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Objectives of the lecture

Why are DAEs not always "easy" to solve ?
What is a DAE index ? How does it make the DAE "easy” or not ?
What to do about it ?

What happens with DAE models for mechanical systems ?

e © ¢ ¢ ¢

Some possible additional numerical problems
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DAE - Easy & Hard DAEs

DAE:

F(x,%x,z,u) =0

" At any time instant, for

given x,u, the DAE

equation provides x, z,
generating the
trajectories.”
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DAE - Easy & Hard DAEs

DAE:
F(x,%x,z,u) =0

" At any time instant, for
given x, u, the DAE
equation provides x, z,
generating the
trajectories.”

What is a "well-behaved” DAE ?
F(x,x,z,u) =0

. i.e. when can we compute x, z "easily” ?
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DAE - Easy & Hard DAEs

DAE:
F(x,%x,z,u) =0

" At any time instant, for
given x, u, the DAE
equation provides x, z,
generating the
trajectories.”

What is a "well-behaved” DAE ?
F(x,x,z,u) =0

. i.e. when can we compute x, z "easily” ?

Consider F (x,x,z,u) =0 as a root-finding problem in x, z. When can we find %, z,
e.g. using Newton 7
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"Easy” DAEs

Consider the DAE:

F(%x,2z,x,u) =0
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"Easy” DAEs

Consider the DAE:

F(%x,2z,x,u) =0
If the matrix:

2l o 1]
ox Oz
is full-rank at x,u
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"Easy” DAEs
Consider the DAE:

F(%x,2z,x,u) =0

If the matrix:
[ 5% %]
is full-rank at x, u, then there is a function:
x,z = £ (x,u)
such that:
F (¢ (x,u),x,u) =0

holds in a neighborhood of x, u.
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"Easy” DAEs
Consider the DAE:

F(%x,2z,x,u) =0

If the matrix:
[ 5% %]
is full-rank at x, u, then there is a function:
x,z = £ (x,u)
such that:
F (¢ (x,u),x,u) =0

holds in a neighborhood of x, u.

Proof: from implicit function theorem.
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"Easy” DAEs

Consequence:
Consider the DAE:
e e
ox Oz

F(%x,2z,x,u) =0
full-rank at x, u guarantees that the

If the matrix: DAE is "solvable” at x,z

[ 5% %]
is full-rank at x, u, then there is a function:
x,z = £ (x,u)
such that:
F (¢ (x,u),x,u) =0

holds in a neighborhood of x, u.

Proof: from implicit function theorem.
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"Easy” DAEs

Consequence:
Consider the DAE:
e e
ox Oz

F(%x,2z,x,u) =0
full-rank at x, u guarantees that the

If the matrix: DAE is "solvable” at x,z

[ 5% %]
is full-rank at x, u, then there is a function:
x,z = £ (x,u)
such that:
F (¢ (x,u),x,u) =0

holds in a neighborhood of x, u.

Proof: from implicit function theorem.

Classical numerical methods can treat
"easy” DAEs

v
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"Easy” DAEs

Consequence:
Consider the DAE:
e e
ox Oz

F(%x,2z,x,u) =0
full-rank at x, u guarantees that the

If the matrix: DAE is "solvable” at x,z

[ &% %]
ox 0z
is full-rank at x, u, then there is a function:
x,z = £ (x,u) ®
such that:
F(£(x,u),x,u) =0
holds in a neighborhood of x, u.
Proof: from implicit function theorem.
y N
Classical numerical methods can treat
"easy” DAEs
v

t
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"Easy” DAEs

Consequence:
Consider the DAE:
e e
ox Oz

F(x,z,x,u) =0
full-rank at x, u guarantees that the

If the matrix: DAE is "solvable” at x,z

[ & %]

is full-rank at x, u, then there is a function: | Semi-explicit DAE:

x,z = £ (x,u) ~ x —F (z,x,u)

= G (z,x,u) =0

such that:
F(£(x,u),x,u) =0

holds in a neighborhood of x, u.

Proof: from implicit function theorem.

Classical numerical methods can treat
"easy” DAEs

v
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"Easy” DAEs
Consider the DAE:

F(x,z,x,u) =0

If the matrix:

[8F

%

5 ]

is full-rank at x, u, then there is a function:

x,z = £ (x,u)
such that:

F(£(xu),x,u)=0

Consequence:
[ £
ox Oz

full-rank at x, u guarantees that the
DAE is "solvable” at x,z

Semi-explicit DAE:

|

Then the matrix:

x —F (z,x,u)
G (z,x,u)

|=o

| oF

g g OF  9F | _ ek

holds in a neighborhood of x, u. [ o%x 0z ] 0 2c

Oz

Proof: from implicit function theorem. is full-rank if % is full rank
v
Classical numerical methods can treat
"easy” DAEs
v
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"Easy” and "not easy” DAEs - Some examples

o & = E E DaAe
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"Easy” and "not easy” DAEs - Some examples

F (%, %,7) = [ x—x+1

%z + 2 ]:O

o & = E E DaAe
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"Easy” and "not easy” DAEs - Some examples

F (%, %,7) = [ x—x+1

%z + 2 ]:O
OF

-1 0
oz

zZ X }
is full rank for x # 0.
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"Easy” and "not easy” DAEs - Some examples

. x—x+1
F(x,x,z):[ iz 42 ]20

Then:

-1 0
R R

is full rank for x # 0. This is an "easy”
DAE !l
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"Easy” and "not easy” DAEs - Some examples

. x—x+1
F(x,x,z):{ iz 42 ]20

Then:

[ o @]_{—1 o}
% 9z 1 7z X

is full rank for x # 0. This is an "easy”
DAE !l

Indeed, we can solve it as:

x=x+1
ge_2___2
Tox 0 x+1

l.e. we can compute x, z from x
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"Easy” and "not easy” DAEs - Some examples

)-(1—Z
)'(2—X1 ZO
X2 — U

. | x=—x4+1|
F(X’x’z)_{ %z +2 ]_0 F (%, x,2) =
Then:
o ok 7_| 1 O
[ ox Oz ]_ 7z X
is full rank for x # 0. This is an "easy”
DAE !
Indeed, we can solve it as:
x=x+1
. 2z
Tox 0 x+1
l.e. we can compute x, z from x
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"Easy” and "not easy” DAEs - Some examples

. | x=—x4+1| X1 — Z
F(X’x’z)_{ %z +2 ]_0 F(x,x,2)= | %2—x1 | =0
X2 — U
Then:
Then:
[8_F 8_F]_ -1 0
ox 6z 1™ z X ) ) 1 0 -1
F F

is full rank for x # 0. This is an "easy ' 0 0 0

DAE !l
is rank-deficient.

