A Primer in Convex Optimization

Moritz Diehl partly based on material by Colin Jones, Stephen Boyd and Lieven Vandenberghe

Overview

- Convex sets
- Convex functions
- Operations that preserve convexity
- Convex optimization

Convex Sets

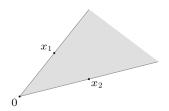
A set $S \in \mathbb{R}^n$ is a **convex set** if for all $x_1, x_2 \in S$ and $\lambda \in [0, 1]$:

$$\lambda x_1 + (1 - \lambda)x_2 \in S$$

(set contains line segment between any two of its points)

A set $S \in \mathbb{R}^n$ is a **convex cone** if for all $x_1, x_2 \in S$ and $\theta_1, \theta_2 \geq 0$:

$$\theta_1 x_1 + \theta_2 x_2 \in S$$

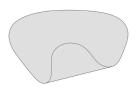


Convex hull

Convex combination of z_1, \ldots, z_k : Any point z of the form

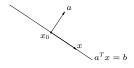
$$z = \theta_1 z_1 + \theta_2 z_2 + \ldots + \theta_k z_k$$
 with $\theta_1 + \ldots + \theta_k = 1, \theta_i \ge 0$

Convex hull of S: set of all convex combinations of points in S.

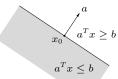


Convex sets: Hyperplanes and Halfspaces

▶ Hyperplane: Set of the form $\{x \mid a^{\top}x = b\}$ $(a \neq 0)$



▶ Halfspace: Set of the form $\{x \mid a^{\top}x \leq b\}$ $(a \neq 0)$



- ▶ Useful representation: $\{x \mid a^{\top}(x x_0) \leq 0\}$ a is normal vector, x_0 lies on the boundary
- ▶ Hyperplanes are affine and convex, halfspaces are convex

Convex sets: Polyhedra

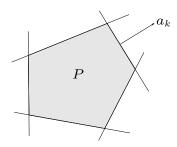
Polyhedron

A *polyhedron* is the intersection of a finite number of halfspaces.

$$P := \left\{ x \mid a_i^\top x \le b_i, \ i = 1, \dots, n \right\}$$

A *polytope* is a bounded polyhedron.

Often written as $P := \{x \mid Ax \leq b\}$, for matrix $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, where the inequality is understood row-wise.



Operations that preserve convexity of sets

- intersection: the intersection of (any number of) convex sets is convex (but unification is generally non-convex)
- ▶ affine image: the image $f(S) := \{f(x) \mid x \in S\}$ of a convex set S under an affine function f(x) = Ax + b is convex
- ▶ affine pre-image: the pre-image $f^{-1}(S) := \{x \mid f(x) \in S\}$ of a convex set S under an affine function f(x) = Ax + b is convex

Examples

- ▶ $\{x \mid x_1 + x_2t + x_3t^2 + x_4t^3 \ge 0 \text{ for all } t \in [0,1]\}$ is convex (set of positive polynomials on unit inverval, intersection of halfspaces)
- ▶ $\{a + Pw \mid ||w||_2 \le 1\}$ is convex (affine image of unit ball)
- $\{x \mid ||Ax + b||_2 \le 1\}$ is convex (affine pre-image of unit ball)

The cone of positive semidefinite matrices

Definitions

▶ set of symmetric $n \times n$ matrices:

$$\mathbb{S}^n := \left\{ X \in \mathbb{R}^{n \times n} \mid X = X^\top \right\}$$

- ▶ $X \succeq 0$: for all $z \in \mathbb{R}^n$ holds $z^\top Xz \ge 0$ (all eigenvalues of X are non-negative)
- \triangleright $X \succ 0$: all eigenvalues of X are positive
- ▶ set of positive semidefinite $n \times n$ matrices: $\mathbb{S}^n_+ := \{X \in \mathbb{S}^n \mid X \succeq 0\}$

Theorem: \mathbb{S}^n_+ is a convex set

Proof: $\mathbb{S}^n_+ = \{X \in \mathbb{S}^n \mid z^\top Xz \geq 0 \text{ for all } z \in \mathbb{R}^n \}$ is intersection of (infinitely many) halfspaces.

