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Objectives of the lecture

@ Basic Optimal Control Problems with DAEs

@ Transcription of DAE-based OCPs into NLPs

@ A first view at LICQ issues in Optimal Control with DAEs
@ (Constraints drift in Optimal Control with DAEs)
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Outline

@ Formulating OCPs with DAEs
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Preliminary remarks
Semi-explicit DAE-constrained OCP

) 00x()2()u()

st. x(t) =F(z(t),x(t),u(t))
0=G(z(t),x(t),u(t))
h(z(t),x(t),u(t)) <0
x(0) —%0 =0
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Fully implicit DAE-constrained OCP
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Semi-explicit DAE-constrained OCP Fully implicit DAE-constrained OCP
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@ OCPs based on index-1 DAEs are the most common,
we will focus on this case
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Preliminary remarks
Semi-explicit DAE-constrained OCP
comin o 00(),2(),u ()
st. x(t) =F(z(t),x(t),u(t))
0=G(z(t),x(t),u(t))
h(z(t),x(t),u(t)) <0
x(0) —%X0 =0

Fully implicit DAE-constrained OCP
min ¢(x(.),z(.),u())

x(.).2().u()
% (t),u(t)) =0

s.t. F (X t
h ,u(t)) <0

2(
(£).x (¢

o — —

@ OCPs based on index-1 DAEs are the most common,

we will focus on this case

@ For now we will focus on OCPs with assigned initial
conditions, i.e. x(0) has to take a specific value %o
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Preliminary remarks

Semi-explicit DAE-constrained OCP Fully implicit DAE-constrained OCP
min - e(().2().u() min o o(().2() ()
st. x(t) =F(z(t),x(t),u(t)) st. F(x(t),z(t),x(t),u(t))=0
0=G(z(t),x(t),u(t)) h(z(t),x(t),u(t)) <0
h(z(t),x(t),u(t)) <0 x(0) — %0 =0
X(O) — )_{o =0

@ OCPs based on index-1 DAEs are the most common,
we will focus on this case

@ For now we will focus on OCPs with assigned initial
conditions, i.e. x(0) has to take a specific value %o

@ The selected initial condition X has to be consistent,
i.e.
C(%0)=0
where function C gathers the DAE consistency
condition. Then the DAE is consistent throughout the
trajectories...
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Online Optimal Control with Index-reduced DAEs
NMPC: OCP repeatedly solved online

x(.),T('.?,u(.) T (x(tr)) +/0 L(x,u)dr
st. F(x(t),z(t),x(t),u(t))=0
h(z(t),x(t),u(t)) <0
x(0) — %(t) =0

from the current state estimation %(t).
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Online Optimal Control with Index-reduced DAEs
NMPC: OCP repeatedly solved online
x(.)g}l.?,u(.) T(X(tf))+/0 L(x,u)dr
st. F(x(t),z(t),x(t),u(t))=0
h(z(t),x(t),u(t)) <0
x(0) —%(t)=0

from the current state estimation %(t).

How to impose the DAE consistency K’/
condition ?
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Online Optimal Control with Index-reduced DAEs
NMPC: OCP repeatedly solved online

x(.)?(l.r)],u(.) T (x (t)) +/O L(x,u)dr
st. F(x(t),z(t),x(t),u(t))=0
h(z(t),x(t),u(t)) <0
x(0) —%k(t)=0

from the current state estimation X(t).
How to impose the DAE consistency \/
condition ? See previous slide: the initial

conditions X(t) assigned to the NMPC must
be consistent... how ?

<

When deploying NMPC with an underlying
index-reduced DAE model, the
consistency of the initial condition must be
achieved in the state-estimation algorithm
(Kalman filter, EKF, MHE, particle filter)
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Online Optimal Control with Index-reduced DAEs

NMPC: OCP repeatedly solved online
x(.),r;}i.r)],u(.) T (x (t)) +/O L(x,u)dr
st. F(x(t),z(t),x(t),u(t))=0
h(z(t),x(t),u(t)) <0
x(0) —%k(t)=0

from the current state estimation X(t).

How to impose the DAE consistency
condition ? See previous slide: the initial
conditions X(t) assigned to the NMPC must
be consistent... how ?

<

When deploying NMPC with an underlying
index-reduced DAE model, the
consistency of the initial condition must be
achieved in the state-estimation algorithm

%(.),2(.),a

(Kalman filter, EKF, MHE, particle filter)
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E.g. MHE provides %(t) via:

t
min [ Iy&aw -5 ar

@ Constraint C(X(t)) = 0 ensures a
consistent state estimation

@ Note that consistency is imposed at
the end of the estimation horizon so
as to maximize its numecial accuracy
(e.g. imposing the consistency at time
t — T would let numerical errors
accumulate in the integration).
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Outline

© Direct Multiple-Shooting for DAE-constr

ained OCPs
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Multiple-Shooting for DAE-constrained OCPs
Integrator for index-1 DAE:

F(x(t),z(t),x(t),u(t)) =0
Provides the function:
f(xk,uk)

delivering the integration of the DAE over a time
interval [tx, tki1]-

to toy ty 2] t3 ty s
10 0.351
0.3
9 0.251
5 o QO oz
a B oas
E -5 (,’ 0.1
005’:.
10 P 7
005} L \f <‘E0\1 uO) L L L L L L
0 0.1 U_Z 0.3 04 05 . . .
Time [s] Integrations on the time intervals {ti, te1]
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Multiple-Shooting for DAE-constrained OCPs
Integrator for index-1 DAE: E.g. semi-explicit DAE:

F(x(t),z(t),x(t),u(t)) =0 x(t) =F (z(t),x(t),u(t))
Provides the function: 0=G(z(t),x(t),u(t))
f(xk,uk)

delivering the integration of the DAE over a time
interval [tx, tki1]-

10f

0350

0251

Input
State

0.05F

(o, uo) |
0 o005 01 015 02 0% 03 0% 04 04 05
0.1 0.2 0.3 04 05

Time [s] Integrations on the time intervals {ti, te1]
P T r— Ty




Multiple-Shooting for DAE-constrained OCPs
Integrator for index-1 DAE: E.g. semi-explicit DAE:

F(x(t),z(t),x(t),u(t)) =0 x(t) =F (z(t),x(t),u(t))
Provides the function: 0=G(z(t),x(t),u(t))

£ (%, uy) with one-step implicit Euler:

@ Solve for x4,z
delivering the integration of the DAE over a time

interval [tx, tki1]- X4+ = Xk + hF (X4, 2z, uk)

0 =G (X4,24,ux)

10f

0350

0251

Input
State

0.05F

I (20, u0) 1
o o i o o oF o0 0B o4 & 65
0.1 0.2 0.3 04 05

Time [s] Integrations on the time intervals {ti, te1]
P T r— Ty




Multiple-Shooting for DAE-constrained OCPs
Integrator for index-1 DAE: E.g. semi-explicit DAE:

F(x(t),2(t),x(t),u(t)) =0 x(t) = F (2 (1) ,x (1), u(t))

Provides the function: 0=G(z(t),x(t),u(t)

£ (%k, uy) with one-step implicit Euler:
@ Solve for x4,z

delivering the integration of the DAE over a time

interval [tx, tki1]- X+ = Xk + hF (x4, Z+, uk)

0 =G (x4,24,ux)

@ Return f (x4, ux) = x4

0350

0251

Input
State

005,

f (o, uo)

0 005 01 015 02 025 03 035 04 045 05

0.1 0.2 0.3 0.4 05

Time [s] Integrations on the time intervals {t, tii1]
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Multiple-Shooting for DAE-constrained OCPs
Integrator for index-1 DAE: E.g. semi-explicit DAE:

F(x(t),z(t),x(t),u(t)) =0 x(t) = F (z(t),x(t),u(t))
Provides the function: 0=G(z(t),x(t),u (1)
£ (i, ui) with one-step implicit Euler:
@ Solve for x4,z
delivering the integration of the DAE over a time

interval [tx, tki1]- X+ = Xk + hF (x4, Z+, uk)
. L. . 0 =G (x+,2+, )
Note that the integrator "eliminates” the algebraic
variables z (.) by treating them "internally” !l We @ Return f (x4, uk) = x4
have some "hidden” complexity...

to t1 to  t3  ty  tj toy t ly t3 ty s
K 7 . : . : . : . : —]

0350

0251

Input
State

005,

f (o, uo)

-15! 0 005 01 015 02 025 03 035 04 045 05
0 0.1 0.2 0.3 0.4 05

Time [s] Integrations on the time intervals {t, tii1]
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NLP from Multiple-Shooting

OCP:
min ¢ (x(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0
h (x(t),u(t),t) <0

X(to) = Xo

0 0.1 03 0.4 0.5

0.2
Time [s]
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NLP from Multiple-Shooting

OCP:
min ¢ (x(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0
h (x(t),u(t),t) <0
X (to) = Xp
f (x«, ux) integrates the dynamics over
the time interval [tx, tki1]

Input

0 0.1 0.3 0.4 0.5

0.2
Time [s]
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min ¢ (x(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0
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X (to) = Xp
f (x«, ux) integrates the dynamics over
the time interval [tx, tki1]

to 31 ty t3 2} ts
0.35 " ! " ! " ! " ! "
0.3r
0.25[
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Input
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Time [s]
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NLP from Multiple-Shooting

OCP: NLP with w = {x0, ug, ..., Xn—_1, Un—1, Xn }
min  ® (x(.),u(.)) n & (w)
min w
st. F(x(t),z(t),x(t),u(t))=0 w
h (x(t),u(t),t) <0
X (to) = Xo s.t.
f (x«, ux) integrates the dynamics over
the time interval [tx, tki1]
to

0.351
0.3F
0.251
0.2F
0.151

Input
State

0.1
00sf .

