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Objectives of the lecture

Why are DAEs not always ”easy”to solve ?

What is a DAE index ? How does it make the DAE ”easy” or not ?

What to do about it ?

What happens with DAE models for mechanical systems ?

Some possible additional numerical problems

S. Gros Optimal Control with DAEs, lecture 11 22nd of February, 2016 2 / 25



Outline

1 ”Easy” & ”Hard” DAEs

2 Differential Index

3 Index Reduction

4 Constraints drift
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DAE - Easy & Hard DAEs

DAE:

F (ẋ,x, z,u) = 0

”At any time instant, for
given x,u, the DAE

equation provides ẋ, z,
generating the
trajectories.”
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What is a ”well-behaved” DAE ?
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... i.e. when can we compute ẋ, z ”easily” ?
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DAE - Easy & Hard DAEs

DAE:

F (ẋ,x, z,u) = 0

”At any time instant, for
given x,u, the DAE

equation provides ẋ, z,
generating the
trajectories.”

What is a ”well-behaved” DAE ?

F (ẋ,x, z,u) = 0

... i.e. when can we compute ẋ, z ”easily” ?

Consider F (ẋ,x, z,u) = 0 as a root-finding problem in ẋ, z. When can we find ẋ, z,
e.g. using Newton ?
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”Easy” DAEs

Consider the DAE:

F (ẋ, z,x,u) = 0
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”Easy” DAEs

Consider the DAE:

F (ẋ, z,x,u) = 0

If the matrix:

[
∂F
∂ẋ

∂F
∂z

]

is full-rank at x,u
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Consider the DAE:

F (ẋ, z,x,u) = 0

If the matrix:

[
∂F
∂ẋ

∂F
∂z

]

is full-rank at x,u, then there is a function:

ẋ, z = ξ (x,u)

such that:

F (ξ (x,u) ,x,u) = 0

holds in a neighborhood of x,u.
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such that:
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holds in a neighborhood of x,u.

Proof: from implicit function theorem.
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Proof: from implicit function theorem.

Consequence:
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∂F
∂ẋ
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]

full-rank at x,u guarantees that the
DAE is ”solvable” at ẋ, z
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F (ẋ, z,x,u) = 0

If the matrix:

[
∂F
∂ẋ

∂F
∂z

]

is full-rank at x,u, then there is a function:
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”Easy” DAEs

Consider the DAE:

F (ẋ, z,x,u) = 0

If the matrix:

[
∂F
∂ẋ

∂F
∂z

]

is full-rank at x,u, then there is a function:

ẋ, z = ξ (x,u)

such that:

F (ξ (x,u) ,x,u) = 0

holds in a neighborhood of x,u.

Proof: from implicit function theorem.

Classical numerical methods can treat
”easy” DAEs

Consequence:

[
∂F
∂ẋ

∂F
∂z

]

full-rank at x,u guarantees that the
DAE is ”solvable” at ẋ, z

Semi-explicit DAE:

F̃ =

[
ẋ−F (z,x,u)
G (z,x,u)

]

= 0
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”Easy” DAEs

Consider the DAE:

F (ẋ, z,x,u) = 0

If the matrix:

[
∂F
∂ẋ

∂F
∂z

]

is full-rank at x,u, then there is a function:

ẋ, z = ξ (x,u)

such that:

F (ξ (x,u) ,x,u) = 0

holds in a neighborhood of x,u.

Proof: from implicit function theorem.

Classical numerical methods can treat
”easy” DAEs

Consequence:

[
∂F
∂ẋ

∂F
∂z

]

full-rank at x,u guarantees that the
DAE is ”solvable” at ẋ, z

Semi-explicit DAE:

F̃ =

[
ẋ−F (z,x,u)
G (z,x,u)

]

= 0

Then the matrix:

[
∂F̃
∂ẋ

∂F̃
∂z

]

=

[

I ∂F̃
∂z

0 ∂G
∂z

]

is full-rank if ∂G
∂z

is full rank
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”Easy” and ”not easy” DAEs - Some examples
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]

= 0

Then:

[
∂F
∂ẋ

∂F
∂z

]
=

[
−1 0
z ẋ

]

is full rank for ẋ 6= 0.
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F (ẋ,x, z) =

[
x− ẋ+ 1
ẋz+ 2

]

= 0

Then:

[
∂F
∂ẋ

∂F
∂z

]
=

[
−1 0
z ẋ

]

is full rank for ẋ 6= 0. This is an ”easy”
DAE !!

Indeed, we can solve it as:

ẋ = x+ 1

z = −
2

ẋ
= −

2

x+ 1

I.e. we can compute ẋ, z from x
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]

= 0

Then:

[
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∂ẋ

∂F
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]
=

[
−1 0
z ẋ

]

is full rank for ẋ 6= 0. This is an ”easy”
DAE !!

