x0 = 0

and requires θ = 2kπ.
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∫ 1

0

u(t)dt

where

R (θ) =

[
cos θ − sin θ
sin θ cos θ

]

π-constraint becomes:

π = [R (θ)− I ]x0 = 0

and requires θ = 2kπ.

The π-OCP can be reformulated as:

min
x0,u(.)

1

2

∫ 1

0

u(t)2

s.t. θ̇(t) = u(t)

π = [R (θ)− I ]
︸ ︷︷ ︸

=0 at solution

x0 = 0
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0

u(t)2

s.t. θ̇(t) = u(t)

π = [R (θ)− I ]
︸ ︷︷ ︸

=0 at solution

x0 = 0

If u(t) piecewise-constant, i.e. θ = 1
N

∑

k
uk :

∂π

∂x0
= 0,

∂π

∂u
=

∂R

∂θ
x0

1

N

⊤

at the solution
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=

[
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(
π
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)
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1
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]

where w = {x0, u}, then x⊤
0 R

(
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2

)
x0 = 0 and

x
⊤

0
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= 0 s.t. LICQ fails !!
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A simple but problematic Periodic OCP - What is going on ?!?

ẋ = u

[
0 −1
1 0

]

x
∂π

∂x0
= 0,

∂π

∂u
=

∂R

∂θ
x0

1

N

⊤
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ẋ = u

[
0 −1
1 0

]

x
∂π

∂x0
= 0,

∂π

∂u
=

∂R

∂θ
x0

1

N

⊤

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1 ∫ 1

0

u(t)dt = 2π

x1 (t)

x0

x
2
(t
)

π1

π2

t

u

u allows for satisfying π = 0

x0 has no impact on π
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∆π = ∂π
∂w

∆w is restricted to the
tangent
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0
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u allows for satisfying π = 0

x0 has no impact on π

∆π = ∂π
∂w

∆w is restricted to the
tangent

π ∈ R
2 has (locally) only one degree

of freedom

i.e. π1 and π2 are (locally) linearly
dependent.
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A simple but problematic Periodic OCP - What is going on ?!?
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Intuition: we impose 2 constraints via π, but if x1(0) = x1(1), then (locally)
x2(0) = x2(1) (or vice-versa), i.e. we have redundant constraints. What can we do ?!?
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What about a simple constraint elimination ?
Consider the π-OCP:

min
x(.),u(.)

1

2

∫ 1

0

u(t)2

s.t. ẋ = u

[
0 −1
1 0

]

x,

x1 (1) − x1 (0) = 0

Solution of the ODE reads as:

x (1) = R (θ)x (0) , θ =

∫ 1

0

u(t)dt
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s.t. ẋ = u

[
0 −1
1 0

]

x,

x1 (1) − x1 (0) = 0

Solution of the ODE reads as:

x (1) = R (θ)x (0) , θ =

∫ 1

0

u(t)dt

π-constraint reduced to 1st component:

π =
[
1 0

]
[R (θ)− I ]x0 = 0

S. Gros Optimal Control with DAEs, lecture 13 23rd of February, 2016 9 / 22



What about a simple constraint elimination ?
Consider the π-OCP:

min
x(.),u(.)

1

2

∫ 1

0

u(t)2

s.t. ẋ = u
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Note that:

∂R

∂θ
= R

(π

2

)

=

[
0 −1
1 0

]

S. Gros Optimal Control with DAEs, lecture 13 23rd of February, 2016 9 / 22



What about a simple constraint elimination ?
Consider the π-OCP:

min
x(.),u(.)

1

2

∫ 1

0

u(t)2

s.t. ẋ = u
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Arbitrary eliminations of redundant
constraints in Periodic OCPs can yield
”degenerate” situations, with ∂π

∂w
= 0 !!
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What is the problem with this Periodic OCP ?
Consider the π-OCP:

min
x(.),u(.)

1

2

∫ 1

0

u(t)2

s.t. ẋ = u

[
0 −1
1 0

]

x,

x (1)− x (0) = 0
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Invariant

The dynamics have a 1-dimensional invariant. It reads as:

I (x (t)) =
1

2
x (t)⊤x (t) = constant ∀x(0), u(t)

indeed İ = ux⊤

[
0 −1
1 0

]

x = 0, ∀u, x

such that x(t) ∈ R
2 is forced to evolve on a 2− 1 = 1-dimensional manifold.