0 0.1 0.2 0.3 0.4 05
Time [s]
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NLP from Multiple-Shooting

OCP: NLP with w = {x0, ug, ..., Xn—_1, Un—1, Xn }
min  ® (x(.),u(.)) )
. min & (w)

st F(x(0),2(6),x(0),u(0) =0 '™

h (x(t), u(t), ) < 0 e

x (to) = Xo st. g(w)= (0, 10) — 1 0
f (x«, ux) integrates the dynamics over f(xn,un—1) — Xn-1

the time interval [tx, tki1]

to

0.351
0.3F
0.251
0.2F
0.151

Input
State

0.1
00sf .

0 0.1 0.2 0.3 0.4 05
Time [s]
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NLP from Multiple-Shooting

OCP: NLP with w = {x0, ug, ..., Xn—_1, Un—1, Xn }
min  ® (x(.),u(.)) )
. min & (w)
st. F(x(t),z(t),x(t),u(t))=0 w
h (x(t),u(t),t) <0 . Xo — Xo
x (to) = Xo st. g(w)= (xo, 1) =31 0
f (xk, uk) integrates the dynamics over | f(xn,un—1) —xno1
the time interval [tx, tki1] h (o, o)
h _ <0
(w) h(xy-1,un—1) | =
h (xw)

to ty to t3 ty ts

0.35( I I I I N|
0.3
0.25(
5 O o02-
2 S ouf
= O o
008
0 01 02 03 04 05 ° 05(;

Time [s]
Py r— Ty



NLP from Multiple-Shooting

OCP:
min  ® (x(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0

h (x(t),u(t),t) <0
X(to) = Xo

f (xk, uk) integrates the dynamics over
the time interval [tx, tki1]

Algebraic variables are hidden within
the integrator... Is that the end of the
story ?

Input
State

0 0.1

0.3

0.2 0.4
Time [s]

0.5
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NLP with w = {x0, ug, ..., Xn—_1, Un—1, Xn }
min & (w)

)_{o — X0
f(Xo,llo) — X1
| f(xnv,un—1) —xn 1
h(xo,uo)

<0

h (xy—1,un—1)
h (xn)

to
0.35
0.3r
0.25[
0.2r
0.15[

0.1
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NLP from Multiple-Shooting

OCP:
min  ® (x(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0

h (x(t),u(t),t) <0
X(to) = Xo

f (xk, uk) integrates the dynamics over
the time interval [tx, tki1]

Algebraic variables are hidden within
the integrator... Is that the end of the
story 7 Not necessarily...

Input
State

0 0.1

0.3

0.2 0.4
Time [s]

0.5
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Algebraic variables in the cost & inequality constraints

OCP:
min ¢ (x(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0

h (x(t),u(t)) <0
X(to) = Xp

f (x«, ux) integrates the dynamics F
over the time intervals [k, tii1],
provides the state x at ty41.

t to ts ty t to

t
100 u

0.351
0.3
0.25
0.2
0.15
0.1

Input
State

0.05-,

f (on ’LLO)

0.1 0.2 03

Time [s]

S. Gros Optimal Control with DAEs, lecture 12

0.4 0.5 L . L
0 0.05 0.1 0.15 0.2

23" of February, 2016

9/ 30



Algebraic variables in the cost & inequality constraints

OCP: OCP:
min  ® (x(.),u(.)) min  ®(x(.),z(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0 st. F(x(t),z(t),x(t),u(t))=0
h (x(t), u(t)) < 0 h (x(t), 2(t), u(t)) < 0
x (to) = Xo x(t) —%Xo =10

f (xk, uk) integrates the dynamics F
over the time intervals [k, tii1],
provides the state x at ty41.

to 1ty t3 ty ts to t‘l t‘2 t‘g t‘4 ‘ ts
10 u 035
5 03|
025
-
= 9 o2
o T 015
= N o
10 005,
M 0.1 0.2 0.3 0.4 05 '0'050
Time [s]
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Algebraic variables in the cost & inequality constraints

OCP: OCP:
min  ® (x(.),u(.)) min  ®(x(.),z(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0 st. F(x(t),z(t),x(t),u(t))=0
h (x(t),u(t)) < 0 h (x(t), z(t), u(t)) <0
x (to) = Xo x(t) —%Xo =10
f (xk, ux) integrates the dynamics F Then the integrator needs to report the
over the time intervals [tx, txi1], algebraic variables z (.) as well...

provides the state x at ty41.

to 1ty t3 ty ts to t‘1 t‘z t‘g t‘4 ‘ ts
10 u 035
5 03
025,

=
= 9 o2
o T 015
= N o
10 005},
15 -0.05|
01 02 03 04 05 L
Time [s]
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Algebraic variables in the cost & inequality constraints

OCP: OCP:
min ¢ (x(.),u(.)) min & (x(.),z(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0 st. F(x(t),z(t),x(t),u(t))=0
h (x(t),u(t)) <0 h (x(t),z(t),u(t)) <0
x(to):io X(to)—)_(ozo
f (xk, uk) integrates the dynamics F Then the integrator needs to report the
over the time intervals [tx, txy1], algebraic variables z (.) as well...

provides the state x at ty41.
E.g. semi-explicit DAE ...:

x(t) =F (z(t),x(t),u(t))
0= G (z(t),x(t),u(t))

S. Gros Optimal Control with DAEs, lecture 12 23rd of February, 2016 9 /30



Algebraic variables in the cost & inequality constraints

OCP: OCP:
min @ (x(.), u(.)) min @ (x(.), z(.),u(.))
st. F(x(t),z(t),x(t),u(t) =0 st. F(x(t),z(t),x(t), u(f)) 0
h(x(t),u(t)) <0 h (x(t),z(t),u(t)) <
x(to):)_(o X(to)—)_(ozo
f (xk, ux) integrates the dynamics F Then the integrator needs to report the
over the time intervals [tx, txy1], algebraic variables z (.) as well...
provides the state x at ty41.
E.g. semi-explicit DAE ...: ... with one-step implicit Euler:
x(t) =F (z(t),x(t),u(t)) @ Solve for x4,z :
0=G(z(t),x(t),u(t)) X+=xk+hF(x+,z+,uk)

0= G(x+7z+7uk)

@ Return f (xk,ux) = x4, 2z+
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Algebraic variables & discrete inputs
3D pendulum with discretized inputs: (force on the mass)

15 1.5 0

1 1
—~ 0.5 o 05 o
= o0 =05

0

05 0.5 N
-1 -1

I 0 1 2 0
I t

-
N
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Algebraic variables & discrete inputs
3D pendulum with discretized inputs: (force on the mass)

15 1.5 0
1 1
~ 05 o 05 )
= o0 =05
0
05 05 .
-1 -1
I 0 1 2 0 1 2
I t

0 1 2

Index-1 DAE:

EHIGRE
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Algebraic variables & discrete inputs
3D pendulum with discretized inputs: (force on the mass)

15 15
1 1 0
5 0'2 S o.z =05
. 05
°:i . { :
S 0 1 2 0 1 2
T t t

0 1 2

Index-1 DAE:

ml p P | _| u—mges
p’ 0 z | -p'p

:| 3.8
—

3.4 — ~ —

28 . . . .
0 0.5 1 15 2

S. Gros Optimal Control with DAEs, lecture 12 23rd of February, 2016 10 / 30



Algebraic variables & discrete inputs
3D pendulum with discretized inputs: (force on the mass)

1.5 15 0

1 1
—~ 0.5 o 05 )

= J =2 505
05

05 R

-1 1

0 1 2 0 1 2
t t

1
—  ® 0 ; 2
Index-1 DAE:
ml p pl [ u—mges 8 —
ST R Ao B _

e

When using a discontinuous input
parametrization, the algebraic

variables can also be discontinuous
1

28 L L L ,
0 0.5 1 15 2
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Algebraic variables & discrete inputs
3D pendulum with discretized inputs: (force on the mass)

1.5 15 0

1 1
—~ 0.5 o 05 )

= J =2 505
0.5

05 R

-1 1

0 1 2 0 1 2
t t

-1
0 1 2

_ v :

Index-1 DAE:
ml p pl [ u—mges 8 —
p 0 z | -p'p 36 —

e

When using a discontinuous input

parametrization, the algebraic 3 S~
variables can also be discontinuous 285 05 : s 5
I t
o0 | x -1 0F 0z
When ? Observe : — =_[2& oF — — #0 = discontinuous :
Ou| z [ & & ] Ou du 7
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Algebraic variables in the cost & inequality constraints
OCP:
min ¢ (x(.),u(.))
F(x(t),2(t),x(t),u(t)) =0
h (x(t),u(t)) <0

X(to) = Xo

s.t.

f (x«, ux) integrates the dynamics F
over the time intervals [k, tii1],
provides the state x at ty41.