Indeed, we can solve it as:

ẋ = x+ 1

z = −
2

ẋ
= −

2

x+ 1

I.e. we can compute ẋ, z from x

F (ẋ,x, z) =





ẋ1 − z

ẋ2 − x1

x2 − u



 = 0
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ẋ
= −
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I.e. we can compute ẋ, z from x

F (ẋ,x, z) =





ẋ1 − z

ẋ2 − x1

x2 − u



 = 0

Then:

[
∂F

∂ẋ1,2

∂F
∂z

]

=





1 0 −1
0 1 0
0 0 0





is rank-deficient.
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”Easy” and ”not easy” DAEs - Some examples

F (ẋ,x, z) =

[
x− ẋ+ 1
ẋz+ 2

]

= 0

Then:

[
∂F
∂ẋ

∂F
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]
=

[
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z ẋ

]

is full rank for ẋ 6= 0. This is an ”easy”
DAE !!

Indeed, we can solve it as:

ẋ = x+ 1

z = −
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ẋ
= −

2

x+ 1

I.e. we can compute ẋ, z from x

F (ẋ,x, z) =





ẋ1 − z

ẋ2 − x1

x2 − u



 = 0

Then:

[
∂F

∂ẋ1,2

∂F
∂z

]

=





1 0 −1
0 1 0
0 0 0





is rank-deficient. This is a ”not easy” DAE
!! We cannot write ẋ1,2 and z as functions
of x1,2...
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DAE - 3D pendulum

Model is a semi-explicit DAE with x =

[
p

v

]

[
ṗ

v̇

]

= ẋ =

F(x,z,u)
︷ ︸︸ ︷
[

v
u

m
− ge3 −

z

m
p

]

0 = p
⊤
p− L

2

︸ ︷︷ ︸

G(x)

O

p

e1

e2

e3

u
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ṗ

v̇

]

= ẋ =
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Consider the root-finding problem to be solved in ẋ, z :

r (ẋ,x, z ,u) =

[
ẋ− F (x, z ,u)

G (x)

]

= 0
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Consider the root-finding problem to be solved in ẋ, z :

r (ẋ,x, z ,u) =

[
ẋ− F (x, z ,u)

G (x)

]

= 0

Then:

∇ẋ,zr
⊤ =





I 0 0
0 I p

0 0 0



 is rank-deficient. The Newton step does not exist !!
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0 = p
⊤
p− L

2

︸ ︷︷ ︸

G(x)
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u

Note that ∂G(x)
∂z

= 0 !!
Consider the root-finding problem to be solved in ẋ, z :

r (ẋ,x, z ,u) =

[
ẋ− F (x, z ,u)
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]
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DAE - Delta Robot

Lagrange model yields a semi-explicit DAE with:

G (x) =





‖p− p1‖
2 − L2

‖p− p2‖
2 − L2

‖p− p3‖
2 − L2





where

pk = R
z
k =





cos γk sin γk 0
− sin γk cos γk 0

0 0 1









L cosαk

0
L sinαk





using γ1,2,3 =
{
0, 2π

3
, 4π

3

}
.
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Algebraic variables z for the forces in the arms:

∂G (x)

∂z
= 0
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DAE - Delta Robot

Lagrange model yields a semi-explicit DAE with:

G (x) =





‖p− p1‖
2 − L2

‖p− p2‖
2 − L2

‖p− p3‖
2 − L2





where

pk = R
z
k =





cos γk sin γk 0
− sin γk cos γk 0

0 0 1









L cosαk

0
L sinαk





using γ1,2,3 =
{
0, 2π

3
, 4π

3

}
.

Algebraic variables z for the forces in the arms:

∂G (x)

∂z
= 0

Such that the DAE:
ẋ = F (x, z ,u)

0 = G (x)

... cannot be solved for z, because ∂G(x)
∂z

= 0 !!
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DAE from Lagrange Mechanics

Is that a general problem in Lagrange mechanics ? Pretty much ...

S. Gros Optimal Control with DAEs, lecture 11 22nd of February, 2016 9 / 25



DAE from Lagrange Mechanics

Is that a general problem in Lagrange mechanics ? Pretty much ...

The difficulty comes from having holonomic (aka purely position-dependent) constraints:

G (q) = 0

which ”hold the system together”.
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DAE from Lagrange Mechanics

Is that a general problem in Lagrange mechanics ? Pretty much ...

The difficulty comes from having holonomic (aka purely position-dependent) constraints:

G (q) = 0

which ”hold the system together”. Then the Euler-Lagrange equations:

d

d

∂L

∂q̇
−

∂L

∂q
= 0

deliver an explicit ODE for the accelerations q̈, involving the algebraic variables z.
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Is that a general problem in Lagrange mechanics ? Pretty much ...

