
Introduction to CasADi
AWESCO Winter School on Numerical Optimal Control with Differential

Algebraic Equations, Freiburg 2016

Joel Andersson,
joel@casadi.org

University of Wisconsin-Madison

15 February 2015

joel@casadi.org

1 Background: Calculating derivatives

2 CasADi

3 Four important standard problems handled by CasADi

4 Summary

5 Demo & Exercise 1

Joel Andersson, joel@casadi.org University of Wisconsin-MadisonIntroduction to CasADi 15 February 2015 2 / 26

joel@casadi.org

Outline

1 Background: Calculating derivatives

2 CasADi

3 Four important standard problems handled by CasADi

4 Summary

5 Demo & Exercise 1

Joel Andersson, joel@casadi.org University of Wisconsin-MadisonIntroduction to CasADi 15 February 2015 3 / 26

joel@casadi.org

Methods for calculating derivatives

Derivatives play a central role in nonlinear optimization – how compute them?

By hand ← Time consuming & error prone!

Symbolic differentiation

Finite differences

Algorithmic differentiation (AD)

Joel Andersson, joel@casadi.org University of Wisconsin-MadisonIntroduction to CasADi 15 February 2015 4 / 26

joel@casadi.org

Symbolic differentiation

Obtain derivatives with a computer algebra system (CAS):

Symbolic Toolbox for MATLAB / MuPAD

SymPy

. . .

Easy to use but often results in a very long code which is expensive to evaluate.

Joel Andersson, joel@casadi.org University of Wisconsin-MadisonIntroduction to CasADi 15 February 2015 5 / 26

joel@casadi.org

Finite differences

Consider a function F : Rnx → Rny with Jacobian J(x) =
∂F

∂x

J(x) x̂ ≈ F (x + t x̂)− F (x)

t

Pros and cons:

+ Easy to implement and relatively fast

− Poor accuracy, need to carefully choose t:

Small t ⇒ cancellation errors
Large t ⇒ approximation errors

− No efficient way to calculate ŷᵀ J(x)

Joel Andersson, joel@casadi.org University of Wisconsin-MadisonIntroduction to CasADi 15 February 2015 6 / 26

joel@casadi.org

Algorithmic differentiation (AD) (e.g. Griewank & Walther, 2008)

Decomposable function: y = F (x)

F : Rn0 → RnK sufficiently smooth

Decompose into “atomic operations” with known differentiation rules:
z0 ← x
for k = 1, . . . ,K do

zk ← fk ({zi}i∈Ik)
end for
y ← zK
return y

Such a decomposition is always
available if F written as a computer
program!

Example

y = sin(
√
x)

z0 ← x
z1 =

√
z0

z2 = sin z1
y ← z2
return y

Joel Andersson, joel@casadi.org University of Wisconsin-MadisonIntroduction to CasADi 15 February 2015 7 / 26

joel@casadi.org

Decomposition can be with simple scalar operations . . .

x + y , x ∗ y , sin(x), xy

. . . or with higher-level operations for which a chain-rule can be defined

xᵀ, x [i] = y , XY , eX

E.g. gradient of det(X): det(X)X−ᵀ

Linear and nonlinear systems of equations
Initial-value problems in ODE or DAE

Joel Andersson, joel@casadi.org University of Wisconsin-MadisonIntroduction to CasADi 15 February 2015 8 / 26

joel@casadi.org

Idea: Differentiate the algorithm!

z0 ← x
for k = 1, . . . ,K do

zk ← fk ({zi}i∈Ik)
end for
y ← zK
return y

⇒

z0 ← x
dz0
dx
← I

for k = 1, . . . ,K do
zk ← fk ({zi}i∈Ik)

dzk
dx
←

∑
i∈Ik

∂fk
∂zi

({zi}i∈Ik)
dzi
dx

end for
y ← zK

J ← dzK
dx

return y , J

Write as a system of linear equations:

dz

dx
= B + L

dz

dx
, J = Aᵀ dz

dx
,

Joel Andersson, joel@casadi.org University of Wisconsin-MadisonIntroduction to CasADi 15 February 2015 9 / 26

joel@casadi.org

Write as a system of linear equations:

dz

dx
= B + L

dz

dx
, J = Aᵀ dz

dx
,

with

z =


z0
z1
...
zK

 , A =


0
...
0
I

 and B =


I
0
...
0

 ,

with I and 0 of appropriate dimensions, as well as the extended Jacobian,

L =


0 0

∂f1
∂z0

. . .
...

...
. . .

. . .
...