2 periodic constraints are then redundant...

Because the invariant is a manifold (not a linear space), a simple constraint
elimination cannot guarantee a well-behaved OCP
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Invariants in Periodic Optimal Control - Generalization

Periodic OCP

min
u(.),x(.)

φ (x (.) ,u (.))

s.t. F (ẋ (t) ,x (t) ,u (t)) = 0

x (tf)− x (0) = 0
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s.t. F (ẋ (t) ,x (t) ,u (t)) = 0

x (tf)− x (0) = 0

with a finite input parametrization u, and
using the integration function on [0, tf ]
(single-shooting):

x (tf) = f (x0,u)

OCP can be written as NLP:

min
u,x0

Φ (x0,u)

s.t. π = f (x0,u)− x0 = 0
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I (x (t)) = I (x (0)) , ∀t,u,x (0)
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I (f (x0,u))− I (x0) = 0, ∀w =
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u
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]
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hence:

∇w [I (f (x0,u))− I (x0)] =

(∇wf (x0,u)−∇wx0)
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yields:

∇wπ∇x0I (x0)
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I.e. LICQ deficiency !!
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deficiency in the periodicity constraints

(also for ODEs) !!

Dynamics with invariants:

I (x (t)) = I (x (0)) , ∀t,u,x (0)

yields the property:

I (f (x0,u))− I (x0) = 0, ∀w =

[
u

x0

]

hence:

∇w [I (f (x0,u))− I (x0)] =

(∇wf (x0,u)−∇wx0)
︸ ︷︷ ︸

∇wπ

∇x0I (x0) = 0

yields:

∇wπ∇x0I (x0)
︸ ︷︷ ︸

null space

= 0

I.e. LICQ deficiency !!

S. Gros Optimal Control with DAEs, lecture 13 23rd of February, 2016 12 / 22



Projection Method for Invariants

Periodic OCP:

min
x,z,u

φ (x (.) ,u (.))

s.t. F (ẋ,x, z,u) = 0

x (tf)− x (0) = 0

where dynamics F have invariant I.
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Projection Method for Invariants

Periodic OCP with x0 ∈ R
n

min
x0,u

φ (x,u)

s.t. f (x0,u)− x0 = 0

where integrator f over [0, tf ] preserves I.
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Projection Method for Invariants

Periodic OCP with x0 ∈ R
n

min
x0,u

φ (x,u)

s.t. f (x0,u)− x0 = 0

where integrator f over [0, tf ] preserves I.

Build basis of the null space of ∇I (x0):

Z
⊤∇I (x0) = 0

Note: Z is n × n −m with I ∈ R
m
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where integrator f over [0, tf ] preserves I.
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Note: Z is n × n −m with I ∈ R
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Rewrite OCP as (NOCP):

min
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Φ(x0,u)

s.t. Z
⊤ (f (x0,u)− x0) = 0
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Projection Method for Invariants

Periodic OCP with x0 ∈ R
n

min
x0,u

φ (x,u)

s.t. f (x0,u)− x0 = 0

where integrator f over [0, tf ] preserves I.

Build basis of the null space of ∇I (x0):

Z
⊤∇I (x0) = 0

Note: Z is n × n −m with I ∈ R
m

Rewrite OCP as (NOCP):

min
x0,u,Z

Φ(x0,u)

s.t. Z
⊤ (f (x0,u)− x0) = 0

Null-space Z is now function of x0 !!
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n

min
x0,u

φ (x,u)

s.t. f (x0,u)− x0 = 0

where integrator f over [0, tf ] preserves I.

Build basis of the null space of ∇I (x0):

Z
⊤∇I (x0) = 0

Note: Z is n × n −m with I ∈ R
m

Rewrite OCP as (NOCP):

min
x0,u,Z

Φ(x0,u)

s.t. Z
⊤ (f (x0,u)− x0) = 0

Null-space Z is now function of x0 !!

Can be hard to compute explicitly
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Projection Method for Invariants

Periodic OCP with x0 ∈ R
n

min
x0,u

φ (x,u)

s.t. f (x0,u)− x0 = 0

where integrator f over [0, tf ] preserves I.