The difficulty comes from having holonomic (aka purely position-dependent) constraints:

G (q) = 0

which ”hold the system together”. Then the Euler-Lagrange equations:

d

d

∂L

∂q̇
−

∂L

∂q
= 0

deliver an explicit ODE for the accelerations q̈, involving the algebraic variables z. But
the forces generated by the algebraic variables z are not defined by the algebraic
equations because:

∂G (q)

∂z
= 0 and therefore

∂G (x)

∂z
= 0
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DAE from Lagrange Mechanics

Is that a general problem in Lagrange mechanics ? Pretty much ...

The difficulty comes from having holonomic (aka purely position-dependent) constraints:

G (q) = 0

which ”hold the system together”. Then the Euler-Lagrange equations:

d

d

∂L

∂q̇
−

∂L

∂q
= 0

deliver an explicit ODE for the accelerations q̈, involving the algebraic variables z. But
the forces generated by the algebraic variables z are not defined by the algebraic
equations because:

∂G (q)

∂z
= 0 and therefore

∂G (x)

∂z
= 0

What is going on ?!?

S. Gros Optimal Control with DAEs, lecture 11 22nd of February, 2016 9 / 25



Outline

1 ”Easy” & ”Hard” DAEs

2 Differential Index

3 Index Reduction

4 Constraints drift
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DAE - Differential Index
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DAE - Differential Index

Definition:

The DAE differential
index is the minimum i

such that:

d
i

dt i
F (ẋ,x, z,u) = 0

is a pure ODE

S. Gros Optimal Control with DAEs, lecture 11 22nd of February, 2016 11 / 25



DAE - Differential Index

Definition:

The DAE differential
index is the minimum i

such that:

d
i

dt i
F (ẋ,x, z,u) = 0

is a pure ODE

Example:

F (ẋ,x) =

[
x1 − ẋ1 + 1
ẋ1x2 + 2

]

= 0
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is a pure ODE

Example:

F (ẋ,x) =

[
x1 − ẋ1 + 1
ẋ1x2 + 2

]

= 0

Note that:

∂F

∂ẋ
=

[
−1 0
1 0

]

→ this is a DAE
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DAE - Differential Index

Definition:

The DAE differential
index is the minimum i

such that:

d
i

dt i
F (ẋ,x, z,u) = 0

is a pure ODE

Example:

F (ẋ,x) =

[
x1 − ẋ1 + 1
ẋ1x2 + 2

]

= 0

Note that:

∂F

∂ẋ
=

[
−1 0
1 0

]

→ this is a DAE

For i = 1 reads as:

Ḟ (ẍ, ẋ,x) =

[
ẋ1 − ẍ1

ẍ1x2 + ẋ1ẋ2

]

= 0

S. Gros Optimal Control with DAEs, lecture 11 22nd of February, 2016 11 / 25



DAE - Differential Index

Definition:

The DAE differential
index is the minimum i

such that:

d
i

dt i
F (ẋ,x, z,u) = 0

is a pure ODE

Example:

F (ẋ,x) =

[
x1 − ẋ1 + 1
ẋ1x2 + 2

]

= 0

Note that:

∂F

∂ẋ
=

[
−1 0
1 0

]

→ this is a DAE

For i = 1 reads as:

Ḟ (ẍ, ẋ,x) =

[
ẋ1 − ẍ1

ẍ1x2 + ẋ1ẋ2

]

= 0

Using (to write a 1st-order ODE)

s ≡





x1

x2

ẋ1



 we have Ḟ (ṡ, s) =





ṡ1 − s3
s3 − ṡ3

ṡ3s2 + s3ṡ2




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DAE - Differential Index

Definition:

The DAE differential
index is the minimum i

such that:

d
i

dt i
F (ẋ,x, z,u) = 0

is a pure ODE

Example:

F (ẋ,x) =

[
x1 − ẋ1 + 1
ẋ1x2 + 2

]

= 0

Note that:

∂F

∂ẋ
=

[
−1 0
1 0

]

→ this is a DAE

For i = 1 reads as:

Ḟ (ẍ, ẋ,x) =

[
ẋ1 − ẍ1

ẍ1x2 + ẋ1ẋ2

]

= 0

Using (to write a 1st-order ODE)

s ≡





x1

x2

ẋ1



 we have Ḟ (ṡ, s) =





ṡ1 − s3
s3 − ṡ3

ṡ3s2 + s3ṡ2





And

∂F

∂ṡ
=





1 0 0
0 0 −1
0 s3 s2



 , with det

(
∂F

∂ṡ

)