Indeed, we can solve it as:

x=x+1
ge_2___2
Tox 0 x+1

l.e. we can compute x, z from x
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"Easy” and "not easy” DAEs - Some

F(x,x,2) = { SR ] —0

Xz + 2
Then:

[ o @]_{—1 0}
% 9z 1 7z X

is full rank for x # 0. This is an "easy”
DAE !l

Indeed, we can solve it as:

x=x+1
ge_2___2
Tox 0 x+1

l.e. we can compute x, z from x
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examples

)-(1—Z
F(x,x,z)= | x2—x1 | =0

X2 — U

Then:
5 5 1 0 -1
F F

[ % ]|=|o01 o
0 0 O

is rank-deficient. This is a "not easy’ DAE
Il We cannot write x1,2 and z as functions
Of X1,2..-
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DAE - 3D pendulum

Model is a semi-explicit DAE with x = { 5 ]

F(x,z,u)

S. Gros Optimal Control with DAEs, lecture 11

e3

€er u

22794 of February, 2016 7/25



DAE - 3D pendulum

[SX]
Model is a semi-explicit DAE with x = { 5 ]
(0] e
F(x,z,u)
€er u
p|_,_ v
{V } - { %—gea—%p}
0= pr - p
——
G(x)

Consider the root-finding problem to be solved in x, z:
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DAE - 3D pendulum
[SX]

Model is a semi-explicit DAE with x = { 5 ]
(0] e
F(x,z,u)
€2 u
p = = v
{V} * { %—ges—%p}
0= pr — 12 p
——
G(x)

Consider the root-finding problem to be solved in x, z:

=[G o

Then: /] 0 0
Vg,er = | 0 I p [ isrank-deficient. The Newton step does not exist !!
0 0 O
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DAE - 3D pendulum

[SX]
Model is a semi-explicit DAE with x = { 5 ]
(0] el
F(x,z,u)
. €2 u
p . v
R =X =
{V} {%—ges—ép}
0= pr — L2 P
——
G(x)
Note that %ﬁx) =0l
Consider the root-finding problem to be solved in x, z:

r(%,x,2,u) = { x—F(xzu) } —0

G (x)
Then: /] 0 0
Vg,er = | 0 I p [ isrank-deficient. The Newton step does not exist !!
0 0 O
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DAE - Delta Robot
Lagrange model yields a semi-explicit DAE with:

Ip— plllz - Li
G(x) = ||p—1f>2||2—l-2
lp—psll"—L
where
cosyk sinyx O L cos ok
p,=Ri=| —siny cosv O 0
0 0 1 L sin ok

. _ 2r 4
using v1,2,3 = {0, 55
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DAE - Delta Robot
Lagrange model yields a semi-explicit DAE with:

Ip— plllz - Li
G(x) = ||p—pz||2—l-2
lp—psll"—L
where
cosyk sinye O L cos au
p,=Ri=| —siny cosv O 0
0 0 1 L sin ok

H _ 2 4
using v1,23 = {0, 3, 4 }.

Algebraic variables z for the forces in the arms:

oG (x) _

Oz 0
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DAE - Delta Robot
Lagrange model yields a semi-explicit DAE with:

P =Py’ — L°
GE)=| [p-pof —L
lp—psl”—L
where
cosyk sinye O L cos au
p,=Ri=| —siny cosv O 0
0 0 1 L sin ok
using 11,23 = {0, &, %
Algebraic variables z for the forces in the arms:
oG (x) _o
0z
Such that the DAE:
x =F(x,z,u)
0=G(x)
.. cannot be solved for z, because %ﬁx) =0l
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DAE from Lagrange Mechanics

Is that a general problem in Lagrange mechanics ? Pretty much ...
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DAE from Lagrange Mechanics

Is that a general problem in Lagrange mechanics ? Pretty much ...

The difficulty comes from having holonomic (aka purely position-dependent) constraints:
G(q)=0

which "hold the system together”.
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DAE from Lagrange Mechanics

Is that a general problem in Lagrange mechanics ? Pretty much ...

The difficulty comes from having holonomic (aka purely position-dependent) constraints:
G(q)=0
which "hold the system together”. Then the Euler-Lagrange equations:

doL oL

doq 0q

deliver an explicit ODE for the accelerations q, involving the algebraic variables z.
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DAE from Lagrange Mechanics

Is that a general problem in Lagrange mechanics ? Pretty much ...

The difficulty comes from having holonomic (aka purely position-dependent) constraints:
G(q) =0
which "hold the system together”. Then the Euler-Lagrange equations:
doL oL

ddq dq
deliver an explicit ODE for the accelerations q, involving the algebraic variables z. But

the forces generated by the algebraic variables z are not defined by the algebraic
equations because:

G (q) =0 and therefore 0G (x)
0z 0z

=0
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DAE from Lagrange Mechanics

Is that a general problem in Lagrange mechanics ? Pretty much ...

