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Objectives of the Lecture

@ What is a Differential-Algebraic Equation (DAE), why they are used
@ DAEs in mechanical applications: why and how to build them
@ Introduction to Lagrange mechanics, and DAEs from Lagrange

@ Some first remarks on solving DAEs
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Outline

@ Introduction
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What is a DAE 717
Consider a differential equation:

F(x,x,u)=0
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What is a DAE ?1?

Consider a differential equation:

F(x,x,u)=0

Definition: F is a DAE if 2& is
rank deficient

o & = E 2L NGe
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What is a DAE 71?7
Consider a differential equation: Example

1X2

Definition: F is a DAE if g—i is
rank deficient
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What is a DAE 717

Consider a differential equation:

F(x,x,u)=0

Definition: F is a DAE if ‘g—i is
rank deficient

)
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Example
. o x1—X1+1 N
F(x,x)—{ Xixo 42 }—0
then
B_F | -1 0
ox x; 0
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What is a DAE 717

Consider a differential equation:

F(x,x,u)=0

Definition: F is a DAE if g—i is
rank deficient

)
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Example
F (x,x) = { X;:xjle } =0
then
ol o
ox x2 0
and
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What is a DAE 717

Consider a differential equation:

F(x,x,u)=0

Definition: F is a DAE if g—i is
rank deficient

What is going on ?!?
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Example
F (x,x) = { X;:xjle } =0
then
ol o
ox x2 0
and
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What is a DAE 717

Consider a differential equation:

F(x,x,u)=0

Definition: F is a DAE if ‘3—5 is
rank deficient

Example
F (x,x) = { X;:xjle } =0
then
ol o
ox x2 0
and

What is going on ?!? Solve the first equation for %3, yields x; = x1 + 1, then we have:

Flx)=| - %tl ]:o

(X1+1)X2+2
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What is a DAE 717

Consider a differential equation:

F(x,x,u)=0

Definition: F is a DAE if ‘g—z is
rank deficient

Example
F (%,%) = { aatt } —0
then
ol o
ox x2 0
and

What is going on ?!? Solve the first equation for %3, yields x; = x1 + 1, then we have:

F(%,x) =

x1—x1+1 —0
(X1—|-1)X2—|-2 -

The second equation is algebraic ! Observe that x; is not in F in the first place !
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Is it that simple ? A small DAE freak show
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Consider:

Is it that simple ? A small DAE freak show

ux+x=20
We have —?,1.7 =u
X
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Consider:

Is it that simple ? A small DAE freak show

ux+x=0

We have g—i = u, then:

@ For u#0, it is a simple
ODE, i.e.

o & = E E DaAe
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Is it that simple 7 A small DAE freak show

Consider:
ux+x=20
We have g—i = u, then:
@ For u#0, it is a simple
ODE, i.e.

x=-2
u

@ For u=0, it is a purely
algebraic equation, i.e.

x=0
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Is it that simple 7 A small DAE freak show

Consider:
ux+x=0
We have ‘3—5 = u, then:
@ For u#0, it is a simple
ODE, i.e.
xX=—=
u
@ For u=0, it is a purely
algebraic equation, i.e.
x=0

This differential equation is an
ODE or a DAE depending on the
input !

v
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Is it that simple 7 A small DAE freak show

Consider: Consider:
ux +x =0 X1 +x1—u=0

X1 —X2)Xo+X1 —x2=0
We have‘g—zzu, then: (xa 2) %2 ! 2

@ For u#0, it is a simple
ODE, i.e.
x=—=
u
@ For u=0, it is a purely
algebraic equation, i.e.
x=0

This differential equation is an
ODE or a DAE depending on the
input !

v

v
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Is it that simple 7 A small DAE freak show

Consider:
ux+x=20

We have ‘3—5 = u, then:
@ For u#0, it is a simple
ODE, i.e.
X

x=-2
u

@ For u=0, it is a purely
algebraic equation, i.e.
x=0

This differential equation is an
ODE or a DAE depending on the
input !

Consider:
xX1+x1—u=0
(X1 —Xz))-(z +x1—x2=0

We have

OF [1 0
% | 0 x1—x2

v
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Is it that simple 7 A small DAE freak show

Consider:
ux+x=20

We have ‘3—5 = u, then:
@ For u#0, it is a simple
ODE, i.e.
X

x=-2
u

@ For u=0, it is a purely
algebraic equation, i.e.
x=0

This differential equation is an
ODE or a DAE depending on the
input !

v
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Consider:
xX1+x1—u=0
(X1 —Xz))-(z +x1—x2=0

We have

OF [1 0
% | 0 x1—x2

then for x; = X, matrix ‘3—5 is rank-deficient.

v
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Is it that simple ? A small DAE freak show

Consider:
ux+x=20
We have g—i = u, then:
@ For u#0, it is a simple
ODE, i.e.

x=-2
u

@ For u=0, it is a purely
algebraic equation, i.e.

x=0

This differential equation is an
ODE or a DAE depending on the

input !

v
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Consider:
xX1+x1—u=0

(Xl—XQ))-(2+X1—X2=0

We have

0% | 0 x1—x

5[0 xlx]

then for x; = X, matrix g—i is rank-deficient.

