Simulation methods for differential equations

Moritz Diehl and Rien Quirynen

February 16, 2016

/ 38

Introduction

Dynamic system simulation: map from inputs to outputs

Il —

x(t) = f(t,x(t), u(t))

““““““

38

The aim of numerical simulation

Aim of numerical simulation:

Compute x(t), t € [to, tena] Which approximately satisfies
x(t) = f(t,x(t), u(t),p), t € [to, tena],
X(t()) = Xp,

and z(t) in case of index-1 DAE

x(t) = f(t,
0=g(
to)

t, x
t,x(t), z(t),u(t),p), t € [to, tend],

NOTE: interested in values at discrete times t; € [to, tend],

especially t = t.nq. Denote approximations by X(t;)

38

Local and global error

Let us define the exact trajectory x(t), t € [to, tena] and a set of
discrete time steps tg, t1,...

38

Local and global error

Let us define the exact trajectory x(t), t € [to, tena] and a set of
discrete time steps tg, t1,...

Local error:

e(t;) = x(t;) — X(ti; ti—1,x(ti—1))

38

Local and global error

Let us define the exact trajectory x(t), t € [to, tena] and a set of
discrete time steps tg, t1,...

Local error:

e(t;) = x(t;) — X(ti; ti—1,x(ti—1))

Global error or “transported error”:

E(t;) = x(t;) — %(t;; to, x0)

38

Convergence, consistency, stability

Let us define the stepsize h such that tiy; =ti+ h

38

Convergence, consistency, stability

Let us define the stepsize h such that tiy; =ti+ h

convergence: A method is convergent when its values
converge to the exact solution for h — 0.

5/38

Convergence, consistency, stability

Let us define the stepsize h such that tiy; =ti+ h

convergence: A method is convergent when its values
converge to the exact solution for h — 0.

consistency order: The method has order p if the local error
lim e(t;) = O(hPTY)
h—0

NOTE: consistency when p > 0 (necessary for convergence)

Convergence, consistency, stability

Let us define the stepsize h such that tiy; =ti+ h

convergence: A method is convergent when its values
converge to the exact solution for h — 0.

consistency order: The method has order p if the local error
lim e(t;) = O(hPTY)
h—0

NOTE: consistency when p > 0 (necessary for convergence)

stability: ‘damping’ of errors, see stiffness. Also necessary for
convergence.

5/38

Overview

Classes of numerical methods:

General Linear Methods

/\ and others ...

Multistep Single-step
Linear Multistep Runge-Kutta
,,,,L: ,,,,,, \A,,,ﬁ ,,,,L: ,,,,,, \A,,,ﬁ
! | I ! | I
| explicit : implicit | explicit : implicit :
|
J J

Overview

Classes of numerical methods:

General Linear Methods

/\ and others ...

Multistep Single-step
Linear Multistep Runge-Kutta
,,,,L: ,,,,,, \A,,,ﬁ ,,,,L: ,,,,,, \A,,,ﬁ
! | I ! | I
| explicit : implicit | explicit : implicit
| |
J J

6/38

Overview

Runge-Kutta methods:

Runge-Kutta

ZAN

explicit implicit

Overview

Runge-Kutta methods:

Runge-Kutta

AN

explicit

implicit

38

Explicit Runge-Kutta (ERK) methods
The simplest ERK method is explicit Euler

/ 38

Explicit Runge-Kutta (ERK) methods
The simplest ERK method is explicit Euler

Xp = Xp—1 + hfp_1

which is consistent of order one. (abbreviate f, := f(t,, x5))

38

Explicit Runge-Kutta (ERK) methods
The simplest ERK method is explicit Euler

Xp = Xp—1 + hfp_1

which is consistent of order one. (abbreviate f, := f(t,, x5))

BUT: it is typically not a practical method... Why?

38

Explicit Runge-Kutta (ERK) methods
The simplest ERK method is explicit Euler

Xp = Xp—1 + hfp_1

which is consistent of order one. (abbreviate f, := f(t,, x5))

BUT: it is typically not a practical method... Why?
Higher order methods need much fewer steps for same accuracy!