Convex function: Definition

Convex function:

A function $f: S \to \mathbb{R}$ is convex if S is convex and

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$
 for all $x, y \in S, \lambda \in [0, 1]$

▶ A function $f: S \to \mathbb{R}$ is **strictly convex** if S is convex and

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$$

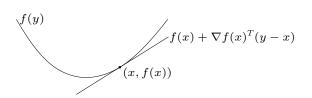
for all $x, y \in S, \lambda \in (0, 1)$

▶ A function $f: S \to \mathbb{R}$ is **concave** if -f is convex.

First and second order condition for convexity

First-order condition: Differentiable f with convex domain is convex if and only if

$$f(y) \ge f(x) + \nabla f(x)^{\top} (y - x)$$
 for all $x, y \in \text{dom } f$



Note: first-order approximation of f is global underestimator Second-order condition: Twice differentiable f with convex domain is convex if and only if

$$\nabla^2 f(x) \succeq 0$$
 for all $x \in \text{dom } f$

Convex functions – Examples

Examples on \mathbb{R} :

- ▶ exponential: e^{ax} , for any $a \in \mathbb{R}$
- ▶ powers: x^a on \mathbb{R}_+ for $a \ge 1$ or $a \le 0$ (otherwise concave)
- ▶ negative logarithm: $-\log x$ on \mathbb{R}_+

Examples on \mathbb{R}^n :

- affine function: $f(x) = a^{\top}x + b$
- ▶ norms: $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ for $p \ge 1$; $||x||_\infty = \max_k |x_k|$
- convex quadratic: $f(x) = x^{\top}Bx + g^{\top}x + c$ with $B \succeq 0$ $(\nabla^2 f(x) = 2B)$
- ▶ log-sum-exp: $f(x) = \log \left(\sum_{i=1}^{n} \exp(x_i) \right)$ ("smoothed max", as $\lim_{s\to 0} s f(x/s) = \max\{x_1, \dots, x_n\}$)

Operations that preserve convexity of functions

- ▶ nonnegative weighted sum: $f(x) = \sum_{j=1}^{m} \alpha_j f_j(x)$ is convex if $\alpha_j \ge 0$ and all f_j are convex
- ▶ composition with affine function: f(x) = g(Ax + b) is convex if g is convex
- ▶ pointwise maximum: $f(x) = \max\{f_1(x), \dots, f_m(x)\}$ is convex if all f_j are convex (even supremum over infinitely many functions)
- ▶ minimization: if g(x, u) is jointly convex in (x, u) then $f(x) = \inf_{u} g(x, u)$ is convex
- ▶ convex in monotone convex: f(x) = h(g(x)) is convex if g is convex and $h : \mathbb{R} \to \mathbb{R}$ is monotonely non-decreasing and convex. Proof for smooth functions:

$$\nabla^2 f(x) = h''(g(x)) \nabla g(x) \nabla g(x)^T + h'(g(x)) \nabla^2 g(x)$$

Examples

- ▶ composition with affine function: $f(x) = ||Ax + b||_2$
- ▶ expectation $f(x) = \mathbb{E}_w\{\|A(w)x + b(w)\|_2\}$ is convex (nonnegative weighted sum)
- $f(x) = \exp(c^{\top}x + d) \log(a^{\top}x + b) \text{ is convex on}$ $\{x \mid a^{\top}x + b > 0\}$
- ▶ pointwise maximum: $f(x) = \max_{\|w\|_2 \le 1} (a + Pw)^\top x = a^\top x + \|P^\top x\|_2 \text{ is convex (used for robust LP)}$
- minimization: for $R \succ 0$, regard $f(x) = \min_{u} \begin{bmatrix} x \\ u \end{bmatrix}^{\top} \begin{bmatrix} Q & S^{\top} \\ S & R \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} = x^{\top} (Q S^{\top} R^{-1} S) x.$ This f(x) is convex if $\begin{bmatrix} Q & S^{\top} \\ S & R \end{bmatrix} \succeq 0$ (cf. Schur complement)

Connecting convex sets and functions: sublevel sets

Theorem: Sublevel set $S = \{x \mid f(x) \le c\}$ of a convex function f is a convex set

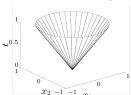
Proof: $x, y \in S$ and convexity of f imply for $t \in [0, 1]$ that $f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y) \le c$.