The difficulty comes from having holonomic (aka purely position-dependent) constraints:
G(q) =0
which "hold the system together”. Then the Euler-Lagrange equations:
doL oL

ddq dq
deliver an explicit ODE for the accelerations q, involving the algebraic variables z. But

the forces generated by the algebraic variables z are not defined by the algebraic
equations because:

G (q) =0 and therefore 0G (x)
0z 0z

=0

What is going on ?!?
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DAE - Differential Index
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DAE - Differential Index

Definition:

The DAE differential
index is the minimum /i
such that:

i

dt,.F()'c, x,z,u) =0

is a pure ODE

o & E 2L NGe
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DAE - Differential Index

Example:

Definition: ) x;—%1+1
F(%x,x) = . =0

The DAE differential X1X2 +2

index is the minimum /i

such that:

;tiF()'c,x,z,u) =0

is a pure ODE
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DAE - Differential Index

Example:

Definition: F (,%) = [ X1_—xl+1 ] e
The DAE differential X1X2 + 2
index is the minimum | Note that:
such that:

d _ . 8—1.?:{_1 0]—>thisisaDAE

-F (%x,%x,z,u) =0 ox 10

dt/

is a pure ODE
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DAE - Differential Index

Example:

Definition: F (,%) = [ X1_—xl+1 ] e
The DAE differential X1X2 + 2
index is the minimum | Note that:
such that:

d _ . 8—1.?:{_1 0]—>thisisaDAE

-F (%x,%x,z,u) =0 ox 10

dti

is a pure ODE For i =1 reads as:
F (%, %, x) = { -k ] _
X1X2 + X1X2
2214 of February, 2016
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DAE - Differential Index

Example:
Definition: F (%, x) = [ x1.—x1+1 ] 0
The DAE differential X1X2 + 2
index is the minimum / Note that:
such that: '
d _ . 8—1.?:{_1 O]—)thisisaDAE
-F (%x,%x,z,u) =0 ox 10
dtf
is a pure ODE For i =1 reads as:
F (% %,x) = { L ] =
. . " X1X2 + X1X2
Using (to write a 1°*-order ODE)
X1 é1 — S3
s=| x2 we have F(s,s) = s3 — $3
X1 $3S2 + S352
e ——

11 /25



DAE - Differential Index

Example:

Definition: F (,%) = [ Xll—x1+1 ] e
The DAE differential X1X2 + 2
index is the minimum | Note that:
such that:

d _ . QE::{ -1 0]4% this is a DAE

-F (%x,%x,z,u) =0 ox 10

dt/

is a pure ODE For i =1 reads as:

F (%,%,x) = X =
T Xixo X% |

Using (to write a 1°*-order ODE)

X1 . é1 — S3
s=| x2 we have F(s,s) = s3 — $3
X1 $3S2 + S352
And
1 0 O
F . F
8—_ =0 0 -1/, with det (6_> =s3 = now we have an ODE
0s 0s
0 S3 S2
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DAE - Differential Index

Example:

Definition: F (,%) = [ Xll—x1+1 ] e
The DAE differential X1X2 + 2
index is the minimum | Note that:
such that:

d _ . QE::{ -1 0]4% this is a DAE

-F (%x,%x,z,u) =0 ox 10

dt/

is a pure ODE For i =1 reads as:

F (%,%,x) = X =
T Xixo X% |

Using (to write a 1°*-order ODE)

x : S1-83 F is an
S= | X we have F(s,s) = S3— 83 index-1 DAE J
X1 S382 + 8382
And
1 0 0
8—]:;‘ =0 0 -1/, with det 6_F =s3 = now we have an ODE
0s 0s
0 S3 S2
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DAE - Differential Index
Definition
The DAE differential
index is the minimum /
such that: How does the differential index relate to the DAE
di being " easy” to solve 7?7
EF()’(,x,z,u) =0

is a pure ODE
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DAE - Differential Index
Definition
The DAE differential
index is the minimum /

such that: How does the differential index relate to the DAE
being " easy” to solve 7?7

(ftiF()'c,x,z,u) =0
is a pure ODE
For an index-1 DAE:
%F()’(,x,z,u) =F=0

yields a pure ODE.
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DAE - Differential Index
Definition
The DAE differential

index is the minimum /
such that:

(ftiF()'c,x,z,u) =0

is a pure ODE

For an index-1 DAE:

How does the differential index relate to the DAE
being " easy” to solve 7?7

%F()’(,x,z,u) =F=0
yields a pure ODE. Observe that:
d - OF . OF ., OF .
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DAE - Differential Index
Definition
The DAE differential
index is the minimum /

such that: How does the differential index relate to the DAE

being "easy” to solve 7?

jtiF(i(, x,z,u) =0
is a pure ODE
For an index-1 DAE:
% (*,x,z,u)=F =0

yields a pure ODE. Observe that:

d . BF 8F OF . OF,
EF F = % 6 X+ 8_ z + 6_ =0
Then the ODE reads as (use v = x):

X=V

v _ OF OF -1 6F OF
[z]__[ﬂ % ] (ax +8_u)
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DAE - Differential Index
Definition
The DAE differential
index is the minimum /
such that: How does the differential index relate to the DAE
di being " easy” to solve 7?7
dt"F(k’ x,z,u) =0
is a pure ODE

For an index-1 DAE:
iF(x x,z,u) =F =0

dt
ield ODE. Ob that:
yields a Zure a;erve 8;‘ 9F . OF An index-1 DAE has
dp_p- o+ Fao
dt % T ot ot T T [ & e ]
Then the ODE reads as (use v = x): full rank and is therefore
xX=v "easy” to solve !!

v _ o or 1-1(OF, 8_F
)=t w1 (G s
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Semi-explicit DAEs - Differential Index

For a semi-explicit DAE the
differential index is the
minimum / such that:

%X =F(x,z,u)
= ;t'.G(X,z,u)
is an ODE

0
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Semi-explicit DAEs - Differential Index
Remark: for an index-1 semi-explicit DAE:
For a semi-explicit DAE the

differential index is the aG oG . 0G.
G F —u=0
minimum / such that: dt (x,2,u) = oz 0z Z+ ou u=

&= F(x z,u) yields a pure ODE.

0=

dt'G(X z,u)

is an ODE
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Semi-explicit DAEs - Differential Index

For a semi-explicit DAE the
differential index is the

minimum / such that:

)'c:F(xzu)

Remark: for an index-1 semi-explicit DAE:

6’G 0G.  0G
dt(}(xzu) F B2 +8—u—0

yields a pure ODE. We have:

» L0GTH(0G | 0G
0= dt' (x,2,u) 0z Ox du
is an ODE such that 22 is full rank !!
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Semi-explicit DAEs - Differential Index

For a semi-explicit DAE the
differential index is the
minimum / such that:

)'c:F(xzu)

0= dt’G(x z,u)
is an ODE )
Example:
X1 _ 0 1 X1
X2 o 0 0 X2
_ 175 2
0= 2 (Xl + X2 1)

S. Gros Optimal Control with DAEs, lecture 11

N

Remark: for an index-1 semi-explicit DAE:

0G 0G.  0G
tG(xzu) = F+8z +8—u 0

4 96 BG
Bu

d
yields a pure ODE. We have:

,_ 067 (0G,
T Oz ox

such that 2 is full rank !!