§ Explicit Euler
107 o :
o..
‘0.
10% S
“o..
8 e,
®
= 10 9 Q\
.8 S
o S
O‘\
107 "o,
6.
10 . .
10° 10’ 0 10° 10*

Number of steps

Explicit Runge-Kutta (ERK) methods

The most popular is the following 4t" order method

38

Explicit Runge-Kutta (ERK) methods

The most popular is the following 4" order method

kl = f(tn—la Xn—l)
h

h
ko = f(tn—l + E;Xn—l + §kl)

h h
ks = f(tn—l + §;Xn—1 + §k2)
ke = f(l'n_l + h,xp_1 + hk3)

h
Xn = Xn-1+ & (ki + 2ky + 2k3 + ka)

Explicit Runge-Kutta (ERK) methods

The most popular is the following 4" order method

ki = f(ta—1, xn—1)
h h
ky = f(tp—1 + 5o Xn—1F Ekl)
h h
ks = f(ty—1 + o1t gkz)
ko = F(tn_1 + B, xa—1 + h k3)

h
Xp = Xp—1 + g (k1 + 2ko + 2k3 + kg)

Explicit Euler vs Runge-Kutta 4

10 ! :
"""" O----0--
O----gl
© O----g. gL 5
00
107} © O
..
o)
% o
5107 .. f
3 0.
[0} ©-Euler .
©-RK4 O----@rnnnm 0o
107157 a
20|
10 . . .
10° 10' ? 10° 10!

Number of steps

38

Explicit Runge-Kutta (ERK) methods

The RK4 method
kl — f(tnflaxnfl)

h h
ko = f(th—1+ =, xn—1+ = k1)

2 2
h h
k3 = f(tnfl + Eaxnfl + §k2)

ks = f(tp—1 + h,xp—1 + hk3)

h
Xp = Xp—1 + 3 (ki + 2ko + 2ks + ka)

10/38

Explicit Runge-Kutta (ERK) methods

So a general s-stage ERK method

ki = f(tp—1,%n-1)
ko = f(tn_l 4+ h xp_1+axh kl)
ks = f(tn_l 4+ c3h,xp_1+as1hki +ash kg)

ks = f(tnfl + Cs haxn—l + ds1 hkl + ds?2 h k2 + ...+ 357571 hksfl)

s
Xp = Xp—1 + hz b,' k,'
i=1

10/38

Explicit Runge-Kutta (ERK) methods

So a general s-stage ERK method

ki = f(th—1, xp—1)

ky = f(ta—1 + 2 h,xp—1 + a21 h k1) o
k3 = f(th—1 + c3 h,xp—1 + a31 hky + a32 hkp) [a

=] a3l a3
ks = f(tn_1 +csh,x,_1 +asthky +asphka + ... +ass_1hks_1) Cs as1 EP

s ‘ bl b2 bs

Xn = Xn—1+hY_ biki
i=1

10/38

Explicit Runge-Kutta (ERK) methods

So a general s-stage ERK method

ki = f(th—1, xp—1)
ky = f(th—1+ 2 h,xp—1 + a1 h ki)
ks = f(tp—1+ c3 h,xp—1 + a31 hky + az2 hko) o | an
| a1 ap

ks = f(thn_1+ csh,xp—1 +asthki + a2 hka + ... +ass_1hks_1) G | a1 asp

s by by bs
Xn =Xn_1+hY bk
i=1

NOTE: each Runge-Kutta method is defined by its Butcher table!
other examples are e.g. the methods of Runge and Heun, ...