For the initial conditions:
x1(0) = x2(0)
our equation is a DAE as the solution obeys:

x1+x1—u=0

X2 = X1

v
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Is it that simple ? A small DAE freak show

Consider:
ux+x=20

Consider:
xX1+x1—u=0

X1 —X2)Xo+X1 —x2=0
We haveg—zzu, then: (xa 2) %2 ! 2

@ For u#0, it is a simple We have

X = _5 ax o 0 X1 — X2
u

_ . 8_F . _ . .
® For u=0, it is a purely then for x; = x» matrix 3 is rank-deficient.

algebraic equation, i.e. For the initial conditions:

x=0 x1(0) = x2(0)

This differential equation is an

ODE or a DAE depending on the
input !

our equation is a DAE as the solution obeys:

) x1+x1—u=0

X2 = X1

This differential equation is an ODE or a
DAE depending on the initial conditions !

<
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Is it that simple ? A small DAE freak show

Consider:
ux+x=0
We have ‘g—i = u, then:
@ For u#0, it is a simple
ODE, i.e.
xX=—=
u
@ For u=0, it is a purely
algebraic equation, i.e.

x=0

This differential equation is an
ODE or a DAE depending on the
input !

V.

The notion of DAE can be
"deceptive”. In these lectures, we
will focus on "clear-cut” cases.

Consider:
xX1+x1—u=0

(x1 —x2)%2+x1 —x2=0
We have
50 xlx]
ox 0 x1—x2
then for x; = x» matrix ‘g—i is rank-deficient.
For the initial conditions:
x1(0) = x2(0)
our equation is a DAE as the solution obeys:
X1 +x1—u=0
X2 = X1

This differential equation is an ODE or a
DAE depending on the initial conditions !

<
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Why do we use DAEs ?
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Why do we use DAEs ?

Large systems made of many subsystems:
@ ODEs describe each subsystems independently
@ Algebraic relationships describe e.g. balance equations, flow, etc...

@ DAE model is easier to develop, maintain, modify
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Why do we use DAEs ?

Large systems made of many subsystems:
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@ Algebraic relationships describe e.g. balance equations, flow, etc...

@ DAE model is easier to develop, maintain, modify
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Why do we use DAEs ?

Large systems made of many subsystems:
@ ODEs describe each subsystems independently
@ Algebraic relationships describe e.g. balance equations, flow, etc...

@ DAE model is easier to develop, maintain, modify

E.g.

Mechanical /Robotic systems:
@ DAE models can be much simpler than ODE models
@ Modelling procedure is often easier using DAEs

@ Often yields more "natural” representations of the
system
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A brief taxonomy of DAEs
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A brief taxonomy of DAEs
Fully-implicit DAE:

F(x,%,u)=0
1 OF
with &=

rank-deficient.

o & = E E DaAe
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A brief taxonomy of DAEs
Fully-implicit DAE:
F(x,%,u)=0

with g—g rank-deficient.

Useful to write in the form:
F(x,x,z,u) =0

when some variables are clearly algebraic.
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A brief taxonomy of DAEs
Fully-implicit DAE: Linear fully implicit DAE:
F(x,%,u)=0 Ex = Ax+ Bu

with ‘g—g rank-deficient. with E rank-deficient.

Useful to write in the form:
F(x,x,z,u) =0

when some variables are clearly algebraic.
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A brief taxonomy of DAEs
Fully-implicit DAE: Linear fully implicit DAE:
F(x,%,u)=0 Ex = Ax + Bu
with ‘g—z rank-deficient. with E rank-deficient.
Semi-explicit DAE:
Useful to write in the form:
] x = F (x,z,u)
F(%,%,2,u) =0 0=G(x,3,u)

when some variables are clearly algebraic.
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A brief taxonomy of DAEs
Fully-implicit DAE:
F(x,%,u)=0

with ‘g—z rank-deficient.

Useful to write in the form:

F(x,x,z,u) =0

when some variables are clearly algebraic.

Linear fully implicit DAE:
Ex = Ax + Bu

with E rank-deficient.

Semi-explicit DAE:

x = F (x,z,u)
0= G (x,2z,u)

Any fully implicit DAE can be transformed into a semi-explicit one.
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A brief taxonomy of DAEs
Fully-implicit DAE:
F(x,%,u)=0

with ‘g—g rank-deficient.

Useful to write in the form:

F(x,x,z,u) =0

when some variables are clearly algebraic.

Linear fully implicit DAE:
Ex = Ax + Bu

with E rank-deficient.

Semi-explicit DAE:

x = F (x,z,u)
0= G (x,2z,u)

Any fully implicit DAE can be transformed into a semi-explicit one. However, it is
not always wise to do so !! The transformation can turn a simple set of equation into a

very complex one !!
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A brief taxonomy of DAEs
Fully-implicit DAE:
F(x,%,u)=0

with g—z rank-deficient.

Useful to write in the form:

F(x,x,z,u) =0

when some variables are clearly algebraic.

Linear fully implicit DAE:
Ex=Ax+ Bu

with E rank-deficient.

Semi-explicit DAE:

x =F(x,z,u)
0=G(x,z,u)

Any fully implicit DAE can be transformed into a semi-explicit one. However, it is
not always wise to do so !! The transformation can turn a simple set of equation into a

very complex one !!

