Numerical Optimal Control with DAEs Lecture 13: Periodic Optimal Control with DAEs

Sébastien Gros

AWESCO PhD course

Periodic OCP

Periodic OCP:

$$\begin{split} \min_{\mathbf{x}(.),\mathbf{u}(.)} & \phi\left(\mathbf{x}\left(.\right),\mathbf{u}\left(.\right)\right) \\ \text{s.t.} & \mathbf{F}\left(\dot{\mathbf{x}}\left(t\right),\mathbf{x}\left(t\right),\mathbf{u}\left(t\right)\right) = 0 \\ & \mathbf{h}\left(\mathbf{x}(t),\mathbf{u}(t),t\right) \leq 0 \\ & \mathbf{x}\left(0\right) - \mathbf{x}\left(t_{\mathrm{f}}\right) = 0 \end{split}$$

- Free initial/terminal conditions...
- ... but they have to match !!

3

< 🗇 🕨 <

18 N

Periodic OCP

Periodic OCP:

 $\begin{aligned} \min_{\mathbf{x}(.),\mathbf{u}(.)} & \phi\left(\mathbf{x}\left(.\right),\mathbf{u}\left(.\right)\right) \\ \text{s.t.} & \mathbf{F}\left(\dot{\mathbf{x}}\left(t\right),\mathbf{x}\left(t\right),\mathbf{u}\left(t\right)\right) = 0 \\ & \mathbf{h}\left(\mathbf{x}(t),\mathbf{u}(t),t\right) \leq 0 \\ & \mathbf{x}\left(0\right) - \mathbf{x}\left(t_{\mathrm{f}}\right) = 0 \end{aligned}$

- Free initial/terminal conditions...
- ... but they have to match !!

Examples of applications:

- Simulated moving bed
- Filtration processes
- Low-Density Polyethylene Process
- Cyclic motions (robotic and mobile applications)
- Airborne Wind Energy systems

< 17 > <

 23^{rd} of February, 2016 3 / 22

OCP:

 $\min_{\mathbf{x}(.),\mathbf{u}(.)}$

s.t.
$$\mathbf{F}(\dot{\mathbf{x}}(t), \mathbf{x}(t), \mathbf{u}(t)) = 0$$

 $\mathbf{h}(\mathbf{x}(t), \mathbf{u}(t), t) \le 0$
 $\mathbf{x}(0) - \mathbf{x}(t_{\mathrm{f}}) = 0$

 $\phi\left(\mathbf{x}\left(.\right),\mathbf{u}\left(.\right)
ight)$

OCP:

- $\min_{\mathbf{x}(.),\mathbf{u}(.)} \quad \phi\left(\mathbf{x}\left(.\right),\mathbf{u}\left(.\right)\right)$
 - s.t. $\mathbf{F}(\dot{\mathbf{x}}(t), \mathbf{x}(t), \mathbf{u}(t)) = 0$ $\mathbf{h}(\mathbf{x}(t), \mathbf{u}(t), t) \le 0$ $\mathbf{x}(0) - \mathbf{x}(t_f) = 0$
- $f(\mathbf{x}_k, \mathbf{u}_k)$ integrates the dynamics \mathbf{F} over the time interval $[t_k, t_{k+1}]$

 $f(\mathbf{x}_k, \mathbf{u}_k)$ integrates the dynamics \mathbf{F} over the time interval $[t_k, t_{k+1}]$

 $f(\mathbf{x}_k, \mathbf{u}_k)$ integrates the dynamics \mathbf{F} over the time interval $[t_k, t_{k+1}]$

Equality constraints...

$$\mathbf{g}\left(\mathbf{w}\right) = \begin{bmatrix} \mathbf{x}_{0} - \mathbf{x}_{N} \\ \mathbf{f}\left(\mathbf{x}_{0}, \mathbf{u}_{0}\right) - \mathbf{x}_{1} \\ \dots \\ \mathbf{f}\left(\mathbf{x}_{N}, \mathbf{u}_{N-1}\right) - \mathbf{x}_{N-1} \end{bmatrix}$$

A (1) > A (2) > A

æ

Equality constraints...

... pattern of the constraints Jacobian

$$\mathbf{g}\left(\mathbf{w}
ight) = \left[egin{array}{c} \mathbf{x}_{0} - \mathbf{x}_{N} \ \mathbf{f}\left(\mathbf{x}_{0}, \mathbf{u}_{0}
ight) - \mathbf{x}_{1} \ \dots \ \mathbf{f}\left(\mathbf{x}_{N}, \mathbf{u}_{N-1}
ight) - \mathbf{x}_{N-1} \end{array}
ight]$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

- 2

Equality constraints...

$$\mathbf{g}\left(\mathbf{w}\right) = \begin{bmatrix} \mathbf{x}_{0} - \mathbf{x}_{N} \\ \mathbf{f}\left(\mathbf{x}_{0}, \mathbf{u}_{0}\right) - \mathbf{x}_{1} \\ \dots \\ \mathbf{f}\left(\mathbf{x}_{N}, \mathbf{u}_{N-1}\right) - \mathbf{x}_{N-1} \end{bmatrix}$$

Observe that we have lost the "classical" banded structure of multiple-shooting !! The same happens with direct collocation...

Ordering
$$\mathbf{w} = \{\mathbf{x}_0, \mathbf{u}_0, \dots, \mathbf{x}_{N-1}, \mathbf{u}_{N-1}, \mathbf{x}_N\}$$

$$\nabla \mathbf{g} (\mathbf{w})^{\mathsf{T}}$$

$$\mathbf{g} (\mathbf{w})$$

 \mathbf{W}

... pattern of the constraints Jacobian

Equality constraints...

$$\mathbf{g}\left(\mathbf{w}\right) = \begin{bmatrix} \mathbf{x}_{0} - \mathbf{x}_{N} \\ \mathbf{f}\left(\mathbf{x}_{0}, \mathbf{u}_{0}\right) - \mathbf{x}_{1} \\ \dots \\ \mathbf{f}\left(\mathbf{x}_{N}, \mathbf{u}_{N-1}\right) - \mathbf{x}_{N-1} \end{bmatrix}$$

Observe that we have lost the "classical" banded structure of multiple-shooting !! The same happens with direct collocation...

... pattern of the constraints Jacobian

Structure-exploiting solvers dedicated to direct optimal control are not all designed for taking in the "off-band" block !! Have that in mind when selecting tools for solving periodic optimal control problems using direct methods...

Optimal Control with DAEs, lecture 13

Outline

2 LICQ defficiency in periodic OCPs

Invariants in Periodic Optimal Cont

4 Rotations in Periodic Optimal Control

A simple but problematic Periodic OCP Consider the π -OCP:

$$\min_{\mathbf{x}(.),u(.)} \quad \frac{1}{2} \int_0^1 u(t)^2$$

s.t.
$$\dot{\mathbf{x}} = u \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \mathbf{x},$$
$$\mathbf{x}(1) - \mathbf{x}(0) = 0$$

< A ►

э

A simple but problematic Periodic OCP Consider the π -OCP:

$$\min_{\mathbf{x}(.),u(.)} \quad \frac{1}{2} \int_0^1 u(t)^2$$

s.t.
$$\dot{\mathbf{x}} = u \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \mathbf{x},$$
$$\mathbf{x}(1) - \mathbf{x}(0) = 0$$

Solution of the ODE reads as:

$$\mathbf{x}(1) = R(\theta) \mathbf{x}(0), \quad \theta = \int_0^1 u(t) dt$$

where

$$R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

3

7 / 22

< 17 ▶

A simple but problematic Periodic OCP Consider the π -OCP:

$$\min_{\mathbf{x}(.),u(.)} \quad \frac{1}{2} \int_0^1 u(t)^2$$

s.t.
$$\dot{\mathbf{x}} = u \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \mathbf{x},$$
$$\mathbf{x}(1) - \mathbf{x}(0) = 0$$

Solution of the ODE reads as:

$$\mathbf{x}\left(1
ight)=R\left(heta
ight)\mathbf{x}\left(0
ight),\quad heta=\int_{0}^{1}u(t)\mathrm{d}t$$

where

$$R\left(heta
ight) = \left[egin{array}{cc} \cos heta & -\sin heta \ \sin heta & \cos heta \end{array}
ight]$$

 π -constraint becomes:

$$\boldsymbol{\pi} = \left[R\left(\boldsymbol{\theta} \right) - I \right] \mathbf{x}_0 = \mathbf{0}$$

and requires $\theta = 2k\pi$.

A

Consider the π **-OCP**:

The π -OCP can be reformulated as:

 $\min_{\mathbf{x}_{0},u(.)} \quad \frac{1}{2} \int_{0}^{1} u(t)^{2}$

s.t. $\dot{\theta}(t) = u(t)$

 $\pi = \underbrace{[R(\theta) - I]}_{\mathbf{x}_0} \mathbf{x}_0 = \mathbf{0}$

$$\min_{\mathbf{x}(.),u(.)} \quad \frac{1}{2} \int_0^1 u(t)^2$$

s.t.
$$\dot{\mathbf{x}} = u \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \mathbf{x},$$
$$\mathbf{x}(1) - \mathbf{x}(0) = 0$$

Solution of the ODE reads as:

$$\mathbf{x}\left(1
ight)=R\left(heta
ight)\mathbf{x}\left(0
ight),\quad heta=\int_{0}^{1}u(t)\mathrm{d}t$$

where

$$R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

 π -constraint becomes:

$$\boldsymbol{\pi} = \left[R\left(\boldsymbol{\theta} \right) - I \right] \mathbf{x}_0 = \mathbf{0}$$

and requires $\theta = 2k\pi$.

7 / 22

Consider the π **-OCP**:

The π -OCP can be reformulated as:

Solution of the ODE reads as:

If u(t) piecewise-constant, i.e. $\theta = \frac{1}{N} \sum_{k} \mathbf{u}_{k}$:

$$\mathbf{x}(1) = R(\theta)\mathbf{x}(0), \quad \theta = \int_0^1 u(t) dt \qquad \qquad \frac{\partial \pi}{\partial \mathbf{x}_0} = 0, \qquad \frac{\partial \pi}{\partial \mathbf{u}} = \frac{\partial R}{\partial \theta} \mathbf{x}_0 \frac{\mathbf{1}}{N}^\top$$

where

at the solution

$$R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

 π -constraint becomes:

$$\boldsymbol{\pi} = \left[R\left(\boldsymbol{\theta} \right) - I \right] \mathbf{x}_0 = \mathbf{0}$$

and requires $\theta = 2k\pi$.

イロト イポト イヨト イヨト

- 2

Consider the π **-OCP**:

The π -OCP can be reformulated as:

Solution of the ODE reads as:

If u(t) piecewise-constant, i.e. $\theta = \frac{1}{N} \sum_{k} \mathbf{u}_{k}$:

at the solution, where $\frac{\partial R}{\partial A} = R\left(\frac{\pi}{2}\right)$.

$$\mathbf{x}(1) = R(\theta) \mathbf{x}(0), \quad \theta = \int_0^1 u(t) dt \qquad \qquad \frac{\partial \pi}{\partial \mathbf{x}_0} = 0, \qquad \frac{\partial \pi}{\partial \mathbf{u}} = \frac{\partial R}{\partial \theta} \mathbf{x}_0 \frac{\mathbf{1}}{N}^\top$$

where

$$R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

 π -constraint becomes:

$$\boldsymbol{\pi} = \left[R\left(\boldsymbol{\theta} \right) - I \right] \mathbf{x}_0 = \mathbf{0}$$

and requires $\theta = 2k\pi$.