38

Intermezzo: Step size control

Typically:

no constant step size but suitable error control

11/38

Intermezzo: Step size control

Typically:
no constant step size but suitable error control

based on a local error estimate:

e ~ ||x(t;) — x(t;; ti—1, x(ti—1))||

11/38

Intermezzo: Step size control

Example:

Euler: x, = xp_1 + hf,_1

12/38

Intermezzo: Step size control

Example:

Euler: x, = xp_1 + hf,_1

Let us create a reference solution using 2 steps with h/2:

h
Xn—1/2 = Xn—1 + 5 fr—1

Xn = Xp_1/2+ 5 fn1/2

12/38

Intermezzo: Step size control

Example:

Euler: x, = xp—1 + hfo—1

Let us create a reference solution using 2 steps with h/2:

h
Xp—1/2 = Xp—1+ 2 fn1

Xn = Xp_1/2+ 5 fn1/2

en=X,—Xx, = accept/reject
and update the step size: h, = 0.9 h,_1 "%/ TTOL

12/38

Intermezzo: Step size control

Example:

Euler: x, = xp—1 + hfo—1

Let us create a reference solution using 2 steps with h/2:

h
Xp—1/2 = Xp—1+ 2 fn1

Xn = Xp_1/2+ 5 fn1/2

en=X,—Xx, = accept/reject
and update the step size: h, = 0.9 h,_1 "%/ TTOL

Embedded methods: Fehlberg (e.g. RKF45), Dormand-Prince, ...

12/38

Stiffness

‘... stiff equations are equations where certain implicit
methods ... perform better, usually tremendously better, than
explicit ones.”

- (Curtiss & Hirschfelder, 1952)

13/38

Stiffness

“... stiff equations are equations where certain implicit
methods ... perform better, usually tremendously better, than

explicit ones.”
- (Curtiss & Hirschfelder, 1952)

“... Around 1960, things became completely different and
everyone became aware that the world was full of stiff

problems.”
- (G. Dahlquist, 1985)

13/38

Stiffness example

Let us consider the following simple one-dimensional system

x(t) = —50(x(t) — cos(t))

14 /38

Stiffness example

Let us consider the following simple one-dimensional system

x(t) = —50(x(t) — cos(t))

Stepsize h = 0.018
T

2 T T -=-explicit eulerf—
implicit euler
—exact
1.5¢ B

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

14 /38

Stiffness example
Let us consider the following simple one-dimensional system

x(t) = —50(x(t) — cos(t))

Stepsize h = 0.038

2 T T T -<-explicit euler|—
m implicit euler
; —exact
{
1.5¢ i

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

14 /38

Stiffness example

Let us consider the following simple one-dimensional system

x(t) = —50(x(t) — cos(t))

Stepsize h = 0.04

T
-3

7

°

-e-explicit euler
-=-implicit euler
—exact

14 /38

Explicit vs. Implicit Euler

Explicit Euler:

Xp = Xp—1+h f(tn—lvxn—l)

Implicit Euler:

Xp = Xp—1+h f(tnaxn)

For given x,_1, implicit method needs root finding solver to find x,.

15 /38

Stiffness

Stiffness depends largely on

16 /38

Stiffness

Stiffness depends largely on
» the eigenvalues A(t) of the Jacobian %

» but also system dimension, smoothness of the solution, ...

16 /38

Stiffness

Stiffness depends largely on

» the eigenvalues A(t) of the Jacobian %

v

but also system dimension, smoothness of the solution, ...

4

» various mathematical definitions exist

> new concepts needed:
A-stability, |-stability, A(«)-stability, L-stability, . ..

16 /38

Stiffness

Stiffness depends largely on

» the eigenvalues A(t) of the Jacobian %

v

but also system dimension, smoothness of the solution, ...

4

» various mathematical definitions exist

> new concepts needed:
A-stability, |-stability, A(«)-stability, L-stability, . ..

Main message: stiff systems require (semi-)implicit methods!

16 /38

Overview

Runge-Kutta methods:

Runge-Kutta

ZAN

explicit

implicit

Overview

Runge-Kutta methods:

Runge-Kutta

AN

explicit

implicit

17 /38

Implicit Runge-Kutta (IRK) methods

IRK as the natural generalization from ERK methods:

0
C | a2
C3 | a31 a3
Cs as1 as2
by by --- b

18 /38

Implicit Runge-Kutta (IRK) methods

IRK as the natural generalization from ERK methods:

0
c 2 C | a1 ais
2 2t C | ax azs
C3 | a31 a3
= Cs ds1 e dss
Cs as1 as2 ‘ bl . b
by by --- b s

18 /38

Implicit Runge-Kutta (IRK) methods

IRK as the natural generalization from ERK methods:

0
C | a2
C3 | a31 a3
Cs as1 as2
b1 b b

e.g.

