Introduction to CasADi

AWESCO Winter School on Numerical Optimal Control with Differential
Algebraic Equations, Freiburg 2016

Joel Andersson,
joel@casadi.org

University of Wisconsin-Madison

15 February 2015

joel@casadi.org

e Background: Calculating derivatives

© CasADi

e Four important standard problems handled by CasADi

e Summary

e Demo & Exercise 1

Joel Andersson, joel@casadi.org Introduction to CasADi 15 February 2015

joel@casadi.org

Outline

0 Background: Calculating derivatives

Joel Andersson, joel@casadi.org Introduction to CasADi 15 February 2015

joel@casadi.org

Methods for calculating derivatives

Derivatives play a central role in nonlinear optimization — how compute them?
@ By hand <+ Time consuming & error prone!
@ Symbolic differentiation

@ Finite differences

Algorithmic differentiation (AD)

Joel Andersson, joel@casadi.org Introduction to CasADi 15 February 2015 4 /26

joel@casadi.org

Symbolic differentiation

Obtain derivatives with a computer algebra system (CAS):
@ Symbolic Toolbox for MATLAB / MuPAD
@ SymPy

Easy to use but often results in a very long code which is expensive to evaluate. J

— casadi — vyalmip | [xe = mx.sym('xe")
d a = MX.sym('a')
— sympy — mupa dt = 1
_ ! X = X0
0,
] for i in range(N):
.g x = x+dt*(a*x+cos(x))
8
s
i}
c
S
o
-4
10 Il Il L
10° 10 10 10° 10* N

Joel Andersson, joel@casadi.org Introduction to CasADi 15 February 2015

joel@casadi.org

Finite differences

Consider a function F : R™ — R™ with Jacobian J(x) = g—f

F(x+ tX) — F(x)
t

J(x) % ~

Pros and cons:
+ Easy to implement and relatively fast
— Poor accuracy, need to carefully choose t:

e Small t = cancellation errors
o Large t = approximation errors

— No efficient way to calculate yT J(x)

Joel Andersson, joel@casadi.org Introduction to CasADi 15 February 2015 6 /26

joel@casadi.org

Algorithmic differentiation (AD) s crievank & waither, 2008)

Decomposable function: y = F(x)
@ F:R™ — R" sufficiently smooth

@ Decompose into “atomic operations” with known differentiation rules:
Zy < X
for k=1,...,Kdo
7 < fic ({zi}iez,)
end for
Y < Zk
return y

Such a decomposition is always
available if F written as a computer
program!

Zy) < X
21 =/7o

y:sin(ﬁ) Z> =sinz
y< 2

return y

Joel Andersson, joel@casadi.org Introduction to CasADi 15 February 2015 7/ 26

joel@casadi.org

@ Decomposition can be with simple scalar operations . ..

o x+y, xxy,sin(x), x¥
@ ...or with higher-level operations for which a chain-rule can be defined
o xT, x[i] =y, XY, &X
o E.g. gradient of det(X): det(X) X T
e Linear and nonlinear systems of equations
o Initial-value problems in ODE or DAE

15 February 2015 8 /26

Joel Andersson, joel@casadi.org Introduction to CasADi

joel@casadi.org

|dea: Differentiate the algorithm!

Zp < X

for k=1,...,K do
zi < f ({zitiez,)

end for

Yy < zZk

return y

Write as a system of linear equations:

Joel Andersson, joel@casadi.org

dz
—=B+1L
dx +

Introduction to CasADi

E
dx’

Zp < X
dZo
— /
dx <
fork=1,...,K do
zi < f ({zitiez,)
de 8fk dZ,'
dx — 22 oz ({zitier,) o
€Ty
end for
Yy < zk
dZK
J o =K
- dx
return y, J

dz

J=ar %
dx’