= s3 ⇒ now we have an ODE

S. Gros Optimal Control with DAEs, lecture 11 22nd of February, 2016 11 / 25



DAE - Differential Index

Definition:

The DAE differential
index is the minimum i

such that:

d
i

dt i
F (ẋ,x, z,u) = 0

is a pure ODE

Example:

F (ẋ,x) =

[
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]

= 0
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∂ẋ
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DAE - Differential Index

Definition

The DAE differential
index is the minimum i

such that:

d
i

dt i
F (ẋ,x, z,u) = 0

is a pure ODE

How does the differential index relate to the DAE
being ”easy” to solve ??
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index is the minimum i

such that:

d
i

dt i
F (ẋ,x, z,u) = 0

is a pure ODE

How does the differential index relate to the DAE
being ”easy” to solve ??

For an index-1 DAE:

d

dt
F (ẋ,x, z,u) = Ḟ = 0

yields a pure ODE.
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For an index-1 DAE:
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ẍ+

∂F

∂x
ẋ+
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ẍ+

∂F
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ẋ+

∂F

∂z
ż+

∂F

∂u
u̇ = 0

Then the ODE reads as (use v = ẋ):

ẋ = v
[

v̇

ż

]

= −
[

∂F
∂ẋ

∂F
∂z

]−1
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∂F

∂x
ẋ+
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∂u
u̇

)

S. Gros Optimal Control with DAEs, lecture 11 22nd of February, 2016 12 / 25



DAE - Differential Index

Definition

The DAE differential
index is the minimum i

such that:

d
i

dt i
F (ẋ,x, z,u) = 0

is a pure ODE

How does the differential index relate to the DAE
being ”easy” to solve ??

For an index-1 DAE:

d

dt
F (ẋ,x, z,u) = Ḟ = 0

yields a pure ODE. Observe that:

d

dt
F = Ḟ =

∂F

∂ẋ
ẍ+
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∂x
ẋ+

∂F

∂z
ż+

∂F

∂u
u̇ = 0

Then the ODE reads as (use v = ẋ):

ẋ = v
[

v̇

ż

]

= −
[

∂F
∂ẋ

∂F
∂z

]−1
(
∂F

∂x
ẋ+

∂F

∂u
u̇

)

An index-1 DAE has

[
∂F
∂ẋ

∂F
∂z

]

full rank and is therefore
”easy” to solve !!
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Semi-explicit DAEs - Differential Index

For a semi-explicit DAE the
differential index is the
minimum i such that:

ẋ = F (x, z,u)

0 =
d
i

dt i
G (x, z,u)

is an ODE
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Semi-explicit DAEs - Differential Index

For a semi-explicit DAE the
differential index is the
minimum i such that:

ẋ = F (x, z,u)

0 =
d
i

dt i
G (x, z,u)

is an ODE

Remark: for an index-1 semi-explicit DAE:

d

dt
G (x, z,u) =

∂G

∂x
F+

∂G

∂z
ż+

∂G

∂u
u̇ = 0

yields a pure ODE.
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∂G
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yields a pure ODE. We have:

ż = −
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−1
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such that ∂G
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Semi-explicit DAEs - Differential Index

For a semi-explicit DAE the
differential index is the
minimum i such that:

ẋ = F (x, z,u)

0 =
d
i

dt i
G (x, z,u)

is an ODE

Remark: for an index-1 semi-explicit DAE:

d

dt
G (x, z,u) =

∂G

∂x
F+

∂G

∂z
ż+

∂G

∂u
u̇ = 0

yields a pure ODE. We have:

ż = −
∂G

∂z

−1
(
∂G

∂x
F+

∂G

∂u
u̇

)

such that ∂G
∂z

is full rank !!
Example:

[
ẋ1

ẋ2

]

=

[
0 1
0 0

] [
x1

x2

]

+

[
0
1

]

z

0 =
1

2

(

x
2
1 + x

2
2 − 1

)

︸ ︷︷ ︸

G(x)
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Semi-explicit DAEs - Differential Index

For a semi-explicit DAE the
differential index is the
minimum i such that:

ẋ = F (x, z,u)

0 =
d
i

dt i
G (x, z,u)

is an ODE

Remark: for an index-1 semi-explicit DAE:

d

dt
G (x, z,u) =

∂G

∂x
F+

∂G

∂z
ż+

∂G

∂u
u̇ = 0

yields a pure ODE. We have:

ż = −
∂G

∂z

−1
(
∂G

∂x
F+

∂G

∂u
u̇

)

such that ∂G
∂z

is full rank !!
Example:

[
ẋ1

ẋ2

]

=

[
0 1
0 0

] [
x1

x2

]

+

[
0
1

]

z

0 =
1

2

(

x
2
1 + x

2
2 − 1

)