to 31 ty t3 ly
oadl . . . ; . ; . : .
03
0.25
5 Q oz
8— T oast
- [ rEin
0.05,
2 01 02 03 04 05 005t ! ‘f (IO‘, UO) ' ! ' ! ' ' .
Time [s] 0 005 01 015 02 02 03 035 04 045
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Algebraic variables in the cost & inequality constraints

OCP: OCP:
min  ® (x(.),u(.)) min  ®(x(.),z(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0 st. F(x(t),z(t),x(t),u(t))=0
h (x(t), u(t)) < 0 h (x(t), z(t), u(t)) < 0
x (to) = Xo x (to) — X0 =10

f (xk, uk) integrates the dynamics F
over the time intervals [k, tii1],
provides the state x at ty41.

to
0.35
0.3
0.25
0.2
0.15[
0.1
0.05,

Input
State

0.1 0.2 03 0.4 0.5

Time [s]
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Algebraic variables in the cost & inequality constraints

OCP: OCP:
min  ® (x(.),u(.)) min  ®(x(.),z(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0 st. F(x(t),z(t),x(t),u(t))=0
h (x(t),u(t)) <0 h (x(t),z(t),u(t)) <0
X(to):)_(o X(to)—)_{ozo
f (xk, uk) integrates the dynamics F Then the integrator needs to report the
over the time intervals [k, tii1], algebraic variables as well...

provides the state x at ty41.

to
0.35
0.3
0.25
0.2
0.15[
0.1
0.05,

Input
State

0.1 0.2 03 0.4 0.5

Time [s]
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Algebraic variables in the cost & inequality constraints

OCP:
min ¢ (x(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0

h (x(t),u(t)) <0
X (to) = Xo
f (xk, uk) integrates the dynamics F

over the time intervals [k, tii1],
provides the state x at ty41.

Input
State

0.1 0.2 03

Time [s]

0.4

S. Gros Optimal Control with DAEs, lecture 12

to

OCP:
min & (x(.),z(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0

h (x(t),z(t),u(t)) <0
X(to) —X%X0=0

Then the integrator needs to report the
algebraic variables as well... but where to
impose the constraints 7 At the beginning or
at the end of the shooting interval ? Ideally
both...

0.351
0.3
0.251
0.2
0.151
0.1

0.05f,

I (o, uo)

L i L L
0.05 0.1 0.15 0.2
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Algebraic variables in the cost & inequality constraints

OCP: OCP:
min ¢ (x(.),u(.)) min & (x(.),z(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0 st. F(x(t),z(t),x(t),u(t))=0
h (x(t),u(t)) <0 h (x(t),z(t),u(t)) <0
X(to):)_(o X(to)—)_{ozo
f (xk, uk) integrates the dynamics F Then the integrator needs to report the
over the time intervals [tx, tki1], algebraic variables as well... but where to
provides the state x at tyy1. impose the constraints ? At the beginning or
at the end of the shooting interval ? Ideally
both...
4 | | | N | | |
aof [P F T
s L H A

N3.4 /@ D —

3.2 | i i i | T

e

*SUEdERRRNRS

0 0.5 1 1.5 2
Time [s] Time [s]
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Direct Collocation - Reminder
On each interval [t, tkt1], approximate dynamics F (%, x,u) = 0 using:

K
x(gk, t) = Z A - Pk,,'(t) with X(Bk, tk,i) =0y,
o~ ——
parameters polynomials

Note: K + 1 d.o.f. per state and per interval k.

(7 58]
T 1 ‘I
4r i i 01,3 1
3r ! ! =f ()
2L E 21 i
1k ! k+1 |
ol 0, 1 . B
3%“’ k,1 :
YT o s ]
2f tho itk ‘ il 3 |
5

I I I I
0.35 0.4 0.45 0.5 0.55 0.6 0.6 0.7 0.75 0.8 0.85
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Direct Collocation - Reminder
On each interval [tx, txt1], approximate dynamics F (%, x,u) = 0 using:

K
X(Qk, t) = Z Q. - Pk,,'(t) with X(Qk, tk,,') = 0Oy;

parameters polynomials
Note: K + 1 d.o.f. per state and per interval k. Collocation uses the constraints:

Initial condition: x (6, tx) — xx =0,

Uk i1
™ ™
4 : : k3 i
3 : : A (i)
af : 2 1
1t H k+1
ol 0, 1 . B
0 0 k,1 :
YT o s ]
2f tho itk ‘ il 3 |
5

I I I I
0.35 0.4 0.45 0.5 0.55 0.6 0.6 0.7 0.75 0.8 0.85
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Direct Collocation - Reminder
On each interval [tx, txt1], approximate dynamics F (%, x,u) = 0 using:

K
X(Qk, t) = Z Q. - Pk,,'(t) with X(Qk, tk,,') = 0Oy;

parameters polynomials
Note: K + 1 d.o.f. per state and per interval k. Collocation uses the constraints:
Initial condition: x (6, tx) — xx =0,

Dynamics: F < o (Bk, 1.';(,,')7 X(Ok, tk”'), uk> =0, i=1.,K

—X
ot
123 L1
ar E E Or.3 1
3t : : 2T (or i)
2t E 2 —]
1L ; ht1 |
of . . |
0 0 Ok :
SR o s ]
2f tho itk ‘ il 3 |
5

I I I
0.35 0.4 0.45 0.5 0.55 0.6 0.6! 0.7 0.75 0.8 0.85
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Direct Collocation- Reminder
Collocation uses the constraints:

x (O, ti) = xxk

0

ax (Or, tr,i) = F (x (O, t,i) , uk),
with i =1,..., K.

iy li+1

4r : | 6./,,'.3 i

3r : : xka’u'k')
2t E 21 /

A : k+1 |

of | | E

Or.0 !

1 xS ! : 7

2r tk’o 1 E tk71\ 1 1 1 E tk72 1 1 tk’S ]
0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
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Direct Collocation- Reminder
Collocation uses the constraints:

k0 = Xk

0

ax (9/(, tk”') =F (Bk,,-, llk) s
with i =1,..., K.

Ur+1
4l i
3k Ty k)
2t —
1t CE+1
of E .
4l | |
ol 5 k3 |
5

1
0.35 0.4 0.45 0.5 0.55 0.6 0.6 0.7 0.75 0.8 0.85
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Direct Collocation- Reminder
Collocation uses the constraints:

k0 = Xk
D (01, tes) = F (01 u0)
8t ky Lkyi) — koiy Uk )y

with i =1, ..., K. Note:

K
0 .
50 t) = > 0uiPei(t)

j=0
iy li+1

ar | | 6./,,'.3 |
3 ' ' xk,—uk)
2t E 21 /
A : k+1 |
or , 1 B

Or.0 !
1L 2 ! : 1
2 tk’o I E tk71\ I I I E tk72 I I tk’S |
0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
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Direct Collocation- Reminder
Collocation uses the constraints:

k0 = Xk

Solve for 0 ; using Newton

Ok0 = Xk
%X(Gk,tk,i):F(ak,i,uk)’ EK:Q Poi(ter) = F(0rue), i=1,..K
with i = 1, ..., K. Note: = R =
9 AN
Ex(ek, t) = ZBkJPk,j(t)
j=0
iy li+1
al
al
oL
WL
or :
b E
2l tho tka o itga k3 |
0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
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Direct Collocation- Reminder
Collocation uses the constraints:

k0 = Xk

0

Ex (9/(, tk”') =F (Gk’,‘, llk) s
with i =1, ..., K. Note:

) Lo
50 t) = > 0uiPei(t)

Jj=0

ty

Shooting constraints

f (xk,ux) — Xpp1 =0
=0k k =0k11,0
becomes:

Okk —Oki10=0

78]

1T

lk3 |

0.45 0.5
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Direct Collocation - Reminder

On each interval [ty, tx11] with:

X = F(x, l.lk)

integration is approximated using:

K
x(Bk,t)ZZ O,i Pri(t)
i—0 =~ SN——

parameters polynomials
Note:
@ x (Gk‘,', tky,‘) = ek,i

@ K + 1 degrees of freedom per
state.

tr trs1

tr3 |

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

S. Gros Optimal Control

AEs, lecture 12

23" of February, 2016

15 / 30



Direct Collocation - Reminder

On each interval [ty, tx11] with:

% =F (x, ug)

integration is approximated using:

K
x(9k,t) = Z

Or.i Py,i(t)
i—0 =~ SN——

parameters polynomials
Note:
@ x (04 ki) =0

@ K + 1 degrees of freedom per
state.

tr trs1

tr3 |

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

Optimal Control

Integration constraints (i =1, ..., K)

0
5% (Brs tr,i) = F (x (O, b)), ug)

K
Z 01 Pij(tei) = F (07, uk)
=0
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Direct Collocation - Reminder

NLP with direct collocation
On each interval [ty, tx11] with:

% =F (x, ug)

m“i,n d(w)

integration is approximated using:

K st. g(w)=
x(0i,t) =Y Oui - Pri(t)
i—0 =~ SN——
parameters polynomials

Note:

@ x (04 ki) =0

@ K + 1 degrees of freedom per
state. ) ) )
Integration constraints (i =1, ..., K)

0
' ;L‘_) 5% 6k, t,i) = F (x (Ox, t,i) , ug)

tr trs1

s i.e.