Build basis of the null space of ∇I (x0):

Z
⊤∇I (x0) = 0

Note: Z is n × n −m with I ∈ R
m

NOCP has LICQ (under some
assumptions). Projection creates
”artificial” feasible solutions !

Rewrite OCP as (NOCP):

min
x0,u,Z

Φ(x0,u)

s.t. Z
⊤ (f (x0,u)− x0) = 0

∂I

∂x0
Z = 0, Z

⊤
Z = I
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Consistency in Periodic Optimal Control

Periodic OCP with consistency

min
u(.),x(.),z(.)

φ (x (.) ,u (.))

s.t. F (ẋ (t) ,x (t) , z (t) ,u (t)) = 0

x (tf)− x (0) = 0

C (x (0)) = 0

where c : Rn 7→ R
m.
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if C (x (0)) = 0 then C (x (tf)) = 0
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s.t. F (ẋ (t) ,x (t) , z (t) ,u (t)) = 0

x (tf)− x (0) = 0

C (x (0)) = 0

where c : Rn 7→ R
m. With a finite input

parametrization u, can be writen as
(single-shooting):

min
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Observe that ∀u

C (x0) = 0 ⇒ C (f (x0,u)) = 0
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Observe that ∀u

C (x0) = 0 ⇒ C (f (x0,u)) = 0
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Periodic OCP with consistency

min
u(.),x(.),z(.)

φ (x (.) ,u (.))

s.t. F (ẋ (t) ,x (t) , z (t) ,u (t)) = 0

x (tf)− x (0) = 0

C (x (0)) = 0

where c : Rn 7→ R
m. With a finite input

parametrization u, can be writen as
(single-shooting):

min
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s.t. g =

[
f (x0,u)− x0

C (x0)

]

= 0

using the integration function on [0, tf ]:

x (tf) = f (x0,u)

Consistency: for any u,

if C (x (0)) = 0 then C (x (tf)) = 0

Observe that ∀u

C (x0) = 0 ⇒ C (f (x0,u)) = 0

hence ∇uf ∇C = 0.

Moreover

∇x0C (f (x0,u)) = ∇x0f ∇C ∈ span {∇C}

(see Proposition this morning) i.e.

∇x0f ∇C = ∇CM

for some M ∈ R
m×m. Then

[
∇x0f − I ∇C

∇uf 0

]

︸ ︷︷ ︸

=∇g

[
∇C

I −M

]

= 0
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Consequence for Periodic OCPs with index-reduced DAEs
Index-1 DAE

[
mI p

p⊤ 0

] [
p̈

z

]

=

[
u−mge3

−ṗ⊤ṗ

]

... is built to impose c̈ = 0 at all time.
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ċ

t

t

S. Gros Optimal Control with DAEs, lecture 13 23rd of February, 2016 15 / 22



Consequence for Periodic OCPs with index-reduced DAEs
Index-1 DAE

[
mI p

p⊤ 0

] [
p̈

z

]

=

[
u−mge3

−ṗ⊤ṗ
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Consequence for Periodic OCPs with index-reduced DAEs
Index-1 DAE

[
mI p

p⊤ 0

] [
p̈

z

]

=

[
u−mge3

−ṗ⊤ṗ

]

... is built to impose c̈ = 0 at all time. The state is:

x =

[
p

ṗ

]

with invariant I (x) = p⊤ṗ (≡ ċ)

Periodic OCP:

min φ (x (.) ,u (.))

s.t.

[
mI p

p⊤ 0

] [
p̈

z

]

=

[
u−mge3

−ṗ⊤ṗ

]

x (tf)− x (0) = 0

C =

[
c (x0)
ċ (x0)

]

= 0

This Periodic OCP will have an LICQ deficiency !!
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Consistency of index-reduced DAEs in Periodic Optimal Control
Periodic OCP:

min φ (x (.) ,u (.))

s.t. F (ẋ,x, z,u) = 0

x (tf)− x (0) = 0

c (x0) = 0, ċ (x0) = 0

Proposition: if x (tf)− x (0) = 0 and c (x0) = 0
hold, then ċ (x0) = 0 holds.
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min φ (x (.) ,u (.))

s.t. F (ẋ,x, z,u) = 0

x (tf)− x (0) = 0

c (x0) = 0, ċ (x0) = 0

Proposition: if x (tf)− x (0) = 0 and c (x0) = 0
hold, then ċ (x0) = 0 holds.