︸ ︷︷ ︸

G(x)

Then d

dt
G = x1x2 + x2z = 0
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Semi-explicit DAEs - Differential Index

For a semi-explicit DAE the
differential index is the
minimum i such that:

ẋ = F (x, z,u)

0 =
d
i

dt i
G (x, z,u)

is an ODE

Remark: for an index-1 semi-explicit DAE:

d

dt
G (x, z,u) =

∂G

∂x
F+

∂G

∂z
ż+

∂G

∂u
u̇ = 0

yields a pure ODE. We have:

ż = −
∂G

∂z

−1
(
∂G

∂x
F+

∂G

∂u
u̇

)

such that ∂G
∂z

is full rank !!
Example:

[
ẋ1

ẋ2

]

=

[
0 1
0 0

] [
x1

x2

]

+

[
0
1

]

z

0 =
1

2

(

x
2
1 + x

2
2 − 1

)

︸ ︷︷ ︸

G(x)

Then d

dt
G = x1x2 + x2z = 0

d
2

dt2
G = ẋ1x2 + x1ẋ2 + ẋ2z + x2ż = 0
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Semi-explicit DAEs - Differential Index

For a semi-explicit DAE the
differential index is the
minimum i such that:

ẋ = F (x, z,u)

0 =
d
i

dt i
G (x, z,u)

is an ODE

Remark: for an index-1 semi-explicit DAE:

d

dt
G (x, z,u) =

∂G

∂x
F+

∂G

∂z
ż+

∂G

∂u
u̇ = 0

yields a pure ODE. We have:

ż = −
∂G

∂z

−1
(
∂G

∂x
F+

∂G

∂u
u̇

)

such that ∂G
∂z

is full rank !!
Example:

[
ẋ1

ẋ2

]

=

[
0 1
0 0

] [
x1

x2

]

+

[
0
1

]

z

0 =
1

2

(

x
2
1 + x

2
2 − 1

)

︸ ︷︷ ︸

G(x)

Then d

dt
G = x1x2 + x2z = 0

d
2

dt2
G = ẋ1x2 + x1ẋ2 + ẋ2z + x2ż = 0

Example is an index-2 DAE
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Differential Index - 3D pendulum

Example: 3D pendulum

mp̈ = u−mge3 − zp

0 =
1

2

(

p
⊤
p− L

2
)

︸ ︷︷ ︸

G(x)

For a semi-explicit DAE
the differential index is
the minimum i such that:

ẋ = F (x, z,u)

0 =
d
i

dt i
G (x, z,u)

is an ODE

O

p

e1

e2

e3

u
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Perform two time differentiations on G yields:
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⊤
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⊤
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⊤
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ẋ = F (x, z,u)

0 =
d
i

dt i
G (x, z,u)

is an ODE

O

p

e1

e2

e3

u

S. Gros Optimal Control with DAEs, lecture 11 22nd of February, 2016 14 / 25



Differential Index - 3D pendulum

Example: 3D pendulum

mp̈ = u−mge3 − zp

0 =
1

2

(

p
⊤
p− L

2
)

︸ ︷︷ ︸

G(x)

Perform two time differentiations on G yields:

G̈ =
1

2

(

p̈
⊤
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⊤
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ṗ
)

= p
⊤
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⊤
ṗ = 0

Substitute p̈ from mp̈ = u−mge3 − zp yields:
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⊤
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1

m
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ṗ
)

= p
⊤
p̈+ ṗ
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⊤
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i.e.
z =
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(
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⊤
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⊤
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d

dt
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p
⊤
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ṗ
)]
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Example: 3D pendulum
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A third time differentiation yields an ODE for z :

ż =
d

dt

[
1

p⊤p

(

p
⊤
u−mgp

⊤
e3 +mṗ

⊤
ṗ
)]

For a semi-explicit DAE
the differential index is
the minimum i such that:

ẋ = F (x, z,u)

0 =
d
i

dt i
G (x, z,u)

is an ODE

O

p

e1

e2

e3

u

The 3D pendulum in
Lagrange is an index-3

DAE !!
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ṗ = 0

Assemble:
mp̈+ zp = u−mge3

p
⊤
p̈ = −ṗ
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ẋ = F (x, z,u)

0 =
d
i

dt i
G (x, z,u)

is an ODE

O

p

e1

e2

e3

u

S. Gros Optimal Control with DAEs, lecture 11 22nd of February, 2016 14 / 25



Differential Index - 3D pendulum

Example: 3D pendulum

mp̈ = u−mge3 − zp

0 =
1

2

(

p
⊤
p− L

2
)

︸ ︷︷ ︸

G(x)

Perform two time differentiations on G yields:

G̈ =
1

2

(

p̈
⊤
p+ p

⊤
p̈+ 2ṗ⊤
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ṗ
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ṗ = 0

Assemble:
mp̈+ zp = u−mge3

p
⊤
p̈ = −ṗ
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0 =
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We have converted the
index-3 DAE into an

index-1 DAE !!
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Outline

1 ”Easy” & ”Hard” DAEs

2 Differential Index

3 Index Reduction

4 Constraints drift
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DAEs from Lagrange Mechanics

Index-3 DAE from Lagrange:

d

d

∂L

∂q̇
−

∂L

∂q
= Fg

c (q) = 0

with L (q, q̇, z) = T (q, q̇)− V (q)− z⊤c (q)
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DAEs from Lagrange Mechanics

Index-3 DAE from Lagrange:
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= M(q)q̈+ Ṁ(q, q̇)q̇

Then the differential part of the DAE model reads as:
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M(q)q̈+ Ṁ(q, q̇)q̇−∇q (T (q, q̇)− V (q)) +∇c (q) z = Fg

The 1st and 2nd-order time derivatives of c (q) read as:

d

dt
c (q) = ∇c (q)⊤ q̇,

d
2

dt2
c (q) = ∇c (q)⊤ q̈+∇q

(

∇c (q)⊤ q̇
)⊤

q̇

S. Gros Optimal Control with DAEs, lecture 11 22nd of February, 2016 16 / 25



DAEs from Lagrange Mechanics

Index-3 DAE from Lagrange:

d

d

∂L

∂q̇
−

∂L

∂q
= Fg

c (q) = 0

with L (q, q̇, z) = T (q, q̇)− V (q)− z⊤c (q)

For most mechanical applications:

T (q, q̇) =
1

2
q̇
⊤
M(q)q̇

such that:

d

d

∂L

∂q̇

⊤

= M(q)q̈+ Ṁ(q, q̇)q̇
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]

=
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Models based on Lagrange mechanics typically are index-3 DAEs, making them
intrinsically difficult to use. The best approach to treat them is usually to proceed with
an index reduction down to index 1 for which very classical integration tools work well.
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Index reduction for semi-explicit DAEs - A general view

High-index semi-explicit DAE

ẋ = F (x, z,u)

0 = G (x, z,u)

Algorithm (see ”Nonlinear Programming”, L.T. Biegler)
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High-index semi-explicit DAE

ẋ = F (x, z,u)

0 = G (x, z,u)

Algorithm (see ”Nonlinear Programming”, L.T. Biegler)

1 Check if the DAE system is index 1 (i.e. ∂G
∂z

full rank).
If yes, stop.

2 Identify a subset of algebraic equations that can be
solved for a subset of algebraic variables.

3 Apply d

dt
on the remaining algebraic equations that

contain the differential variables xj .

4 Terms ẋj will appear in these differentiated equations.

5 Substitute the ẋj with Fj (x, z,u). This leads to new
algebraic equations.

6 With this new DAE system, go to step 1.
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1 Check if the DAE system is index 1 (i.e. ∂G
∂z

full rank).
If yes, stop.

2 Identify a subset of algebraic equations that can be
solved for a subset of algebraic variables.

3 Apply d

dt
on the remaining algebraic equations that

contain the differential variables xj .

4 Terms ẋj will appear in these differentiated equations.

5 Substitute the ẋj with Fj (x, z,u). This leads to new
algebraic equations.

6 With this new DAE system, go to step 1.

Writing a general-purpose
”Index-reduction

algorithm” can be very
tricky, as one of the steps
is not easily automated

S. Gros Optimal Control with DAEs, lecture 11 22nd of February, 2016 17 / 25



DAE Consistency - 3D pendulum

Does the index reduction really yield equivalent models ?

O

p

e1

e2

e3

u

Index-3 DAE

mp̈ = u−mge3 − zp

0 =
1

2

(

p
⊤
p− L

2
)

Index-1 DAE
[

mI p

p⊤ 0

] [
p̈

z

]

=

[
u−mge3

−ṗ⊤ṗ

]
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Index-3 DAE
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0 =
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Index-1 DAE
[

mI p

p⊤ 0

] [
p̈

z

]

=

[
u−mge3

−ṗ⊤ṗ

]

What is going on ??
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... is built to impose c̈ = 0 at all time.
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−ṗ⊤ṗ
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−ṗ⊤ṗ
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= 0, ċ = p
⊤
ṗ = 0

... to be satisfied e.g. at t0.