Consider the π **-OCP**:

The $\pi\text{-}\mathsf{OCP}$ can be reformulated as:

$$\begin{split} & \min_{\mathbf{x}(.),u(.)} \quad \frac{1}{2} \int_{0}^{1} u(t)^{2} & \min_{\mathbf{x}_{0},u(.)} \quad \frac{1}{2} \int_{0}^{1} u(t)^{2} \\ & \text{s.t.} \quad \dot{\mathbf{x}} = u \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \mathbf{x}, & \text{s.t.} \quad \dot{\theta}(t) = u(t) \\ & \pi = \underbrace{[R(\theta) - I]}_{=0 \text{ at solution}} \mathbf{x}_{0} = 0 \\ & \mathbf{Solution of the ODE reads as:} & \text{If } u(t) \text{ piecewise-constant, i.e. } \theta = \frac{1}{N} \sum_{k} \mathbf{u}_{k}: \\ & \mathbf{x}(1) = R(\theta) \mathbf{x}(0), \quad \theta = \int_{0}^{1} u(t) dt & \frac{\partial \pi}{\partial \mathbf{x}_{0}} = 0, \quad \frac{\partial \pi}{\partial \mathbf{u}} = \frac{\partial R}{\partial \theta} \mathbf{x}_{0} \frac{1}{N}^{\top} \\ & \text{where} & \text{at the solution, where } \frac{\partial R}{\partial \theta} = R\left(\frac{\pi}{2}\right). \text{ Hence:} \\ & R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} & \frac{\partial \pi}{\partial \mathbf{w}} = \begin{bmatrix} 0 & R\left(\frac{\pi}{2}\right) \mathbf{x}_{0} \frac{1}{N}^{\top} \end{bmatrix} \\ & \pi\text{-constraint becomes:} & \text{where } \mathbf{w} = \{\mathbf{x}_{0}, \mathbf{u}\} \\ & \pi = [R(\theta) - I] \mathbf{x}_{0} = 0 \end{split}$$

and requires $\theta = 2k\pi$.

э

Consider the π **-OCP**:

The π -OCP can be reformulated as:

 $23^{
m rd}$ of February, 2016

23rd of February, 2016

23rd of February, 2016

23rd of February, 2016

 $23^{
m rd}$ of February, 2016

23rd of February, 2016

- **u** allows for satisfying $\pi = 0$
- \mathbf{x}_0 has no impact on π

- **u** allows for satisfying $\pi = 0$
- \mathbf{x}_0 has no impact on π
- $\Delta \pi = \frac{\partial \pi}{\partial w} \Delta w$ is restricted to the tangent

$$\dot{\mathbf{x}} = u \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \mathbf{x}$$

- **u** allows for satisfying $\pi = 0$
- \mathbf{x}_0 has no impact on $oldsymbol{\pi}$
- $\Delta \pi = \frac{\partial \pi}{\partial w} \Delta w$ is restricted to the tangent

Optimal Control with DAEs, lecture 13

• $\pi \in \mathbb{R}^2$ has (locally) only one degree of freedom
A simple but problematic Periodic OCP - What is going on ?!?

$$\dot{\mathbf{x}} = u \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \mathbf{x}$$

- **u** allows for satisfying $\pi = 0$
- \mathbf{x}_0 has no impact on $oldsymbol{\pi}$
- $\Delta \pi = \frac{\partial \pi}{\partial w} \Delta w$ is restricted to the tangent

Optimal Control with DAEs, lecture 1

$$\frac{\partial \pi}{\partial \mathbf{x}_0} = 0, \qquad \frac{\partial \pi}{\partial \mathbf{u}} = \frac{\partial R}{\partial \theta} \mathbf{x}_0 \frac{1}{N}$$

- $\pi \in \mathbb{R}^2$ has (locally) only one degree of freedom
- i.e. π₁ and π₂ are (locally) linearly dependent.

A simple but problematic Periodic OCP - What is going on ?!?

Intuition: we impose 2 constraints via π , but if $x_1(0) = x_1(1)$, then (locally) $x_2(0) = x_2(1)$ (or vice-versa), i.e. we have **redundant constraints**. What can we do ?!?

$$\min_{\mathbf{x}(.),u(.)} \quad \frac{1}{2} \int_0^1 u(t)^2$$
s.t.
$$\dot{\mathbf{x}} = u \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \mathbf{x},$$

$$\mathbf{x}_1(1) - \mathbf{x}_1(0) = 0$$

Solution of the ODE reads as:

$$\mathbf{x}(1) = R(\theta) \mathbf{x}(0), \quad \theta = \int_0^1 u(t) dt$$

< ロ > < 同 > < 回 > < 回 > < 回

$$\min_{\mathbf{x}(\cdot),u(\cdot)} \quad \frac{1}{2} \int_0^1 u(t)^2 \\ \text{s.t.} \quad \dot{\mathbf{x}} = u \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \mathbf{x}, \\ \mathbf{x}_1(1) - \mathbf{x}_1(0) = 0$$

Solution of the ODE reads as:

$$\mathbf{x}(1) = R(\theta) \mathbf{x}(0), \quad \theta = \int_0^1 u(t) dt$$

 π -constraint reduced to 1st component:

$$\boldsymbol{\pi} = \left[egin{array}{cc} 1 & 0 \end{array}
ight] \left[R\left(heta
ight) - I
ight] \mathbf{x}_0 = \mathbf{0}$$

3

- 4 同 1 - 4 三 1 - 4 三

$$\min_{\mathbf{x}(\cdot),u(\cdot)} \quad \frac{1}{2} \int_0^1 u(t)^2 \\ \text{s.t.} \quad \dot{\mathbf{x}} = u \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \mathbf{x}, \\ \mathbf{x}_1(1) - \mathbf{x}_1(0) = 0$$

Solution of the ODE reads as:

$$\mathbf{x}(1) = R(\theta)\mathbf{x}(0), \quad \theta = \int_0^1 u(t) dt$$

 π -constraint reduced to 1st component:

$$oldsymbol{\pi} = \left[egin{array}{cc} 1 & 0 \end{array}
ight] \left[R\left(heta
ight) - I
ight] \mathbf{x}_0 = 0$$

and @ the solution:

$$\begin{aligned} \frac{\partial \pi}{\partial \mathbf{x}_0} &= \mathbf{0}, \\ \frac{\partial \pi}{\partial \mathbf{u}} &= \begin{bmatrix} \mathbf{1} & \mathbf{0} \end{bmatrix} \frac{\partial R}{\partial \theta} \mathbf{x}_0 \frac{\mathbf{1}}{N}^{\top} \end{aligned}$$

S. Gros

3

9 / 22

$$\min_{\mathbf{x}(.),u(.)} \quad \frac{1}{2} \int_0^1 u(t)^2$$
s.t.
$$\dot{\mathbf{x}} = u \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \mathbf{x},$$

$$\mathbf{x}_1(1) - \mathbf{x}_1(0) = 0$$

Solution of the ODE reads as:

$$\mathbf{x}(1) = R(\theta) \mathbf{x}(0), \quad \theta = \int_0^1 u(t) dt$$

 π -constraint reduced to 1st component:

$$\mathbf{\pi} = \left[egin{array}{cc} 1 & 0 \end{array}
ight] \left[R\left(heta
ight) - I
ight] \mathbf{x}_0 = 0$$

and @ the solution:

$$\begin{aligned} \frac{\partial \pi}{\partial \mathbf{x}_0} &= \mathbf{0}, \\ \frac{\partial \pi}{\partial \mathbf{u}} &= \begin{bmatrix} \mathbf{1} & \mathbf{0} \end{bmatrix} \frac{\partial R}{\partial \theta} \mathbf{x}_0 \frac{\mathbf{1}}{N}^{\top} \end{aligned}$$

$$\min_{\mathbf{x}(.),u(.)} \quad \frac{1}{2} \int_0^1 u(t)^2$$
s.t.
$$\dot{\mathbf{x}} = u \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \mathbf{x},$$

$$\mathbf{x}_1(1) - \mathbf{x}_1(0) = 0$$

Solution of the ODE reads as:

$$\mathbf{x}\left(1
ight)=R\left(heta
ight)\mathbf{x}\left(0
ight),\quad heta=\int_{0}^{1}u(t)\mathrm{d}t$$

 π -constraint reduced to 1st component:

$$oldsymbol{\pi} = \left[egin{array}{cc} 1 & 0 \end{array}
ight] \left[R\left(heta
ight) - I
ight] \mathbf{x}_0 = 0$$

and @ the solution:

$$\begin{aligned} \frac{\partial \pi}{\partial \mathbf{x}_0} &= \mathbf{0}, \\ \frac{\partial \pi}{\partial \mathbf{u}} &= \begin{bmatrix} \mathbf{1} & \mathbf{0} \end{bmatrix} \frac{\partial R}{\partial \theta} \mathbf{x}_0 \frac{\mathbf{1}}{N}^{\top} \end{aligned}$$

Note that:

$$\frac{\partial R}{\partial \theta} = R\left(\frac{\pi}{2}\right) = \begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix}$$

23rd of February, 2016

$$\min_{\mathbf{x}(.),u(.)} \quad \frac{1}{2} \int_0^1 u(t)^2$$
s.t.
$$\dot{\mathbf{x}} = u \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \mathbf{x},$$

$$\mathbf{x}_1(1) - \mathbf{x}_1(0) = 0$$

Solution of the ODE reads as:

$$\mathbf{x}(1) = R(\theta) \mathbf{x}(0), \quad \theta = \int_0^1 u(t) dt$$

 π -constraint reduced to 1st component:

$$\boldsymbol{\pi} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} R(\theta) - I \end{bmatrix} \mathbf{x}_0 = \mathbf{0}$$

and @ the solution:

S. Gros

$$\begin{aligned} \frac{\partial \pi}{\partial \mathbf{x}_0} &= \mathbf{0}, \\ \frac{\partial \pi}{\partial \mathbf{u}} &= \begin{bmatrix} \mathbf{1} & \mathbf{0} \end{bmatrix} \frac{\partial R}{\partial \theta} \mathbf{x}_0 \frac{\mathbf{1}}{N}^{\top} \end{aligned}$$

Note that:

$$\frac{\partial R}{\partial \theta} = R\left(\frac{\pi}{2}\right) = \begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix}$$

If $\mathbf{x}_0 = \begin{bmatrix} 1\\ 0 \end{bmatrix}$, then $\mathbf{x}_0^\top \frac{\partial R}{\partial \theta} \mathbf{x}_0 = 0$ and:

$$\frac{\partial \pi}{\partial \mathbf{u}} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \frac{1}{N}^{\top} = 0$$

bruary, 2016 9 / 22

$$\min_{\mathbf{x}(.),u(.)} \quad \frac{1}{2} \int_0^1 u(t)^2$$
s.t.
$$\dot{\mathbf{x}} = u \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \mathbf{x},$$

$$\mathbf{x}_1(1) - \mathbf{x}_1(0) = 0$$

Solution of the ODE reads as:

$$\mathbf{x}(1) = R(\theta) \mathbf{x}(0), \quad \theta = \int_0^1 u(t) dt$$

 π -constraint reduced to 1st component:

$$oldsymbol{\pi} = \left[egin{array}{cc} 1 & 0 \end{array}
ight] \left[R\left(heta
ight) - I
ight] \mathbf{x}_0 = 0$$

and @ the solution:

Note that:

$$\frac{\partial R}{\partial \theta} = R\left(\frac{\pi}{2}\right) = \begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix}$$

If $\mathbf{x}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, then $\mathbf{x}_0^\top \frac{\partial R}{\partial \theta} \mathbf{x}_0 = 0$ and:

S. Gros

$$\min_{\mathbf{x}(.),u(.)} \quad \frac{1}{2} \int_0^1 u(t)^2$$
s.t.
$$\dot{\mathbf{x}} = u \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \mathbf{x},$$

$$\mathbf{x}_1(1) - \mathbf{x}_1(0) = 0$$

Solution of the ODE reads as:

$$\mathbf{x}\left(1
ight)=R\left(heta
ight)\mathbf{x}\left(0
ight),\quad heta=\int_{0}^{1}u(t)\mathrm{d}t$$

 π -constraint reduced to 1st component:

$$oldsymbol{\pi} = \left[egin{array}{cc} 1 & 0 \end{array}
ight] \left[R\left(heta
ight) - I
ight] \mathbf{x}_0 = 0$$

and @ the solution:

$$\begin{aligned} \frac{\partial \pi}{\partial \mathbf{x}_0} &= \mathbf{0}, \\ \frac{\partial \pi}{\partial \mathbf{u}} &= \begin{bmatrix} \mathbf{1} & \mathbf{0} \end{bmatrix} \frac{\partial R}{\partial \theta} \mathbf{x}_0 \frac{\mathbf{1}}{N}^{\top} \end{aligned}$$

Arbitrary eliminations of redundant constraints in Periodic OCPs can yield "degenerate" situations, with $\frac{\partial \pi}{\partial w} = 0$!!