Most often one can make an explicit distinction between differential and algebraic
variables. Some DAEs can be ambiguous on that distinction though (c.f. "DAE freak

show”)
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Some examples of DAEs - CSTR system

Isothermal CSTR:
Variables:
A=B—=C @ F,: feed rate of A
@ (y,: feed concentration of A

has the model equation: )
@ Ry rates of the reactions

@ F: product withdrawal rate
V=F—F @ Ca,c: concentration of species
Ca = % (Cap — Ca) — Ri Note that:
. F, @ F and F, are inputs
= _VCB = @ V and Ca ¢ are differential variables
Ce = —%Cc + R, @ Ry are algebraic variables
0=Ca— ;Bq
0=FR— ko Cg
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Some examples of DAEs - 3D pendulum
Position given by p € R?, dynamics:

mp = u — mges

€3

€
€2

o & = E 2L NGe
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€3

Some examples of DAEs - 3D pendulum
Position given by p € R® dynamics: o e1

mp = u — mge3—zp €2 u

p

Force in the cable: direction given by —p, amplitude given by algebraic variable z € R
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€3

Some examples of DAEs - 3D pendulum
Position given by p € R?, dynamics: (0] e1

mp = u — mge3—zp €2 u

p

Force in the cable: direction given by —p, amplitude given by algebraic variable z € R

Then z must be chosen such that:
cp)=p p-L*=0

holds at all time.
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€3

Some examples of DAEs - 3D pendulum
Position given by p € R?, dynamics: (0] e1

mp = u — mge3—zp e u

p

Force in the cable: direction given by —p, amplitude given by algebraic variable z € R
Then z must be chosen such that:
-
c(p)=p'P-L*=0

holds at all time.

Using v = p, the DAE reads as:

P=V
oo U o Z
~m 58T RP

0=p' p—1L°
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€3

Some examples of DAEs - 3D pendulum
Position given by p € R?, dynamics: (0] e1

mp = u — mge3—zp €2 u

p

Force in the cable: direction given by —p, amplitude given by algebraic variable z € R
Then z must be chosen such that:
-
c(p)=p'P-L*=0
holds at all time.

Using v = p, the DAE reads as:
Sing v.=b. the reads as What kind of DAE is that 717

p=v
oo U o Z
~m 58T RP

0=p'p-1L°
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€3

Some examples of DAEs - 3D pendulum
Position given by p € R?, dynamics: (0] e1

mp = u — mge3—zp €2 u

p

Force in the cable: direction given by —p, amplitude given by algebraic variable z € R
Then z must be chosen such that:
-
c(p)=p'P-L*=0

holds at all time.

Using v = p, the DAE reads as:
Sing v.=b. the reads as What kind of DAE is that 717

p=v x=F(x,u,z)
v=2_ e3—£p

m € m 0=G(x)
0=p' p—1L°

Semi-explicit with G independent of z...
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Outline
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Lagrange Mechanics - Key idea

Generalised coordinates:

@ A given q provides a "snapshot” of the configuration of
the system, often simply " positions”
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Lagrange Mechanics - Key idea

Generalised coordinates:

@ A given q provides a "snapshot” of the configuration of
the system, often simply " positions”

@ E.g. for the pendulum on a chart one can choose
q={0, x}
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Lagrange Mechanics - Key idea
Generalised coordinates:

@ A given q provides a "snapshot” of the configuration of
the system, often simply " positions”

@ E.g. for the pendulum on a chart one can choose
q={0, x}

@ Note that q # states !! Often states are x = [ :11 ]
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Lagrange Mechanics - Key idea

Generalised coordinates:

@ A given q provides a "snapshot” of the configuration of
the system, often simply " positions”

@ E.g. for the pendulum on a chart one can choose 9
q= {07 X} L\!

@ Note that q # states !! Often states are x = [ ?1 ]

u

Lagrange (1788) function:

—— S—~—
kinetic energy potential energy
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Lagrange Mechanics - Key idea

Generalised coordinates:

@ A given q provides a "snapshot” of the configuration of
the system, often simply " positions”

@ E.g. for the pendulum on a chart one can choose 9
q={0, x} L\

@ Note that q # states !! Often states are x = [ :11 ]

Lagrange (1788) function:

—— S—~—
kinetic energy potential energy

then the integral action:

te
- ["c@a
i1

0

is minimised by the systems (free) trajectory.
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Lagrange Mechanics - A silly example
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Lagrange Mechanics - A silly example

Generalized coordinates q=x
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Lagrange Mechanics - A silly example

Generalized coordinates q=x

N . 1 .
Kinetic energy: T (q,q) = me2

Potential energy: V (q) = %kx2
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Lagrange Mechanics - A silly example

Generalized coordinates q=x

N . 1 .
Kinetic energy: T (q,q) = me2

Potential energy: V (q) = %kx2
Lagrange function:

; . 1 . 1
£(a,d) = T(a,d) ~ V()= zmd — ke
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Lagrange Mechanics - A silly example

Generalized coordinates q=x

k
N . 1 .
Kinetic energy: T (q,q) = =mx’
2 m
Potential energy: V (q) = %kx2
. x
Lagrange function:

; . 1 . 1
£(a,d) = T(a,d) ~ V()= zmd — ke

The spring-mass trajectory minimises the integral action:

te
- [c@ai
to
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Lagrange Mechanics - A silly example

Generalized coordinates q=x

k
N . 1 .
Kinetic energy: T (q,q) = =mx’
2 m
Potential energy: V (q) = %kx2
. x
Lagrange function:

; . 1 . 1
£(a,d) = T(a,d) ~ V()= zmd — ke

The spring-mass trajectory minimises the integral action:

ty
- [c@ai
to

From variational calculus, the free trajectories satisfy (Euler-Lagrange equation):

doL oL _
doq Oq
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Lagrange Mechanics - A silly example

Generalized coordinates q=x

k
- . 1 .
Kinetic energy: T (q,q) = =mx’
2 m
Potential energy: V (q) = %kx2
] X
Lagrange function:
) ) 1 -, 1 5
£(q,4) = T(a,q) — V(q) = 5mx" — kx
The free trajectories satisfy:
oL ot _
doq 9q

2279 of January, 2016 12 /23



Lagrange Mechanics - A silly example

Generalized coordinates q=x

N . 1 .
Kinetic energy: T (q,q) = me2

Potential energy: V (q) = %kx2

Lagrange function:

; . 1 . 1
£(a,d) = T(a,d) ~ V()= zmd — ke

The free trajectories satisfy:

doL oL _
doq 9q
We have:
oL . oL
53 =M%, 5q = —kx
oL =
99L — g
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Lagrange Mechanics - A silly example

Generalized coordinates q=x

k
- . 1 .
Kinetic energy: T (q,q) = =mx’
2 m
Potential energy: V (q) = %kx2
X
Lagrange function:
) ) 1 -, 1 5
£(q,4) = T(a,q) — V(q) = 5mx" — kx
The free trajectories satisfy:
doL oL _
doq 9q
We have: Yield the ODE:
%:mk, %:—kx mx + kx =0
oL =
99L _ g
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Lagrange Mechanics - Example

Generalized coordinates q = [ z ]

Kinetic energy: T (q,q) = % (m+ M)+ %ML26.?2 — LM#éxsin 6 W)
Potential energy: V (q) = Mgl cos @ L
Lagrange function: £(q,q) =T (q,q) — V (q)

From variational calculus, the free trajectories satisfy: 0.0
X
doc oL _
doq 0q

Yields the free trajectory:
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Lagrange Mechanics - Example

Generalized coordinates q = [ z ]

Kinetic energy: T (q,q) = % (m+ M)+ %ML26.?2 — LM#éxsin 6 W)
Potential energy: V (q) = Mgl cos @ L

Lagrange function: £(q,q) = T(q,q) — V(q)

From variational calculus, the free trajectories satisfy: 0.0
doL oL

doq 0q
Yields the free trajectory:

ocT _ [ (M+m)x— MLOsin(0) T _ o
o4 ML20 — MLx sin(0) 7 9a | MglLsin(6) — MLOx cos(6)

el

Y

&=
o

q

T _ [ —MLcos(0)6> + £(M + m) — MLGsin(6),
N — ML sin(0) + ML26 — MLOx cos(8))
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Lagrange Mechanics - Example

Generalized coordinates q = [ z ]

Kinetic energy: T (q,q) = % (m+ M)+ %ML26.?2 — LM#éxsin 6 W)
Potential energy: V (q) = Mgl cos @ L

Lagrange function: £(q,q) = T(q,q) — V(q)

From variational calculus, the free trajectories satisfy: 0.0

X
4oL oL _
doq 0q
Yields the free trajectory:
M+m  —MLsin(9) %7 _ [ ML6?cos(6)
—MLsin(0) ML? 6 | | MgLsin(h)

Useful tip: the whole procedure can be easily coded in a CAS.
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Lagrange Mechanics - External Forces
Consider a system described by the generalized coordinates q with:

Kinetic energy: T (q,q)
Potential energy: V (q)

Define the Lagrange function: £(q,q,z) =T — V.

Then the free dynamics are given by

doL oL _

doq 0q
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Lagrange Mechanics - External Forces
Consider a system described by the generalized coordinates q with:

Kinetic energy: T (q,q)
Potential energy: V (q)

Define the Lagrange function: £(q,q,z) =T — V.

Then the free dynamics are given by ... and the forced dynamics are given by
doL oL _, doL oL _ g
ddq ~ da dog o9q " °F

where Fg are the generalized forces
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Lagrange Mechanics - External Forces
Consider a system described by the generalized coordinates q with:

Kinetic energy: T (q,q)
Potential energy: V (q)

Define the Lagrange function: £(q,q,z) =T — V.

Then the free dynamics are given by ... and the forced dynamics are given by
doL oL _, doL oL _ g
ddq ~ da ddg 9q ¢

where F; are the generalized forces, defined such that the virtual work condition:

5\V‘/-/’ = (Fg, dq)
work

is satisfied for all compatible displacement dq.
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where F; are the generalized forces, defined such that the virtual work condition:

5\V‘/-// = (Fg, dq)
work

is satisfied for all compatible displacement dq.

How to use that ?!? Suppose force F; applied at point p; (q) € R? in the system
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Lagrange Mechanics - External Forces
Consider a system described by the generalized coordinates q with:

Kinetic energy: T (q,q)
Potential energy: V (q)

Define the Lagrange function: £(q,q,z) =T — V.

Then the free dynamics are given by ... and the forced dynamics are given by
doL oL _, doL oL _ g
ddq ~ da ddg 9q ¢

where F; are the generalized forces, defined such that the virtual work condition:

5\V‘/-// = (Fg, dq)
work

is satisfied for all compatible displacement dq.