0 5 10

0

1

2

3

4

0 5 10
-0.5

0

0.5

c
ċ
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Consistency of DAEs from Lagrange Mechanics

Index-3 DAE from Lagrange:

d

d

∂L

∂q̇
−

∂L

∂q
= Fg

c (q) = 0

with L (q, q̇, z) = T (q, q̇)− V (q)− z⊤c (q)

For most mechanical applications:

T (q, q̇) =
1

2
q̇
⊤
M(q)q̇

Index reduction based on:

d

dt
c (q) = ∇c (q)⊤ q̇ and

d
2

dt2
c (q) = ∇c (q)⊤ q̈+∇q

(

∇c (q)⊤ q̇
)⊤

q̇

Index-1 DAE model:
[

M (q) ∇qc (q)

∇qc (q)
⊤ 0

][
q̈

z

]

=

[
Fg − Ṁ(q, q̇)q̇+∇q (T (q, q̇)− V (q))

−∇q

(

∇c (q)⊤ q̇
)⊤

q̇

]
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Outline

1 ”Easy” & ”Hard” DAEs

2 Differential Index

3 Index Reduction

4 Constraints drift
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Constraints drift - 3D pendulum

Index-1 DAE
[

mI p

p⊤ 0

] [
p̈

z

]

=

[
u−mge3

−ṗ⊤ṗ

]

... is built to impose c̈ = 0 at all time.

Then if c = 0 and ċ = 0 are satisfied at any time on
the trajectory, then they are satisfied at all time.
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2

(

p
⊤
p− L

2
)

= 0, ċ = p
⊤
ṗ = 0

... imposed at e.g. t0.
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Constraints drift - 3D pendulum

Index-1 DAE
[

mI p

p⊤ 0

] [
p̈

z

]

=

[
u−mge3

−ṗ⊤ṗ

]

... is built to impose c̈ = 0 at all time.

Then if c = 0 and ċ = 0 are satisfied at any time on
the trajectory, then they are satisfied at all time.

Index-1 DAE:
[

mI p

p⊤ 0

] [
p̈

z

]

=

[
u−mge3

−ṗ⊤ṗ

]

with the consistency conditions:

c =
1

2

(

p
⊤
p− L

2
)

= 0, ċ = p
⊤
ṗ = 0

... imposed at e.g. t0.

With consistent initial conditions, c = 0 and ċ = 0
would be satisfied at all time if we had no numerical

error in the integration !!
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Baumgartne stabilization of the constraints drift

Index-1 DAE:
[

mI p

p⊤ 0

] [
p̈

z

]

=

[
u−mge3

−ṗ⊤ṗ

]

with the consistency conditions:

c =
1

2

(

p
⊤
p− L

2
)

= 0, ċ = p
⊤
ṗ = 0

... imposed at t0.

Why does the drift happen: c̈ = 0 has marginally stable
dynamics (c is two integrations of c̈ hence two poles at 0).
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]
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(
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)

= 0, ċ = p
⊤
ṗ = 0

... imposed at t0.

Why does the drift happen: c̈ = 0 has marginally stable
dynamics (c is two integrations of c̈ hence two poles at 0).

Key idea: impose a stable dynamics to the constraints
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Baumgartne stabilization of the constraints drift

Index-1 DAE:
[

mI p

p⊤ 0

] [
p̈

z

]

=

[
u−mge3

−ṗ⊤ṗ

]

with the consistency conditions:

c =
1

2

(

p
⊤
p− L

2
)

= 0, ċ = p
⊤
ṗ = 0

... imposed at t0.

Why does the drift happen: c̈ = 0 has marginally stable
dynamics (c is two integrations of c̈ hence two poles at 0).

Key idea: impose a stable dynamics to the constraints, build
the index-1 DAE to impose:

c̈+ γ1ċ+ γ0c = 0
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Baumgartne stabilization of the constraints drift

Index-1 DAE:
[

mI p

p⊤ 0

] [
p̈

z

]

=

[
u−mge3

−ṗ⊤ṗ

]

with the consistency conditions:

c =
1

2

(

p
⊤
p− L

2
)

= 0, ċ = p
⊤
ṗ = 0

... imposed at t0.

Why does the drift happen: c̈ = 0 has marginally stable
dynamics (c is two integrations of c̈ hence two poles at 0).

Key idea: impose a stable dynamics to the constraints, build
the index-1 DAE to impose:

c̈+ γ1ċ+ γ0c = 0

E.g. for the 3D pendulum:

p
⊤
p̈+ ṗ

⊤
ṗ+ γ1p

⊤
ṗ+

γ2

2

(

p
⊤
p− L

2
)

= 0
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Baumgartne stabilization of the constraints drift

Index-1 DAE:
[

mI p

p⊤ 0

] [
p̈

z

]

=

[
u−mge3

−ṗ⊤ṗ

]

with the consistency conditions:

c =
1

2

(

p
⊤
p− L

2
)

= 0, ċ = p
⊤
ṗ = 0

... imposed at t0.