23rd of February, 2016

Outline

3 Invariants in Periodic Optimal Control

4 Rotations in Periodic Optimal Control

Optimal Control with DAEs, lecture 13

4 ⊕ ★ ₹ ≥ ★ ₹ ≥ ★ 23rd of February, 2016

10 / 22

What is the problem with this Periodic OCP ? Consider the π -OCP:

$$\min_{\mathbf{x}(.),u(.)} \quad \frac{1}{2} \int_0^1 u(t)^2$$
s.t.
$$\dot{\mathbf{x}} = u \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \mathbf{x},$$

$$\mathbf{x}(1) - \mathbf{x}(0) = 0$$

Invariant

The dynamics have a **1-dimensional invariant**. It reads as:

$$\mathcal{I}\left(\mathbf{x}\left(t
ight)
ight)=rac{1}{2}\mathbf{x}\left(t
ight)^{ op}\mathbf{x}\left(t
ight)= ext{constant}\quadorall\,\mathbf{x}(0),\,u(t)$$

indeed
$$\dot{\mathcal{I}} = u \mathbf{x}^{\top} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \mathbf{x} = 0, \qquad \forall u, \mathbf{x}$$

such that $\mathbf{x}(t) \in \mathbb{R}^2$ is forced to evolve on a 2 - 1 = 1-dimensional manifold.

- 2 periodic constraints are then redundant...
- Because the invariant is a manifold (not a linear space), a simple constraint elimination cannot guarantee a well-behaved OCP

$$\begin{split} \min_{\mathbf{u}(.),\mathbf{x}(.)} & \phi\left(\mathbf{x}\left(.\right),\mathbf{u}\left(.\right)\right) \\ \text{s.t.} & \mathbf{F}\left(\dot{\mathbf{x}}\left(t\right),\mathbf{x}\left(t\right),\mathbf{u}\left(t\right)\right) = \mathbf{0} \\ & \mathbf{x}\left(t_{\mathrm{f}}\right) - \mathbf{x}\left(\mathbf{0}\right) = \mathbf{0} \end{split}$$

-

Image: A matrix and a matrix

$$\begin{aligned} \min_{\mathbf{u}(.),\mathbf{x}(.)} & \phi\left(\mathbf{x}\left(.\right),\mathbf{u}\left(.\right)\right) \\ \text{s.t.} & \mathbf{F}\left(\dot{\mathbf{x}}\left(t\right),\mathbf{x}\left(t\right),\mathbf{u}\left(t\right)\right) = \mathbf{0} \\ & \mathbf{x}\left(t_{\mathrm{f}}\right) - \mathbf{x}\left(\mathbf{0}\right) = \mathbf{0} \end{aligned}$$

with a finite input parametrization \mathbf{u} , and using the integration function on $[0, t_f]$ (single-shooting):

$$\mathbf{x}\left(t_{\mathrm{f}}\right) = \mathbf{f}\left(\mathbf{x}_{0}, \mathbf{u}\right)$$

OCP can be written as NLP:

$$\begin{split} & \underset{\mathbf{u},\mathbf{x}_{0}}{\text{min}} \quad \Phi\left(\mathbf{x}_{0},\mathbf{u}\right) \\ & \text{s.t.} \quad \boldsymbol{\pi} = \mathbf{f}\left(\mathbf{x}_{0},\mathbf{u}\right) - \mathbf{x}_{0} = \mathbf{0} \end{split}$$

< A >

$$\begin{aligned} \min_{\mathbf{u}(.),\mathbf{x}(.)} & \phi\left(\mathbf{x}\left(.\right),\mathbf{u}\left(.\right)\right) \\ \text{s.t.} & \mathbf{F}\left(\dot{\mathbf{x}}\left(t\right),\mathbf{x}\left(t\right),\mathbf{u}\left(t\right)\right) = \mathbf{0} \\ & \mathbf{x}\left(t_{\mathrm{f}}\right) - \mathbf{x}\left(\mathbf{0}\right) = \mathbf{0} \end{aligned}$$

with a finite input parametrization u, and using the integration function on $[0, t_f]$ (single-shooting):

$$\mathbf{x}\left(t_{\mathrm{f}}\right) = \mathbf{f}\left(\mathbf{x}_{0}, \mathbf{u}\right)$$

OCP can be written as NLP:

$$\begin{split} & \underset{\mathbf{u},\mathbf{x}_{0}}{\text{min}} \quad \Phi\left(\mathbf{x}_{0},\mathbf{u}\right) \\ & \text{s.t.} \quad \boldsymbol{\pi} = \mathbf{f}\left(\mathbf{x}_{0},\mathbf{u}\right) - \mathbf{x}_{0} = \mathbf{0} \end{split}$$

Dynamics with invariants:

$$\mathcal{I}(\mathbf{x}(t)) = \mathcal{I}(\mathbf{x}(0)), \quad \forall t, \mathbf{u}, \mathbf{x}(0)$$

- 4 間 5 - 4 三 5 - 4 三 5

$$\begin{split} \min_{\mathbf{u}(.),\mathbf{x}(.)} & \phi\left(\mathbf{x}\left(.\right),\mathbf{u}\left(.\right)\right) \\ \text{s.t.} & \mathbf{F}\left(\dot{\mathbf{x}}\left(t\right),\mathbf{x}\left(t\right),\mathbf{u}\left(t\right)\right) = \mathbf{0} \\ & \mathbf{x}\left(t_{\mathrm{f}}\right) - \mathbf{x}\left(\mathbf{0}\right) = \mathbf{0} \end{split}$$

with a finite input parametrization \mathbf{u} , and using the integration function on $[0, t_f]$ (single-shooting):

$$\mathbf{x}\left(t_{\mathrm{f}}\right) = \mathbf{f}\left(\mathbf{x}_{0}, \mathbf{u}\right)$$

OCP can be written as NLP:

$$\begin{split} & \underset{\mathbf{u},\mathbf{x}_{0}}{\text{min}} \quad \Phi\left(\mathbf{x}_{0},\mathbf{u}\right) \\ & \text{s.t.} \quad \boldsymbol{\pi} = \mathbf{f}\left(\mathbf{x}_{0},\mathbf{u}\right) - \mathbf{x}_{0} = \mathbf{0} \end{split}$$

Dynamics with invariants:

$$\mathcal{I}\left(\mathbf{x}\left(t
ight)
ight)=\mathcal{I}\left(\mathbf{x}\left(0
ight)
ight),\quadorall t,\mathbf{u},\mathbf{x}\left(0
ight)$$

yields the property:

$$\mathcal{I}\left(\mathbf{f}\left(\mathbf{x}_{0},\mathbf{u}
ight)
ight)-\mathcal{I}\left(\mathbf{x}_{0}
ight)=\mathbf{0}, \hspace{1em} orall \mathbf{w}=\left[egin{array}{c} \mathbf{u} \ \mathbf{x}_{0} \end{array}
ight]$$

$$\begin{aligned} \min_{\mathbf{u}(.),\mathbf{x}(.)} & \phi\left(\mathbf{x}\left(.\right),\mathbf{u}\left(.\right)\right) \\ \text{s.t.} & \mathbf{F}\left(\dot{\mathbf{x}}\left(t\right),\mathbf{x}\left(t\right),\mathbf{u}\left(t\right)\right) = 0 \\ & \mathbf{x}\left(t_{\mathrm{f}}\right) - \mathbf{x}\left(0\right) = 0 \end{aligned}$$

with a finite input parametrization \mathbf{u} , and using the integration function on $[0, t_f]$ (single-shooting):

$$\mathbf{x}\left(t_{\mathrm{f}}\right) = \mathbf{f}\left(\mathbf{x}_{0}, \mathbf{u}\right)$$

OCP can be written as NLP:

$$\begin{split} & \underset{\mathbf{u},\mathbf{x}_{0}}{\text{min}} \quad \Phi\left(\mathbf{x}_{0},\mathbf{u}\right) \\ & \text{s.t.} \quad \boldsymbol{\pi} = \mathbf{f}\left(\mathbf{x}_{0},\mathbf{u}\right) - \mathbf{x}_{0} = \mathbf{0} \end{split}$$

Dynamics with invariants:

$$\mathcal{I}\left(\mathbf{x}\left(t
ight)
ight)=\mathcal{I}\left(\mathbf{x}\left(0
ight)
ight),\quadorall t,\mathbf{u},\mathbf{x}\left(0
ight)$$

yields the property:

$$\mathcal{I}\left(\mathbf{f}\left(\mathbf{x}_{0},\mathbf{u}
ight)
ight)-\mathcal{I}\left(\mathbf{x}_{0}
ight)=\mathbf{0}, \hspace{1em} orall \mathbf{w}=\left[egin{array}{c} \mathbf{u} \ \mathbf{x}_{0} \end{array}
ight]$$

hence:

$$\begin{split} \nabla_{\mathbf{w}} \left[\mathcal{I} \left(\mathbf{f} \left(\mathbf{x}_{0}, \mathbf{u} \right) \right) - \mathcal{I} \left(\mathbf{x}_{0} \right) \right] = \\ \left[\nabla_{\mathbf{w}} \mathbf{f} \left(\mathbf{x}_{0}, \mathbf{u} \right) - \nabla_{\mathbf{w}} \mathbf{x}_{0} \right] \nabla_{\mathbf{x}_{0}} \mathcal{I} \left(\mathbf{x}_{0} \right) = \mathbf{0} \end{split}$$

$$\begin{split} \min_{\mathbf{u}(.),\mathbf{x}(.)} & \phi\left(\mathbf{x}\left(.\right),\mathbf{u}\left(.\right)\right) \\ \text{s.t.} & \mathbf{F}\left(\dot{\mathbf{x}}\left(t\right),\mathbf{x}\left(t\right),\mathbf{u}\left(t\right)\right) = \mathbf{0} \\ & \mathbf{x}\left(t_{\mathrm{f}}\right) - \mathbf{x}\left(\mathbf{0}\right) = \mathbf{0} \end{split}$$

with a finite input parametrization \mathbf{u} , and using the integration function on $[0, t_f]$ (single-shooting):

$$\mathbf{x}\left(t_{\mathrm{f}}\right) = \mathbf{f}\left(\mathbf{x}_{0}, \mathbf{u}\right)$$

OCP can be written as NLP:

$$\begin{split} & \underset{\mathbf{u},\mathbf{x}_{0}}{\text{min}} \quad \Phi\left(\mathbf{x}_{0},\mathbf{u}\right) \\ & \text{s.t.} \quad \boldsymbol{\pi}=\mathbf{f}\left(\mathbf{x}_{0},\mathbf{u}\right)-\mathbf{x}_{0}=\mathbf{0} \end{split}$$

Dynamics with invariants:

$$\mathcal{I}(\mathbf{x}(t)) = \mathcal{I}(\mathbf{x}(0)), \quad \forall t, \mathbf{u}, \mathbf{x}(0)$$

yields the property:

$$\mathcal{I}\left(\mathbf{f}\left(\mathbf{x}_{0},\mathbf{u}
ight)
ight)-\mathcal{I}\left(\mathbf{x}_{0}
ight)=\mathbf{0}, \hspace{1em} orall \mathbf{w}=\left[egin{array}{c} \mathbf{u} \ \mathbf{x}_{0} \end{array}
ight]$$

hence:

yields:

$$\begin{split} \nabla_{\mathbf{w}} \left[\mathcal{I} \left(\mathbf{f} \left(\mathbf{x}_{0}, \mathbf{u} \right) \right) - \mathcal{I} \left(\mathbf{x}_{0} \right) \right] = \\ \underbrace{ \left(\nabla_{\mathbf{w}} \mathbf{f} \left(\mathbf{x}_{0}, \mathbf{u} \right) - \nabla_{\mathbf{w}} \mathbf{x}_{0} \right)}_{\nabla_{\mathbf{w}} \pi} \nabla_{\mathbf{x}_{0}} \mathcal{I} \left(\mathbf{x}_{0} \right) = \mathbf{0} \end{split}$$

$$\nabla_{\mathbf{w}} \pi \underbrace{\nabla_{\mathbf{x}_0} \mathcal{I}(\mathbf{x}_0)}_{\text{null space}} = \mathbf{0}$$

I.e. LICQ deficiency !!

$$\begin{split} \min_{\mathbf{u}(.),\mathbf{x}(.)} & \phi\left(\mathbf{x}\left(.\right),\mathbf{u}\left(.\right)\right) \\ \text{s.t.} & \mathbf{F}\left(\dot{\mathbf{x}}\left(t\right),\mathbf{x}\left(t\right),\mathbf{u}\left(t\right)\right) = \mathbf{0} \\ & \mathbf{x}\left(t_{\mathrm{f}}\right) - \mathbf{x}\left(\mathbf{0}\right) = \mathbf{0} \end{split}$$

with a finite input parametrization \mathbf{u} , and using the integration function on $[0, t_f]$ (single-shooting):

$$\mathbf{x}\left(t_{\mathrm{f}}\right) = \mathbf{f}\left(\mathbf{x}_{0}, \mathbf{u}\right)$$

OCP can be written as NI P:

$$\begin{split} & \underset{\mathbf{u},\mathbf{x}_{0}}{\text{min}} \quad \Phi\left(\mathbf{x}_{0},\mathbf{u}\right) \\ & \text{s.t.} \quad \boldsymbol{\pi} = \mathbf{f}\left(\mathbf{x}_{0},\mathbf{u}\right) - \mathbf{x}_{0} = \mathbf{0} \end{split}$$

Invariants in the dynamics yield an LICQ deficiency in the periodicity constraints (also for ODEs) !!

