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Outline

1 Polynomial interpolation

2 Collocation-based integration

3 Collocation in multiple-shooting

4 Direct Collocation

5 NLP from direct collocation
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Polynomial interpolation

Consider a time grid:

{tk,0, ..., tk,K} ∈ [tk , tk+1]
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t − tk,j

tk,i − tk,j
∈ R

of order K , with property:

Pk,i (tk,l) =

{
1 if l = i

0 if l 6= i

Interpolation with θk,i ∈ R
n

x (θk , t) =

K∑

i=0

θk,i
︸︷︷︸

parameters

· Pk,i (t)
︸ ︷︷ ︸

polynomials

having the property:

x (θ, tk,j ) = θk,j

E.g.

tk = 1, tk+1 = 2

K = 4

{tk,0, ..., tk,K} = {1.0, 1.0694, 1.33, 1.67, 1.931}
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Note: the Lagrange polynomials are orthogonal, i.e.
∫ tk+1

tk

Pk,i(t)Pk,j (t) dt = 0, ∀i 6= j
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Outline

1 Polynomial interpolation

2 Collocation-based integration

3 Collocation in multiple-shooting

4 Direct Collocation

5 NLP from direct collocation
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Collocation methods - key idea

Approximate state trajectory x (t) via polynomials (order K )
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Approximate state trajectory x (t) via polynomials (order K )

Time grid: {tk,0, ..., tk,K} ∈ [tk , tk+1]

Interpolate on each interval [tk , tk+1] using:

x (θk , t) =

K∑
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x (θk , t) =

K∑

i=0

θk,i
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· Pk,i(t)
︸ ︷︷ ︸

polynomials

Integration: adjust θk,i to approximate the dynamics ẋ = F (x,u)
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Collocation methods - how to adjust the θk,i ?
On each interval [tk , tk+1], approximate ẋ = F (x,uk) using

x (θk , t) =
K∑

i=0

θk,i
︸︷︷︸

parameters

· Pk,i(t)
︸ ︷︷ ︸

polynomials

with x (θk , tk,j) = θk,j

Note: we have K + 1 degrees of freedom per state.
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K∑

i=0
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Collocation methods - Implementation

Collocation uses the constraints:

θk,0 = xk

K∑

i=0

θk,i · Ṗk,i (tk,j) = F (θk,j ,uk)

for j = 1, ...,K .
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θk,i · Ṗk,i (tk,j) = F (θk,j ,uk)

for j = 1, ...,K .

Solve for θk,i using Newton








θk,0 − xk
∑K
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θk,i · Ṗk,i (tk,j) = F (θk,j ,uk)

for j = 1, ...,K .

Solve for θk,i using Newton








θk,0 − xk
∑K
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Collocation uses the constraints:
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Collocation methods - Implementation

Collocation uses the constraints:

θk,0 = xk

K∑

i=0

θk,i · Ṗk,i (tk,j) = F (θk,j ,uk)

for j = 1, ...,K . End-state:

x (θk , tk+1) =

K∑

i=0

θk,i · Pk,i(tk+1)

Shooting constraints

f (xk ,uk )
︸ ︷︷ ︸

=x(θk ,tk+1)

−xk+1 = 0

becomes:

K∑

i=0

θk,iPk,i(tk+1)− xk+1 = 0
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Why these points ?!? They deliver an
exact integration for any polynomial P of
order < 2K (Legendre) and < 2K − 1
(Radau). I.e. for

ẋ = F (x,u) = P(t)

the collocation equations deliver an exact
solution, namely:

x (tk+1, θk) = xk +

∫ tk+1

tk

P (τ ) dτ
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Interval [tk , tk+1] ??

Rescale & translate the collocation
points to [tk , tk+1]
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Interval [tk , tk+1] ??
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Modification of the collocation
equations with hk = tk+1 − tk :

K∑

j=0

θk,j Ṗk,j(tk,i ) = hkF (θk,i ,uk)
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Selection of the time grid tk,i
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Interval [tk , tk+1] ??