Xn = Xp—1+ hfr_1

G | a1 ais
C | ax azs
Cs ds1 dss

‘ bl bs

18 /38

Implicit Runge-Kutta (IRK) methods

IRK as the natural generalization from ERK methods:

0
C | a2
C3 | a31 a3
Cs as1 as2
b1 b b
e.g.
Xp = Xp—1+ hfh_1

G | a1 ais
C | ax azs
Cs ds1 dss
‘ bl bs
Xn = Xp—1 + hf,

Implicit Runge-Kutta (IRK) methods

IRK as the natural generalization from ERK methods:

s
ki =f (t,,,l tehxp_1+h) ay kj>

Jj=1 C1 | a11 ais
(¢} ani azs
s : :
ks =f | ta_y+cshxo_1+hY_ agk
= Cs dsl dss
bl bs

s
Xn = Xn_1+hY_ bk
i=1

38

Implicit Runge-Kutta (IRK) methods

IRK as the natural generalization from ERK methods:

s
ki =f (t,,,l tehxp_1+h) ay kj>

j=1 €1 | dir - adis
(&) ani o azs
s . : .
ks =f | ta_y+cshxo_1+hY_ agk
= Cs ds1 dss
bl Ce bs

s
Xn = Xn_1+hY_ bk
i=1

pro: nice properties (order, stability)

19/38

Implicit Runge-Kutta (IRK) methods

IRK as the natural generalization from ERK methods:

s
k=f (tn,l tahxe_1+h) ay kj>

j=1 €1 | dir - adis
(&) ani o azs
s . : .
ks =f | tho1+Cshxp_1+hD agkj
= Cs ds1 dss
bl Ce bs

s
Xn = Xn_1+hD_ bk
i=1

pro: nice properties (order, stability)

con: large nonlinear system

19/38

Implicit Runge-Kutta (IRK) methods

IRK as the natural generalization from ERK methods:

s
k=f (tn,l tahxe_1+h) ay kj>

j=1 C | 911 ais
C | a2 azs
s : :
ks =f | tho1+Cshxp_1+hD agkj
= Cs dsi dss
bl bs

s
Xn = Xn_1+hD_ bk
i=1

pro: nice properties (order, stability)

con: large nonlinear system = Newton's method

19/38

Implicit Runge-Kutta (IRK) methods

Explicit ODE system:
x(t) = (¢, x(t))

s
k= f (t,,_1 +erhxo1+hY ay kj>

j=1

S
ks = f (tn_l +eshxp_1+h> ag kj)

j=1

s
Xn =Xp—1+hY bk
i=1

20/38

Implicit Runge-Kutta (IRK) methods

Explicit ODE system:
x(t) = (¢, x(t))

s
k= f (t,,_1 +erhxo1+hY ay kj>

j=1

s
ks = f (i’n—l +eshxp_1+h> ag kj)

j=1

s
Xn =Xp—1+hY bk
i=1

Implicit ODE/DAE (index 1):
0 = f(t,x(t), x(t), z(t))

s
0="f (tn,l teh kixa—1+hDay kj,zl)

j=1

s
0="f (tn,l +cshy ks, xn—1+hD_ ag ki, zs>

j=1

s
Xn = Xn—1+hY_ bk
i=1

20/38

Implicit Runge-Kutta (IRK) methods

Explicit ODE system:
x(t) = (¢, x(t))

s
ky=f <t,,_1 terhxg_1+hY ay kj)

j=1

s
ks = f <t,._1 teshxp_1+h> ay k,-)

j=1

s
Xn =Xn_1+hY bk
i=1

Implicit ODE/DAE (index 1):
0 = f(t,x(t), x(t), z(t))

s
0="f (tn,l +cih ki, xp—1+h>_ ayjkj, zl>
j=1

s
0="f (rn,l +csh ks, xn—1+hY_ ag ki, zs>

j=1

s
Xn = Xn—1+hY_ bk
i=1

20/38

Collocation methods

Important family of IRK methods:

» distinct ¢;'s (nonconfluent)

» polynomial g(t) of degree s

21/38

Collocation methods

Important family of IRK methods:

» distinct ¢;'s (nonconfluent)

» polynomial g(t) of degree s

q(tn—l) = Xn—1
G(th—1 + crh) = f(to1 + ah,q(th—1 4+ c1h)) | g

cl c2 c3 t

4(to-1+ csh) = f(th—1 + csh, q(ta—1 + csh))

continuous approximation
= Xp=q(th—1+ h)

21/38

Collocation methods

Important family of IRK methods:

» distinct ¢;'s (nonconfluent)

» polynomial g(t) of degree s

q(tn—l) = Xn—1
G(th—1 + crh) = f(to1 + ah,q(th—1 4+ c1h)) | g

cl c2 c3 t

4(to-1+ csh) = f(th—1 + csh, q(ta—1 + csh))

NOTE: this is very popular

continuous approximation . .
in direct optimal control!

= Xp= q(tn—l + h)

21/38

Collocation methods

How to implement a collocation method?

q(th—1) = xp—1
G(tn—1 + c1h) = f(tn—1 + c1h, q(ta—1 + c1h))

4(ty—1 + csh) = f(th—1 + csh, q(tp—1 + csh))

22 /38

Collocation methods

How to implement a collocation method?

q(th—1) = xp—1
G(tp—1 + crh) = f(ts—1 + c1h, q(ta—1 + c1h))

q(th—1 + csh) = f(ta—1 + csh, q(th—1 + csh))

This is nothing else than ...

s
ki =f(ta—1 +c1hxo1+hY_ a1 ki)
=1

s
ks = f(th—1 + cs hy xp—1 + hz aj kj)
Jj=1

s
Xn = Xn—1+hY_ bk
i=1

where the Butcher table is defined by the collocation nodes ¢;.

Collocation methods

Example: The Gauss methods

23 /38

Collocation methods

Example: The Gauss methods

1
» roots of Legendre My

polynomials o
» A-stable o 7 \\ 77777777777777777777777 / 7777777777
» optimal order o e

(p=2s) e]

23 /38

Collocation methods

Example: The Gauss methods

» roots of Legendre !
polynomials o
» A-stable NN \ .]
» optimal order o R
(p = 25) _(iTl; 0‘1 0. 03 0‘4 0.‘6 0.7 0.8 0‘9 1
1
a = > s=1, p=2,
1 V3 1. V3
== - = = -4 — =2 =4
G 2 6 , €2 2 + 6 P S , P)
1 15 1 1 n v15 3 6
a==——,0=2,3==+-—, s= =6.
T2 00T 2% 72T P

23 /38

Collocation methods

Example: The Gauss methods

» roots of Legendre
polynomials

» A-stable

» optimal order
(p=2s)

At least as popular:

Radau IIA methods (p = 2s — 1, stiffly accurate, L-stable)

o8-
0.6
041
02

-04F
-0.61
-0.81

23 /38

Overview

Runge-Kutta methods:

Runge-Kutta

ZAN

explicit implicit

v 0
0 0 h 0 0
\
\
ERK

DIRK SDIRK ESDIRK IRK

24 /38

Overview

Runge-Kutta methods:

Runge-Kutta

explicit

semi-implicit

implicit

24

38

Semi-implicit Runge-Kutta methods

The matrix A is not strictly lower triangular ...

25/38

Semi-implicit Runge-Kutta methods

The matrix A is not strictly lower triangular ...
but there is a specific structure!