) a :

iy : 1 Z 04 jPrj(te,;) =F (04 i, ux)
2 tho itk ‘ ‘ Otk ‘ tr3 | j=0
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Direct Collocation - Reminder

On each interval [ty, tx11] with:

% =F (x, ug)

integration is approximated using:

NLP with direct collocation
min & (w)
w

00,0 — Xo

K _
st. g(w)=
x(Bk,t):Z 9;(.,‘ Pk”'(f)
parameters polynomials
Note:
@ x (04 ki) =0 Initial conditions %X J
@ K + 1 degrees of freedom per
state. ) . .
t ton Integration constraints (i =1, ..., K)
“ —x (04, thi) =F (x (04, ti,i) ,uk)
3t ot
nl
it ie.
of K
Oro :
al o : ‘ D 0kiPuj(ti) = F (04, u)
2 tho itk ‘ ‘ Otk ‘ tr3 j=0
0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
P — R



Direct Collocation - Reminder

On each interval [ty, tx11] with:

% =F (x, ug)

NLP with direct collocation
min & (w)
w

60,0 — Xo
. L . . 00,k — 01,0
integration is approximated using:
K _
st. g(w)=
x(Bk,t):Z 9;(.,‘ Pk”'(f)
i—0 ~~ N——
parameters polynomials
Note:
o x (Gk‘h tk,i) =0y, Continuity constraints (= shooting gaps) J
@ K + 1 degrees of freedom per
state. ) . .
t ton Integration constraints (i =1, ..., K)
“ —x (04, thi) =F (x (04, ti,i) ,uk)
3t ot
nl
it i.e.
of K
Or0 >
al gy : ‘ D 0kiPuj(ti) = F (04, u)
2 tho itk ‘ ‘ Otk ‘ tr3 j=0
0.35 0.4 0.45 05 0.55 0.6 0.65 0.7 0.75 08 0.85
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Direct Collocation - Reminder

On each interval [ty, tx11] with:

% =F (x, ug)

NLP with direct collocation
min & (w)
w

60,0 — Xo
integration i imated usi 00,k — 01,0
integration is approximated using: K :
€ ip € F (60,7, u0) — >0 00,jPo,(to,i)
st. g(w)=
x(Bk,t):Z 9;(.,‘ Pk”'(f)
i—0 ~~ N——
parameters polynomials
Note:
o x (Gk‘h tk,i) =0y, Integration constraints for k =0 J
@ K + 1 degrees of freedom per
state. ) . .
t ton Integration constraints (i =1, ..., K)
“ —x (04, thi) =F (x (04, ti,i) ,uk)
3b ot
oL
s i.e.
of K
Or0 >
al gy : ‘ D 0kiPuj(ti) = F (04, u)
2 tho itk ‘ ‘ Otk ‘ tr3 j=0
0.35 0.4 0.45 05 0.55 0.6 0.65 0.7 0.75 08 0.85
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Direct Collocation - Reminder

NLP with direct collocation

On each interval [ty, tx11] with: min  ® (w)

% =F (x, ug) 0.0 — %o
integration i imated usi 00,k — 61,0
integration is approximated using: K -
g ip g ) F(eo,i,UO) —ZJ:OHOJPOJ('-LOJ)
s.t. g(w)=
x(eka t) = Z ek.i . Pk,i(t) Hk_K — 6k+1‘0
o~ —— K -
=0 parameters polynomials F (ek-” uk) - zj:o 01, Pr.j(tk,i)
Note:
o x (Gk‘h tk,i) =0y, Remaining integration constraints k =1,....,N — 1 J
@ K + 1 degrees of freedom per
state. | ) . - P
t ton ntegr;tlon constraints (i =1, ..., K)
ab —X(Hk,tk,;) ZF(X (ekytk,i)ruk)
3k ot
it i.e.
°r al :
al o : 1 D 0k Prj(tii) = F (647, uk)
2 tho itk ‘ ‘ Otk ‘ 3 | j=0
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Direct Collocation - Reminder
NLP with direct collocation

On each interval [ty, tx11] with: min & (w)

% =F (x, ug) 0.0 — %o
. L . . 00,k — 01,0
integration is approximated using: F (60 . 110) _ ZK 6 _,'30 '(to )
i j=0 0.0, j{t0,i
K s.t. g(w) =
x(0,t) =Y Ou; - Pei(t) Okk —Oki10
= ~~ SN—— K .
=0 arameters polynomials F 0k suk) = 20700 0k jPrj(tii)
Note: Decision variables:
@ x (04, tk,i) = Ok, w ={001,..,00,K, U0, s ON_1,1, s ON—1, K, UN_1}
@ K + 1 degrees of freedom per
state. | . . — K
" tont ntegr;tlon constraints (i = 1, ..., K)
o 3 | Ot | —x (0, t,i) =F (x (0r, ti,i) , uk)
3t ' ' el ot
1+ |e
) ¢ :
al gy : ; D 0kiPuj(ti) = F (04, u)
2 tho itk ‘ ‘ Otk ‘ tr3 | j=0
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Direct Collocation for DAE-constrained problems

On each interval [ty, ¢t with:
[t tha] iy i1

F(X,x,z,uk) =0 4t

L L L
0.35 0.4 0.45 05 0.55 0.6 0.65 0.7 0.75 0.8 0.85

o & = E E DaAe
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Direct Collocation for DAE-constrained problems

On each interval [ty, ¢t with:
[t tha] iy i1

F(x,x,z,u,) =0 af
sl
Integration is approximated using: 2b
parameters polynomials tr
Ko~ — o
x(0,t) = Ou; - Pei(t) a g
i=0 ol
K 0.35 0.4 0.45 05 0.55 0.6 0.65 0.7 0.75 0.8 0.85
z(zt) =D 7 - Prilt)
i1 =~~~ N——

parameters polynomials
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Direct Collocation for DAE-constrained problems
On each interval [t, tx11] with:

17 251
F(x,x,z,ux) =0 ar : ‘ Ors ]

Integration is approximated using: 2 J
| ‘ Frv1 |
parameters polynomials * xT 1(9k, t)
K A= —— o 4 ' ; 4
k,0
x (0, t) = E Oki - Pr,i(t) at : ! |
i=0 of tro itk ‘ ‘ dtke ‘ tr3 |
K 0.35 0.4 0.45 05 0.55 0.6 0.65 0.7 0.75 0.8 0.85

Z(Zk,t)ZZ Zi+ Pri(t)
= ~~ N——

parameters polynomials

Note:
@ x (Ok, tk’,-) = Ok’,-
® z(z,tk;) =2k,
@ K + 1 d.o.f. per differential state
@ K d.o.f. per algebraic state
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Direct Collocation for DAE-constrained problems
On each interval [t, tx11] with:

tr tk+1
F(X’X’Z’uk):() ar ‘ 3 ‘3 ‘
o | ‘
Integration is approximated using: 2
parameters polynomials tr '
Ko~ —— of oot ]
x(0i,t) = Ori - Pri(t) b g : ! i
i=0 2l tro itk ‘ ‘ dtke ‘ 3 |
K 0.35 0.4 0.45 05 0.55 0.6 0.65 0.7 0.75 0.8 0.85

Z(Zk,t)z Zy i . Pk,'(t)
2 NN

= parameters polynomials
Note:
@ x (Ok, tk’,-) = Ok’,-
® z(z,tk;) =2k,
@ K + 1 d.o.f. per differential state
@ K d.o.f. per algebraic state
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Direct Collocation for DAE-constrained problems
On each interval [t, tx11] with:

tr tk+1
F()‘C,X,Z,Uk)zo ar ‘ 3 ‘3 ‘
o ‘ ‘
Integration is approximated using: 20
parameters polynomials tr H
Ko~ o —— o, Opr! |
x (O, t) = Z Ok - Pri(t) al Ik( ; } ]
i=0 2f tho tten . itk 3 |
K 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

Z(Zk,t)z Zy i . Pk,'(t)
2 NN

= parameters polynomials
Note:
@ x (04, th,i) =0y,
® z(z,tk;) =2k,
@ K + 1 d.o.f. per differential state
@ K d.o.f. per algebraic state

Why different d.o.f ? The differential states need an extra degree of freedom (hence K + 1) for
continuity (i.e. to close the shooting gaps). Algebraic states can be discontinuous and therefore
need only K degrees of freedom !
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Direct Collocation for DAE-constrained problems
Fully implicit DAE:

F(x,x,z,ux) =0

|
]
tht1
k) o
Zk.3
:
‘l_
|
I
!
I
‘ ith2, 1
0.35 0.4 0.45 0.5 0.55 0.6 0.65 07 0.75 0.8 0.85 0.8
z ©ac
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Direct Collocation for DAE-constrained problems
Fully implicit DAE:

F(x,x,z,ux) =0
Interpolation:

x(0k,t) = ZK: Ok,iPi,i(t)

i=0

K

z (7, t) = Z 71, Pr,i(t)

i=1
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Direct Collocation for DAE-constrained problems

Fully implicit DAE: Collocation uses the constraints:

F (x,x,z,ux) =0 x (0, tx) =x(0ki1,tx) =0  continuity

0 .
Interpolation: F (ax(eka te,i), x (0, tk,i)7zk.i7llk) =0 dynamics

K

x(0,,t) = ngjpk’i(t) with k=0,..,N—1,and i =1,.., K.
i=0
K

z (7, t) = Z 71, Pr,i(t)

i=1

123

Oro
T

tro 3 i1 : tr2 ths |
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Direct Collocation for DAE-constrained problems

Fully implicit DAE: Collocation uses the constraints:

F (x,x,z,ux) =0 Ok —0r10=0 continuity

K

Interpolation: F (> 00Pei(tei) 0y zii,uc | =0 dynamics
K J=0

x(0,,t) = ngpk i(t)  withk=0,..,N—1andi=1,.. K.
i=0
K

Z (Zk7 t) = ZZkAiPk,i(t)

i=1

123

T g
AL T : :
of tro ilka g2 ths |
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Direct Collocation for DAE-constrained problems

Fully implicit DAE: Collocation uses the constraints:

F (x,x,z,ux) =0 Ok —0r10=0 continuity

K
Interpolation: F <Z BkAij,j(tk,i),Bkj;zk‘i;uk> =0 dynamics
K J=0
x(0,,t) = ngpk i(t)  withk=0,.,N—1and/i=1,.. K.
i=0
K Note: algebraic states appear only in the dynamics
z(z,t) = szjpk i(t) (i=1,...,K hence K equations !!), hence only K are
i=1 needed.