Dynamics with invariants:

$$\mathcal{I}\left(\mathbf{x}\left(t
ight)
ight)=\mathcal{I}\left(\mathbf{x}\left(0
ight)
ight),\quadorall t,\mathbf{u},\mathbf{x}\left(0
ight)$$

yields the property:

$$\mathcal{I}\left(\mathbf{f}\left(\mathbf{x}_{0},\mathbf{u}
ight)
ight)-\mathcal{I}\left(\mathbf{x}_{0}
ight)=\mathbf{0}, \hspace{1em} orall \mathbf{w}=\left[egin{array}{c} \mathbf{u} \ \mathbf{x}_{0} \end{array}
ight]$$

hence:

vields:

$$\begin{split} \nabla_{\mathbf{w}} \left[\mathcal{I} \left(\mathbf{f} \left(\mathbf{x}_{0}, \mathbf{u} \right) \right) - \mathcal{I} \left(\mathbf{x}_{0} \right) \right] = \\ \underbrace{ \left(\nabla_{\mathbf{w}} \mathbf{f} \left(\mathbf{x}_{0}, \mathbf{u} \right) - \nabla_{\mathbf{w}} \mathbf{x}_{0} \right)}_{\nabla_{\mathbf{w}} \pi} \nabla_{\mathbf{x}_{0}} \mathcal{I} \left(\mathbf{x}_{0} \right) = \mathbf{0} \end{split}$$

$$\nabla_{\mathbf{w}} \pi \underbrace{\nabla_{\mathbf{x}_0} \mathcal{I}(\mathbf{x}_0)}_{\text{null space}} = \mathbf{0}$$

I.e. LICQ deficiency !!

Periodic OCP:

$$\begin{aligned} \min_{\mathbf{x}, \mathbf{z}, \mathbf{u}} & \phi\left(\mathbf{x}\left(.\right), \mathbf{u}\left(.\right)\right) \\ \text{s.t.} & \mathbf{F}\left(\dot{\mathbf{x}}, \mathbf{x}, \mathbf{z}, \mathbf{u}\right) = \mathbf{0} \\ & \mathbf{x}\left(t_{\text{f}}\right) - \mathbf{x}\left(\mathbf{0}\right) = \mathbf{0} \end{aligned}$$

where dynamics ${\bf F}$ have invariant ${\cal I}.$

-

Image: A matched block of the second seco

э

Periodic OCP with $\mathbf{x}_0 \in \mathbb{R}^n$

 $\phi(\mathbf{x}, \mathbf{u})$ $\min_{\mathbf{x}_0,\mathbf{u}}$ s.t. $f(x_0, u) - x_0 = 0$

where integrator **f** over $[0, t_f]$ preserves \mathcal{I} .

- 31

Periodic OCP with $\mathbf{x}_0 \in \mathbb{R}^n$

where integrator f over $[0, t_f]$ preserves \mathcal{I} .

Build basis of the null space of $\nabla \mathcal{I}(\mathbf{x}_0)$:

$$\mathbf{Z}^{\top}\nabla\mathcal{I}\left(\mathbf{x}_{0}\right)=\mathbf{0}$$

Note: *Z* is $n \times n - m$ with $\mathcal{I} \in \mathbb{R}^m$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Periodic OCP with $\mathbf{x}_0 \in \mathbb{R}^n$ $\phi(\mathbf{x}, \mathbf{u})$ $\min_{\mathbf{x}_0,\mathbf{u}}$ s.t. $f(x_0, u) - x_0 = 0$

where integrator **f** over $[0, t_f]$ preserves \mathcal{I} .

Build basis of the null space of $\nabla \mathcal{I}(\mathbf{x}_0)$:

 $\mathbf{Z}^{\top} \nabla \mathcal{I} (\mathbf{x}_0) = \mathbf{0}$

Note: \mathbb{Z} is $n \times n - m$ with $\mathcal{I} \in \mathbb{R}^m$

Rewrite OCP as (NOCP):

min $\Phi(\mathbf{x}_0, \mathbf{u})$ \mathbf{x}_0, \mathbf{u} s.t. $\mathbf{Z}^{\top} (\mathbf{f} (\mathbf{x}_0, \mathbf{u}) - \mathbf{x}_0) = \mathbf{0}$

13 / 22

Periodic OCP with $\mathbf{x}_0 \in \mathbb{R}^n$ $\begin{array}{l} \min_{\mathbf{x}_0,\mathbf{u}} \quad \phi(\mathbf{x},\mathbf{u}) \\ \text{s.t.} \quad \mathbf{f}(\mathbf{x}_0,\mathbf{u}) - \mathbf{x}_0 = \mathbf{0} \end{array}$

where integrator f over $[0, t_f]$ preserves \mathcal{I} .

Build basis of the null space of $\nabla \mathcal{I}(\mathbf{x}_0)$:

 $\mathbf{Z}^{\top} \nabla \mathcal{I}(\mathbf{x}_0) = \mathbf{0}$

Note: *Z* is $n \times n - m$ with $\mathcal{I} \in \mathbb{R}^m$

Rewrite OCP as (NOCP):

$$\begin{split} \min_{\mathbf{x}_0,\mathbf{u},Z} & \Phi\left(\mathbf{x}_0,\mathbf{u}\right) \\ \text{s.t.} & Z^{\top}\left(\mathbf{f}\left(\mathbf{x}_0,\mathbf{u}\right)-\mathbf{x}_0\right) = \mathbf{0} \end{split}$$

• Null-space Z is now function of \mathbf{x}_0 !!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Periodic OCP with $\mathbf{x}_0 \in \mathbb{R}^n$ $\begin{array}{l} \min_{\mathbf{x}_0,\mathbf{u}} \quad \phi(\mathbf{x},\mathbf{u}) \\ \text{s.t.} \quad \mathbf{f}(\mathbf{x}_0,\mathbf{u}) - \mathbf{x}_0 = \mathbf{0} \end{array}$

where integrator f over $[0, t_f]$ preserves \mathcal{I} .

Build basis of the null space of $\nabla \mathcal{I}(\mathbf{x}_0)$:

$$\mathbf{Z}^{\top} \nabla \mathcal{I}(\mathbf{x}_0) = \mathbf{0}$$

Note: *Z* is $n \times n - m$ with $\mathcal{I} \in \mathbb{R}^m$

Rewrite OCP as (NOCP):

$$\begin{split} \min_{\mathbf{x}_0,\mathbf{u},Z} & \Phi\left(\mathbf{x}_0,\mathbf{u}\right) \\ \text{s.t.} & Z^{\top}\left(\mathbf{f}\left(\mathbf{x}_0,\mathbf{u}\right)-\mathbf{x}_0\right) = \mathbf{0} \end{split}$$

- Null-space Z is now function of x₀ !!
- Can be hard to compute explicitly

Periodic OCP with $\mathbf{x}_0 \in \mathbb{R}^n$ $\begin{array}{l} \min_{\mathbf{x}_0,\mathbf{u}} \quad \phi(\mathbf{x},\mathbf{u}) \\ \text{s.t.} \quad \mathbf{f}(\mathbf{x}_0,\mathbf{u}) - \mathbf{x}_0 = \mathbf{0} \end{array}$

where integrator f over $[0, t_f]$ preserves \mathcal{I} .

Build basis of the null space of $\nabla \mathcal{I}(\mathbf{x}_0)$:

 $\mathbf{Z}^{\top} \nabla \mathcal{I}(\mathbf{x}_0) = \mathbf{0}$

Note: *Z* is $n \times n - m$ with $\mathcal{I} \in \mathbb{R}^m$

Rewrite OCP as (NOCP):

$$\begin{split} \min_{\mathbf{x}_0, \mathbf{u}, Z} & \Phi\left(\mathbf{x}_0, \mathbf{u}\right) \\ \text{s.t.} & Z^{\top}\left(\mathbf{f}\left(\mathbf{x}_0, \mathbf{u}\right) - \mathbf{x}_0\right) = 0 \\ & \frac{\partial \mathcal{I}}{\partial \mathbf{x}_0} Z = 0 \end{split}$$

- Null-space Z is now function of x₀ !!
- Can be hard to compute explicitly
- Can be done implicitly in the NLP

イロト イポト イヨト イヨト 二日

Periodic OCP with $\mathbf{x}_0 \in \mathbb{R}^n$ $\begin{array}{l} \min_{\mathbf{x}_0,\mathbf{u}} \quad \phi(\mathbf{x},\mathbf{u}) \\ \text{s.t.} \quad \mathbf{f}(\mathbf{x}_0,\mathbf{u}) - \mathbf{x}_0 = \mathbf{0} \end{array}$

where integrator f over $[0, t_f]$ preserves \mathcal{I} .

Build basis of the null space of $\nabla \mathcal{I}(\mathbf{x}_0)$:

$$\mathbf{Z}^{\top} \nabla \mathcal{I}(\mathbf{x}_0) = \mathbf{0}$$

Note: *Z* is $n \times n - m$ with $\mathcal{I} \in \mathbb{R}^m$

Rewrite OCP as (NOCP):

$$\begin{split} \min_{\mathbf{x}_0, \mathbf{u}, Z} & \Phi\left(\mathbf{x}_0, \mathbf{u}\right) \\ \text{s.t.} & Z^{\top}\left(\mathbf{f}\left(\mathbf{x}_0, \mathbf{u}\right) - \mathbf{x}_0\right) = 0 \\ & \frac{\partial \mathcal{I}}{\partial \mathbf{x}_0} Z = 0 \end{split}$$

- Null-space Z is now function of x₀ !!
- Can be hard to compute explicitly
- Can be done implicitly in the NLP
- Note: Z is not unique !!

Periodic OCP with $\mathbf{x}_0 \in \mathbb{R}^n$ $\begin{array}{l} \min_{\mathbf{x}_0,\mathbf{u}} \quad \phi(\mathbf{x},\mathbf{u}) \\ \text{s.t.} \quad \mathbf{f}(\mathbf{x}_0,\mathbf{u}) - \mathbf{x}_0 = \mathbf{0} \end{array}$

where integrator f over $[0, t_f]$ preserves \mathcal{I} .

Build basis of the null space of $\nabla \mathcal{I}(\mathbf{x}_0)$:

$$\mathbf{Z}^{\top}\nabla\mathcal{I}\left(\mathbf{x}_{0}\right)=\mathbf{0}$$

Note: *Z* is $n \times n - m$ with $\mathcal{I} \in \mathbb{R}^m$

Rewrite OCP as (NOCP):

$$\min_{\mathbf{x}_0, \mathbf{u}, Z} \quad \Phi(\mathbf{x}_0, \mathbf{u})$$
s.t.
$$Z^{\top} \left(\mathbf{f} \left(\mathbf{x}_0, \mathbf{u} \right) - \mathbf{x}_0 \right) = 0$$

$$\frac{\partial \mathcal{I}}{\partial \mathbf{x}_0} Z = 0, \quad Z^{\top} Z = I$$

- Null-space Z is now function of x₀ !!
- Can be hard to compute explicitly
- Can be done implicitly in the NLP

イロト イヨト イモト イモト

• Note: Z is not unique !!