» Diagonal IRK (DIRK)
> Singly DIRK (SDIRK)
» Explicit SDIRK (ESDIRK)

g YN

DIRK SDIRK ESDIRK

Intermezzo: sensitivity propagation

Task of the integrator in nonlinear optimal control

> X1 = Pr(xk, uk)
> nonlinear equality constraint

..................... | Uk
] I
Jeorsensnnsnnnnnnnns
| O (xk,uk)
1 II
! Oxk+1
Xk |
. K l ;
kK ' ' T k+1

26

38

Intermezzo: sensitivity propagation

Task of the integrator in nonlinear optimal control

> Xpp1 = Pr(Xk, uk) ‘ ok

» nonlinear equality constraint | jl""x'('“"’

. . . _ - —_ K !
» linearization at wy = (X, Uk) + el

oo
0 = ®p(Wk) — Xei1 + —— (Wi) (Wi — W)
ow

> integration and sensitivity generation is typically
a major computational step

27 /38

Intermezzo: sensitivity propagation

“integrate-then-differentiate”

» derivatives of result

» Internal Numerical
Differentiation (IND)

» direct IFT approach

28 /38

Intermezzo: sensitivity propagation

“integrate-then-differentiate”

» derivatives of result

» Internal Numerical
Differentiation (IND)

» direct IFT approach

“differentiate-then-integrate”

» sensitivity equations
» extends IVP (forward)
> or new VP (reverse)

= They are different

28 /38

Intermezzo: sensitivity propagation

“integrate-then-differentiate”

» derivatives of result

» Internal Numerical
Differentiation (IND)

» direct IFT approach x = f(x)

“differentiate-then-integrate”

» sensitivity equations
» extends IVP (forward)
> or new VP (reverse)

= They are different ... or not?

28 /38

Intermezzo: sensitivity propagation

“integrate-then-differentiate”

» derivatives of result x = f(x)
» Internal Numerical |} integrate
Differentiation (IND) Xkr1 = Xk + hF(x)

» direct IFT approach

“differentiate-then-integrate”

X
» sensitivity equations <5) = F(X) = (
» extends IVP (forward)
> or new VP (reverse)

= They are different ... or not?

28 /38

Intermezzo: sensitivity propagation

“integrate-then-differentiate”

x = f(x)
» derivatives of result | integrate
» Internal Numerical Xer1 = Xk + b F(xq)
Differentiation (IND) O (%)
» direct IFT approach Sk+1=Sk+h Ox Sk
differentiate-then-integrate B £(x)
. o . 5 = F(X) = of g
sensitivity equations I
» extends IVP (forward) | integrate
» or new VP (reverse) X1 = Xk + h F(X)

= They are different ... or not?

28 /38

Intermezzo: sensitivity propagation

Variational Differential Equations
"differentiate-then-integrate”

Solve additional matrix differential equation

x = f(x) x(0) = x0, x(tn) = xn

. af 8XN
= S(0)=d, S(ty) = —d

S 8Xs (0)=4d, S(tw) B

29 /38

Intermezzo: sensitivity propagation

Variational Differential Equations
"differentiate-then-integrate”

Solve additional matrix differential equation

x = f(x) x(0) = x0, x(tn) = xn

. 6f 8XN
= 500)=d, S(ty) = —d

S 8Xs (0)=4d, S(tw) B

Very accurate at reasonable costs, but:
» Have to get expressions for %(‘).

» Computed sensitivity is not 100 % identical with derivative of
(discretized) integrator result ®(-).

» What about implicit integration schemes?

29 /38

Intermezzo: sensitivity propagation

External Numerical Differentiation (END)
“integrate-then-differentiate”

Finite differences: perturb xp and call integrator several times

x(tn; xo + € &) — x(tn; xo)
€

30/38

Intermezzo: sensitivity propagation

External Numerical Differentiation (END)
“integrate-then-differentiate”

Finite differences: perturb xp and call integrator several times

x(tn; xo + € &) — x(tn; xo)
€

Very easy to implement, but several problems:
> Relatively expensive with overhead of error control.
» How to choose perturbation stepsize? Rule of thumb:
€ = vV TOL where TOL is integrator tolerance.

» Loss of half the digits of accuracy: if integrator accuracy has
value of TOL = 1074, derivative has only two valid digits!

30/38

Intermezzo: sensitivity propagation

External Numerical Differentiation (END)
“integrate-then-differentiate”
Finite differences: perturb xp and call integrator several times

x(tn; xo + € &) — x(tn; xo)
€

Very easy to implement, but several problems:
> Relatively expensive with overhead of error control.

How to choose perturbation stepsize? Rule of thumb:

€ = vV TOL where TOL is integrator tolerance.