∂fK
∂z0

. . . ∂fK
∂zK−1

0

 ,

Since I − L is invertible, we can solve for J:

J = Aᵀ (I − L)−1 B

Joel Andersson, joel@casadi.org University of Wisconsin-MadisonIntroduction to CasADi 15 February 2015 10 / 26

joel@casadi.org

Have J = Aᵀ (I − L)−1 B

Multiply J from the right: Forward mode of AD

ŷ := J x̂ = Aᵀ (I − L)−1 B x̂
Cheap with forward substitution of lower triangular (I − L)
Computational cost: ≈ cost of evaluating F
Small memory requirements (no storage of L needed)

Multiply J from the left: Reverse mode of AD

x̄ := Jᵀ ȳ = Bᵀ (I − L)−ᵀ A ȳ
Cheap with backward substitution of upper triangular (I − L)ᵀ

Computational cost: ≈ cost of evaluating F
If F (x) is scalar, ȳ = 1 gives ∇xF (x)
Intermediate operations (or their linearization) must be stored
(Can trade storage for extra computation: “checkpointing”)

Joel Andersson, joel@casadi.org University of Wisconsin-MadisonIntroduction to CasADi 15 February 2015 11 / 26

joel@casadi.org

Calculating complete Jacobians and Hessians

Jacobians can be calculated by multiplying with ncol vectors from the right
or nrow vectors from the left

Worst-case: ≈ min(nrow, ncol) times cost of evaluating F

Much cheaper if J is sparse, e.g. banded

Hessians can be calculated as Jacobian-of-gradient

Symmetry can be exploited

Joel Andersson, joel@casadi.org University of Wisconsin-MadisonIntroduction to CasADi 15 February 2015 12 / 26

joel@casadi.org

Exploiting sparsity: illustration

J =


∗
∗
∗
∗

 ⇒ x̂ = [1, 1, 1, 1]

J =


∗
∗ ∗
∗ ∗
∗ ∗

 ⇒ x̂1 = [0, 1, 1, 1], x̂2 = [1, 0, 0, 0]

J =


∗ ∗ ∗ ∗
∗
∗
∗

 ⇒ x̂1 = [1, 0, 0, 0], ȳ2 = [1, 0, 0, 0]

Finding a small set of vectors

NP hard combinatorial problem!

Graph coloring techniques usually work well (cf. Gebremedhin et al, 2005)

Joel Andersson, joel@casadi.org University of Wisconsin-MadisonIntroduction to CasADi 15 February 2015 13 / 26

joel@casadi.org

Outline

1 Background: Calculating derivatives

2 CasADi

3 Four important standard problems handled by CasADi

4 Summary

5 Demo & Exercise 1

Joel Andersson, joel@casadi.org University of Wisconsin-MadisonIntroduction to CasADi 15 February 2015 14 / 26

joel@casadi.org

Started as an implementation of AD using CAS-like syntax

Current scope: Numerical optimization general

In particular: Facilitates the solution of optimal control problems (OCPs)

Facilitates, not actually solves the OCPs
Write state-of-the-art OCP algorithms with very little code!

Free & open-source (LGPL), also for commercial use

Project started in December 2009, now (almost) at version 3.0

Main developers: Joel Andersson and Joris Gillis

Joel Andersson, joel@casadi.org University of Wisconsin-MadisonIntroduction to CasADi 15 February 2015 15 / 26

joel@casadi.org

casadi.org → github.com

Joel Andersson, joel@casadi.org University of Wisconsin-MadisonIntroduction to CasADi 15 February 2015 16 / 26

casadi.org
github.com
joel@casadi.org

Algorithmic differentiation (AD) in CasADi (Andersson, 2013)

Decomposes algorithms into a sequence of either scalar or sparse
matrix-valued atomic operations

New symbolic expressions generated for derivatives: “Source code
transformation” approach

Forward mode: Jacobian-times-vector products
Reverse mode: vector-times-Jacobian products
Sparse Jacobians and Hessians via:

Automatic detection of sparsity pattern (nontrivial!)
Graph coloring techniques to exploit sparsity & symmetry

Arbitrary order

Supports high-level operations: matrix-operations, implicit functions, calls
to DAE integrators

Joel Andersson, joel@casadi.org University of Wisconsin-MadisonIntroduction to CasADi 15 February 2015 17 / 26

joel@casadi.org

Outline

1 Background: Calculating derivatives

2 CasADi

3 Four important standard problems handled by CasADi

4 Summary

5 Demo & Exercise 1

Joel Andersson, joel@casadi.org University of Wisconsin-MadisonIntroduction to CasADi 15 February 2015 18 / 26

joel@casadi.org

Quadratic programs (QPs)

Exercise 1

User needs to write the problem in the following standard form:

minimize
x

f (x)

subject to g ≤ g(x) ≤ g
x ≤ x ≤ x

where f (x) is a convex quadratic function and g(x) is a linear function.