Note: the sign of the inequality matters - superlevel sets $\{x \mid f(x) \geq c\}$ would not be convex.

Convex sublevel sets – Examples

- ▶ norm balls: $\{x \in \mathbb{R}^n \mid ||x x_c|| \le r\}$ for any norm $||\cdot||$, with radius r > 0 and centerpoint x_c
- ▶ ellipsoids: $\{x \in \mathbb{R}^n \mid (x x_c)^\top P^{-1}(x x_c) \leq 1\}$ for any positive definite shape matrix $P \succ 0$

▶ norm cones: $\{(x,t) \in \mathbb{R}^{n+1} \mid ||x|| \le t\}$



Overview

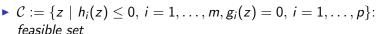
- Convex sets
- Convex functions
- Operations that preserve convexity
- Convex optimization

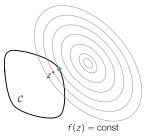
Recall: General Optimization Problem

minimize
$$f(z)$$

subject to $g_i(z) = 0, i = 1, ..., p$
 $h_i(z) \le 0, i = 1, ..., m$

- $ightharpoonup z = (z_1, \ldots, z_n)$: variables
- $f: \mathbb{R}^n \to \mathbb{R}$: objective function
- ▶ $g: \mathbb{R}^n \to \mathbb{R}, i = 1, ..., p$: equality constraint functions
- ▶ $h: \mathbb{R}^n \to \mathbb{R}, i = 1, ..., m$: inequality constraint functions





Optimality

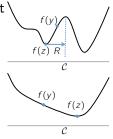
minimal value: smallest possible cost $p^* := \inf \{ f(z) \mid z \in \mathcal{C} \}$. minimizer: feasible z^* with $f(z^*) = p^*$; set of all minimizers: $\{ z \in \mathcal{C} \mid f(z) = p^* \}$

▶ $z \in C$ is *locally optimal* if, for some R > 0, it satisfies

$$y \in \mathcal{C}, ||y - z|| \le R \Rightarrow f(y) \ge f(z)$$

▶ $z \in C$ is globally optimal if it satisfies

$$y \in \mathcal{C} \Rightarrow f(y) \geq f(z)$$



- ▶ If $p^* = -\infty$ the problem is *unbounded below*
- ▶ If C is empty, then the problem is said to be infeasible (convention: $p^* = \infty$)

Convex optimization problem in standard form

minimize
$$f(z)$$

subject to $h_i(z) \leq 0, i = 1, ..., m$
 $c_i^{\top} z = b_i, i = 1, ..., p$

- f, h_1, \ldots, h_m are convex
- equality constraints are affine

often rewritten as

minimize
$$f(z)$$

subject to $h(z) \le 0$
 $Cz = b$

where $C \in \mathbb{R}^{p \times n}$ and $h : \mathbb{R}^n \to \mathbb{R}^m$.

Note: With nonlinear equalities, feasible set would generally not be convex

Local and global optimality in convex optimization

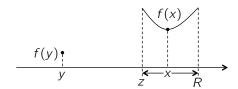
Lemma

Any locally optimal point of a convex problem is globally optimal.

Proof:

Assume x locally optimal and a feasible y such f(y) < f(x). x locally optimal implies that there exists an R > 0 such that

$$||z-x||_2 \le R \Rightarrow f(z) \ge f(x)$$



Local and global optimality in convex optimization

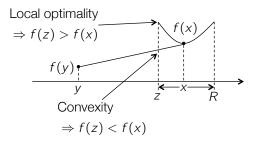
Lemma

Any locally optimal point of a convex problem is globally optimal.