0 z
1
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Semi-explicit DAEs - Differential Index
Remark: for an index-1 semi-explicit DAE:

For a semi-explicit DAE the
differential index is the oG 0G.  0G.

G —F —u=20
minimum / such that: dt (x,2,u) = ox 0z z+ ou u=
yields a pure ODE. We have:

)'c:F(xzu)

o y_ 0G7(0GL 0G
0= dt’ (x,2,u) T Oz ox Ou
is an ODE ) such that 22 is full rank !I
Example:
x| [0 1 x1 | 0
R l-le ][RR
_ 175 2
0—2(X1+X2 1)
—
G(x)
Then d
EG—xlxz—i—xzz—O
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Semi-explicit DAEs - Differential Index
Remark: for an index-1 semi-explicit DAE:

For a semi-explicit DAE the
differential index is the oG 0G.  0G.

G —F —u=20
minimum / such that: dt (x,2,u) = ox 0z z+ ou u=
yields a pure ODE. We have:

)'c:F(xzu)

G i—_a_G71 a_GF+8G
0= dt’ Exe ) T 0z ox ou
is:an ODE ) such that 25 s full rank !!
Example:
x| _ [0 1 x1 | 0
R NE
_ 175 2
0—2(X1+X2 1)
—_— ——
G(x)
Then dG 0
E = X1X2 + X2Z =
d2
WG_xlxz—l—xlxz—l—xzz—kxzz_O
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Semi-explicit DAEs - Differential Index
Remark: for an index-1 semi-explicit DAE:

For a semi-explicit DAE the
differential index is the oG 0G.  0G.

G —F —u=20
minimum / such that: dt (x,2,u) = ox 0z z+ ou u=
yields a pure ODE. We have:

)'c:F(xzu)

G 7 = _a_G71 a_GF + — BG
0= dt’ (x, 2, u) Oz ox u
is:an ODE ) such that 25 s full rank !!
Example:
x| _ [0 1 x1 | 0
-l el ]+ 5]
_lieie
0= 2 (Xl + X2 1)
—_— ——
G(x) . )
Example is an index-2 DAE )
Then d G- 0
E = X1X2 + X0z =
d2
WG =X1X2 + X1X2 + X0z + %22 =0
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Differential Index - 3D pendulum
Example: 3D pendulum

m]'j:u—mge3—zp
0== ( *)
5\P P~

——
G(x)
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For a semi-explicit DAE
the differential index is
the minimum 7 such that:

x =F(x,2z,u)

(ft'G(x z,u)
is an ODE )
es3
(0] er
€2 u
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Differential Index - 3D pendulum
Example: 3D pendulum

mp =u — mge3z — zp

oL 0)

G(x)

Perform two time differentiations on G vyields:

G=7 (pr+pr+2pr) =p p+p p=0
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For a semi-explicit DAE

the differential index is

the minimum 7 such that:
x =F(x,2z,u)

0= dt"G(x’Z’u)
is an ODE )
es3
(0] er
€2 u
1Y
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Differential Index - 3D pendulum
Example: 3D pendulum

mp =u — mge3z — zp

oL 0)

G(x)
Perform two time differentiations on G vyields:
1

G=5(p"p+p'B+20'D) =p H+p P=0

Substitute p from mp = u — mges — zp yields:

1 1 LT
p' (—u —ges — —zp) +p' p=0
m m
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For a semi-explicit DAE

the differential index is

the minimum 7 such that:
x =F(x,2z,u)

0= dt"G(x’Z’u)
is an ODE )
es3
(0] er
€2 u
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Differential Index - 3D pendulum
Example: 3D pendulum

mf):u—mge3—zp

0=3 (p L L2)
Gx)

Perform two time differentiations on G vyields:
G=2("p+p B +26 D) =p B +p P=0
Substitute p from mp = u — mges — zp yields:
P’ (lu —ges — lzp) +p'p=0
m m

i.e. 1
z=—

P u— mgp e3—|—mp P)
p’ P(
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For a semi-explicit DAE
the differential index is
the minimum 7 such that:
x = F (x,z,u)
dl'

0= dt"G(x’Z’u)
is an ODE )
es3
(0] er
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Differential Index - 3D pendulum
Example: 3D pendulum

mf):u—mge3—zp
0==z ( *)
5 P pP—

| S
G(x)

Perform two time differentiations on G vyields:

G==: (p p+p' P+2p p):pTﬁ+r’>TI’>=0

Substitute p from mp = u — mges — zp yields:
1 1 LT
p' (—u —ges — —zp) +p' p=0
m m

i.e. 1
z = (p u— mgp e3—|—mp p)
p'p

A third time differentiation yields an ODE for z:

d

dt{ - (p u—mgp'e;+mp p)}

zZ =
S. Gros Optimal Control with DAEs, lecture 11

For a semi-explicit DAE
the differential index is
the minimum 7 such that:
x =F(x,2z,u)
dl'
dt/
is an ODE

0=—G(x,2z,u)

€3

€2 u
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Differential Index - 3D pendulum
Example: 3D pendulum

mf):u—mgeg—zp
0==z ( *)
5 P pP—

| S
G(x)

Perform two time differentiations on G vyields:
G=2("p+p B +26 D) =p B +p P=0
Substitute p from mp = u — mges — zp yields:
p' (lu —ges — lzp) +p'p=0
m m

i.e.

zZ= P u-—mgp e3—|—mp p)

p P (
A third time differentiation yields an ODE for z:

d

dt{ - (p u—mgp'e;+mp p)}

zZ =
S. Gros Optimal Control with DAEs, lecture 11

For a semi-explicit DAE
the differential index is
the minimum 7 such that:
x =F(x,2z,u)
dl'
dt/
is an ODE

0=—G(x,2z,u)