Periodic OCP with $\mathbf{x}_0 \in \mathbb{R}^n$ $\min_{\mathbf{x}_0, \mathbf{u}} \quad \phi(\mathbf{x}, \mathbf{u})$ s.t. $\mathbf{f}(\mathbf{x}_0, \mathbf{u}) - \mathbf{x}_0 = \mathbf{0}$

where integrator f over $[0, t_f]$ preserves \mathcal{I} .

Build basis of the null space of $\nabla \mathcal{I}(\mathbf{x}_0)$:

$$\mathbf{Z}^{\top}\nabla\mathcal{I}\left(\mathbf{x}_{0}\right)=\mathbf{0}$$

Note: \mathbb{Z} is $n \times n - m$ with $\mathcal{I} \in \mathbb{R}^m$

Rewrite OCP as (NOCP):

$$\min_{\mathbf{x}_0, \mathbf{u}, Z} \quad \Phi(\mathbf{x}_0, \mathbf{u})$$
s.t.
$$Z^{\top} \left(\mathbf{f} \left(\mathbf{x}_0, \mathbf{u} \right) - \mathbf{x}_0 \right) = 0$$

$$\frac{\partial \mathcal{I}}{\partial \mathbf{x}_0} Z = 0, \quad Z^{\top} Z = I$$

Periodic OCP with $\mathbf{x}_0 \in \mathbb{R}^n$ $\phi(\mathbf{x}, \mathbf{u})$ $\min_{\mathbf{x}_0,\mathbf{u}}$ s.t. $f(x_0, u) - x_0 = 0$

where integrator **f** over $[0, t_f]$ preserves \mathcal{I} .

Build basis of the null space of $\nabla \mathcal{I}(\mathbf{x}_0)$:

$$\mathbf{Z}^{\top}\nabla\mathcal{I}\left(\mathbf{x}_{0}\right)=\mathbf{0}$$

Note: **Z** is $n \times n - m$ with $\mathcal{I} \in \mathbb{R}^m$

Rewrite OCP as (NOCP):

$$\min_{\mathbf{x}_0, \mathbf{u}, Z} \quad \Phi(\mathbf{x}_0, \mathbf{u})$$
s.t.
$$Z^{\top} \left(\mathbf{f} \left(\mathbf{x}_0, \mathbf{u} \right) - \mathbf{x}_0 \right) = 0$$

$$\frac{\partial \mathcal{I}}{\partial \mathbf{x}_0} Z = 0, \quad Z^{\top} Z = I$$

Periodic OCP with $\mathbf{x}_0 \in \mathbb{R}^n$ $\begin{array}{l} \min_{\mathbf{x}_0,\mathbf{u}} \quad \phi(\mathbf{x},\mathbf{u}) \\ \text{s.t.} \quad \mathbf{f}(\mathbf{x}_0,\mathbf{u}) - \mathbf{x}_0 = \mathbf{0} \end{array}$

where integrator f over $[0, t_f]$ preserves \mathcal{I} .

Build basis of the null space of $\nabla \mathcal{I}(\mathbf{x}_0)$:

 $\mathbf{Z}^{\top} \nabla \mathcal{I}(\mathbf{x}_0) = \mathbf{0}$

Note: *Z* is $n \times n - m$ with $\mathcal{I} \in \mathbb{R}^m$

NOCP has LICQ (under some assumptions). Projection creates "artificial" feasible solutions !

Rewrite OCP as (NOCP):

$$\min_{\mathbf{x}_0, \mathbf{u}, Z} \quad \Phi(\mathbf{x}_0, \mathbf{u})$$
s.t. $Z^{\top} (\mathbf{f} (\mathbf{x}_0, \mathbf{u}) - \mathbf{x}_0) = 0$
 $\frac{\partial \mathcal{I}}{\partial \mathbf{x}_0} Z = 0, \quad Z^{\top} Z = I$

Periodic OCP with consistency

$$\begin{array}{l} \min_{\mathbf{u}(.),\mathbf{x}(.),\mathbf{z}(.)} & \phi\left(\mathbf{x}\left(.\right),\mathbf{u}\left(.\right)\right) \\ \text{s.t.} & \mathbf{F}\left(\dot{\mathbf{x}}\left(t\right),\mathbf{x}\left(t\right),\mathbf{z}\left(t\right),\mathbf{u}\left(t\right)\right) = 0 \\ & \mathbf{x}\left(t_{\mathrm{f}}\right) - \mathbf{x}\left(0\right) = 0 \\ & \mathbf{C}\left(\mathbf{x}\left(0\right)\right) = 0 \end{array}$$

where \mathbf{c} : $\mathbb{R}^n \mapsto \mathbb{R}^m$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Periodic OCP with consistency

Consistency: for any u,

if
$$\mathbf{C}(\mathbf{x}(0)) = 0$$
 then $\mathbf{C}(\mathbf{x}(t_f)) = 0$

$$\begin{aligned} \min_{\mathbf{u}(.),\mathbf{x}(.),\mathbf{z}(.)} & \phi\left(\mathbf{x}\left(.\right),\mathbf{u}\left(.\right)\right) \\ \text{s.t.} & \mathbf{F}\left(\dot{\mathbf{x}}\left(t\right),\mathbf{x}\left(t\right),\mathbf{z}\left(t\right),\mathbf{u}\left(t\right)\right) = 0 \\ & \mathbf{x}\left(t_{\mathrm{f}}\right) - \mathbf{x}\left(0\right) = 0 \\ & \mathbf{C}\left(\mathbf{x}\left(0\right)\right) = 0 \end{aligned}$$

where \mathbf{c} : $\mathbb{R}^n \mapsto \mathbb{R}^m$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Periodic OCP with consistency

$$\begin{split} \min_{\mathbf{u}(.),\mathbf{x}(.),\mathbf{z}(.)} & \phi\left(\mathbf{x}\left(.\right),\mathbf{u}\left(.\right)\right) \\ \text{s.t.} & \mathbf{F}\left(\dot{\mathbf{x}}\left(t\right),\mathbf{x}\left(t\right),\mathbf{z}\left(t\right),\mathbf{u}\left(t\right)\right) = \mathbf{0} \\ & \mathbf{x}\left(t_{\mathrm{f}}\right) - \mathbf{x}\left(\mathbf{0}\right) = \mathbf{0} \\ & \mathbf{C}\left(\mathbf{x}\left(\mathbf{0}\right)\right) = \mathbf{0} \end{split}$$

where $\mathbf{c} : \mathbb{R}^n \mapsto \mathbb{R}^m$. With a finite input parametrization \mathbf{u} , can be writen as (single-shooting):

$$\begin{split} & \underset{\mathbf{u},\mathbf{x}_{0}}{\text{min}} \quad \Phi\left(\mathbf{x}_{0},\mathbf{u}\right) \\ & \text{s.t.} \quad \mathbf{g} = \left[\begin{array}{c} \mathbf{f}\left(\mathbf{x}_{0},\mathbf{u}\right) - \mathbf{x}_{0} \\ & \mathbf{C}\left(\mathbf{x}_{0}\right) \end{array} \right] = \mathbf{0} \end{split}$$

using the integration function on $[0, t_f]$:

$$\mathbf{x}(t_{\mathrm{f}}) = \mathbf{f}(\mathbf{x}_{0}, \mathbf{u})$$

Consistency: for any $\mathbf{u},$

if
$$\mathbf{C}(\mathbf{x}(0)) = 0$$
 then $\mathbf{C}(\mathbf{x}(t_{f})) = 0$

Periodic OCP with consistency

$$\begin{aligned} \min_{\mathbf{u}(.),\mathbf{x}(.),\mathbf{z}(.)} & \phi\left(\mathbf{x}\left(.\right),\mathbf{u}\left(.\right)\right) \\ \text{s.t.} & \mathbf{F}\left(\dot{\mathbf{x}}\left(t\right),\mathbf{x}\left(t\right),\mathbf{z}\left(t\right),\mathbf{u}\left(t\right)\right) = 0 \\ & \mathbf{x}\left(t_{\mathrm{f}}\right) - \mathbf{x}\left(0\right) = 0 \\ & \mathbf{C}\left(\mathbf{x}\left(0\right)\right) = 0 \end{aligned}$$

where $\mathbf{c} : \mathbb{R}^n \mapsto \mathbb{R}^m$. With a finite input parametrization \mathbf{u} , can be writen as (single-shooting):

$$\begin{split} & \underset{\mathbf{u},\mathbf{x}_{0}}{\text{min}} \quad \Phi\left(\mathbf{x}_{0},\mathbf{u}\right) \\ & \text{s.t.} \quad \mathbf{g} = \left[\begin{array}{c} \mathbf{f}\left(\mathbf{x}_{0},\mathbf{u}\right) - \mathbf{x}_{0} \\ & \mathbf{C}\left(\mathbf{x}_{0}\right) \end{array} \right] = \mathbf{0} \end{split}$$

using the integration function on $[0, t_f]$:

$$\mathbf{x}(t_{\mathrm{f}}) = \mathbf{f}(\mathbf{x}_{0}, \mathbf{u})$$

Consistency: for any $\mathbf{u},$

$$\label{eq:if_constraint} \textbf{if} \quad \textbf{C}\left(\textbf{x}\left(0\right)\right) = 0 \quad \text{then} \quad \textbf{C}\left(\textbf{x}\left(t_{\text{f}}\right)\right) = 0$$

 $\begin{aligned} & \text{Observe that} \ \forall \ \mathbf{u} \\ & \mathbf{C}\left(\mathbf{x}_{0}\right) = \mathbf{0} \ \Rightarrow \ \mathbf{C}\left(\mathbf{f}\left(\mathbf{x}_{0},\mathbf{u}\right)\right) = \mathbf{0} \end{aligned}$

Periodic OCP with consistency

$$\begin{aligned} \min_{\mathbf{u}(.),\mathbf{x}(.),\mathbf{z}(.)} & \phi\left(\mathbf{x}\left(.\right),\mathbf{u}\left(.\right)\right) \\ \text{s.t.} & \mathbf{F}\left(\dot{\mathbf{x}}\left(t\right),\mathbf{x}\left(t\right),\mathbf{z}\left(t\right),\mathbf{u}\left(t\right)\right) = 0 \\ & \mathbf{x}\left(t_{\mathrm{f}}\right) - \mathbf{x}\left(0\right) = 0 \\ & \mathbf{C}\left(\mathbf{x}\left(0\right)\right) = 0 \end{aligned}$$

where $\mathbf{c} : \mathbb{R}^n \mapsto \mathbb{R}^m$. With a finite input parametrization \mathbf{u} , can be writen as (single-shooting):

$$\begin{split} & \min_{\mathbf{u},\mathbf{x}_{0}} \quad \Phi\left(\mathbf{x}_{0},\mathbf{u}\right) \\ & \mathrm{s.t.} \quad \mathbf{g} = \left[\begin{array}{c} \mathbf{f}\left(\mathbf{x}_{0},\mathbf{u}\right) - \mathbf{x}_{0} \\ \mathbf{C}\left(\mathbf{x}_{0}\right) \end{array} \right] = \mathbf{0} \end{split}$$

using the integration function on $[0, t_f]$:

$$\mathbf{x}(t_{\mathrm{f}}) = \mathbf{f}(\mathbf{x}_{0}, \mathbf{u})$$

Consistency: for any $\mathbf{u},$

 $\label{eq:if_constraint} \begin{array}{ll} \text{if} \quad \mathbf{C}\left(\mathbf{x}\left(0\right)\right) = 0 \quad \text{then} \quad \mathbf{C}\left(\mathbf{x}\left(t_{\mathrm{f}}\right)\right) = 0 \end{array}$

 $\begin{aligned} & \text{Observe that} \ \forall \ \mathbf{u} \\ & \mathbf{C}\left(\mathbf{x}_{0}\right) = \mathbf{0} \ \Rightarrow \ \mathbf{C}\left(\mathbf{f}\left(\mathbf{x}_{0},\mathbf{u}\right)\right) = \mathbf{0} \end{aligned}$

hence $\nabla_{\mathbf{u}} \mathbf{f} \nabla \mathbf{C} = \mathbf{0}$.
Consistency in Periodic Optimal Control