123

Or0
T

tho itk it tr3 | ‘ ‘ ‘
35 04 045 05 055 06 065 07 075 08 085 . 0.5 0.6 0.7 0.8
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Direct Collocation for DAE-constrained problems

Semi-explicit DAE

x =F(x,2,ux)

0=G(x,2,u)

[m] = =

2L NGe
S. Gros Optimal Control with DAEs, lecture 12



Direct Collocation for DAE-constrained problems

Semi-explicit DAE Collocation uses the constraints:

% = F(x,2,u) 0=x(0k, tx) —x(0r.1,t) continuity

0=G(x,2,ux) %x(@k, te,i) = F (x (O, tx,i) , 21, ux) dynamics

0 =G (x(0, ta,i),zri,ux) algebraic

with k =0,..., N—1, and i=1,.... K.

ty tis1

L

k1 |

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
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Direct Collocation for DAE-constrained problems

Semi-explicit DAE Collocation uses the constraints:

x =F(x,2,u;) 0=0,x—0,10 continuity

-

0=G(x,2,ux) %x(@k, te,i) = F (Ori,zci,ux) dynamics
0= G (Ok,i,zki,ux) algebraic

with k =0,..., N—1, and i=1,.... K.

ty tis1
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Selection of the collocation points for DAEs

What collocation scheme to use for DAEs ?!?

o & = E 2L NGe
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Selection of the collocation points for DAEs

What collocation scheme to use for DAEs ?!?

K | Legendre Radau

1 0.5 1.0

? 0.211325 | 0.333333
0.788675 | 1.000000
0.112702 | 0.155051

3 | 0.500000 | 0.644949
0.887298 | 1.000000
0.069432 | 0.088588

4 0.330009 | 0.409467
0.669991 | 0.787659
0.930568 | 1.000000
0.046910 | 0.057104
0.230765 | 0.276843

5 | 0.500000 | 0.583590
0.769235 | 0.860240
0.953090 | 1.000000

S. Gros Optimal Control with DAEs, lecture 12
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Selection of the collocation points for DAEs

What collocation scheme to use for DAEs ?!?

E.g. Legendre, K =3 E.g. Radau, K =3
178 sl :
18 i f (o
ot | T -
i | Pk
’ Oro) O ‘i 3 3

of Lo it 2 :
035 0.4 0.45 05 0.55 0.6 0.65 0.7 0.75 0.8
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Selection of the collocation points for DAEs

What collocation scheme to use for DAEs ?!?

E.g. Legendre, K =3

E.g. Radau, K =3

ty; i 2
L=f (c or
— 3+
Thy 21
W
T o e
T : 1
of tro itk ‘ ‘ Otk ‘ 3 |

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 08

@ has a collocation point at tx all others
inside [tk, tk+1]

S. Gros Optimal Control with DAEs, lecture 12
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Selection of the collocation points for DAEs

What collocation scheme to use for DAEs ?!?

E.g. Legendre, K =3

E.g. Radau, K =3

ty; i 2
Ll “T
— 3r
Thy 21
n
o gl Ol
Tk | 7
of tro itk ‘ ‘ Otk ‘ 3 |

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 08

@ has a collocation point at tx all others
inside [tk, tk+1]

@ integration order 2K =6

S. Gros Optimal Control with DAEs, lecture 12

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

@ has collocation points at tx and tx41

@ integration order 2K —1 =5
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Selection of the collocation points for DAEs

What collocation scheme to use for DAEs ?!?

E.g. Legendre, K =3

E.g. Radau, K =3

ty; i 2

i | L o
2 -~ sr

fion 2
W

WL
T 6o o g Ok
A 4l a?},” : |
2l af tro itk ‘ ‘ Otk ‘ i3 |
0.35 04 0.8 0.35 0.4 0.45 05 0.55 0.6 0.65 0.7 0.75 0.8 0.85
@ has a collocation point at tx all others @ has collocation points at tx and txi1

inside [tk, tk+1]

@ integration order 2K =6

@ has A-stability (stable for eigenvalues

@ integration order 2K —1 =5
@ has L-stability (stable for eigenvalues

— —00) at —o0)
P — Y b



Selection of the collocation points for DAEs

What collocation scheme to use for DAEs ?!?

E.g. Legendre, K =3

E.g. Radau, K =3

ty; i 2
i | r
2} -~ r
Tr+ 2r
Al
n
°r Or0 or G0 Or1
A 1tz : i
ol 2l tho itk itka k3 |
0.35 0.4 08 0.35 0.4 0.45 05 0.55 0.6 0.65 0.7 0.75 0.8 0.85
@ has a collocation point at tx all others @ has collocation points at tx and txi1
inside [tk, tk+1]
@ integration order 2K =6 @ integration order 2K —1 =5
@ has A-stability (stable for eigenvalues @ has L-stability (stable for eigenvalues
— —00) at —o0)
@ best suited for stiff ODEs @ best suited for DAEs
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Selection of the collocation points for DAEs

What collocation scheme to use for DAEs ?!?

E.g. Legendre, K =3

E.g. Radau, K =3

ty; i 2
3k : : O ‘i -f (s o
ot | o
2 R 2
i : :
' ' 1+
T G Ok : : oF g b O
@ ' 1tz : : g
2f tho itk ‘ ko ‘ itk3 2 tro itk ‘ ‘ Otk ‘ 3 |
0.35 0.4 0.45 05 0.55 0.6 0.65 07 0.75 08 0.35 0.4 0.45 05 0.55 0.6 0.65 0.7 0.75 0.8 0.85
@ has a collocation point at tx all others @ has collocation points at tx and txi1
inside [tk, tk+1]
@ integration order 2K =6 @ integration order 2K —1 =5
@ has A-stability (stable for eigenvalues @ has L-stability (stable for eigenvalues

)

Careful: using a very high order collocation setup can deteriorate the conditioning of
your KKT matrices and hinder the linear algebra underlying the NLP solver !!

— —00)
best suited for stiff ODEs

]

at —o0)
best suited for DAEs

)

S. Gros Optimal Control with DAEs, lecture 12
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Fully implicit DAE:

NLP from Direct Collocation for DAE-constrained OCPs
F(%x,x,z,ux) =0

o & = E E DaAe
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NLP from Direct Collocation for DAE-constrained OCPs

Fully implicit DAE:

F(%x,x,z,ux) =0

Interpolation:
K
x (0, t) = Z Ok,iPr,i(t)
i=0
K
2 (26, ) = Y 7k iPii(t)
i=1

S. Gros Optimal Control with DAEs, lecture 12

I
o \‘éfk-i-l
I
Z 7
! k ZE.3
I I
! —
| |
! !
016 ‘ 017 0.‘8
t
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NLP from Direct Collocation for DAE-constrained OCPs

Fully implicit DAE: NLP with direct collocation
F(x,%,2z,u,) =0 min & (w)
Interpolation:

K

x (0, t) = Z Ok, Pi,i(t)
i=0 st. g(w) =
K

2 (26, ) = Y 7k iPii(t)
i=1

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
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NLP from Direct Collocation for DAE-constrained OCPs
Fully implicit DAE: NLP with direct collocation

F()'c,x,z,uk) =0 mV\iIn ¢(w)

. r 60,0 — Xo ]
Interpolation:
K
x (0, t) = Z Ok,iPr,i(t)
i=0 st. g(w) =
K
2 (26, ) = Y 7k iPii(t)
i=1 J
Initial conditions Xq )
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NLP from Direct Collocation for DAE-constrained OCPs

Fully implicit DAE:

F(%x,x,z,ux) =0

Interpolation:
K
x (0, t) = Z Ok,iPr,i(t)
i=0
K
2 (26, ) = Y 7k iPii(t)
i=1

NLP with direct collocation
min d(w)
r 60,0 — Xo T
6o,k — 01,0
st. g(w) =
Continuity constraints (= shooting gaps) )
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NLP from Direct Collocation for DAE-constrained OCPs

Fully implicit DAE:

F(%x,x,z,ux) =0

Interpolation:
K
x (0, t) = Z Ok,iPr,i(t)
i=0
K
2 (26, ) = Y 7k iPii(t)
i=1

NLP with direct collocation
min d(w)
r 60,0 — X0 T
6o,k — 01,0
F (%X (Oks ti0) 5 Ok.0, 2k 0, llk)
st. g(w) =
Integration constraints for k =0 )
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NLP from Direct Collocation for DAE-constrained OCPs
Fully implicit DAE: NLP with direct collocation

F()'c,x,z,uk) =0 m\Ai/n ¢(w)

. r 60,0 — X0 T
Interpolation: 00 x — 610
p ! !
o

x (04, t) = Zek‘ipk,i(t) F (mx (0k> th,0) » 04,0, Zk 05 llk)
i=0 st. g(w)=
K 0k .k — Oki1,0

z(z0,t) = 7k iPi,it) F (%X (O, te k) 70kAi7ZkAKauk)
i=1

Remaining integration constraints k =1,.... N — 1 )
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NLP from Direct Collocation for DAE-constrained OCPs

Fully implicit DAE: NLP with direct collocation
F(X,x,z,uk) =0 m\Ai/n ¢(W)
Interpolati r 60,0 — Xo T
nterpolation: _
p ) 6o,k — 01,0
x (0, t) =D 04 iPri(t) F (mx (Oks th,0) 5 0.0, 2k 05 llk)
i=0 st. g(w)=
K O,k — Ors1,0
z(z0,t) = 7k iPi,it) F (%X (O, te k) 70kAi7ZkAKauk)
i-1

Decision variables (k =0, ..., N — 1)

W= {000, 0k1, 2 1,00 Ok K5 2k Ky Uy oon }

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
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NLP from Direct Collocation for DAE-constrained OCPs

Fully implicit DAE: NLP with direct collocation
F()'(,x,z,uk) =0 m\Ai/n ¢(W)
. r 60,0 — Xo ]
Interpolation: 0o.x — 610
P : :
a

x (04, t) = ZGkJPkJ(t) F (mx (0k> th,0) » 04,0, Zk 05 llk)
i=0 st. g(w)=
K O,k — Ors1,0

z(z0,t) = 7k iPi,it) F (%X (O, te k) 70kAi7ZkAKauk)
i=1

Note: for z, the interpolation plays Decision variables (k =0, ..., N — 1)
no role in the collocation equations !

W= {.0;000,0k1, 2,150 Ok K5 Zie 1K, Uy oo}
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Direct Methods for DAE-based OCPs - Wrap up

Multiple-shooting
@ Hides the algebraic variables z in the integrator

@ If they are needed in the constraints/cost, the integrator #| Rt
needs to report them back to the NLP solver, with e g e =
sensitivities.

Direct Collocation:
@ collocation equations are almost the same as for ODEs

@ A discrete instance of the algebraic variables exists at every collocation time
but the first one (associated to the continuity conditions)

@ Use the Radau collocation times

@ Carefule about very high orders in the collocation polynomial !

b, thi
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Outline

Y

=] & = E E DAl
S. Gros Optimal Control with DAEs, lecture 12

© Point-to-point motion with Index-reduced DAEs



Reminder - LICQ condition
NLP:

min & (w)
st. g(w)=0
has LICQ at its solution w* if:

Vg (w”")
is full column rank.

o & = E 2L NGe
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Reminder - LICQ condition LICQ fails if

NLP:
min & (w)
st. g(w)=0

has LICQ at its solution w* if:
Vg (w")

is full column rank.
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Reminder - LICQ condition

LICQ fails if
NLP: @ For some linear combination
min  ® (w) Z vi-Vg; =0 with some v; #0
st. g(w)=0

has LICQ at its solution w* if:
Vg (w")

is full column rank.
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Reminder - LICQ condition

LICQ fails if
NLP: @ For some linear combination
min & (w) Z vi-Vg; =0 with some v; #0
st. g(w)=0 @ For some vector v # 0
has LICQ at its solution w* if: Vg-v=0
Vg (W)

is full column rank.
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Reminder - LICQ condition

LICQ fails if
NLP: @ For some linear combination
min  ® (w) Z vi-Vg; =0 with some v; #0
st. g(w)=0 @ For some vector v # 0
has LICQ at its solution w* if: Vg -v=0
Ve(w') @ For some vector v # 0
is full column rank. —r@ _

ow 0
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Reminder - LICQ condition LICQ fails if

NLP: @ For some linear combination
min & (w) Z v, - Vg, =0 with some v; #0
st. g(w)=0 @ For some vector v # 0
has LICQ at its solution w* if: Vg -v=0
Ve (w') @ For some vector v # 0
is full column rank. —r@ —0
Why is LICQ important ? ow
Newton step on the NLP: @ For some matrix M # 0
V2L Vg Aw | Vo Vg-M=0
v 0[]V ]

KKT

KKT matrix becomes rank-deficient for
Vg rank-deficient !!
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Reminder - LICQ condition LICQ fails if

NLP: @ For some linear combination
min () Z vi-Vg; =0 with some v; #0
st. g(w)=0 @ For some vector v # 0
has LICQ at its solution w* if: Vg -v=0
Ve (w') @ For some vector v # 0
is full column rank. —r@ —0
Why is LICQ important ? ow
Newton step on the NLP: @ For some matrix M # 0
V2L Vg Aw | Vo Vg-M=0
e 0[] ]

Some NLP solvers attempt " fixes” in your

problem in case of LICQ deficiency. They

KKT matrix becomes rank-deficient for often fail when the "fixing" is not trivial to
Vg rank-deficient !! do...

KKT
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Example of Point-to-Point motion - Two linked masses

With generalized coordinates

_ | P1
4 { P2 ]
P, — Pl

Dynamics preserve the distance

o & = E E DaAe
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Example of Point-to-Point motion - Two linked masses
ocCP
min @ (x(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0

X(to):)_(o, X(tf):)_(f

With generalized coordinates:

_ | P1
4 { P2 ]
Dynamics preserve the distance
P, — Pl
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Example of Point-to-Point motion - Two linked masses
ocCP
min @ (x(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0
X(to):)_(o, X(tf):}_(f
LICQ problem

@ Initial condition imposes the distance
P> — P4l

With generalized coordinates:

_ | P1
4 { P2 ]
Dynamics preserve the distance
P, — Pl
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Example of Point-to-Point motion - Two linked masses

With generalized coordinates:

_ | P1
4 { P2 ]
Dynamics preserve the distance
P, — Pl

ocp

min @ (x(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0

X(to):)_(o, X(tf):}_(f

LICQ problem
@ Initial condition imposes the distance
P> — P4l

@ Dynamics impose the distance ||p, — py||
at final time
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Example of Point-to-Point motion - Two linked masses

With generalized coordinates:

_ | P1
4 { P2 ]
Dynamics preserve the distance
P, — Pl

ocp

min @ (x(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0

X(to):)_(o, X(tf):}_(f

LICQ problem
@ Initial condition imposes the distance
P> — P4l

@ Dynamics impose the distance ||p, — py||
at final time

@ Terminal condition clamps the two final
positions...
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Example of Point-to-Point motion - Two linked masses
ocCP

min @ (x(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0

X(to):)_(o, X(tf):)_(f

LICQ problem
@ Initial condition imposes the distance
P> — P4l

@ Dynamics impose the distance ||p, — py||

With generalized coordinates: at final time

@ Terminal condition clamps the two final

P it
= positions...
4 { b2 ]
Dynamics preserve the distance If the distance and mass 1 are fixed at final
P> — pull time, then mass 2 is free only on a

2-dimensional manifold. But the position of
mass 2 at final time is imposed via 3
constraints !! The problem is overconstrained...

S. Gros Optimal Control with DAEs, lecture 12 23rd of February, 2016 25 / 30




Point-to-point motion with Index-reduced DAEs
OCP:
min ¢ (x(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0
X(to):)_(o, X(tf) = X¢
f (xx, ux) integrates the dynamics F
over the time interval [tx, tit1]. Label

C the consistency conditions. Note
that C (%) = 0 is preserved by f.
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Point-to-point motion with Index-reduced DAEs
OCP:
min  ® (x(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0
X(to):)_(o, X(tf) = X¢
f (xx, uk) integrates the dynamics F
over the time interval [tx, tit1]. Label

C the consistency conditions. Note
that C (%) = 0 is preserved by f.

Proposition if
C(w)=0, Vw st. g(w)=0

then VC € span {Vg}

Proof: for any d such that Vg'd =0,
equality:

vC'd=0

holds.
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Point-to-point motion with Index-reduced DAEs
OCP:
min  ® (x(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0
X(to):)_(o, X(tf) = X¢
f (xx, uk) integrates the dynamics F
over the time interval [tx, tit1]. Label

C the consistency conditions. Note
that C (%) = 0 is preserved by f.