How to use that ?!? Suppose force F; applied at point p; (q) € R? in the system

Op;
oW = ZF,T 9q 0q = Fgéq, Véq
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Lagrange Mechanics - External Forces
Consider a system described by the generalized coordinates q with:

Kinetic energy: T (q,q)
Potential energy: V (q)

Define the Lagrange function: £(q,q,z) =T — V.

Then the free dynamics are given by ... and the forced dynamics are given by
doL oL _, doL oL _ g
ddq ~ da ddg 9q ¢

where F; are the generalized forces, defined such that the virtual work condition:

5\‘/‘,// = (Fg, dq)
work

is satisfied for all compatible displacement dq.

How to use that ?!? Suppose force F; applied at point p; (q) € R? in the system

Jp;
dq

Op;
6W:ZF,~T a‘c’l 5q=F]5q, ¥oq  then F, :ZF,-T
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DAE modeling using Lagrange Mechanics

Consider a system described by the generalized coordinates q with:

Kinetic energy: T (q,q)
Potential energy: V (q)
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DAE modeling using Lagrange Mechanics

Consider a system described by the generalized coordinates q with:

Kinetic energy: T (q,q)
Potential energy: V (q)
Constraints: c¢c(q) =0
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DAE modeling using Lagrange Mechanics

Consider a system described by the generalized coordinates q with:

Kinetic energy: T (q,q)
Potential energy: V (q)
Constraints: c¢c(q) =0

Define the Lagrange function:

L (q7 (.1’ Z) =T (q7 q) -V (q) _ZTC (q)
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DAE modeling using Lagrange Mechanics

Consider a system described by the generalized coordinates q with:

Kinetic energy: T (q,q)
Potential energy: V (q)
Constraints: c¢c(q) =0

Define the Lagrange function:

L (q7 (.1’ Z) =T (q7 q) -V (q) _ZTC (Q)

Then the dynamics are given by:

4oL _ oL _
déq o6q ¢
c(q)=0
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DAE modeling using Lagrange Mechanics

Consider a system described by the generalized coordinates q with:

Kinetic energy: T (q,q)
Potential energy: V (q)
Constraints: c¢c(q) =0

Define the Lagrange function:

L (q7 (.1’ Z) =T (q7 q) -V (q) _ZTC (Q)

Then the dynamics are given by: The constraints enter the dynamics via:
doL oL _ 9L _ 0T 8V _ t0c
doq Oq & 0q 0O0q Odq oq

c(q)=0
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DAE modeling using Lagrange Mechanics

Consider a system described by the generalized coordinates q with:

Kinetic energy: T (q,q)
Potential energy: V (q)
Constraints: c¢c(q) =0

Define the Lagrange function:

L (q7 (.1’ Z) =T (q7 q) -V (q) _ZTC (Q)

Then the dynamics are given by: The constraints enter the dynamics via:
doL oL _ 9L _ 0T 8V _ t0c
doq Oq & 0q 0O0q Odq oq

c(q)=0

The "force” keeping the system on
c(q) =0 is in the space spanned by Vqc;
v
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3D pendulum in Lagrange Mechanics
es
Generalized coordinates: q = p, and:

1 ..
Kinetic energy: T (q,q) = Empr
. T €2 u
Potential energy: V (q) = mge; p

Constraints: c(q) = % (pr — L2)
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3D pendulum in Lagrange Mechanics

€3
Generalized coordinates: q = p, and:
. . . 1 .T. o €1
Kinetic energy: T (q,q) = 5mMp P
. T €2 u
Potential energy: V (q) = mge; p
Constraints: ¢(q) = 1 (pr - L2)
2
p
Lagrange function: £L=1mp'p — mge; p— 3z (p'p — L?) yields:

or_ . aoc _ or_ o,
99 = mp d9q = mp 99 = g€es3 P
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3D pendulum in Lagrange Mechanics
e;

Generalized coordinates: q = p, and:
. . . 1 .T. o €1
Kinetic energy: T (q,q) = 5mMp P
€2
Potential energy: V (q) = mge; p
Constraints: ¢(q) = 1 (pr - L2)
2
p
Lagrange function: £L=1mp'p — mge; p— 3z (p'p — L?) yields:
oL doL . oL
= mp —— = —mges — zp
oq

Using g% - % = u the dynamics read as
mp + mges +zp =u

L)
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Delta robot in Lagrange Mechanics

@ Position of the nacelle p € R®.

L: length "long” arms
I: length "small” arms
d: distance center-motors
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Delta robot in Lagrange Mechanics

@ Position of the nacelle p € R®.

Ccosyk  —sinyk
ka = | sinx COS Yk
0 0

where 7123 = {0, 23”,4—"

L: length "long” arms
I: length "small” arms
d: distance center-motors

S. Gros Optimal Control with DAEs, lecture 10

@ Position of the rods end point:

d + I cos ak
0
—I'sin a

2279 of January, 2016

17 / 23



Delta robot in Lagrange Mechanics

@ Position of the nacelle p € R®.

@ Position of the rods end point:

cosyxk —sinye 0 d + [ cos a
pr = | sinv cosyx O 0
0 0 1 —/Isin ax

where 7123 = {0, 23”,4—"

@ Generalized coordinates q = {p, a1,2,3}, and:

L: length "long” arms
I: length "small” arms
d: distance center-motors
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Delta robot in Lagrange Mechanics

@ Position of the nacelle p € R®.