Loss of half the digits of accuracy: if integrator accuracy has
value of TOL = 1074, derivative has only two valid digits!
Due to adaptivity, each call might have different discretization
grids: output x(ty; xp) is not differentiable!

v

v

v

30/38

Intermezzo: sensitivity propagation

Internal Numerical Differentiation (IND)
“integrate-then-differentiate”

Like END, but evaluate simultaneously all perturbed trajectories x;
with frozen discretization grid.

Up to round-off and linearization errors identical with derivative of
numerical solution ®(-), but:

» How to choose perturbation stepsize?

31/38

Intermezzo: sensitivity propagation

Internal Numerical Differentiation (IND)
“integrate-then-differentiate”

Like END, but evaluate simultaneously all perturbed trajectories x;
with frozen discretization grid.

Up to round-off and linearization errors identical with derivative of
numerical solution ®(-), but:

» How to choose perturbation stepsize? Rule of thumb:
€ = vVPREC where PREC is machine precision.

31/38

Intermezzo: sensitivity propagation

Internal Numerical Differentiation (IND)
“integrate-then-differentiate”

Like END, but evaluate simultaneously all perturbed trajectories x;
with frozen discretization grid.

Up to round-off and linearization errors identical with derivative of
numerical solution ®(-), but:

» How to choose perturbation stepsize? Rule of thumb:
€ = vVPREC where PREC is machine precision.

Note: adaptivity of nominal trajectory only, reuse of matrix
factorization in implicit methods, so not only more accurate, but
also cheaper than END!

31/38

Intermezzo: sensitivity propagation

Algorithmic Differentiation (AD)
“integrate-then-differentiate”

Use Algorithmic Differentiation (AD) to differentiate each step of
the integration scheme.

32/38

Intermezzo: sensitivity propagation

Algorithmic Differentiation (AD)
“integrate-then-differentiate”

Use Algorithmic Differentiation (AD) to differentiate each step of
the integration scheme. lllustration: AD for Euler

x = f(x)

32/38

Intermezzo: sensitivity propagation

Algorithmic Differentiation (AD)
“integrate-then-differentiate”

Use Algorithmic Differentiation (AD) to differentiate each step of
the integration scheme. lllustration: AD for Euler
x = f(x)
| integrate

Xk4+1 = Xk + hf(xk)

32/38

Intermezzo: sensitivity propagation

Algorithmic Differentiation (AD)
“integrate-then-differentiate”

Use Algorithmic Differentiation (AD) to differentiate each step of
the integration scheme. lllustration: AD for Euler

x = f(x)
| integrate
Xk+1 = Xk + hf(xk)
orf
Sks1=5c+h MSk
Ox

Up to machine precision 100 % identical with derivative of
numerical solution ®(-), but:

32/38

Intermezzo: sensitivity propagation

Algorithmic Differentiation (AD)
“integrate-then-differentiate”

Use Algorithmic Differentiation (AD) to differentiate each step of
the integration scheme. lllustration: AD for Euler

x = f(x)
| integrate
Xk4+1 = Xk + hf(xk)
orf
Skr1 =Sk +h ,(Xk)Sk
Ox

Up to machine precision 100 % identical with derivative of
numerical solution ®(-), but:

» tailored implementations needed (e.g. ACADO) ...

» or integrator and right-hand side f(-) need to be compatible
codes (e.g. C++ when using ADOL-C)

32/38

Overview

Classes of numerical methods:

General Linear Methods

Overview

Classes of numerical methods:

General Linear Methods

O

Multistep

Single-step

Overview

Classes of numerical methods:

General Linear Methods

O

Multistep Single-step

/ N

Linear Multistep Runge-Kutta

Overview

Classes of numerical methods:

General Linear Methods

O

Multistep Single-step
Linear Multistep Runge-Kutta
,,,,L: ,,,,,, \A,,,ﬁ ,,,,L: ,,,,,, \A,,,ﬁ
! | I ! | I
| explicit : implicit | explicit : implicit :
|
J J

Overview

Classes of numerical methods:

General Linear Methods

/\ and others ...