€3

€2 u

p

The 3D pendulum in
Lagrange is an index-3
DAE !!
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Differential Index - 3D pendulum
Example: 3D pendulum

mp =u — mge3z — zp

oL 0)

G(x)

Perform two time differentiations on G vyields:
G=7 (pr +p P+ 2pr) =p P+p p=0

Assemble: .. .
mp + zZp = u — mges

T . LT .
P P=—-PP
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For a semi-explicit DAE

the differential index is

the minimum 7 such that:
x =F(x,2z,u)

0= dt"G(x’Z’u)
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es3
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Differential Index - 3D pendulum
Example: 3D pendulum

mp =u — mge3z — zp

oL 0)

G(x)

Perform two time differentiations on G vyields:
G=7 (pr +p P+ 2pr) =p P+p p=0

Assemble: .. .
mp + zp = u — mges
T.. LT .
PP=-PP

in matrix form yields:

EHIGRE
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For a semi-explicit DAE

the differential index is

the minimum 7 such that:
x =F(x,2z,u)
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Differential Index - 3D pendulum
Example: 3D pendulum

mp = u — mges — zp

oL 0)

G(x)

Perform two time differentiations on G vyields:
G=3 (b'p+p B+20"D) =p B+D H=0

Assemble: .. .
mp + zZp = u — mges

T .. T .

P P=—-PP

in matrix form yields:
P 0 z PP

This is an index-1 (i.e. "easy”) DAE !!
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For a semi-explicit DAE
the differential index is
the minimum 7 such that:
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Differential Index - 3D pendulum
Example: 3D pendulum

mp = u — mges — zp

oL 0)

G(x)

Perform two time differentiations on G vyields:
G=3 (b'p+p B+20"D) =p B+D H=0

Assemble: .. B
mp + zp = u — mges

T.. LT .

P P=—-PP

in matrix form yields:
P 0 z PP

This is an index-1 (i.e. "easy”) DAE !!
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For a semi-explicit DAE

the differential index is

the minimum 7 such that:
x =F(x,2z,u)

0= dt"G(x’Z’u)
is an ODE )
es3
(0] er
€2 u
P

index-3 DAE into an

We have converted the
index-1 DAE !! J
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Differential Index - 3D pendulum
Example: 3D pendulum

mp =u — mge3z — zp

oL 0)

G(x)

Perform two time differentiations on G vyields:

G=7 (pr+pr+2pr) =p p+p p=0

Transforming a high-index DAE into an equivalent
lower-index one is labelled index reduction

For a semi-explicit DAE

the differential index is

the minimum 7 such that:
x =F(x,2z,u)

0= dt"G(x’Z’u)
is an ODE )
es3
(0] er
€2 u

) 5
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index-3 DAE into an

We have converted the
index-1 DAE !! J
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DAEs from Lagrange Mechanics
Index-3 DAE from Lagrange:

doc oL _
ddq dq ¢
c(q)=0

with £(q,4,2) = T (q,q) — V(a) —z'c(q)
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DAEs from Lagrange Mechanics

Index-3 DAE from Lagrange: For most mechanical applications:
doL oL . 1.+ .
- = _ = =F T 9 == M
19 9q T (a,4) = 54 M(a)q
c(q)=0 such that:
. . . T
with £(a,6,2) = T (a,4) =V (a) =2 e () Q0LT_ y(q)d -+ M(a, @)
q
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DAEs from Lagrange Mechanics

Index-3 DAE from Lagrange: For most mechanical applications:
doL oL . 1.+ .
- = _ = =F T 9 == M
19 9q T (a,4) = 54 M(a)q
c(q)=0 such that:
. . . T
with £(a,6,2) = T (a,4) =V (a) =2 e () Q0LT_ y(q)d -+ M(a, @)
q

Then the differential part of the DAE model reads as:

M(a)d + M(a, a)a— Vq (T (a,4) — V(q)) + Ve(q)z = F,
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DAEs from Lagrange Mechanics

Index-3 DAE from Lagrange: For most mechanical applications:
doL oL . 1.+ .
- = _ = =F T 9 == M
19 9q T (a,4) = 54 M(a)q
c(q)=0 such that:
. . . T
with £(q,4,2) = T (q.4) — V(a) — ' ¢(q) o8 = M(@)a + M(a4)a

d 9q

Then the differential part of the DAE model reads as:
M(a)d + M(a, @)a — Vq (T (a,4) = V(q)) + Ve(a)z = Fy
The 1°* and 2"%-order time derivatives of ¢ (q) read as:

%C(q) =Ve(a)' 4,
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DAEs from Lagrange Mechanics

Index-3 DAE from Lagrange: For most mechanical applications:
doL oL . 1.+ .
- = _ = =F T 9 == M
19 9q T (a,4) = 54 M(a)q
c(q)=0 such that:
. . . T
with £(q,4,2) = T (q.4) — V(a) — ' ¢(q) o8 = M(@)a + M(a4)a

d 9q

Then the differential part of the DAE model reads as:
M(a)d + M(a,a)a — Vq(T (a,4) — V(a)) + Ve(a)z = Fy

The 1°* and 2"%-order time derivatives of ¢ (q) read as:
2

fe(@=Ve(@ 4  sse(a)=Ve(a) d+Vq(Ve(@ a) 4
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DAEs from Lagrange Mechanics

Index-3 DAE from Lagrange: For most mechanical applications:
doL oL . 1.+ .
- = _ = =F T 9 == M
d9q 9q e (a,4) = 54 M(a)q
c(q)=0 such that:
. . . T
with £(q,é,2) = T (q.4) — V(q) —z c(q) d9L " _ p)d + M(q,a)a

d 9q

Then the differential part of the DAE model reads as:
M(a)d + M(a, @)a - Vq (T (a,4) = V(a)) + Ve(a) z = Fy
The 1°* and 2"%-order time derivatives of ¢ (q) read as:

& e(@)=Ve(@) a+Va(Ve(@ a) a

%C(q) =Ve(a)' 4,
Index-1 DAE model:
M(a)  Vqc(a) ] { q]
Vac(q)" 0 z

F, — M(Q: Q)q+ Vq(T (q, g) - V(a))
—Vq (ch (Q)T Q) q
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DAEs from Lagrange Mechanics