@ Position of the rods end point:

cosyxk —sinye 0 d + [ cos a
pr = | sinv cosyx O 0
0 0 1 —/Isin ax

2n 4
where y123 = {0, &, 4¢

@ Generalized coordinates q = {p, a1,2,3}, and:

3

Kinetic energy: T (q,q) = %mpr + % > Joi
k=1

L: length "long” arms
I: length "small” arms
d: distance center-motors
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Delta robot in Lagrange Mechanics

@ Position of the nacelle p € R®.

@ Position of the rods end point:

cosyxk —sinye 0 d + [ cos a
pr = | sinv cosyx O 0
0 0 1 —/Isin ax

2m Am

where 123 = {0, > 3

@ Generalized coordinates q = {p, a1,2,3}, and:

3
N ) AN S P | .2
Kinetic energy: T (q,q) = 5mp P + 5 E,l Jag
13
L: length "long" arms Potential energy: V (q) = mgp; + = E Mgl sin
I: length "small” arms z k=1

d: distance center-motors
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@ Position of the rods end point:
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pr = | sinv cosyx O 0
0 0 1 —/Isin ax

2m Am

where 123 = {0, > 3

@ Generalized coordinates q = {p, a1,2,3}, and:

3
N ) AN S P | .2
Kinetic energy: T (q,q) = 5mp P + 5 kg,l Jag
13
L: length "long" arms Potential energy: V (q) = mgp; + = E Mgl sin
I: length "small” arms z k=1

d: distance center-motors . RI2 s
Constraints: ¢« (q) = Hp — Py H -5, k=123
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Delta robot in Lagrange Mechanics

@ Position of the nacelle p € R®.
@ Position of the rods end point:

cosyxk —sinye 0 d + [ cos a
pr = | sinv cosyx O 0
0 0 1 —/Isin ax

2r 4
where7123—{0, 53

@ Generalized coordinates q = {p, a1,2,3}, and:

3

Kinetic energy: T (q,q) = %mpr + % > Joi
k=1

3
. 1 .

L: length "long" arms Potential energy: V (q) = mgp; + = E Mgl sin

I: length "small” arms z k=1

d: distance center-motors . RI2 s
Constraints: ¢« (q) = Hp — Py H -5, k=123

Lagrange function:
1 °. 11 1 2
L= Empr + ; [EJo'zi — mgp; — EMLsin Qk + zk (Hp — pEH — Lz)}
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Outline

My

=] & = E E DAl
S. Gros Optimal Control with DAEs, lecture 10

© A first view on approaching DAEs numerically



Handling semi-explicit DAEs
Semi-explicit DAE:

x = F (x,z,u)

0=G(x,2,u)

o & = E E DaAe
S. Gros Optimal Control with DAEs, lecture 10




Handling semi-explicit DAEs
Semi-explicit DAE:

Find solution:
x = F (x,z,u)
0=G(x,2,u)

z=¢ (Xa u)
of G (x,2z,u) =0, i.e.

holds for all x, u.

o & = E 2L NGe
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Handling semi-explicit DAEs

Semi-explicit DAE: Find solution:
).(ZF(X,Z,U) ZZ&(Xau)
U= Ciloszw) of G (x,2z,u) =0, i.e.

holds for all x, u.

Then one can write the ODE:
x =F(x,€&(x,u),u)
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Handling semi-explicit DAEs
Semi-explicit DAE:

x = F (x,z,u)
0=G(x,2,u)

E.g. X=u—x+z

0=xz—1

Find solution:
z=¢(x,u)
of G (x,2z,u) =0, i.e.
G (x,£(x,u),u) =0
holds for all x, u.

Then one can write the ODE:
x =F(x,€&(x,u),u)
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0=G(x,2,u)
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zz%z{(x,u)

Find solution:
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of G (x,2z,u) =0, i.e.
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Handling semi-explicit DAEs

Semi-explicit DAE: Find solution:
x = F (x,z,u) z =€ (x,u)
U= Ciloszw) of G (x,2z,u) =0, i.e.

E.g. X=u—x+z G (x,&(x,u),u) =0
0=xz-1 holds for all x, u.

Algebraic equation can be solved as: Then ene @ wite dhe ODE:

x=F(x,£(x,u),u)

zz%z{(x,u)

such that we can write the ODE:

X=Uu—Xx+—
X
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Handling semi-explicit DAEs

Semi-explicit DAE: Find solution:

).(ZF(X,Z,U) z:ﬁ(x,u)
= Cies ) of G (x,2z,u) =0, i.e.

E.g. X=u—x+z G (x,&(x,u),u)=0
0=xz—1

holds for all x, u.
Algebraic equation can be solved as:

1

Z:;EE(X,U) XZF(X,S(X,U),U)

Then one can write the ODE:

v
such that we can write the ODE:

. 1
X=U—X+—

X

Why not always doing that ?

@ Function £ may not exist explicitly or may have a very high symbolic complexity...

@ Implicit solutions for z implemented within a classical integration scheme can be
computationally inefficient...
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Handling semi-explicit DAEs
Semi-explicit DAE:

x = F (x,z,u)
0=G(x,2,u)

E.g. X=u—x+z

0=xz—1

Algebraic equation can be solved as:

zzlzﬁ(x,u)

X
such that we can write the ODE:
. 1
X=U—X+—
X

Why not always doing that ?

Find solution:
z=¢(x,u)
of G (x,2z,u) =0, i.e.
G (x,£(x,u),u) =0
holds for all x, u.