Multistep Single-step
Linear Multistep Runge-Kutta
,,,,L: ,,,,,, \A,,,ﬁ ,,,,L: ,,,,,, \A,,,ﬁ
! | I ! | I
| explicit : implicit | explicit : implicit :
|
J J

Overview

Classes of numerical methods:

General Linear Methods

/\ and others ...

Multistep Single-step
Linear Multistep Runge-Kutta
,,,,L: ,,,,,, \A,,,ﬁ ,,,,L: ,,,,,, \A,,,ﬁ
! | I ! | I
| explicit : implicit | explicit : implicit
| |
J J

33/38

Multistep methods

Each method takes a step forward in time to find the next solution
point, but this can be based either:

34 /38

Multistep methods

Each method takes a step forward in time to find the next solution
point, but this can be based either:

» on the previous point and its derivative, often with
intermediate steps (single step)

34 /38

Multistep methods

Each method takes a step forward in time to find the next solution
point, but this can be based either:

» on the previous point and its derivative, often with
intermediate steps (single step)

|
o6 — O+ — 0
ro

> on a certain amount of previous points and their derivatives
(multistep)

34 /38

Multistep methods

Each method takes a step forward in time to find the next solution
point, but this can be based either:

» on the previous point and its derivative, often with
intermediate steps (single step)

|
o6 — O+ — 0
ro

> on a certain amount of previous points and their derivatives
(multistep)

= good starting procedure needed!

34 /38

Linear multistep methods

Let us consider the simplified system x(t) = (¢, x(t)).

A s-step LM method then uses x;, fi = f(t;, x;) for
i=n—s,...,n—1to compute x, ~ x(t,):

Xp+as—1Xp—1 + ... + a0Xn—s =
h(bsfy + bs—1fn—1 + ... + bofa_s)

35/38

Linear multistep methods

Let us consider the simplified system x(t) = (¢, x(t)).

A s-step LM method then uses x;, fi = f(t;, x;) for
i=n—s,...,n—1to compute x, ~ x(t,):

Xp+as—1Xp—1 + ... + A0Xp—s =
h(bsfa + bs—1fp—1 + ... + bofn_s)

explicit (bs =0) <« implicit (bs # 0)

35/38

Linear multistep methods

Let us consider the simplified system x(t) = (¢, x(t)).

A s-step LM method then uses x;, fi = f(t;, x;) for
i=n—s,...,n—1to compute x, ~ x(t,):

Xp+as—1Xp—1 + ... + A0Xp—s =
h(bsfa + bs—1fp—1 + ... + bofn_s)

explicit (bs =0) <« implicit (bs # 0)

Three main families:
» Adams-Bashforth (explicit)
» Adams-Moulton (implicit)
» Backward differentiation formulas (BDF)

35/38

Simulation methods: software

Simulation for optimization:

v

SUNDIALS: BDF and Adams in CVODE(S) + BDF in IDA(S)

v

SolvIND: BDF in DAESOL-Il + RK in RKFSWT

v

ACADO Toolkit: BDF and (I)RK methods

36 /38

Summary

» High order schemes preferable for smooth problems

37/38

Summary

» High order schemes preferable for smooth problems

» Explicit methods are good for non-stiff systems

37/38

Summary

» High order schemes preferable for smooth problems
» Explicit methods are good for non-stiff systems

» For stiff and/or implicit models, the use of implicit methods
(BDF, IRK, ...) is highly recommended

37/38

References

v

E. Hairer, S.P. Ngrsett, and G. Wanner: Solving Ordinary
Differential Equations |, Springer Series in Computational
Mathematics, Berlin, 1993.

E. Hairer and G. Wanner: Solving Ordinary Differential
Equations Il Stiff and Differential-Algebraic Problems,
Springer, Berlin Heidelberg, 1996.

K.E. Brenan, S.L. Campbell, and L.R. Petzold: The Numerical
Solution of Initial Value Problems in Differential-Algebraic
Equations, SIAM Classics Series, 1996.

U.M. Ascher and L.R. Petzold: Computer Methods for

Ordinary Differential Equations and Differential-Algebraic
Equations. SIAM, 1998.

38/38