Rescale & translate the collocation
points to [tk , tk+1], or...

Modification of the collocation
equations with hk = tk+1 − tk :

K∑

j=0

θk,j Ṗk,j(tk,i ) = hkF (θk,i ,uk)

Careful if F is time-dependent !

Note that Radau has a collocation point at
the end of the interval, i.e. θk,K provides

the end-state of the integration !
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Stability & Order

Collocation methods are A-stable (i.e. can handle stiff equations). They have no
stability limitation on the time intervals h = tk+1 − tk for stiff problems. I.e. even
large time steps h = tk+1 − tk allow for capturing steady state and slow dynamics.

Radau collocation is additionally L-stable. I.e. it can handle eigenvalues at −∞.

On an interval hk = tk+1 − tk , the integration error is O(h2K
k ) for Legendre and

O(h2K−1
k ) for Radau. Losing one order is the ”price” for having a collocation point

at tk+1.

The integration error applies to the end-state of the integrator, but not to the
intermediate points !

Collocation-based integration is an Implicit Runge-Kutta scheme. Implicit Euler
is an order-1 scheme !
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Collocation - Sensitivity

Collocation constraints...

θk,0 = xk

K∑

j=0

θk,j Ṗk,j (tk,i ) = F
(
θk,i ,uk

)
, i = 1, ...,K
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,
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Note that ∂c
∂θk

−1
is

computed in the Newton
iteration, i.e. it comes for

free !!
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Outline

1 Polynomial interpolation

2 Collocation-based integration

3 Collocation in multiple-shooting

4 Direct Collocation

5 NLP from direct collocation
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Collocation-based integrators in Multiple-shooting

Collocation-based integrator solves:

c (xk ,uk ,θk) = 0

on each time interval [tk , tk+1],
provides:

f (xk ,uk) = x (θk , tk+1)

with sensitivities.

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

-2

-1

0

1

2

3

xk

xk+1

f (xk, uk)

tk tk+1

tk,0 tk,1 tk,2 tk,3

θk,0
θk,1

θk,2

θk,3

x (θk, t)
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NLP with multiple-shooting

min
w

Φ(w)

s.t. g (w) =







x0 − x̄0

f (x0,u0)− x1

...

f (xN−1,uN−1)− xN







where w = {x0, u0, ...,xN−1, uN−1,xN}
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on each time interval [tk , tk+1],
provides:

f (xk ,uk) = x (θk , tk+1)

with sensitivities.
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min
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...
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NLP solves:

∇wL (w,λ) = 0

g (w) = 0
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f (xk ,uk) = x (θk , tk+1)

with sensitivities.
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min
w

Φ(w)

s.t. g (w) =
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...
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NLP solves:

∇wL (w,λ) = 0

g (w) = 0

Collocation-based integrator inside the NLP becomes a two-level Newton scheme !!
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Collocation-based integrators in Multiple-shooting (cont’)

. . . . . .

NLP solver

∇wL (w,λ) = 0

g (w) = 0

w = {x0, u0, ...,xN−1, uN−1,xN}
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Collocation-based integrators in Multiple-shooting (cont’)

. . . . . .

NLP solver

∇wL (w,λ) = 0

g (w) = 0

w = {x0, u0, ...,xN−1, uN−1,xN}

NLP level

Constraints g = 0

Newton iterations
(SQP/IP)

S. Gros Optimal Control with DAEs, lecture 8 18th of February, 2016 15 / 24



Collocation-based integrators in Multiple-shooting (cont’)

. . . . . .