Periodic OCP with consistency

$$\begin{array}{l} \min_{\mathbf{u}(.),\mathbf{x}(.),\mathbf{z}(.)} & \phi\left(\mathbf{x}\left(.\right),\mathbf{u}\left(.\right)\right) \\ \text{s.t.} & \mathbf{F}\left(\dot{\mathbf{x}}\left(t\right),\mathbf{x}\left(t\right),\mathbf{z}\left(t\right),\mathbf{u}\left(t\right)\right) = 0 \\ & \mathbf{x}\left(t_{\mathrm{f}}\right) - \mathbf{x}\left(0\right) = 0 \\ & \mathbf{C}\left(\mathbf{x}\left(0\right)\right) = 0 \end{array}$$

where $\mathbf{c} : \mathbb{R}^n \mapsto \mathbb{R}^m$. With a finite input parametrization \mathbf{u} , can be writen as (single-shooting):

using the integration function on $[0, t_f]$:

$$\mathbf{x}(t_{\mathrm{f}}) = \mathbf{f}(\mathbf{x}_{0}, \mathbf{u})$$

Consistency: for any $\mathbf{u},$

 $\label{eq:constraint} \textbf{if} \quad \mathbf{C}\left(\mathbf{x}\left(0\right)\right) = 0 \quad \text{then} \quad \mathbf{C}\left(\mathbf{x}\left(t_{\mathrm{f}}\right)\right) = 0$

 $\begin{aligned} & \text{Observe that} \ \forall \ \mathbf{u} \\ & \mathbf{C}\left(\mathbf{x}_{0}\right) = \mathbf{0} \ \Rightarrow \ \mathbf{C}\left(\mathbf{f}\left(\mathbf{x}_{0},\mathbf{u}\right)\right) = \mathbf{0} \end{aligned}$

hence $\nabla_{\mathbf{u}} \mathbf{f} \nabla \mathbf{C} = \mathbf{0}$.

Moreover

 $\nabla_{\mathbf{x}_{0}}\mathbf{C}\left(\mathbf{f}\left(\mathbf{x}_{0},\mathbf{u}\right)\right)=\nabla_{\mathbf{x}_{0}}\mathbf{f}\,\nabla\mathbf{C}\in\mathrm{span}\left\{\nabla\mathbf{C}\right\}$

(see Proposition this morning)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Consistency in Periodic Optimal Control

Periodic OCP with consistency

$$\begin{array}{l} \min_{\mathbf{u}(.),\mathbf{x}(.),\mathbf{z}(.)} & \phi\left(\mathbf{x}\left(.\right),\mathbf{u}\left(.\right)\right) \\ \text{s.t.} & \mathbf{F}\left(\dot{\mathbf{x}}\left(t\right),\mathbf{x}\left(t\right),\mathbf{z}\left(t\right),\mathbf{u}\left(t\right)\right) = 0 \\ & \mathbf{x}\left(t_{\mathrm{f}}\right) - \mathbf{x}\left(0\right) = 0 \\ & \mathbf{C}\left(\mathbf{x}\left(0\right)\right) = 0 \end{array}$$

where $\mathbf{c} : \mathbb{R}^n \mapsto \mathbb{R}^m$. With a finite input parametrization \mathbf{u} , can be writen as (single-shooting):

using the integration function on $[0, t_f]$:

$$\mathbf{x}(t_{\mathrm{f}}) = \mathbf{f}(\mathbf{x}_{0}, \mathbf{u})$$

Consistency: for any $\mathbf{u},$

 $\text{if} \quad \mathbf{C}\left(\mathbf{x}\left(0\right)\right)=0 \quad \text{then} \quad \mathbf{C}\left(\mathbf{x}\left(t_{\mathrm{f}}\right)\right)=0 \\$

$$\begin{aligned} & \text{Observe that } \forall \, \mathbf{u} \\ & \mathbf{C}\left(\mathbf{x}_{0}\right) = \mathbf{0} \; \Rightarrow \; \mathbf{C}\left(\mathbf{f}\left(\mathbf{x}_{0},\mathbf{u}\right)\right) = \mathbf{0} \end{aligned}$$

hence $\nabla_{\mathbf{u}} \mathbf{f} \nabla \mathbf{C} = \mathbf{0}$.

Moreover

 $\nabla_{\mathbf{x}_{0}}\mathbf{C}\left(\mathbf{f}\left(\mathbf{x}_{0},\mathbf{u}\right)\right)=\nabla_{\mathbf{x}_{0}}\mathbf{f}\,\nabla\mathbf{C}\in\mathrm{span}\left\{\nabla\mathbf{C}\right\}$

(see Proposition this morning) i.e.

$$\nabla_{\mathbf{x}_0} \mathbf{f} \nabla \mathbf{C} = \nabla \mathbf{C} M$$

for some $M \in \mathbb{R}^{m \times m}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Consistency in Periodic Optimal Control

Periodic OCP with consistency

$$\begin{array}{l} \min_{\mathbf{u}(.),\mathbf{x}(.),\mathbf{z}(.)} & \phi\left(\mathbf{x}\left(.\right),\mathbf{u}\left(.\right)\right) \\ \text{s.t.} & \mathbf{F}\left(\dot{\mathbf{x}}\left(t\right),\mathbf{x}\left(t\right),\mathbf{z}\left(t\right),\mathbf{u}\left(t\right)\right) = 0 \\ & \mathbf{x}\left(t_{\mathrm{f}}\right) - \mathbf{x}\left(0\right) = 0 \\ & \mathbf{C}\left(\mathbf{x}\left(0\right)\right) = 0 \end{array}$$

where $\mathbf{c} : \mathbb{R}^n \mapsto \mathbb{R}^m$. With a finite input parametrization \mathbf{u} , can be writen as (single-shooting):

using the integration function on $[0, t_f]$:

$$\mathbf{x}(t_{\mathrm{f}}) = \mathbf{f}(\mathbf{x}_{0}, \mathbf{u})$$

Consistency: for any $\mathbf{u},$

 $\label{eq:if_constraint} \textbf{if} \quad \textbf{C}\left(\mathbf{x}\left(0\right)\right) = 0 \quad \text{then} \quad \textbf{C}\left(\mathbf{x}\left(t_{\mathrm{f}}\right)\right) = 0$

$$\begin{aligned} & \text{Observe that } \forall \, \mathbf{u} \\ & \mathbf{C}\left(\mathbf{x}_{0}\right) = \mathbf{0} \; \Rightarrow \; \mathbf{C}\left(\mathbf{f}\left(\mathbf{x}_{0},\mathbf{u}\right)\right) = \mathbf{0} \end{aligned}$$

hence $\nabla_{\mathbf{u}} \mathbf{f} \nabla \mathbf{C} = \mathbf{0}$.

Moreover

 $\nabla_{\mathbf{x}_{0}}\mathbf{C}\left(\mathbf{f}\left(\mathbf{x}_{0},\mathbf{u}\right)\right)=\nabla_{\mathbf{x}_{0}}\mathbf{f}\,\nabla\mathbf{C}\in\mathrm{span}\left\{\nabla\mathbf{C}\right\}$

(see Proposition this morning) i.e.

$$\nabla_{\mathbf{x}_0} \mathbf{f} \nabla \mathbf{C} = \nabla \mathbf{C} M$$

for some $M \in \mathbb{R}^{m \times m}$. Then

$$\underbrace{\begin{bmatrix} \nabla_{\mathbf{x}_0} \mathbf{f} - I & \nabla \mathbf{C} \\ \nabla_{\mathbf{u}} \mathbf{f} & \mathbf{0} \end{bmatrix}}_{=\nabla \mathbf{g}} \begin{bmatrix} \nabla \mathbf{C} \\ I - M \end{bmatrix} = \mathbf{0}$$

Consequence for Periodic OCPs with index-reduced DAEs Index-1 $\ensuremath{\mathsf{DAE}}$

$$\begin{bmatrix} ml & \mathbf{p} \\ \mathbf{p}^{\top} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{p}} \\ z \end{bmatrix} = \begin{bmatrix} \mathbf{u} - mg\mathbf{e}_3 \\ -\dot{\mathbf{p}}^{\top}\dot{\mathbf{p}} \end{bmatrix}$$

... is built to impose $\ddot{\mathbf{c}} = \mathbf{0}$ at all time.

Consequence for Periodic OCPs with index-reduced DAEs Index-1 $\ensuremath{\mathsf{DAE}}$

$$\begin{bmatrix} ml & \mathbf{p} \\ \mathbf{p}^{\top} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{p}} \\ z \end{bmatrix} = \begin{bmatrix} \mathbf{u} - mg\mathbf{e}_3 \\ -\dot{\mathbf{p}}^{\top}\dot{\mathbf{p}} \end{bmatrix}$$

... is built to impose $\ddot{\mathbf{c}} = \mathbf{0}$ at all time. The state is:

$$\mathbf{x} = \left[\begin{array}{c} \mathbf{p} \\ \dot{\mathbf{p}} \end{array} \right]$$

with invariant $\mathcal{I}(\mathbf{x}) = \mathbf{p}^{\top} \dot{\mathbf{p}} \quad (\equiv \dot{\mathbf{c}})$

Consequence for Periodic OCPs with index-reduced DAEs $\ensuremath{\mathsf{Index-1}}$ DAE

$$\begin{bmatrix} ml & \mathbf{p} \\ \mathbf{p}^{\top} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{p}} \\ z \end{bmatrix} = \begin{bmatrix} \mathbf{u} - mg\mathbf{e}_3 \\ -\dot{\mathbf{p}}^{\top}\dot{\mathbf{p}} \end{bmatrix}$$

... is built to impose $\ddot{\mathbf{c}} = \mathbf{0}$ at all time. The state is:

$$\mathbf{x} = \left[\begin{array}{c} \mathbf{p} \\ \dot{\mathbf{p}} \end{array} \right]$$

with invariant $\mathcal{I}(\mathbf{x}) = \mathbf{p}^{\top} \dot{\mathbf{p}} \quad (\equiv \dot{\mathbf{c}})$

Periodic OCP:

$$\begin{array}{l} \min \quad \phi \left(\mathbf{x} \left(. \right), \mathbf{u} \left(. \right) \right) \\ \text{s.t.} \quad \left[\begin{array}{c} ml \quad \mathbf{p} \\ \mathbf{p}^{\top} \quad \mathbf{0} \end{array} \right] \left[\begin{array}{c} \ddot{\mathbf{p}} \\ z \end{array} \right] = \left[\begin{array}{c} \mathbf{u} - mg\mathbf{e}_{3} \\ -\dot{\mathbf{p}}^{\top}\dot{\mathbf{p}} \end{array} \right] \\ \mathbf{x} \left(t_{\mathrm{f}} \right) - \mathbf{x} \left(\mathbf{0} \right) = \mathbf{0} \end{array}$$

Consequence for Periodic OCPs with index-reduced DAEs $\ensuremath{\mathsf{Index-1}}$ DAE

$$\begin{bmatrix} ml & \mathbf{p} \\ \mathbf{p}^{\top} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{p}} \\ z \end{bmatrix} = \begin{bmatrix} \mathbf{u} - mg\mathbf{e}_3 \\ -\dot{\mathbf{p}}^{\top}\dot{\mathbf{p}} \end{bmatrix}$$

... is built to impose $\ddot{\mathbf{c}}=\mathbf{0}$ at all time. The state is:

$$\mathbf{x} = \left[\begin{array}{c} \mathbf{p} \\ \dot{\mathbf{p}} \end{array} \right]$$

with invariant $\mathcal{I}(\mathbf{x}) = \mathbf{p}^{\top} \dot{\mathbf{p}} \quad (\equiv \dot{\mathbf{c}})$

Periodic OCP:

min
$$\phi(\mathbf{x}(.), \mathbf{u}(.))$$

s.t. $\begin{bmatrix} ml & \mathbf{p} \\ \mathbf{p}^{\top} & 0 \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{p}} \\ z \end{bmatrix} = \begin{bmatrix} \mathbf{u} - mg\mathbf{e}_3 \\ -\dot{\mathbf{p}}^{\top}\dot{\mathbf{p}} \end{bmatrix}$
 $\mathbf{x}(t_f) - \mathbf{x}(0) = 0$
 $\mathbf{C} = \begin{bmatrix} \mathbf{c}(\mathbf{x}_0) \\ \dot{\mathbf{c}}(\mathbf{x}_0) \end{bmatrix} = 0$