Index-3 DAE from Lagrange: For most mechanical applications:
doL oL . 1.+ .
- = _ = =F T 9 == M
d9q 9q e (a,4) = 54 M(a)q
c(q)=0 such that:
. . ) T
with £(q,é,2) = T (q.4) — V(q) —z c(q) d9L " _ p)d + M(q,a)a

d 9q

Index-1 DAE model:

M(q)  Ve(a) ] { G } _

Fe — M(q,4)4+ Vq(T (q,4) — V (q)) ]
Ve(a)' 0 z

~Va(Ve(@ a) &

Models based on Lagrange mechanics typically are index-3 DAEs, making them
intrinsically difficult to use. The best approach to treat them is usually to proceed with
an index reduction down to index 1 for which very classical integration tools work well.

v
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Index reduction for semi-explicit DAEs - A general view

High-index semi-explicit DAE

x =F(x,z,u)
0=G(x,z,u)

Algorithm (see "Nonlinear Programming”, L. T. Biegler)
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Index reduction for semi-explicit DAEs - A general view

High-index semi-explicit DAE

x =F(x,z,u)
0=G(x,z,u)
Algorithm (see "Nonlinear Programming”, L.T. Biegler)
Q Check if the DAE system is index 1 (i.e. 22 full rank).
If yes, stop.

@ Identify a subset of algebraic equations that can be
solved for a subset of algebraic variables.

© Apply % on the remaining algebraic equations that
contain the differential variables x;.

@ Terms x; will appear in these differentiated equations.

@ Substitute the x; with F; (x,2z,u). This leads to new
algebraic equations.

Q With this new DAE system, go to step 1.
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Index reduction for semi-explicit DAEs - A general view

High-index semi-explicit DAE

x =F(x,z,u)
0=G(x,z,u)

Algorithm (see "Nonlinear Programming”, L.T. Biegler)

Q Check if the DAE system is index 1 (i.e. 22 full rank).

If yes, stop. Writing a general-purpose
@ Identify a subset of algebraic equations that can be "Index-reduction
solved for a subset of algebraic variables. algorithm” can be very

tricky, as one of the steps

© Apply % on the remaining algebraic equations that . .
is not easily automated

contain the differential variables x;.

@ Terms x; will appear in these differentiated equations.

@ Substitute the x; with F; (x,2z,u). This leads to new
algebraic equations.

Q With this new DAE system, go to step 1.
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€3

DAE Consistency - 3D pendulum 0

€1

Does the index reduction really yield equivalent models ? e u
Index-3 DAE Index-1 DAE F

mp = u — mge3z — zp {m_ll P]{f’]:{U—Trg%]
p 0 z PP

o= 0)

S. Gros Optimal Control with DAEs, lecture 11 2ond of February, 2016 18 / 25



€3

DAE Consistency - 3D pendulum 0

€1

Does the index reduction really yield equivalent models ? e u
Index-3 DAE Index-1 DAE F

mp = u — mge3z — zp {m_ll P]{f’]:{U—Trg%]
p 0 z PP

o= 0)

N
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€3

DAE Consistency - 3D pendulum 0

€1

Does the index reduction really yield equivalent models ? e u
Index-3 DAE Index-1 DAE F

mp = u — mge3z — zp {m_ll P]{f’]:{U—Trg%]
p 0 z PP

o= 0)

N

\//

What is going on ??
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DAE Consistency - 3D pendulum
Index-3 DAE

mp =u — mge3z — zp
1
0==

2 (pr - Lz)

o & = E E DaAe
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DAE Consistency - 3D pendulum

Index-3 DAE
mp =u — mge3z — zp

0=3(p"p- 1) N\

Index reduction
c= 1 (pr — LZ)
2
. T.
C=p p
¢=p' B+p'PD
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DAE Consistency - 3D pendulum
Index-3 DAE
mp =u — mge3z — zp
1 T 2
0:—( —L)
5 PP
Index reduction —
c= 1 (pr — Lz)
2
. T.
cC=p p
¢=p' B+p'PD

-

Index-1 DAE

EHIGRE

. is built to impose ¢ = 0 at all time.
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DAE Consistency - 3D pendulum
Index-3 DAE

mp =u — mge3z — zp
1 T 2
0:—( —L)
5 PP \\Q
Index reduction —
c= 1 (pr — Lz)
2
. T.
cC=p p
¢=p' B+p'PD
Index-1 DAE
o o]
p’ 0]z —p'p

. is built to impose ¢ = 0 at all time. But it does
not ensure

c=0 and c=01I
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DAE Consistency - 3D pendulum
Index-3 DAE

mp =u — mge3z — zp
1/ 1 2
=z - %) /
0 2 (p p \\Q\\V/

Index reduction
c= 1 (pr — Lz)
2

. T. 4
cC=p p 3
¢=p' B+p'PD °:
Index-1 DAE 0
. 0 5 10
ml p P|_| u—mges t
p’ 0 z | -p'p 05
. is built to impose ¢ = 0 at all time. But it does o o
not ensure
c=0 and c=01 05

o

10
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DAE Consistency - 3D pendulum
Index-3 DAE
mp =u — mge3z — zp
1 T 2
- = 1L )
0=35 (p P
Index reduction
c= 1 (pr — L2)
2
. T.
cC=p p
¢=p' B+p'PD
Index-1 DAE
o o]
p’ 0]z —p'p

. is built to impose ¢ = 0 at all time. But it does
not ensure

c=0 and c=01I

How can we address that 7?7

S. Gros Optimal Control with DAEs, lecture 11
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DAE Consistency - 3D pendulum
Index-1 DAE

EHIGRE

R
. is built to impose ¢ = 0 at all time.
4
3
02
1
0
0 5 10
t
0.5
‘w0
-0.5
0 5 10
t
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DAE Consistency - 3D pendulum
Index-1 DAE
EEIIR |
p’ 0 )lz]| | -p'p =¥

. is built to impose ¢ = 0 at all time.
Then if c =0 and ¢ = 0 are satisfied at any time on

the trajectory, then they are satisfied at all time. 4
3
©2
1
0
0 5 10
t
0.5
w0
-0.5
0 5 10
t

S. Gros Optimal Control with DAEs, lecture 11 2ond of February, 2016 20 / 25



DAE Consistency - 3D pendulum
Index-1 DAE

ml p P|_| u—mges
p’ 0 ]lz] | -p'pP
. is built to impose ¢ = 0 at all time.