NLP solver

∇wL (w,λ) = 0

g (w) = 0

Integrator [t0, t1]

c (x0,u0,θ0) = 0 c (xk ,uk,θk) = 0

with sensitivities

Integrator [tk , tk+1]

with sensitivities

x0, u0 xk , uk

w = {x0, u0, ...,xN−1, uN−1,xN}

f (x0, u0) = x (θ0, t1) f (xk , uk) = x (θk , tk+1)

NLP level

Constraints g = 0

Newton iterations
(SQP/IP)
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Collocation-based integrators in Multiple-shooting (cont’)
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Newton iterations
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Collocation-based integrators in Multiple-shooting (cont’)

. . . . . .

NLP solver

∇wL (w,λ) = 0

g (w) = 0

Integrator [t0, t1]

c (x0,u0,θ0) = 0 c (xk ,uk,θk) = 0

with sensitivities

Integrator [tk , tk+1]

with sensitivities

x0, u0 xk , uk

w = {x0, u0, ...,xN−1, uN−1,xN}

f (x0, u0) = x (θ0, t1) f (xk , uk) = x (θk , tk+1)

NLP level

Constraints g = 0

Newton iterations
(SQP/IP)

Integrator level

Constraints c = 0

Newton iterations

Constraints are solved at the NLP and at the integrator level separately !!
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Collocation-based integrators in Multiple-shooting (cont’)

. . . . . .

NLP solver

∇wL (w,λ) = 0

g (w) = 0

Integrator [t0, t1]

c (x0,u0,θ0) = 0 c (xk ,uk,θk) = 0

with sensitivities

Integrator [tk , tk+1]

with sensitivities

x0, u0 xk , uk

w = {x0, u0, ...,xN−1, uN−1,xN}

f (x0, u0) = x (θ0, t1) f (xk , uk) = x (θk , tk+1)

NLP level

Constraints g = 0

Newton iterations
(SQP/IP)

Integrator level

Constraints c = 0

Newton iterations

Constraints are solved at the NLP and at the integrator level separately !!

... what about handling them altogether in the NLP ?!?
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Outline

1 Polynomial interpolation

2 Collocation-based integration

3 Collocation in multiple-shooting

4 Direct Collocation

5 NLP from direct collocation
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Direct collocation - Give all constraints to the NLP solver

On each interval [tk , tk+1]

ẋ = F (x,uk)

is approximated using:

x (θk , t) =
K∑

i=0

θk,i
︸︷︷︸

parameters

· Pk,i (t)
︸ ︷︷ ︸

polynomials

Note:

x
(
θk,i , tk,i

)
= θk,i

K + 1 degrees of freedom per
state.

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
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xk

xk+1

f (xk, uk)

tk tk+1

tk,0 tk,1 tk,2 tk,3

θk,0
θk,1

θk,2

θk,3

x (θk, t)
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θk,i
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parameters

· Pk,i (t)
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polynomials
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x
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x (θk, t)

Integration constraints (i = 1, ...,K)

∂

∂t
x
(
θk , tk,i

)
= F

(
x
(
θk , tk,i

)
,uk

)

i.e.
K∑

j=0

θk,j Ṗk,j (tk,i ) = F
(
θk,i ,uk

)
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ẋ = F (x,uk)

is approximated using:

x (θk , t) =
K∑

i=0

θk,i
︸︷︷︸

parameters

· Pk,i (t)
︸ ︷︷ ︸

polynomials

Note:

x
(
θk,i , tk,i

)
= θk,i

K + 1 degrees of freedom per
state.

NLP with direct collocation

min
w

Φ(w)

s.t. g (w) =













θ0,0 − x̄0

x (θ0, t1)− θ1,0

F
(
θ0,i ,u0

)
−

∑K
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j=0 θk,j Ṗk,j (tk,i )

...