Consequence for Periodic OCPs with index-reduced DAEs Index-1 $\ensuremath{\mathsf{DAE}}$

$$\begin{bmatrix} ml & \mathbf{p} \\ \mathbf{p}^{\top} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{p}} \\ z \end{bmatrix} = \begin{bmatrix} \mathbf{u} - mg\mathbf{e}_3 \\ -\dot{\mathbf{p}}^{\top}\dot{\mathbf{p}} \end{bmatrix}$$

... is built to impose $\ddot{\mathbf{c}} = \mathbf{0}$ at all time. The state is:

$$\mathbf{x} = \left[\begin{array}{c} \mathbf{p} \\ \dot{\mathbf{p}} \end{array} \right]$$

with invariant $\mathcal{I}(\mathbf{x}) = \mathbf{p}^{\top} \dot{\mathbf{p}} \quad (\equiv \dot{\mathbf{c}})$

Periodic OCP:

min
$$\phi(\mathbf{x}(.), \mathbf{u}(.))$$

s.t. $\begin{bmatrix} ml & \mathbf{p} \\ \mathbf{p}^{\top} & 0 \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{p}} \\ z \end{bmatrix} = \begin{bmatrix} \mathbf{u} - mg\mathbf{e}_3 \\ -\dot{\mathbf{p}}^{\top}\dot{\mathbf{p}} \end{bmatrix}$
 $\mathbf{x}(t_f) - \mathbf{x}(0) = 0$
 $\mathbf{C} = \begin{bmatrix} \mathbf{c}(\mathbf{x}_0) \\ \dot{\mathbf{c}}(\mathbf{x}_0) \end{bmatrix} = 0$

This Periodic OCP will have an LICQ deficiency !!

 $\begin{array}{l} \min & \phi\left(\mathbf{x}\left(.\right), \mathbf{u}\left(.\right)\right) \\ \text{s.t.} & \mathbf{F}\left(\dot{\mathbf{x}}, \mathbf{x}, \mathbf{z}, \mathbf{u}\right) = 0 \\ & \mathbf{x}\left(t_{\mathrm{f}}\right) - \mathbf{x}\left(0\right) = 0 \\ & \mathbf{c}\left(\mathbf{x}_{0}\right) = 0, \quad \dot{\mathbf{c}}\left(\mathbf{x}_{0}\right) = 0 \end{array}$

Proposition: if $\mathbf{x}(t_f) - \mathbf{x}(0) = 0$ and $\mathbf{c}(\mathbf{x}_0) = 0$ hold, then $\dot{\mathbf{c}}(\mathbf{x}_0) = 0$ holds.

$$\begin{array}{ll} \min & \phi\left(\mathbf{x}\left(.\right),\mathbf{u}\left(.\right)\right) \\ \mathrm{s.t.} & \mathbf{F}\left(\dot{\mathbf{x}},\mathbf{x},\mathbf{z},\mathbf{u}\right)=0 \\ & \mathbf{x}\left(t_{\mathrm{f}}\right)-\mathbf{x}\left(0\right)=0 \\ & \mathbf{c}\left(\mathbf{x}_{0}\right)=0, \quad \dot{\mathbf{c}}\left(\mathbf{x}_{0}\right)=0 \end{array}$$

Proposition: if $\mathbf{x}(t_f) - \mathbf{x}(0) = 0$ and $\mathbf{c}(\mathbf{x}_0) = 0$ hold, then $\dot{\mathbf{c}}(\mathbf{x}_0) = 0$ holds.

Proof: since $\ddot{\mathbf{c}}=\mathbf{0}$ is imposed by the dynamics, then

$$\begin{split} \dot{\mathbf{c}}\left(\mathbf{x}\left(t\right)\right) &= \dot{\mathbf{c}}\left(\mathbf{x}\left(0\right)\right) \quad \text{and} \\ \mathbf{c}\left(\mathbf{x}\left(t_{\mathrm{f}}\right)\right) &= \mathbf{c}\left(\mathbf{x}\left(0\right)\right) + \dot{\mathbf{c}}\left(\mathbf{x}\left(0\right)\right) t_{\mathrm{f}} \end{split}$$

Periodicity imposes that $\mathbf{c}(\mathbf{x}(t_f)) = \mathbf{c}(\mathbf{x}(0))$, hence $\dot{\mathbf{c}}(\mathbf{x}(0)) = 0$ must hold.

 $\begin{array}{l} \min \quad \phi\left(\mathbf{x}\left(.\right),\mathbf{u}\left(.\right)\right) \\ \text{s.t.} \quad \mathbf{F}\left(\dot{\mathbf{x}},\mathbf{x},\mathbf{z},\mathbf{u}\right) = 0 \\ \mathbf{x}\left(t_{\mathrm{f}}\right) - \mathbf{x}\left(0\right) = 0 \\ \mathbf{c}\left(\mathbf{x}_{0}\right) = 0, \quad \dot{\mathbf{c}}\left(\mathbf{x}_{0}\right) = 0 \end{array}$

Proposition: if $\mathbf{x}(t_f) - \mathbf{x}(0) = 0$ and $\mathbf{c}(\mathbf{x}_0) = 0$ hold, then $\dot{\mathbf{c}}(\mathbf{x}_0) = 0$ holds.

Proof: since $\ddot{\mathbf{c}}=\mathbf{0}$ is imposed by the dynamics, then

$$\begin{split} \dot{\mathbf{c}}\left(\mathbf{x}\left(t\right)\right) &= \dot{\mathbf{c}}\left(\mathbf{x}\left(0\right)\right) \quad \text{and} \\ \mathbf{c}\left(\mathbf{x}\left(t_{\mathrm{f}}\right)\right) &= \mathbf{c}\left(\mathbf{x}\left(0\right)\right) + \dot{\mathbf{c}}\left(\mathbf{x}\left(0\right)\right) t_{\mathrm{f}} \end{split}$$

Periodicity imposes that $\mathbf{c}(\mathbf{x}(t_f)) = \mathbf{c}(\mathbf{x}(0))$, hence $\dot{\mathbf{c}}(\mathbf{x}(0)) = 0$ must hold.

It is not necessary to impose $\dot{c}(x_0) = 0$ in a periodic OCP based on index-reduced, index-3 DAEs !

 $\begin{array}{l} \min \quad \phi\left(\mathbf{x}\left(.\right),\mathbf{u}\left(.\right)\right) \\ \text{s.t.} \quad \mathbf{F}\left(\dot{\mathbf{x}},\mathbf{x},\mathbf{z},\mathbf{u}\right) = 0 \\ \mathbf{x}\left(t_{\mathrm{f}}\right) - \mathbf{x}\left(0\right) = 0 \\ \mathbf{c}\left(\mathbf{x}_{0}\right) = 0, \quad \dot{\mathbf{c}}\left(\mathbf{x}_{0}\right) = 0 \end{array}$

Proposition: if $\mathbf{x}(t_f) - \mathbf{x}(0) = 0$ and $\mathbf{c}(\mathbf{x}_0) = 0$ hold, then $\dot{\mathbf{c}}(\mathbf{x}_0) = 0$ holds.

Proof: since $\ddot{\mathbf{c}}=\mathbf{0}$ is imposed by the dynamics, then

$$\begin{split} \dot{\mathbf{c}}\left(\mathbf{x}\left(t\right)\right) &= \dot{\mathbf{c}}\left(\mathbf{x}\left(0\right)\right) \quad \text{and} \\ \mathbf{c}\left(\mathbf{x}\left(t_{\mathrm{f}}\right)\right) &= \mathbf{c}\left(\mathbf{x}\left(0\right)\right) + \dot{\mathbf{c}}\left(\mathbf{x}\left(0\right)\right) t_{\mathrm{f}} \end{split}$$

Periodicity imposes that $\mathbf{c}(\mathbf{x}(t_f)) = \mathbf{c}(\mathbf{x}(0))$, hence $\dot{\mathbf{c}}(\mathbf{x}(0)) = 0$ must hold.

It is not necessary to impose $\dot{\mathbf{c}}(\mathbf{x}_0) = 0$ in a periodic OCP based on index-reduced, index-3 DAEs !

Have we solved our LICQ problem ?

Periodic OCP: with $\mathbf{c} \in \mathbb{R}^m$

$$\begin{split} & \text{min} \quad \phi\left(\mathbf{x}\left(.\right),\mathbf{u}\left(.\right)\right) \\ & \text{s.t.} \quad \mathbf{F}\left(\dot{\mathbf{x}},\mathbf{x},\mathbf{z},\mathbf{u}\right)=0 \\ & \mathbf{x}\left(t_{\mathrm{f}}\right)-\mathbf{x}\left(0\right)=0, \quad \mathbf{c}\left(\mathbf{x}_{0}\right)=0 \end{split}$$

Periodic OCP: with $\mathbf{c} \in \mathbb{R}^m$

min
$$\phi(\mathbf{x}_0, \mathbf{u})$$

s.t. $\mathbf{g} = \begin{bmatrix} \mathbf{f}(\mathbf{x}_0, \mathbf{u}) - \mathbf{x}_0 \\ \mathbf{c}(\mathbf{x}_0) \end{bmatrix} = \mathbf{0}$

Periodic OCP: with $\mathbf{c} \in \mathbb{R}^m$

min $\phi(\mathbf{x}_0, \mathbf{u})$ s.t. $\mathbf{g} = \begin{bmatrix} \mathbf{f}(\mathbf{x}_0, \mathbf{u}) - \mathbf{x}_0 \\ \mathbf{c}(\mathbf{x}_0) \end{bmatrix} = \mathbf{0}$

Note that: $\mathbf{c} \left(\mathbf{f} \left(\mathbf{x}_{0}, \mathbf{u} \right) \right) = \underbrace{\mathbf{c} \left(\mathbf{x}_{0} \right)}_{=0} + \dot{\mathbf{c}} \left(\mathbf{x}_{0} \right) \cdot t_{\mathrm{f}}$

Periodic OCP: with $\mathbf{c} \in \mathbb{R}^m$

$$\begin{array}{l} \min & \phi\left(\mathbf{x}_{0},\mathbf{u}\right) \\ \text{s.t.} & \mathbf{g} = \left[\begin{array}{c} \mathbf{f}\left(\mathbf{x}_{0},\mathbf{u}\right) - \mathbf{x}_{0} \\ \mathbf{c}\left(\mathbf{x}_{0}\right) \end{array} \right] = \mathbf{0} \end{array}$$

Note that: $\mathbf{c}\left(\mathbf{f}\left(\mathbf{x}_{0},\mathbf{u}\right)\right) = \underbrace{\mathbf{c}\left(\mathbf{x}_{0}\right)}_{=0} + \dot{\mathbf{c}}\left(\mathbf{x}_{0}\right) \cdot t_{\mathrm{f}}$ hence at

the solution:

$$abla_{\mathbf{x}_0} \mathbf{f} \nabla \mathbf{c} =
abla \dot{\mathbf{c}} \cdot t_{\mathrm{f}} \quad \text{and} \quad
abla_{\mathbf{u}} \mathbf{f} \nabla \mathbf{c} = \mathbf{0}$$

Periodic OCP: with $\mathbf{c} \in \mathbb{R}^m$

$$\begin{array}{l} \min \quad \phi\left(\mathbf{x}_{0},\mathbf{u}\right) \\ \text{s.t.} \quad \mathbf{g} = \left[\begin{array}{c} \mathbf{f}\left(\mathbf{x}_{0},\mathbf{u}\right) - \mathbf{x}_{0} \\ \mathbf{c}\left(\mathbf{x}_{0}\right) \end{array} \right] = \mathbf{0} \end{array}$$