Then if c =0 and ¢ = 0 are satisfied at any time on
the trajectory, then they are satisfied at all time.

An index-reduced DAE must come with consistency
conditions. E.g. for the 3D pendulum, the index-1
DAE should be given as:

EHIGRE

4
3
Q2
1
0
0 5 10
t
0.5
0 0
-0.5
0 5 10
t
v
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DAE Consistency - 3D pendulum
Index-1 DAE

ml p P|_| u—mges
p’ 0 ]lz] | -p'pP
. is built to impose ¢ = 0 at all time.

Then if c =0 and ¢ = 0 are satisfied at any time on
the trajectory, then they are satisfied at all time.

An index-reduced DAE must come with consistency
conditions. E.g. for the 3D pendulum, the index-1
DAE should be given as:

BRI
p’ 0 z —-p'p
with the consistency conditions:

c:%(pr—L2>:0, é:prZO

... to be satisfied e.g. at to.
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DAE Consistency - 3D pendulum

Index-1 DAE
KRRt
T == LT .
p 0 z -pp - =
. is built to impose ¢ = 0 at all time.
Then if c =0 and ¢ = 0 are satisfied at any time on
the trajectory, then they are satisfied at all time. 4
3
©2
An index-reduced DAE must come with consistency .
conditions. E.g. for the 3D pendulum, the index-1 0
DAE should be given as: 0 5 10
t
ml p P|_ | u—mges 05
p’ 0 z | —-p'p
with the consistency conditions: © 0
_ 1/ 7 12) = o Ta 05
C—E P P— =0, c=p p=0 ) 5 10
t
... to be satisfied e.g. at to.
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Consistency of DAEs from Lagrange Mechanics

Index-3 DAE from Lagrange:

é@_ﬁ — 8_[2 = For most mechanical applications:
dog oq ° PP '
c(q)=0 T(q,q) = 201 "M(a)a

with £(q,¢,2) = T(q,¢q) — V (a) —z c(q)

Index reduction based on:
d2

%c(q):Vc(q)Tq and dtzc(q) Ve(q)' §+ Vg (VC(q)T q)Tq

Index-1 DAE model:
M(a) Vac(@) 17 g 1 [ Fe—Mla, Da+ Va(T(a.9) = V()
{ ] - ~Va(Ve(@Ta) 4

Vqc (Q)T 0 z

v
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Consistency of DAEs from Lagrange Mechanics

Index-3 DAE from Lagrange:

éa_/" — 6_L' = For most mechanical applications:
dog oq ° PP '
c(q)=0 T(q,q) = 201 "M(a)a

with £ (q,4,2) = T (q,4) — V (q) — 2" c(q)

Index reduction based on:
4,
dt

d2 T
(@)= Ve(a@) a and <-c(a)=Ve(a) d+Va(Ve(@) a)
Index-1 DAE model:

ch((z))T qu(q) ] { q ]

— M(q,&)q + Vo (T (q, q) — V(a))
~Va(Ve(@Ta) 4

with the consistency conditions:

c(q)=0  and (ft (@) =Ve(q)' 4

v
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@ Constraints drift
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Constraints drift - 3D pendulum

Index-1 DAE
ml p P|_| u—mges
p 0 z | -p'p

. is built to impose ¢ = 0 at all time.
Then if c =0 and ¢ = 0 are satisfied at any time on

-

the trajectory, then they are satisfied at all time. 4
3
©2
1
0
0 5 10
t
0.5
w0
-0.5
0 5 10
t
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Constraints drift - 3D pendulum

'ndex-l DAE
~

. is built to impose ¢ = 0 at all time.
Then if c =0 and ¢ = 0 are satisfied at any time on

the trajectory, then they are satisfied at all time. 4
3
Index-1 DAE: ©2
1
ml p P|_ | u—mges o
p—r 0 z o —[')TI') 0 5 10
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Constraints drift - 3D pendulum
Index-1 DAE

KRRty
p’ 0 z -p'p
. is built to impose ¢ = 0 at all time.

Then if c =0 and ¢ = 0 are satisfied at any time on
the trajectory, then they are satisfied at all time.

Index-1 DAE:
BRI I
p' 0 z -p'p
with the consistency conditions:

c:%(pr—Lz)zo, é:pr:o

. imposed at e.g. to.
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Constraints drift - 3D pendulum
Index-1 DAE

EHIGRE

. is built to impose ¢ = 0 at all time.

Then if c =0 and ¢ = 0 are satisfied at any time on

the trajectory, then they are satisfied at all time.
0.8
Index-1 DAE: 000
0.4
|:ml p:|[f):|:|:u—mgeg:| 02
p' 0 z ~p'P % 50 100
with the consistency conditions: 103 t
207
1 . .
c=>(pP-L*)=0, ¢=p'p=0 i~
. imposed at e.g. to. -0 1(5)
0
5
0 50 100
t
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Constraints drift - 3D pendulum
Index-1 DAE

I Rt

. is built to impose ¢ = 0 at all time.

-

Then if c =0 and ¢ = 0 are satisfied at any time on
the trajectory, then they are satisfied at all time.

Index-1 DAE:

ERIGNE

with the consistency conditions:

1 . .
c=§(pr—L2)=0, ¢=p p=0
. imposed at e.g. to.

With consistent initial conditions, c =0 and ¢ =0
would be satisfied at all time if we had no numerical

error in the integration !!

v

S. Gros Optimal Control with DAEs, lecture 11

0 50 100
t
x10°
0 50 100
t

2274 of February, 2016 23 /25



Baumgartne stabilization of the constraints drift

Index-1 DAE:

BRGNS

with the consistency conditions:

czl(pr—Lz)ZO,

5 ¢=p p=0

. imposed at to.