Proof:

Assume x locally optimal and a feasible y such f(y) < f(x). x locally optimal implies that there exists an R > 0 such that

$$||z-x||_2 \leq R \Rightarrow f(z) \geq f(x)$$



Linear Program (LP)

minimize
$$c^{\top}x$$
 subject to $c_i^{\top}x + d_i \leq 0, \ i = 1, \dots, m$ $Ax = b$

LP Example

equivalent to

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n, s \in \mathbb{R}^m}{\text{minimize}} & \sum_{i=1}^m s_i \\ \text{subject to} & -s \leq Ax + b \leq s \\ & Cx + d = 0 \end{array}$$

Quadratic Program (QP)

minimize
$$c^{\top}x + \frac{1}{2}x^{\top}Bx$$

subject to $c_i^{\top}x + d_i \leq 0, i = 1, ..., m$
 $Ax = b$

convex if $B \succeq 0$ strictly convex if $B \succ 0$

Quadratically Constrained Quadratic Program (QCQP)

minimize
$$x^{\top}B_0x + c_0^{\top}x + r_0$$

subject to $x^{\top}B_ix + c_i^{\top}x + r_i \leq 0, i = 1, \dots, m$
 $Ax = b$
convex if $B_0, \dots, B_m \succeq 0$

Second Order Cone Program (SOCP)

```
minimize c^{\top}x

subject to \|A_ix + b_i\|_2 \le c_i^{\top}x + d_i, i = 1, \dots, m

Ax = b
```

SOCP example: robust LP

Robust LP with uncertain w:

minimize
$$c^{\top}x$$
 subject to $\max_{\|w\|_2 \le 1} (a_i + P_i w)^{\top}x \le b_i \ i = 1, \dots, m$

equivalent to SOCP

Semidefinite Program (SDP)

minimize
$$c^{\top}x$$

subject to $x_1F_1 + \cdots + x_nF_n + G \succeq 0$
 $Ax = b$

with $F_1, \ldots, F_n, G \in \mathbb{S}^m$.

The generalized inequality is called **linear matrix inequality** (LMI).

SDP Example

Eigenvalue minimization: minimize $\lambda_{\max}(A(x))$ with

$$A(x) = A_0 + x_1 A_1 + \cdots + x_n A_n$$

Equivalent SDP:

Proof:
$$t \mid L \succeq A(x) \Leftrightarrow t \geq \lambda_{\max}(A(x))$$

SDP comprises LP, QP, QCQP and SOCP

Among all discussed convex problem classes, SDP is most general.

Any LP can be formulated as a QP.

Any QP can be formulated as a QCQP.

Any QCQP can be formulated as a SOCP.

Any SOCP can be formulated as a SDP.

$$LP \Rightarrow QP \Rightarrow QCQP \Rightarrow SOCP \Rightarrow SDP$$

In principle, an SDP solver could be used to solve LP, QP, QCQP, SOCP and SDP... but the tailored solvers are more efficient!

Note: an NLP solver can also be used to globally solve LP, QP, or QCQP (but not for SOCP and SDP, due to non-smoothness of the generalized inequalities)

Solvers for Convex Optimization

- ▶ LP: myriads of solvers, e.g. CPLEX, GUROBI, SOPLEX
- QP: many solvers, e.g. CPLEX, OOQP, QPSOL, QPKWIK Embedded QP solvers: qpOASES, FORCES, HPMPC, qpDUNES, ...
- SOCP: MOSEK, ECOS
- ► SDP: SDPT3, sedumi

Consult "decision tree for optimization software" by Hans Mittelmann:

http://plato.la.asu.edu/guide.html

Modelling Environments for Convex Optimization

- YALMIP (from matlab)
- CVX (from matlab)
- CVXOPT (from python)
- CVXPY (from python)

Summary

- Convex optimization problem:
 - Convex cost function
 - Convex inequality constraints
 - Affine equality constraints
- ▶ main benefit of convex problems: local = global optimality

Literature

- S. Boyd and L. Vandenberghe: Convex Optimization, Cambridge Univ. Press, 2004
- ▶ D. Bertsekas: Convex Optimization Theory / Convex Optimization Algorithms, Athena Scientific, 2009 / 2015