Proof: since c̈ = 0 is imposed by the dynamics, then

ċ (x (t)) = ċ (x (0)) and

c (x (tf)) = c (x (0)) + ċ (x (0)) tf

Periodicity imposes that c (x (tf)) = c (x (0)), hence
ċ (x (0)) = 0 must hold.
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min φ (x (.) ,u (.))

s.t. F (ẋ,x, z,u) = 0
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c (x0) = 0, ċ (x0) = 0

Proposition: if x (tf)− x (0) = 0 and c (x0) = 0
hold, then ċ (x0) = 0 holds.

Proof: since c̈ = 0 is imposed by the dynamics, then

ċ (x (t)) = ċ (x (0)) and

c (x (tf)) = c (x (0)) + ċ (x (0)) tf

Periodicity imposes that c (x (tf)) = c (x (0)), hence
ċ (x (0)) = 0 must hold.

It is not necessary to impose ċ (x0) = 0 in a periodic
OCP based on index-reduced, index-3 DAEs !
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Consistency of index-reduced DAEs in Periodic Optimal Control
Periodic OCP:

min φ (x (.) ,u (.))

s.t. F (ẋ,x, z,u) = 0

x (tf)− x (0) = 0

c (x0) = 0, ċ (x0) = 0

Proposition: if x (tf)− x (0) = 0 and c (x0) = 0
hold, then ċ (x0) = 0 holds.

Proof: since c̈ = 0 is imposed by the dynamics, then

ċ (x (t)) = ċ (x (0)) and

c (x (tf)) = c (x (0)) + ċ (x (0)) tf

Periodicity imposes that c (x (tf)) = c (x (0)), hence
ċ (x (0)) = 0 must hold.

It is not necessary to impose ċ (x0) = 0 in a periodic
OCP based on index-reduced, index-3 DAEs !

Have we solved our LICQ problem ?
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Consistency of index-reduced DAEs in Periodic Optimal Control
Periodic OCP: with c ∈ R

m

min φ (x (.) ,u (.))

s.t. F (ẋ,x, z,u) = 0

x (tf)− x (0) = 0, c (x0) = 0
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Consistency of index-reduced DAEs in Periodic Optimal Control
Periodic OCP: with c ∈ R

m

min φ (x0,u)

s.t. g =

[
f (x0,u)− x0

c (x0)

]

= 0
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Periodic OCP: with c ∈ R

m

min φ (x0,u)

s.t. g =

[
f (x0,u)− x0

c (x0)

]

= 0

Note that: c (f (x0,u)) = c (x0)
︸ ︷︷ ︸

=0

+ ċ (x0) · tf
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]

= 0

Note that: c (f (x0,u)) = c (x0)
︸ ︷︷ ︸

=0

+ ċ (x0) · tf hence at

the solution:

∇x0f∇c = ∇ċ · tf and ∇uf∇c = 0
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=0
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Then
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Consistency of index-reduced DAEs in Periodic Optimal Control
Periodic OCP: with c ∈ R

m

min φ (x0,u)

s.t. g =

[
f (x0,u)− x0

c (x0)

]

= 0

Note that: c (f (x0,u)) = c (x0)
︸ ︷︷ ︸

=0

+ ċ (x0) · tf hence at

the solution:

∇x0f∇c = ∇ċ · tf and ∇uf∇c = 0

Then
=∇g

︷ ︸︸ ︷
[

∇x0f − I ∇c

∇uf 0

] [
∇c

M

]

︸ ︷︷ ︸

null-space?

=

[
tf∇ċ+∇c (M − I )

0

]

LICQ problem if ∇ċ ∈ span {∇c}. This does not happen
in index-reduced DAEs from Lagrange mechanics !!

(cannot say much in general though)
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Representing Orientations (more on that tomorrow !!)

Orientations are represented via rotations...

Let E be a fixed (e.g. inertial)
reference frame

Let e be a reference frame attached to
the object

What’s a rotation ?
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Orientations are represented via rotations...

Let E be a fixed (e.g. inertial)
reference frame

Let e be a reference frame attached to
the object

Let T = (τ, ρ) be the transformation
(translation + rotation) that brings E
to e

The orientation of the object is
represented by ρ

What’s a rotation ?
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Direct Cosine Matrix (DCM)
Representation of the orientation as:

R =
[
e1 e2 e3

]
∈ R

3×3

where e1, e2, e3 are the vectors of frame e

given frame E . The orientation is then
represented by the 9 numbers making R.
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The time evolution of R is given by:
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where Ω is a skew symmetric (Ω⊤ = −Ω) matrix.