Corollary: matrix [ Vg VT ] is
rank-deficient if
g(w)=0 = C(w)=0 and
T(w)=0 = C(w)=0

Proof: observe that

VC =Vga =VTg
then

[ Vg VT]{_E}ZO
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Point-to-point motion with Index-reduced DAEs
OCP:
min ¢ (x(.),u(.)) )
st. F(x(t),z(t),x(t),u())=0 mn ®W
X(to) = Xo, X(tf) = Xt Xo — Xo
st (W) _ f(xo,uo) — X1
f (xx, uk) integrates the dynamics F o8 -
over the time interval [tx, txi1]. Label f(xn_1,un—1) — xn
C the consistency conditions. Note

T = — Xf =
that C (%) = 0 is preserved by f. (w) =xn =% =0

Corollary: matrix [ Vg VT ] is
rank-deficient if
g(w)=0 = C(w)=0 and
T(w)=0 = C(w)=0

Proof: observe that

VC =Vga =VTg
then

[ Vg VT]{_E}ZO
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Point-to-point motion with Index-reduced DAEs
OCP:
min & (x(.),u(.))

st. F(x(t).z(t),x(t),u(t)=0 M W
X(to) = Xo, X(tf) = Xt Xo — Xo
st. g(w)= £ (x0, u0) —x1 =0

f (xx, uk) integrates the dynamics F
over the time interval [tx, txi1]. Label f(xn_1,un—1) — xn
C the consistency conditions. Note T (w) = xy — %; = 0
that C(Xo) = 0 is preserved by f.
@ If Xq is consistent, i.e. C(Xo) = 0 then
C (xn) = 0 is enforced via satisfying the
dynamics g (w) =0

Corollary: matrix [ Vg VT ] is
rank-deficient if
g(w)=0 = C(w)=0 and
T(w)=0 = C(w)=0

Proof: observe that

VC =Vga=VTa3
then

[ Vg VT]{_E}:O
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Point-to-point motion with Index-reduced DAEs

OCP:

min & (x(.),u(.))

st. F(x(t),z(t),x(t),u(t) =0
x(to) = X0, x(tr) =X¢

f (x«, uk) integrates the dynamics F
over the time interval [tx, tit1]. Label
C the consistency conditions. Note
that C(Xo) = 0 is preserved by f.

Corollary: matrix [ Vg VT ] is
rank-deficient if
g(w)=0
T(w)=0

= C(w)=0 and
= C(w)=0

Proof: observe that

VC =Vga=VTa3
then
[0
[ Vg VT]{_ﬂ}_O

S. Gros Optimal Control with DAEs, lecture 12

min & (w)
)_{o — X0
st. g(w) = £ (0, w0) =3 =0

f(xn—1,un—1) — Xy

T(W):XN—)_(fIO

@ If Xq is consistent, i.e. C(Xo) = 0 then
C (xn) = 0 is enforced via satisfying the
dynamics g (w) =0

@ If X¢ is consistent, i.e. C(X¢) =0 then
C (xn) = 0 is enforced via satisfying the
terminal constraints T (w) = 0
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Point-to-point motion with Index-reduced DAEs

OCP:

min & (x(.),u(.))

st. F(x(t),z(t),x(t),u(t) =0
x(to) = X0, x(tr) =X¢

f (x«, uk) integrates the dynamics F
over the time interval [tx, tit1]. Label
C the consistency conditions. Note
that C(Xo) = 0 is preserved by f.

Corollary: matrix [ Vg VT ] is
rank-deficient if
g(w)=0
T(w)=0

= C(w)=0
= C(w)=0

and

Proof: observe that

VC =Vga=VTa3
then
[0
[ Vg VT]{_ﬂ}_O

S. Gros Optimal Control with DAEs, lecture 12

min
w

® (w)

)_{o — X0
gw)=| [om)=x
f(xn—1,un—1) — Xy

T(W):XN—)_(fIO

If Xo is consistent, i.e. C(Xo) = 0 then
C (xn) = 0 is enforced via satisfying the
dynamics g (w) =0

If X¢ is consistent, i.e. C(X¢) =0 then
C (xn) = 0 is enforced via satisfying the
terminal constraints T (w) = 0

Then [ Vg VT ] is rank-deficient !!

The NLP fails LICQ

)
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Point-to-point motion with Index-reduced DAEs - Projection Method

OCP:

min  ® (x(.),u(.))

st. F(x(t),z(t),x(t),u(t))=0 w

X(to):)_(o, X(tf):)_(f X0 — Xo

£ (%0, w0) — x1 —0
f (x«, ux) integrates the dynamics F o
over the time interval [tx, txi1]. Label f(xn_1,un—1) — xn

C € R™ the consistency conditions.

T = —xr=0
Note that C (%) = 0 is preserved by f. (w) = xn — X

Matrix [ Vg VT ] is rank-deficient !!
The NLP fails LICQ
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Point-to-point motion with Index-reduced DAEs - Projection Method

OCP:
min  ® (x(.),u(.)) )
st F(x(t),z(),x(t),u()) =0 Mmn W
X(i’o):)_(o7 X(tf):)_(f X0 — Xo
st (W) o f(xo,uo) — X1
f (x«, ux) integrates the dynamics F 8 -
over the time interval [, ti41]. Label
C € R™ the consistency conditions. T (w) = xn — & = 0
Note that C (Xo) = 0 is preserved by f. TN TR

f(xn 1, un—1) — xn

Let matrix Z € R"*"~™ be a basis of
the "left-hand” null-space of VC (X¢),

Matrix [ Vg VT ] is rank-deficient !! J
i.e.

The NLP fails LICQ

Z'VC (%) =0

Modify the NLP according to...
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Point-to-point motion with Index-reduced DAEs - Projection Method

OCP:
min  ® (x(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0
X(i’o):)_(o7 X(tf):)_(f
f (x«, ux) integrates the dynamics F

over the time interval [, ti41]. Label
C € R™ the consistency conditions.

Note that C(Xo) = 0 is preserved by f.

Let matrix Z € R"*"~™ be a basis of
the "left-hand” null-space of VC (X¢),
i.e.

Z'VC (%) =0

Modify the NLP according to...

S. Gros Optimal Control with DAEs, lecture 12 2374 of February, 2016

min & (w)
)_{o — X0
st g(w) £ (0, wo) = =0

f(xn 1, un—1) — xn
T(W) = ZT (XN —)_(f) =0
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Point-to-point motion with Index-reduced DAEs - Projection Method

OCP:
min  ® (x(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0

X(i’o):)_(o7 X(tf):)_(f

f (x«, ux) integrates the dynamics F
over the time interval [, ti41]. Label
C € R™ the consistency conditions.

Note that C(Xo) = 0 is preserved by f.

min & (w)
)_{o — X0
st g(w) £ (0, wo) = =0

f(xn 1, un—1) — xn
T(W) = ZT (XN —)_(f) =0

C
Let matrix Z € R"*"~™ be a basis of
the "left-hand” null-space of VC (X¢), 7
i.e.
7'VC (&) =0 N
Modify the NLP according to...
VC (x¢)
P ——
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Point-to-point motion with Index-reduced DAEs - Projection Method

OCP:
min  ® (x(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0

X(i’o):)_(o7 X(tf):)_(f

f (x«, ux) integrates the dynamics F
over the time interval [, ti41]. Label
C € R™ the consistency conditions.

Note that C(Xo) = 0 is preserved by f.

min & (w)
)_{o—Xo
R B

f(xn 1, un—1) — xn
T(W) = ZT (XN —)_(f) =0

Let matrix Z € R"*"~" be a basis of XN
the "left-hand” null-space of VC (X¢),
i.e. Z
Z'VC (%) =0 o -
B X
Modify the NLP according to... VC (x¢)
239 of Fabruary, 2016
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Point-to-point motion with Index-reduced DAEs - Projection Method

OCP:
min @ (x(.), u(.))
st. F(x(t),z(t),x(t),u(t))=0
(to): Xo, X(tf):)_(f
f (x«, ux) integrates the dynamics F

over the time interval [, ti41]. Label
C € R™ the consistency conditions.

Note that C(Xo) = 0 is preserved by f.

Let matrix Z € R"*"~™ be a basis of
the "left-hand” null-space of VC (X¢),
i.e.

Z'VC (%) =

Modify the NLP according to...

mm

Xo — X0
f (xo, uo) — X1

(xnv—1,un—1) — XN

Z N—xf)_O

X“@/\

The projection method creates solutions that
are infeasible for the original problem. Check
your feasibility !!
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Outline

@ Handling drift in direct optimal control

=] & = E E DAl
S. Gros Optimal Control with DAEs, lecture 12



Constraints drift - Reminder

Index-1 DAE:

BRI
p’ 0 z -p'p
impose ¢ = 0 at all time.

With the consistency conditions:
_ 1/ 7 2\ _ N
c=3 p p—L) =0, c=p p=0

imposed at tp result in ¢ = 0 and ¢ = 0 holding at
all time.

S. Gros Optimal Control with DAEs, lecture 12
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Constraints drift - Reminder

Index-1 DAE:

BRI
p’ 0 z -p'p
impose ¢ = 0 at all time.

With the consistency conditions:
_ 1/ 7 2\ _ N
c=3 p p—L) =0, c=p p=0

imposed at tp result in ¢ = 0 and ¢ = 0 holding at
all time.

However, consistency ¢ = 0 and ¢ = 0 are satisfied
at all time only with no numerical error in the
integration.

v
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Constraints drift - Reminder

Index-1 DAE:

BRI
p’ 0 z -p'p
impose ¢ = 0 at all time.