Then one can write the ODE:

Does £ (x,u) necessarily exist ?17?
Only if V.G is full rank (Implicit
Function Theorem) !

v

@ Function £ may not exist explicitly or may have a very high symbolic complexity...

@ Implicit solutions for z implemented within a classical integration scheme can be

computationally inefficient...

S. Gros Optimal Control with DAEs, lecture 10
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es3
Example - 3D pendulum
Position given by p € R®, dynamics: o) e

.. e
mp = u— mgez—zp 2 u

p
Force in the cable: direction given by —p, amplitude given by algebraic variable z

Algebraic variable z must be chosen such that:

c(p)=p p-L*=0
holds at all time.

Using v = p, the DAE reads as:
p=v
. u z
v= m —8€3 — EP
0=p'p-L°
N——

G
withx = | P
v
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e3
Example - 3D pendulum

Position given by p € R®, dynamics: o) e

.. e
mp = u— mgez—zp 2 u

p
Force in the cable: direction given by —p, amplitude given by algebraic variable z

Algebraic variable z must be chosen such that:
c(P)=p'P-L>=0
holds at all time.

Using v = p, the DAE reads as:

Does z = £ (x,u) necessarily exist ?!? Only
p=v if VoG is full rank !

‘.,_ll e V4
_m £¢es mp

0=p' p—1L°
N——

G
withx = | P
v
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e3
Example - 3D pendulum

Position given by p € R®, dynamics: o) e

.. e
mp = u — mgesz—zp 2 u

p
Force in the cable: direction given by —p, amplitude given by algebraic variable z

Algebraic variable z must be chosen such that:

cp)=p'P-L*=0
holds at all time.

Using v = p, the DAE reads as: Does z = £ (x,u) necessarily exist ?!? Only
p=v if VoG is full rank !

v

. u z
V= 8~ P Semi-explicit DAE

0=p'p-1L° x=F(x,u,z)
N—— Pt}

0=G(x)

with x = { 5 ] with G independent of z !l Then

V.G (x) = 0... not full rank !l
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Handling fully-implicit DAEs
Fully implicit DAE:

F(x,z,x,u) =0

o & = E E DaAe
S. Gros Optimal Control with DAEs, lecture 10



Handling fully-implicit DAEs

Fully implicit DAE: Find solution:
F(x,2z,x,u) =0 J x =§; (x,u)
z — 62 (X, ll)

of F(x,z,x,u) =0, i.e.

F (& (x,u),&, (x,u),x,u) =0

holds for all x, u.
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Handling fully-implicit DAEs

Fully implicit DAE: Find solution:
F(x,2z,x,u) =0 J x =§; (x,u)
z — 62 (X, ll)

of F(x,z,x,u) =0, i.e.

F (& (x,u),&, (x,u),x,u) =0
holds for all x, u.
Then one can write the ODE:

x = €1 (X, 'll)
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Handling fully-implicit DAEs
Fully implicit DAE:

F(x,z,x,u) =0

E.g. M(x)[j]:f

with z € R™ and x € R".

Find solution:

x = 51 (X, ll)

z = 52 (X, ll)
of F(x,z,x,u) =0, i.e.
F (& (x,u),&, (x,u),x,u) =0
holds for all x, u.
Then one can write the ODE:

x = €1 (X7 'll)
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21 /23



Handling fully-implicit DAEs

Fully implicit DAE: Find solution:

F(x,2z,x,u) =0 J x =§; (x,u)

z = X, u
s - & (x )

M(x)[ z ]:f of F(x,z,x,u) =0, i.e.
with z € R™ and x € R". F (& (x,u),&, (x,u),x,u) =0
DAE be solved as:

can be solved as holds for all x, u.
x | 1
[ . ] =M(x)""f

Then one can write the ODE:

x = 51 (X, u)

@ Symbolic inverse of M (x) can be very complex for n large

@ Can be inverted numerically "on-the-fly” to generate x (and z as a by-product),
and then use an ODE integrator.

@ Functions &; and &, exist only if Vi ,F is full rank !!

S. Gros Optimal Control with DAEs, lecture 10 200d of January, 2016 21 /23



Handling fully-implicit DAEs
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can be solved as holds for all x, u.
x | 1
[ . ] =M(x)""f
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Implicit integration for semi-explicit DAEs - A first view
Semi-explicit DAE:

x =F(x,z,u)
0=G(x,2,u)

o & = E E DaAe
S. Gros Optimal Control with DAEs, lecture 10



Implicit integration for semi-explicit DAEs - A first view

Semi-explicit DAE:

x =F(x,z,u)
0=G(x,2,u)

BDF method (m-steps, size At)

m
Xpy1 = — E ajXp41—j + AtbyF (Xis1, Zky1, U)
=1

0 = G (Xk+1, Zk+1, 1)

where a; and by, are given by the Butcher tableau.
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Implicit integration for semi-explicit DAEs - A first view

Semi-explicit DAE:
x =F(x,z,u)
0=G(x,2,u)
BDF method (m-steps, size At)

m
Xpy1 = — E ajXp41—j + AtbyF (Xis1, Zky1, U)
=1

0 = G (Xkt1, Zk+1, 1)
where a; and by, are given by the Butcher tableau.