15 February 2015

joel@casadi.org

Write as a system of linear equations:

dz dz dz

>~ _pil= AT Z

dx + dx’ J dx’

with
2y 0 I
Z]_ : 0
z= i , A= : and B = . ,

: 0 :
ZK / 0

with [and O of appropriate dimensions, as well as the extended Jacobian,

0o 0
of
L — 820
)
Ofic Ofi
Ozg e OzKk_1

Since | — L is invertible, we can solve for J:
J=AT(I-L)"'B

Joel Andersson, joel@casadi.org Introduction to CasADi 15 February 2015 10 / 26

joel@casadi.org

@ Have J=AT (/- L)"'B

@ Multiply J from the right: Forward mode of AD
0o Pi=JR=AT(I-L)"'B&
o Cheap with forward substitution of lower triangular (/ — L)
o Computational cost: = cost of evaluating F
e Small memory requirements (no storage of L needed)

@ Multiply J from the left: Reverse mode of AD
X=JTy=BT(I-L)"TAy

Cheap with backward substitution of upper triangular (I — L)T
Computational cost: ~ cost of evaluating F

If F(x) is scalar, y =1 gives VF(x)

Intermediate operations (or their linearization) must be stored
(Can trade storage for extra computation: ‘“checkpointing”)

Joel Andersson, joel@casadi.org Introduction to CasADi 15 February 2015 11 /26

joel@casadi.org

Calculating complete Jacobians and Hessians

Jacobians can be calculated by multiplying with nc, vectors from the right
ofr Ny Vvectors from the left

@ Worst-case: &2 min(nyow, Neol) times cost of evaluating F
@ Much cheaper if J is sparse, e.g. banded

@ Hessians can be calculated as Jacobian-of-gradient

Symmetry can be exploited

Joel Andersson, joel@casadi.org Introduction to CasADi 15 February 2015

joel@casadi.org

Exploiting sparsity: illustration

o }
° J— * . =% =[1,1,1,1]
*_
. -
% * A s
o J= . N :>X1:[0,1,1,1]1)(2:[1707070]
* *_
* % * *
o J— i = % = [1,0,0,0], 7 = [1,0,0,0]
*

Finding a small set of vectors

@ NP hard combinatorial problem!

@ Graph coloring techniques usually work well (cf. Gebremedhin et al, 2005)

Joel Andersson, joel@casadi.org Introduction to CasADi 15 February 2015 13 /26

joel@casadi.org

Outline

© CasADi

Joel Andersson, joel@casadi.org Introduction to CasADi 15 February 2015 14 / 26

joel@casadi.org

CasADi

Started as an implementation of AD using CAS-like syntax

Current scope: Numerical optimization general

In particular: Facilitates the solution of optimal control problems (OCPs)

e Facilitates, not actually solves the OCPs
o Write state-of-the-art OCP algorithms with very little code!

@ Free & open-source (LGPL), also for commercial use

Project started in December 2009, now (almost) at version 3.0

Main developers: Joel Andersson and Joris Gillis

Joel Andersson, joel@casadi.org Introduction to CasADi 15 February 2015

joel@casadi.org

casadi.org — github.com

@ L] Searchortypeacommand @ @ Explore Gist Blog Help jaiis B X B
casadi / casadi I1 Pull Request G5 Unwatch ~ & Unstar <4 [Fork <4

Code Network Pull Requests 0 Issues 120 Wiki Graphs settings

Home Pages WikiHistory Git Access

Home NewPage EditPage Page History

CasADi

Welcome to the CasADi wiki!

CasADi is a symbolic framework for automatic differentiation and numeric optimization. Using the syntax of computer algebra systems, it
implements automatic differentiation in forward and adjoint modes by means of a hybrid symbolic/numeric approach. The main purpose of the tool
is to be a low-level tool for quick, yet highly efficient implementation of aigorithms for numerical optimization. Of particular interest is dynamic
optimization, using either a collocation approach, or a shooting-based approach using embedded ODE/DAE integrators. In either case, CasADI
relieves the user from the work of efficiently calc ulating the relevant derivative or ODE/DAE sensitivity information to an arbitrary degree, as
needed by the NLP solver. This together with full-featured Python and Octave front ends, as well as back ends 1o state-of-the-art codes such as
Sundials (CVODES, IDAS and KINSOL), IPOPT and KNITRO, drastically reduces the effort of implementing the methods compared to a pure
CiC++/Fortran approach.