With the consistency conditions:
_ 1/ 7 2\ _ N
c=3 p p—L) =0, c=p p=0

imposed at tp result in ¢ = 0 and ¢ = 0 holding at
all time.

However, consistency ¢ = 0 and ¢ = 0 are satisfied
at all time only with no numerical error in the
integration. Always check your consistency at the
solution of your OCP when you work with
index-reduced DAEs !!

v

S. Gros Optimal Control with DAEs, lecture 12
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How to handle drift (if needed) ? E.g. multiple-shooting

OCP:
min & (x(.),u(.))
st. F(x(t),z(t),x(t),u(t)) =0
X (to) = Xo
f (xx, ux) integrates the dynamics F
over the time interval [tx, txt1]. Label

C the consistency conditions. Note
that C (%) = 0 is preserved by f.
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How to handle drift (if needed) ? E.g. multiple-shooting

OCP: NLP with w = {Xo, Uo, ...,XNfl,uNfl,xN}
min ¢ (x(.),u(.))

st. F(x(t),z(t),x(t),u(t))=0 min  ® (w)
X(to):}_(o w %o — %o

f (Xo7 llo) — X1

f (xx, uk) integrates the dynamics F st g(w)= —0

over the time interval [tx, txt1]. Label
C the consistency conditions. Note f(xnv—1,un—1) — xn
that C (%) = 0 is preserved by f.
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How to handle drift (if needed) ? E.g. multiple-shooting

OCP: NLP with w = {xo,uo,...,xN,l,uN,l,xN}
min ¢ (x(.),u(.))

st. F(x(t),z(t),x(t),u(t))=0 min  ® (w)

X (to) = Xp w _

Xo — Xo

f (x«, uk) integrates the dynamics F f (%0, u0) — x1

over the time interval [tx, txt1]. Label

C the consistency conditions. Note f(xn_1,un—1) — Xn

that C (%) = 0 is preserved by f.

st. g(w)=
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How to handle drift (if needed) ? E.g. multiple-shooting

OCP: NLP with w = {Xo, Uo, ...,XNfl,uNfl,xN}
min ¢ (x(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0 min ® (w)
X(to) = Xp w

X0 — X0

f (xk, ux) integrates the dynamics F £ (x0,w0) — x1
over the time interval [tx, txt1]. Label
C the consistency conditions. Note f(xn_1,un—1) — xn

that C (%) = 0 is preserved by f.

st. g(w)=

We would like to impose:

f(xk,uk) —xp41 =0
C(Xk+1) =0

at every shooting node k, so as to control
the drift. However, the problem would be
over-constrained = LICQ deficiency !!
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How to handle drift (if needed) ? E.g. multiple-shooting

OCP: NLP with w = {Xo, Uo, ...,XNfl,uNfl,xN}
min ¢ (x(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0 min ® (w)
X(to) = Xp w

X0 — X0

f (xk, ux) integrates the dynamics F £ (x0,w0) — x1
over the time interval [tx, txt1]. Label
C the consistency conditions. Note f(xn_1,un—1) — xn

that C (%) = 0 is preserved by f.

st. g(w)=

We would like to impose:

f(xk,uk) —xp41 =0
C(Xk+1) =0

at every shooting node k, so as to control
the drift. However, the problem would be
over-constrained = LICQ deficiency !!
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How to handle drift (if needed) ? E.g. multiple-shooting

OCP: NLP with w = {Xo, Uo, ...,XNfl,uNfl,xN}
min ¢ (x(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0

m“i,n d(w)

X0 — X0

f (xk, uk) integrates the dynamics F £ (%0, u0) — x1
over the time interval [tk, ti41]. Label
C the consistency conditions. Note f(xy-1,un—1) — xp

that C(Xo) = 0 is preserved by f.

We would like to impose: Why LICQ deficiency ?? Consider one
interval:
£ (%6, uk) = X441 =0
C(x4:1) =0 C(f (xk,uk)) =0, Vuk
at every shooting node k, so as to control  holds (mathematically)
the drift. However, the problem would be
over-constrained = LICQ deficiency !!
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How to handle drift (if needed) ? E.g. multiple-shooting

OCP: NLP with w = {Xo, Uo, ...,XNfl,uNfl,xN}
min ¢ (x(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0

m“i,n d(w)

Xo — Xo

f (xk, uk) integrates the dynamics F £ (%0, u0) — x1
over the time interval [tk, ti41]. Label o
C the consistency conditions. Note f(xn_1,un—1) —xn

that C(Xo) = 0 is preserved by f.

We would like to impose: Why LICQ deficiency ?? Consider one
interval:
£ (xx, uk) = X441 =0
C(Xk+1) =0 C(f(xk7uk)) :07 vuk
at every shooting node k, so as to control ~ holds (mathematically), such that:
the drift. However, the problem would be
' u £ (xk, C =0
over-constrained = LICQ deficiency !! Vet (%6 1) VO (%141
holds at the solution.
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How to handle drift (if needed) ? E.g. multiple-shooting

OCP: NLP with w = {Xo, Uo, ...,XNfl,uNfl,xN}
min ¢ (x(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0

m“i,n d(w)

X0 — X0

f (x«, uk) integrates the dynamics F f (%0, u0) — x1
over the time interval [tk, ti41]. Label
C the consistency conditions. Note f(xn_1,un—1) —xn

that C(Xo) = 0 is preserved by f.

We would like to impose: Then :
£ (xx, uk) = X441 =0 Y |: fr — Xkt1 :| . [ —1 vC :|
Xk+1,Uk -
C(x411) =0 C (xx+1) Vafe 0

. Result in:
at every shooting node k, so as to control

the drift. However, the problem would be —1 vC vC | 0
over-constrained = LICQ deficiency !! Vo fe 0 -

i.e. LICQ fails !!
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How to handle drift (if needed) ? E.g. multiple-shooting

OCP: NLP with w = {Xo, Uo, ...,XNfl,uNfl,xN}

min & (x(.),u(.))
st. F(x(1),2(1),x(6),u(t) =0 i o(w)
x (to) = %o v o — %o

f (x«, ux) integrates the dynamics F st g(w)= £ (0, w0) — x1

over the time interval [tx, txt1]. Label
C the consistency conditions. Note
that C (%) = 0 is preserved by f.

f(xnv—1,un—1) — xn

Idea: project the continuity conditions in
the null space of the consistency
conditions, i.e.:

Zd (F (%1, me1) —x6) =0
C (Xk) = 0
where Z is a basis of the "left-hand”
null-space of VC (xx):
Z/VC(xx) =0
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How to handle drift (if needed) ? E.g. multiple-shooting

OCP:
min ¢ (x(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0

X(to) = Xo

f (x«, uk) integrates the dynamics F
over the time interval [tk, ti41]. Label
C the consistency conditions. Note
that C(Xo) = 0 is preserved by f.

Idea: project the continuity conditions in

the null space of the consistency
conditions, i.e.:
Z;:r (f (Xk_l, llk_l) — Xk) = 0
C (Xk) = 0
where Z is a basis of the "left-hand”
null-space of VC (xx):
Z/VC(xx) =0

S. Gros Optimal Control with DAEs, lecture 12

NLP with w = {Xo, Uo, ...,XNfl,uNfl,xN}

min & (w)
X0 — Xo
Zi" (f (%0, u0) — x1)
s.t. C () =0

Z/Ll (f (fola uNfl) - XN)
C (XN_1)
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How to handle drift (if needed) ? E.g. multiple-shooting

OCP: NLP with w = {Xo, Uo, ...,XNfl,uNfl,xN}
min ¢ (x(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0 min & (w)

X0 — Xo
f (x«, uk) integrates the dynamics F Z" (f (%0, u0) — x1)
over the time interval [tk, ti41]. Label ot C(x1) —0

C the consistency conditions. Note

that C(Xo) = 0 is preserved by f. Zn_1 (f (xn_1,un_1) — xn)

. o L C(xn-1)
Idea: project the continuity conditions in
the null space of the consistency Cc
conditions, i.e.:

T Zi

Zk (f (Xk_l, llk_l) — Xk) = 0
C(xi) =0 XN
Xk

where Z is a basis of the "left-hand”
null-space of VC (xx):
T VC (Xk)
Zk vC (Xk) =0
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How to handle drift (if needed) ? E.g. multiple-shooting

OCP: NLP with w = {Xo, Uo, ...,XNfl,uNfl,xN}
min ¢ (x(.),u(.))
st. F(x(t),z(t),x(t),u(t))=0 min & (w)

X (to) = Xp _
X0 — Xo
f (x«, uk) integrates the dynamics F Z" (f (%0, u0) — x1)
over the time interval [tk, ti41]. Label C(x1)
. L s.t. 0
C the consistency conditions. Note
that C(Xo) = 0 is preserved by f. Zn_1 (f (xn_1,un_1) — xn)
. . L C(xn-1)
Idea: project the continuity conditions in
the null space of the consistency
conditions, i.e.: Observe that Zx = Zi (xx) !! Can be
difficult to deploy if the Zx cannot be

Zd (F (%1, me1) —x6) =0

C (Xk) = 0
and computed implicitly. That yields a

large and often tricky NLP (we will get

where Z is a basis of the "left-hand”
to this soon )

null-space of VC (xx):

computed explicitly. Then they have to be
introduced as decision variables in the NLP,

very
back

4

Z/VC(xx) =0
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