Special case - Implicit Euler

X1 = Xk + AtF (Xk+1, Zi+1, u)

0 = G (Xk+1, Zk+1, 1)
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Implicit integration for semi-explicit DAEs - A first view

Semi-explicit DAE:

x =F(x,z,u)
0=G(x,2,u)

Special case - Implicit Euler

xi + AtF (Xk+17 Zk+1, ll)

Xk+1

0

G (Xk11, Zhr1, 1)

S. Gros Optimal Control with DAEs, lecture 10 200d of January, 2016 22 /23



Implicit integration for semi-explicit DAEs - A first view

Semi-explicit DAE:

x =F(x,z,u)
0=G(x,2,u)

Special case - Implicit Euler

xi + AtF (Xk+1, Zk+1, ll)

Xk+1

0

G (Xk11, Zhr1, 1)
Residual:

Xk4+1 — Xk — AtF (Xk+1, Zk+1, ll) _
G (Xk11, Zhr1, 1)

0

T (Xki1, Zhi1, Xk, 1) =

to solve for Xk41, Zk+1
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Implicit integration for semi-explicit DAEs - A first view

Semi-explicit DAE:

x =F(x,z,u)
0=G(x,2,u)

Special case - Implicit Euler

xi + AtF (Xk+1, Zk+1, ll)

Xk+1

0

G (Xk11, Zhr1, 1)
Residual:

Xk4+1 — Xk — AtF (Xk+1,Zk+1,ll) :| —0

T (Xkt1, Zhr1, X, ) = { G (Xkt1, Zkt1, 1)
7 )

to solve for Xk41, Zk+1 using Newton based on:

I — AtV F Vi .G
ka+1,zk+1r (Xk+17 Zk+1, Xk, u) = [ —AtV kk+:1F v :+1G :|
Zk+1 Zk+1
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Implicit integration for semi-explicit DAEs - A first view

Semi-explicit DAE:
x =F(x,z,u)
0=G(x,2,u)
Special case - Implicit Euler

Xkt1 = Xk + AtF (Xut1, Zit1, 1)
0 = G (Xk+1, Zk+1, 1)
Residual:

Xk4+1 — Xk — AtF (Xk+1 Zj+1 11)
T (Xk41, Zt1, Xk, ) = G N =0
(Xk+17 Zk+1, u)
to solve for Xk41, Zk+1 using Newton based on:

I — AtV F Vi .G
ka+1,zk+1r (Xk+17 Zk+1, Xk, u) = [ —AtV kk+:1F v :+1G :|
Zk+1 Zk+1

Note that this requires (among other things) V., G to have a correct rank.
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DAEs are not "just” ODEs with an algebraic extension

Fully-implicit linear DAE:

Ex = Ax + Bu
with E = g—i rank deficient. E.g.
0 1 0 0
E={0 0 1|, A=Il, B=1]0
0 0 O 1
reads as:
5(2 = X1
X3 = X2
X3 = —u
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DAEs are not "just” ODEs with an algebraic extension
Fully-implicit linear DAE:

Ex = Ax + Bu

o & = E E DaAe
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DAEs are not "just” ODEs with an algebraic extension
Fully-implicit linear DAE:
Ex = Ax + Bu

Solve using implicit Euler, step-size h at time t:

%E (x+ —x(t)) = Axy4 + Buy
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DAEs are not "just” ODEs with an algebraic extension

Fully-implicit linear DAE:
Ex = Ax + Bu

Solve using implicit Euler, step-size h at time t:

%E (x+ —x(t)) = Axy4 + Buy

The true solution satisfies:
1 h..
E F(x(t-‘:—h)—x(t))-i— EX(E) = Ax(t+ h)+ Bu(t+ h)

for some & € [t, t + h].
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DAEs are not "just” ODEs with an algebraic extension

Fully-implicit linear DAE:
Ex = Ax + Bu

Solve using implicit Euler, step-size h at time t:

%E (x+ —x(t)) = Axy4 + Buy

The true solution satisfies:
1 h..
E 7 (x(t+h)—x(t))+ EX(E)] = Ax(t+ h)+ Bu(t+ h)

for some ¢ € [t, t + h]. Integration error is:

en=x(t+ ) - x. =~ (€~ an (Ex(0)
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DAEs are not "just” ODEs with an algebraic extension

Fully-implicit linear DAE:
Ex = Ax + Bu

Solve using implicit Euler, step-size h at time t:

%E (x+ —x(t)) = Axy4 + Buy

The true solution satisfies:
1 h..
E 7 (x(t+h)—x(t))+ EX(E)] = Ax(t+ h)+ Bu(t+ h)

for some ¢ € [t, t + h]. Integration error is:

en=x(t+ ) - x. =~ (€~ an (Ex(0)

@ E full rank (ODE), the error is of O (h*) (error for implicit Euler)
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DAEs are not "just” ODEs with an algebraic extension

Fully-implicit linear DAE:
Ex = Ax + Bu

Solve using implicit Euler, step-size h at time t:

%E(x+ —x(t)) = Ax4+ + Buy

The true solution satisfies:
1 h..
E T (x(t+h) —x(t))+ EX(E)] =Ax(t+h)+ Bu(t+h)

for some £ € [t, t + h]. Integration error is:

en=x(t+h)—x = —(E-an " (Tx(0))

@ E full rank (ODE), the error is of O (h*) (error for implicit Euler)

@ E rank deficient, then E — Ah tends to a singular matrix for h — 0. The error can
be of order O (h) or even O (1) !!
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