Remaining integration constraints k = 1, ...,N − 1

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

-2

-1

0

1

2

3

xk

xk+1

f (xk, uk)

tk tk+1

tk,0 tk,1 tk,2 tk,3

θk,0
θk,1

θk,2

θk,3

x (θk, t)

Integration constraints (i = 1, ...,K)

∂

∂t
x
(
θk , tk,i

)
= F

(
x
(
θk , tk,i

)
,uk

)

i.e.
K∑

j=0
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j=0 θ0,j Ṗ0,j (t0,i )

...

x (θk , tk+1)− θk+1,0

F
(
θk,i ,uk

)
−

∑K
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Direct Collocation - Example: swing-up of a pendulum

OCP

min
u0,...,uN−1

N−1∑

k=0

u
2
k

s.t. ẋ = F (x, uk) , ∀t ∈ [tk , tk+1]

x(0) =
[
0 π 0 0

]
, x (tf) = 0

M

L

u
m

θ

x

x =
[
x θ ẋ θ̇

]⊤
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Direct Collocation - Example: swing-up of a pendulum

OCP

min
u0,...,uN−1

N−1∑

k=0

u
2
k

s.t. ẋ = F (x, uk) , ∀t ∈ [tk , tk+1]

x(0) =
[
0 π 0 0

]
, x (tf) = 0

M

L

u
m

θ

x

x =
[
x θ ẋ θ̇

]⊤

N = 20
K = 4 with Legendre, order 8 !!
420 variables
404 constraints

Reminder:

x (θk , t) =
K∑

i=0

θk,i · Pk,i (t)

x (θk , tk,i) = θk,i

NLP with direct collocation

min
w

N−1∑

k=0

u2k

s.t. g (w) =















θ0,0 − x̄0

x (θ0, t1)− θ1,0

F
(
θ0,i ,u0

)
−

∑K
j=0 θ0,j Ṗ0,j (t0,i )

...

x (θk , tk+1)− θk+1,0

F
(
θk,i ,uk

)
−

∑K
j=0 θk,j Ṗk,j (tk,i )

...

x (θN−1, tN )















= 0
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x θ ẋ θ̇

]⊤

0.0 0.5 1.0 1.5 2.0
−25

−20

−15

−10

−5

0

5

10

15

u

Newton step 6

K + 1 = 5

all nodes are initialised

0.0 0.5 1.0 1.5 2.0
−0.5

0.0

0.5

1.0

1.5

x

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

θ

0.0 0.5 1.0 1.5 2.0
−5

−4

−3

−2

−1

0

1

2

3

dx
dt

0.0 0.5 1.0 1.5 2.0

−6

−4

−2

0

2

dθ
dt

S. Gros Optimal Control with DAEs, lecture 8 18th of February, 2016 18 / 24



Direct Collocation - Example: swing-up of a pendulum

OCP

min
u0,...,uN−1

N−1∑

k=0

u
2
k
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Cost and constraints discretisation in Direct Collocation
OCP:

min T (x (tf )) +

∫ tf

0
L (x (t) ,u (t)) dt

s.t. ẋ = F (x,u)

h (x (t) ,u (t)) ≤ 0

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

-2

-1

0

1

2

3

xk
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f (xk, uk)
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tk,0 tk,1 tk,2 tk,3

θk,0
θk,1

θk,2

θk,3

x (θk, t)
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Inequality constraints: h (x (t) ,u (t)) ≤ 0 can be enforced on all collocation nodes:

h
(
x
(
θk , tk,i

)
,uk

)
≤ 0, ∀ k = 0, ...,N − 1, i = 0, ...,K

but often only on the ”shooting” nodes t0,0, t1,0, ..., tN,0
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(tk+1 − tk) L
(
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Careful: if you want to use θk,i for i = 1, ...,K , the time grid is not uniform !!
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(tk+1 − tk) L
(
θk,0,uk

)

Careful: if you want to use θk,i for i = 1, ...,K , the time grid is not uniform !!

Quadratic term in cost function L (x,u) = 1
2
xTQx+ ... can be implemented using:

∫ tk+1

tk

1

2
x (t)TQx (t) dt =

1

2

K∑

l=0

K∑

j=0

θk,l
TQθk,j

∫ tk+1

tk

Pk,l (t)Pk,j (t)dt

︸ ︷︷ ︸

=αjδl,j (P:s are orthogonal)

=
1

2

K∑

j=0

αjθk,j
TQθk,j
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Some remarks
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Newton step 8

Direct collocation is a ”fully simultanuous” approach, as the integration and the
optimization are performed together in the NLP solver.