Why does the drift happen: c̈ = 0 has marginally stable
dynamics (c is two integrations of c̈ hence two poles at 0).

Index-1 DAE with stabilization:
[

mI p

p⊤ 0

] [
p̈

z

]

=

[
u−mge3

−ṗ⊤ṗ− γ1p
⊤ṗ− γ2

2

(
p⊤p− L2

)

]
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Baumgartne stabilization of the constraints drift

Index-1 DAE:
[

mI p

p⊤ 0

] [
p̈

z

]

=

[
u−mge3

−ṗ⊤ṗ

]

with the consistency conditions:

c =
1

2

(

p
⊤
p− L

2
)

= 0, ċ = p
⊤
ṗ = 0

... imposed at t0.

Why does the drift happen: c̈ = 0 has marginally stable
dynamics (c is two integrations of c̈ hence two poles at 0).

Index-1 DAE with stabilization:
[

mI p

p⊤ 0

] [
p̈

z

]

=

[
u−mge3

−ṗ⊤ṗ− γ1p
⊤ṗ− γ2

2

(
p⊤p− L2

)

]
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Baumgartne stabilization of the constraints drift

Index-1 DAE:
[

mI p

p⊤ 0

] [
p̈

z

]

=

[
u−mge3

−ṗ⊤ṗ

]

with the consistency conditions:

c =
1

2

(

p
⊤
p− L

2
)

= 0, ċ = p
⊤
ṗ = 0

... imposed at t0.

Why does the drift happen: c̈ = 0 has marginally stable
dynamics (c is two integrations of c̈ hence two poles at 0).

The Baumgartne stabilization must be used carefully !

Fast poles introduce stiffness in the dynamics

The interaction between the stabilization and the
integrator error is non-trivial...
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A related problem - Invariants in ODEs

Consistency & drift are not DAE-specific.
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A related problem - Invariants in ODEs

Consistency & drift are not DAE-specific.

Simple ODEs

ẋ = F (x,u)

model a physical reality. Some ODEs are
representative only when some consistency
conditions:

c (x) = 0

are satisfied.
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are satisfied.

ODEs with consistency conditions occur
when one defines a state-space that holds
more dimensions than the physical reality it

represents !!
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Consistency & drift are not DAE-specific.

Simple ODEs

ẋ = F (x,u)

model a physical reality. Some ODEs are
representative only when some consistency
conditions:

c (x) = 0

are satisfied.

ODEs with consistency conditions occur
when one defines a state-space that holds
more dimensions than the physical reality it

represents !!

Why more states than needed ?

Simpler, less nonlinear models (this is
lifting !!)

Singularity-free rotations (more on
that soon)
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ẋ = F (x,u)

model a physical reality. Some ODEs are
representative only when some consistency
conditions:

c (x) = 0

are satisfied.

ODEs with consistency conditions occur
when one defines a state-space that holds
more dimensions than the physical reality it

represents !!

Why more states than needed ?

Simpler, less nonlinear models (this is
lifting !!)

Singularity-free rotations (more on
that soon)

ODEs with consistency conditions suffer
from the same potential drift problem as
index-reduced DAEs, and can be treated

using the same remedies.
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A related problem - Invariants in ODEs

Consistency & drift are not DAE-specific.

Simple ODEs

ẋ = F (x,u)

model a physical reality. Some ODEs are
representative only when some consistency
conditions:

c (x) = 0

are satisfied.

ODEs with consistency conditions occur
when one defines a state-space that holds
more dimensions than the physical reality it

represents !!

Why more states than needed ?

Simpler, less nonlinear models (this is
lifting !!)

Singularity-free rotations (more on
that soon)

ODEs with consistency conditions suffer
from the same potential drift problem as
index-reduced DAEs, and can be treated

using the same remedies.

This is often not an issue in Optimal
Control (reasonably short simulation

horizons), but long simulations may require
some care.
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A related problem - Invariants in ODEs

Consistency & drift are not DAE-specific.

Simple ODEs

ẋ = F (x,u)

model a physical reality. Some ODEs are
representative only when some consistency
conditions:

c (x) = 0

are satisfied.

ODEs with consistency conditions occur
when one defines a state-space that holds
more dimensions than the physical reality it

represents !!

Why more states than needed ?

Simpler, less nonlinear models (this is
lifting !!)

Singularity-free rotations (more on
that soon)

ODEs with consistency conditions suffer
from the same potential drift problem as
index-reduced DAEs, and can be treated

using the same remedies.

This is often not an issue in Optimal
Control (reasonably short simulation

horizons), but long simulations may require
some care.

Not covered in this course but good to
know: Symplectic integrators (for handling

drift)
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