The dynamics of R preserve orthonormality, i.e.:
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Ṙ = RΩ

where Ω is a skew symmetric (Ω⊤ = −Ω) matrix.

The dynamics of R preserve orthonormality, i.e.:

d

dt

(

R
⊤
R − I

)

= Ṙ
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]
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3×3

where e1, e2, e3 are the vectors of frame e

given frame E . The orientation is then
represented by the 9 numbers making R.

Orthonormality must hold, i.e.:

R
⊤
R − I = 0

The time evolution of R is given by:

Ṙ = RΩ Ṙ = RΩ is an example of ODE with
consistency conditions !!

where Ω is a skew symmetric (Ω⊤ = −Ω) matrix.

The dynamics of R preserve orthonormality, i.e.:
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DCM in periodic optimal control
Periodic OCP with rotations

min φ (x (.) ,u (.))

s.t. F (ẋ,x, z,u,R) = 0

Ṙ = RΩ(x, z,u,R)

x (tf)− x (0) = 0
︸ ︷︷ ︸

Periodicity of x

R (tf)− R (0) = 0
︸ ︷︷ ︸

Periodicity of R

c (x0) = 0
︸ ︷︷ ︸

Consistency of DAE

R (0)⊤ R(0)− I = 0
︸ ︷︷ ︸

Orthonormality of R
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Consistency of DAE

R (0)⊤ R(0)− I = 0
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Orthonormality of R

Problem: periodicity & orthonormality constraints

R(0)⊤R(0)− I = 0, R(tf)− R(0) = 0

+ dynamics preserving orthonormality yield LICQ deficiency

SO(3) has 3 dimensions, R(0) ∈ R
3×3 has 9 dimensions

Orthonormality condition R(0)⊤R(0)− I = 0 must block 9− 3 = 6 dimensions

Periodicity condition R(tf)− R(0) = 0 must block 3 dimensions

We need to pick 3 + 6 = 9 constraints among Orthonormality & Periodicity
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DCM in periodic optimal control
Periodic OCP with rotations

min φ (x (.) ,u (.))

s.t. F (ẋ,x, z,u,R) = 0

Ṙ = RΩ(x, z,u,R)

x (tf)− x (0) = 0
︸ ︷︷ ︸

Periodicity of x

R (tf)− R (0) = 0
︸ ︷︷ ︸

Periodicity of R

c (x0) = 0
︸ ︷︷ ︸

Consistency of DAE

R (0)⊤ R(0)− I = 0
︸ ︷︷ ︸

Orthonormality of R

Problem: periodicity & orthonormality constraints

R(0)⊤R(0)− I = 0, R(tf)− R(0) = 0

+ dynamics preserving orthonormality yield LICQ deficiency

How to pick the 9 constraints to eliminate ?

There is no good answer: regardless of your choice, there will be solutions for which
LICQ fails for the rotations. This is related to the ”simple elimination” slide !!
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Handling rotations in periodic optimal control

Trick inspired from the projection method: (R0 = R(0), RN = R(tf))

R
⊤

0 R0 − I = 0, RN − R0 = 0

Rewrite as:

R
⊤

0 R0 − I = 0, R
⊤

0 RN − I = 0

Then select 9 constraints...
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Proposition: select the periodicity constraints such that −
⊤

spans so(3) and

the orthogonality constraints such that they do not ”collide” with (total of 8

equally valid choices !!)
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Handling rotations in periodic optimal control

Trick inspired from the projection method: (R0 = R(0), RN = R(tf))

R
⊤

0 R0−I

︷ ︸︸ ︷






 = 0,

R
⊤

0 RN−I

︷ ︸︸ ︷






 = 0

Proposition: select the periodicity constraints such that −
⊤

spans so(3) and

the orthogonality constraints such that they do not ”collide” with (total of 8

equally valid choices !!)

Intuition:

”blocks” the directions orthogonal to the SO(3) manifold

”blocks” the directions tangent to the SO(3) manifold

Proof: requires operating on the vector space R
3×3, with associated scalar products and

differential forms... it is elaborate...
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