The decision variables are:

w = {θ0,0, ..., θ0,K , u0, ..., θN−1,0, ..., θN−1,K , uN−1}

Observe that θk,i , i.e. the state at the collocation point tk,i of the interval
[tk , tk+1] is in R

n (size of the state). Manipulating these variables properly in a
computer code can be tricky.
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Refining the input discretization
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Newton step 8

Input u(t) is usually chosen piecewise-constant,
i.e. constant in every [tk , tk+1]
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Newton step 8

Input u(t) is usually chosen piecewise-constant,
i.e. constant in every [tk , tk+1]

However one can pick a different input uk,i for
each collocation time tk,i . Gives K input vector
per collocation interval, i.e. uk,1, ...,uk,K

Collocation constraints:

x (θk , tk) = xk

∂

∂t
x (θk , tk,i) = F (θk,i ,uk)

for i = 1, ...,K
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Newton step 8

Input u(t) is usually chosen piecewise-constant,
i.e. constant in every [tk , tk+1]

However one can pick a different input uk,i for
each collocation time tk,i . Gives K input vector
per collocation interval, i.e. uk,1, ...,uk,K

The continuous input is then given by the
K − 1th order polynomial interpolation of
uk,1, ..., uk,K

Drawbacks: 1. the input profile can present
important ”oscillations”, 2. the linear algebra
can loose some conditioning

Collocation constraints:

x (θk , tk) = xk

∂

∂t
x (θk , tk,i) = F (θk,i ,uk)

for i = 1, ...,K
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Outline

1 Polynomial interpolation

2 Collocation-based integration

3 Collocation in multiple-shooting

4 Direct Collocation

5 NLP from direct collocation
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Hessian in Direct Collocation
Lagrange function:

L (w,λ) = Φ (w) + λ
T
g (w) + µ

T
h (w)
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Hessian in Direct Collocation
Lagrange function:

L (w,λ) = Φ (w) + λ
T
g (w) + µ

T
h (w)

Hessian:

∇2
wL (w,λ) = ∇2Φ+∇2

w

(

λ
T
g
)

+∇2
w

(

µ
T
h
)
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Reminder: dynamics yield

g (w) =





















θ0,0 − x̄0
x (θ0, t1) − θ1,0

F
(

θ0,i ,u0
)

−
∑K

j=0 θ0,j Ṗ0,j (t0,i )

...

x
(

θk , tk+1

)

− θk+1,0

F
(

θk,i ,uk

)

−
∑K

j=0 θk,j Ṗk,j (tk,i )

...
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j=0 θ0,j Ṗ0,j (t0,i )

...

x
(

θk , tk+1

)

− θk+1,0

F
(

θk,i ,uk

)

−
∑K
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Contribution of the dynamics:

∇2
w

(

λ
T
g
)

= ∇2
w




∑

k=0,...,N−1

∑

i=1,..,K

λk,i
T

(

F (θk,i ,uk)−
K∑

j=0

θk,j Ṗk,j (tk,i)

)
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F (θk,i ,uk)−
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θk,j Ṗk,j (tk,i)

)



=
∑

k=0,...,N−1

∑

i=1,..,K

∇2
w

(

λk,i
T
F (θk,i ,uk)

)

With w = {θ0,0, ..., θ0,K , u0, ..., θN−1,0, ..., θN−1,K , uN−1}, the contributions

∇2
w

(

λk,i
T
F (θk,i ,uk)

)

are sparse and trivial to compute !! (e.g. CasADi)
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Sparsity pattern

E.g. for the crane, the KKT matrix M is:

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

800

M

L

u
m

θ

x

M =

[
H ∇g

∇g⊤ 0

]
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