Why does the drift happen: ¢ = 0 has marginally stable
dynamics (c is two integrations of ¢ hence two poles at 0).
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Baumgartne stabilization of the constraints drift

Index-1 DAE:
BRI R
p' 0 z -p'p
with the consistency conditions:

CZ%(pr—LZ)ZO, é:prZO

. imposed at to.

Why does the drift happen: ¢ = 0 has marginally stable
dynamics (c is two integrations of ¢ hence two poles at 0).

Key idea: impose a stable dynamics to the constraints
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Baumgartne stabilization of the constraints drift

Index-1 DAE:
BRI R
p' 0 z -p'p
with the consistency conditions:

CZ%(pr—LZ)ZO, ¢=p'p=0

. imposed at to.

Why does the drift happen: ¢ = 0 has marginally stable
dynamics (c is two integrations of ¢ hence two poles at 0).

Key idea: impose a stable dynamics to the constraints, build
the index-1 DAE to impose:

¢+ 7cC+yc=0
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Baumgartne stabilization of the constraints drift

Index-1 DAE:
BRI R
p' 0 z -p'p
with the consistency conditions:

CZ%(pr—LZ)ZO, ¢=p'p=0

. imposed at to.

4

Why does the drift happen: ¢ = 0 has marginally stable
dynamics (c is two integrations of ¢ hence two poles at 0).

Key idea: impose a stable dynamics to the constraints, build
the index-1 DAE to impose:

¢+ 7cC+yc=0
E.g. for the 3D pendulum:

P P+P P+mp P+ % (pr - L2) =0

v
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Baumgartne stabilization of the constraints drift

Index-1 DAE:
BRI R
p' 0 z -p'p
with the consistency conditions:

CZ%(pr—LZ)ZO, é:prZO

. imposed at to.

Why does the drift happen: ¢ = 0 has marginally stable
dynamics (c is two integrations of ¢ hence two poles at 0).

Index-1 DAE with stabilization:

{m/ P}[P}_[ u— mges
p’ 0 z P P-mp P-%(p'p- L%
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Baumgartne stabilization of the constraints drift

Index-1 DAE:
BRI R
p' 0 z -p'p
with the consistency conditions:

c=3(pp-12)=0, e=p'p=0
. imposed at to.

Why does the drift happen: ¢ = 0 has marginally stable
dynamics (c is two integrations of ¢ hence two poles at 0).

Index-1 DAE with stabilization:

{m/ P}[P}_[ u— mges
p’ 0 z P P-mp P-%(p'p- L%
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Baumgartne stabilization of the constraints drift

Index-1 DAE:
BRI R
p' 0 z -p'p
with the consistency conditions:

c=3(pp-12)=0, e=p'p=0
. imposed at to.

Why does the drift happen: ¢ = 0 has marginally stable
dynamics (c is two integrations of ¢ hence two poles at 0).

The Baumgartne stabilization must be used carefully !
@ Fast poles introduce stiffness in the dynamics

@ The interaction between the stabilization and the
integrator error is non-trivial...
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A related problem - Invariants in ODEs

Consistency & drift are not DAE-specific. J

o & = E E DaAe
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A related problem - Invariants in ODEs

Consistency & drift are not DAE-specific. J

Simple ODEs
x=F(x,u)
model a physical reality. Some ODEs are
representative only when some consistency
conditions:
c(x)=0

are satisfied.
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A related problem - Invariants in ODEs

Consistency & drift are not DAE-specific. J

Simple ODEs
x=F(x,u)

model a physical reality. Some ODEs are
representative only when some consistency
conditions:

c(x)=0
are satisfied.

ODEs with consistency conditions occur
when one defines a state-space that holds
more dimensions than the physical reality it

represents !!
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A related problem - Invariants in ODEs
Why more states than needed ?

@ Simpler, less nonlinear models (this is

Consistency & drift are not DAE-specific. ) lfting 1)
Simple ODEs @ Singularity-free rotations (more on
that soon)

x=F(x,u)

model a physical reality. Some ODEs are
representative only when some consistency
conditions:

c(x)=0
are satisfied.

ODEs with consistency conditions occur
when one defines a state-space that holds
more dimensions than the physical reality it

represents !!
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A related problem - Invariants in ODEs
Why more states than needed ?

Consistency & drift are not DAE-specific. ) ® Simpler, less nonlinear models (this is

lifting !1)

Simple ODEs @ Singularity-free rotations (more on

. that soon)

x=F(x,u)
model a physical reality. Some ODEs are ODEs with consistency conditions suffer
representative only when some consistency from the same potential drift problem as
conditions: index-reduced DAEs, and can be treated

using the same remedies.
c(x)=0

are satisfied.

ODEs with consistency conditions occur
when one defines a state-space that holds
more dimensions than the physical reality it

represents !!
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A related problem - Invariants in ODEs
Why more states than needed ?

@ Simpler, less nonlinear models (this is

Consistency & drift are not DAE-specific. ) .
lifting !1)

Simple ODEs @ Singularity-free rotations (more on

. that soon)

x=F(x,u)
model a physical reality. Some ODEs are ODEs with consistency conditions suffer
representative only when some consistency from the same potential drift problem as
conditions: index-reduced DAEs, and can be treated

using the same remedies.
c(x)=0 y

are satisfied. This is often not an issue in Optimal

Control (reasonably short simulation
horizons), but long simulations may require
some care.

ODEs with consistency conditions occur
when one defines a state-space that holds
more dimensions than the physical reality it

represents !!

vy
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A related problem - Invariants in ODEs
Why more states than needed ?

@ Simpler, less nonlinear models (this is

Consistency & drift are not DAE-specific. ) .
lifting !1)

Simple ODEs @ Singularity-free rotations (more on

. that soon)

x=F(x,u)
model a physical reality. Some ODEs are ODEs with consistency conditions suffer
representative only when some consistency from the same potential drift problem as
conditions: index-reduced DAEs, and can be treated

using the same remedies.
c(x)=0 y

are satisfied. This is often not an issue in Optimal

Control (reasonably short simulation
horizons), but long simulations may require
some care.

ODEs with consistency conditions occur
when one defines a state-space that holds
more dimensions than the physical reality it

represents !!

vy

Not covered in this course but good to
know: Symplectic integrators (for handling
drift)
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