Note that: $\mathbf{c} \left(\mathbf{f} \left(\mathbf{x}_{0}, \mathbf{u} \right) \right) = \underbrace{\mathbf{c} \left(\mathbf{x}_{0} \right)}_{=0} + \dot{\mathbf{c}} \left(\mathbf{x}_{0} \right) \cdot t_{\mathrm{f}}$ hence at

the solution:

$$abla_{\mathbf{x}_0} \mathbf{f} \nabla \mathbf{c} =
abla \dot{\mathbf{c}} \cdot t_{\mathrm{f}} \quad \text{and} \quad
abla_{\mathbf{u}} \mathbf{f} \nabla \mathbf{c} = \mathbf{0}$$

Then

$$\begin{bmatrix}
\nabla_{\mathbf{x}_{0}}\mathbf{f} - I & \nabla \mathbf{c} \\
\nabla_{\mathbf{u}}\mathbf{f} & 0
\end{bmatrix}
\begin{bmatrix}
\nabla \mathbf{c} \\
M \\
\text{null-space?}
\end{bmatrix} = \begin{bmatrix}
t_{f}\nabla\dot{\mathbf{c}} + \nabla \mathbf{c} (M - I) \\
0
\end{bmatrix}$$

Periodic OCP: with $\mathbf{c} \in \mathbb{R}^m$

$$\begin{array}{l} \min \quad \phi\left(\mathbf{x}_{0},\mathbf{u}\right) \\ \text{s.t.} \quad \mathbf{g} = \left[\begin{array}{c} \mathbf{f}\left(\mathbf{x}_{0},\mathbf{u}\right) - \mathbf{x}_{0} \\ \mathbf{c}\left(\mathbf{x}_{0}\right) \end{array} \right] = \mathbf{0} \end{array}$$

Note that:
$$\mathbf{c} \left(\mathbf{f} \left(\mathbf{x}_{0}, \mathbf{u} \right) \right) = \underbrace{\mathbf{c} \left(\mathbf{x}_{0} \right)}_{=0} + \dot{\mathbf{c}} \left(\mathbf{x}_{0} \right) \cdot t_{\mathrm{f}}$$
 hence at

the solution:

$$abla_{\mathbf{x}_0} \mathbf{f}
abla \mathbf{c} =
abla \dot{\mathbf{c}} \cdot t_{\mathrm{f}} \quad \text{and} \quad
abla_{\mathbf{u}} \mathbf{f}
abla \mathbf{c} = \mathbf{0}$$

Then

$$\underbrace{\nabla_{\mathbf{x}_{0}}\mathbf{f} - I \quad \nabla \mathbf{c}}_{\nabla_{\mathbf{u}}\mathbf{f}} \quad \mathbf{0} \quad \underbrace{\nabla_{\mathbf{c}}}_{\text{null-space?}} = \begin{bmatrix} t_{f}\nabla\dot{\mathbf{c}} + \nabla\mathbf{c}\left(M - I\right) \\ 0 \end{bmatrix}$$

LICQ problem if $\nabla \dot{\mathbf{c}} \in \operatorname{span} \{\nabla \mathbf{c}\}$. This does not happen in index-reduced DAEs from Lagrange mechanics !! (cannot say much in general though)

Outline

LICQ defliciency in periodic QC

Invariants in Periodic Optimal Cont

Rotations in Periodic Optimal Control

Representing Orientations (more on that tomorrow !!)

Orientations are represented via rotations...

- Let *E* be a fixed (e.g. inertial) reference frame
- Let *e* be a reference frame attached to the object

What's a rotation ?

Representing Orientations (more on that tomorrow !!)

Orientations are represented via rotations...

- Let *E* be a fixed (e.g. inertial) reference frame
- Let *e* be a reference frame attached to the object
- Let T = (τ, ρ) be the transformation (translation + rotation) that brings E to e

What's a rotation ?

23rd of February, 2016

Representing Orientations (more on that tomorrow !!)

Orientations are represented via rotations...

- Let *E* be a fixed (e.g. inertial) reference frame
- Let *e* be a reference frame attached to the object
- Let T = (τ, ρ) be the transformation (translation + rotation) that brings E to e
- The orientation of the object is represented by ρ

What's a rotation ?

Representation of the orientation as:

 $R = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{bmatrix} \in \mathbb{R}^{3 \times 3}$

where \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 are the vectors of frame *e* given frame *E*. The orientation is then represented by the **9 numbers** making *R*.

Representation of the orientation as:

 $R = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{bmatrix} \in \mathbb{R}^{3 \times 3}$

where \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 are the vectors of frame *e* given frame *E*. The orientation is then represented by the **9 numbers** making *R*.

Orthonormality must hold, i.e.:

$$R^{\top}R - I = 0$$

Representation of the orientation as:

 $R = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{bmatrix} \in \mathbb{R}^{3 \times 3}$

where \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 are the vectors of frame *e* given frame *E*. The orientation is then represented by the **9 numbers** making *R*.

Orthonormality must hold, i.e.:

$$R^{\top}R - I = 0$$

The time evolution of R is given by:

$$\dot{R} = R\Omega$$

where Ω is a skew symmetric ($\Omega^{\top} = -\Omega$) matrix.

Representation of the orientation as:

 $R = \left[egin{array}{ccc} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{array}
ight] \in \mathbb{R}^{3 imes 3}$

where \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 are the vectors of frame *e* given frame *E*. The orientation is then represented by the **9 numbers** making *R*.

Orthonormality must hold, i.e.: $\mathbf{D}^{\top} \mathbf{D} \mathbf{U} \mathbf{U}$

$$R^{+}R - I = 0$$

The time evolution of R is given by:

$$\dot{R} = R\Omega$$

where Ω is a skew symmetric ($\Omega^{\top} = -\Omega$) matrix.

The dynamics of *R* preserve orthonormality, i.e.:

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(R^{\top}R-I\right)=\dot{R}^{\top}R+R^{\top}\dot{R}=-\Omega R^{\top}R+R^{\top}R\Omega=0$$

if $R^{\top}R - I = 0$.

Representation of the orientation as:

 $R = \left[egin{array}{ccc} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{array}
ight] \in \mathbb{R}^{3 imes 3}$

where \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 are the vectors of frame *e* given frame *E*. The orientation is then represented by the **9 numbers** making *R*.

Orthonormality must hold, i.e.: $R^{\top}R - I = 0$

The time evolution of R is given by:

$$\dot{R} = R\Omega$$

where Ω is a skew symmetric ($\Omega^{\top} = -\Omega$) matrix.

The dynamics of *R* preserve orthonormality, i.e.:

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(R^{\top}R-I\right)=\dot{R}^{\top}R+R^{\top}\dot{R}=-\Omega R^{\top}R+R^{\top}R\Omega=0$$

if $R^{\top}R - I = 0$. Hence, imposing $R(0)^{\top}R(0) - I = 0$ yields $R(t)^{\top}R(t) - I = 0$ for all t

Representation of the orientation as:

 $R = \left[egin{array}{ccc} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{array}
ight] \in \mathbb{R}^{3 imes 3}$

where \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 are the vectors of frame *e* given frame *E*. The orientation is then represented by the **9 numbers** making *R*.

Orthonormality must hold, i.e.: $R^{\top}R - I = 0$

The time evolution of R is given by:

$$\dot{R} = R\Omega$$

 $\dot{R} = R\Omega$ is an example of ODE with consistency conditions !!

where Ω is a skew symmetric $(\Omega^{ op}=-\Omega)$ matrix.

The dynamics of *R* preserve orthonormality, i.e.:

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(R^{\top}R-I\right)=\dot{R}^{\top}R+R^{\top}\dot{R}=-\Omega R^{\top}R+R^{\top}R\Omega=0$$

if $R^{\top}R - I = 0$. Hence, imposing $R(0)^{\top}R(0) - I = 0$ yields $R(t)^{\top}R(t) - I = 0$ for all t

Periodic OCP with rotations

 $23^{\rm rd}$ of February, 2016

Periodic OCP with rotations

Problem: periodicity & orthonormality constraints

$$R(0)^{ op} R(0) - I = 0, \qquad R(t_{
m f}) - R(0) = 0$$

+ dynamics preserving orthonormality yield LICQ deficiency

Periodic OCP with rotations

Problem: periodicity & orthonormality constraints

$$R(0)^{\top}R(0) - I = 0, \qquad R(t_{\rm f}) - R(0) = 0$$

+ dynamics preserving orthonormality yield LICQ deficiency

• SO(3) has 3 dimensions, $R(0) \in \mathbb{R}^{3 \times 3}$ has 9 dimensions

Periodic OCP with rotations

Problem: periodicity & orthonormality constraints

$$R(0)^{ op} R(0) - I = 0, \qquad R(t_{
m f}) - R(0) = 0$$

+ dynamics preserving orthonormality yield LICQ deficiency

- SO(3) has 3 dimensions, $R(0) \in \mathbb{R}^{3 \times 3}$ has 9 dimensions
- Orthonormality condition $R(0)^{\top}R(0) I = 0$ must block 9 3 = 6 dimensions

Periodic OCP with rotations

Problem: periodicity & orthonormality constraints

$$R(0)^{ op} R(0) - I = 0, \qquad R(t_{
m f}) - R(0) = 0$$

+ dynamics preserving orthonormality yield LICQ deficiency

- SO(3) has 3 dimensions, $R(0) \in \mathbb{R}^{3 \times 3}$ has 9 dimensions
- Orthonormality condition $R(0)^{\top}R(0) I = 0$ must block 9 3 = 6 dimensions
- **Periodicity** condition $R(t_f) R(0) = 0$ must block 3 dimensions

Periodic OCP with rotations

Problem: periodicity & orthonormality constraints

$$R(0)^{ op} R(0) - I = 0, \qquad R(t_{
m f}) - R(0) = 0$$

+ dynamics preserving orthonormality yield $\ensuremath{\text{LICQ}}$ deficiency

- SO(3) has 3 dimensions, $R(0) \in \mathbb{R}^{3 \times 3}$ has 9 dimensions
- Orthonormality condition $R(0)^{\top}R(0) I = 0$ must block 9 3 = 6 dimensions
- Periodicity condition $R(t_f) R(0) = 0$ must block 3 dimensions

We need to pick 3 + 6 = 9 constraints among Orthonormality & Periodicity

Periodic OCP with rotations

Problem: periodicity & orthonormality constraints

$$R(0)^{\top}R(0) - I = 0, \qquad R(t_{\rm f}) - R(0) = 0$$

+ dynamics preserving orthonormality yield $\ensuremath{\text{LICQ}}$ deficiency

How to pick the 9 constraints to eliminate ?

F

There is no good answer: regardless of your choice, there will be solutions for which LICQ fails for the rotations. This is related to the "simple elimination" slide !!

Handling rotations in periodic optimal control

Trick inspired from the projection method: $(R_0 = R(0), R_N = R(t_f))$

$$R_0^{\top} R_0 - I = 0, \qquad R_N - R_0 = 0$$

Rewrite as:

$$R_0^{\top} R_0 - I = 0, \qquad R_0^{\top} R_N - I = 0$$

Then select 9 constraints...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 3
Trick inspired from the projection method: $(R_0 = R(0), R_N = R(t_f))$

Then select 9 constraints...

Trick inspired from the projection method: $(R_0 = R(0), R_N = R(t_f))$

Then select 9 constraints...

Proposition: select the *periodicity* constraints such that - - - spans so(3) and the *orthogonality* constraints such that they do not "collide" with - (total of 8 equally valid choices !!)

Trick inspired from the projection method: $(R_0 = R(0), R_N = R(t_f))$

Proposition: select the *periodicity* constraints such that - - - spans so(3) and the *orthogonality* constraints such that they do not "collide" with - (total of 8 equally valid choices !!)

Trick inspired from the projection method: $(R_0 = R(0), R_N = R(t_f))$

Proposition: select the *periodicity* constraints such that - - - spans so(3) and the *orthogonality* constraints such that they do not "collide" with - (total of 8 equally valid choices !!)

22 / 22

Trick inspired from the projection method: $(R_0 = R(0), R_N = R(t_f))$

Proposition: select the *periodicity* constraints such that - - - spans so(3) and the *orthogonality* constraints such that they do not "collide" with - (total of 8 equally valid choices !!)

Intuition:

" "blocks" the directions orthogonal to the SO(3) manifold

"blocks" the directions tangent to the SO(3) manifold

Proof: requires operating on the vector space $\mathbb{R}^{3\times 3}$, with associated scalar products and differential forms... *it is elaborate...*

22 / 22