QP solvers available: qpOASES, OOQP, CPLEX, GUROBI

Solver “plugins” can be added post-installation

CasADi automatically generates matrix sparsities

GUROBI & CPLEX: a subset of x can be integer-valued (mixed-integer QP)

Joel Andersson, joel@casadi.org University of Wisconsin-MadisonIntroduction to CasADi 15 February 2015 19 / 26

joel@casadi.org

Nonlinear programs (NLPs)

Exercise 2 (part one)

User needs to write the problem in the following standard form:

minimize
x

f (x)

subject to g ≤ g(x) ≤ g
x ≤ x ≤ x

where f (x) and g(x) twice continuously differentiable functions

NLP solvers available: IPOPT, SNOPT, KNITRO, WORHP, CasADi’s own

Solver “plugins” can be added post-installation

CasADi automatically generates derivative information

Joel Andersson, joel@casadi.org University of Wisconsin-MadisonIntroduction to CasADi 15 February 2015 20 / 26

joel@casadi.org

Nonlinear rootfinding problems

Exercise 2 (part two)

Nonlinear system of equations:

g(z , x1, x2, . . . , xn) = 0

which implicitly defines z as a function of x1, . . . , xn according to the
implicit function theorem (i.e. ∂g

∂z must be invertible).

NLP solvers available: KINSOL, CasADi’s own

Solver “plugins” can be added post-installation

CasADi automatically generates derivative information

Differentiable object: Derivatives of the rootfinding solver calculated
automatically

Joel Andersson, joel@casadi.org University of Wisconsin-MadisonIntroduction to CasADi 15 February 2015 21 / 26

joel@casadi.org

Integrators

Solves initial-value problems in ordinary or differential-algebraic equations
(ODE/DAE)

Given a DAE with fixed initial values coupled to another (linear) DAE with
fixed terminal value (both with quadratures):

ẋ = fx(x , z , p, t)
0 = fz(x , z , p, t)
q̇ = fq(x , z , p, t)

− ˙̃x = f̃x(x̃ , z̃ , p̃, x , z , p, t)

0 = f̃z(x̃ , z̃ , p̃, x , z , p, t)

− ˙̃q = f̃q(x̃ , z̃ , p̃, x , z , p, t)

t ∈ [0,T]
x(0) = x0
q(0) = 0

x̃(T) = x̃0
q̃(T) = 0

An integrator in CasADi is a
mapping from {x0, p, x̃0, p̃} to {x(T), q(T), x̃(0), q̃(0)}

Enables automatic forward and adjoint sensitivity analysis

Joel Andersson, joel@casadi.org University of Wisconsin-MadisonIntroduction to CasADi 15 February 2015 22 / 26

joel@casadi.org

Outline

1 Background: Calculating derivatives

2 CasADi

3 Four important standard problems handled by CasADi

4 Summary

5 Demo & Exercise 1

Joel Andersson, joel@casadi.org University of Wisconsin-MadisonIntroduction to CasADi 15 February 2015 23 / 26

joel@casadi.org

Summary

Algorithmic differentiation (AD)

Jacobian-times-vector products cheap using forward mode AD
Vector-times-Jacobian products cheap using reverse mode AD
Good heauristics exist for complete sparse Jacobians and Hessians

CasADi

Open-source framework for numerical optimization
Central feature I: general-purpose implementation of AD
Central feature II: solve standard problems conveniently

QPs
NLPs
Rootfinding problems
Initial-value problems in ODE/DAE

Currently (CasADi 3.0), relatively mature. Exception: MATLAB

Joel Andersson, joel@casadi.org University of Wisconsin-MadisonIntroduction to CasADi 15 February 2015 24 / 26

joel@casadi.org

Outline

1 Background: Calculating derivatives

2 CasADi

3 Four important standard problems handled by CasADi

4 Summary

5 Demo & Exercise 1

Joel Andersson, joel@casadi.org University of Wisconsin-MadisonIntroduction to CasADi 15 February 2015 25 / 26

joel@casadi.org

Joel Andersson, joel@casadi.org University of Wisconsin-MadisonIntroduction to CasADi 15 February 2015 26 / 26

joel@casadi.org

	Background: Calculating derivatives
	CasADi
	Four important standard problems handled by CasADi
	Summary
	Demo & Exercise 1