Every feature of GasADI (with very few exceptions) is available in G++, Python and Octave, with little to no difference in performance, so the user
has the possibility of working completely in C++, Python or Octave or mixing the languages. We recommend new users to try out the Python
version first, since it allows inferactivity and is more stable and better documented than the Octave front-end

CasADi is an open-source 10ol, written in self-contained C++ code. depending only on the Standard Template Library. It is developed by Joel
Andersson and Joris Gilis at the Opiimization in Engineering Genter, OPTEG of the K.U. Leuven under supervision of Woritz Diehl. GasADi is
distributed under the LGPL license, meaning the code can be used royalty-free even in commercial applications.

oel Andersson, joel@casad. 15 February 201

casadi.org
github.com
joel@casadi.org

Algorithmic differentiation (AD) in CasADi nerson 2015

@ Decomposes algorithms into a sequence of either scalar or sparse
matrix-valued atomic operations

@ New symbolic expressions generated for derivatives: “Source code
transformation” approach
e Forward mode: Jacobian-times-vector products
o Reverse mode: vector-times-Jacobian products
e Sparse Jacobians and Hessians via:
o Automatic detection of sparsity pattern (nontrivial!)
o Graph coloring techniques to exploit sparsity & symmetry

o Arbitrary order

@ Supports high-level operations: matrix-operations, implicit functions, calls
to DAE integrators

Introduction to CasADi 15 February 2015 17 / 26

Joel Andersson, joel@casadi.org

joel@casadi.org

Outline

e Four important standard problems handled by CasADi

Joel Andersson, joel@casadi.org Introduction to CasADi 15 February 2015

joel@casadi.org

Quadratic programs (QPs)

@ Exercise 1

User needs to write the problem in the following standard form:

minimize f(x)

subjectto g<g(x)<g
x<x<X

where f(x) is a convex quadratic function and g(x) is a linear function.

QP solvers available: qpOASES, OOQP, CPLEX, GUROBI

Solver “plugins” can be added post-installation

CasADi automatically generates matrix sparsities

GUROBI & CPLEX: a subset of x can be integer-valued (mixed-integer QP)

Joel Andersson, joel@casadi.org Introduction to CasADi 15 February 2015 19 / 26

joel@casadi.org

Nonlinear programs (NLPs)

@ Exercise 2 (part one)

@ User needs to write the problem in the following standard form:

minimize f(x)

subject to g <g(x)<g
x<x<X

where f(x) and g(x) twice continuously differentiable functions

@ NLP solvers available: IPOPT, SNOPT, KNITRO, WORHP, CasADi's own

Solver “plugins” can be added post-installation

CasADi automatically generates derivative information

Joel Andersson, joel@casadi.org Introduction to CasADi 15 February 2015 20 /

joel@casadi.org

Nonlinear rootfinding problems

@ Exercise 2 (part two)

@ Nonlinear system of equations:
g(z,x1,%0,...,%,) =0

which implicitly defines z as a function of xg, ..., x, according to the
implicit function theorem (i.e. % must be invertible).

@ NLP solvers available: KINSOL, CasADi’'s own
@ Solver “plugins” can be added post-installation
@ CasADi automatically generates derivative information

@ Differentiable object: Derivatives of the rootfinding solver calculated
automatically

Joel Andersson, joel@casadi.org Introduction to CasADi 15 February 2015

joel@casadi.org

Integrators

@ Solves initial-value problems in ordinary or differential-algebraic equations
(ODE/DAE)

@ Given a DAE with fixed initial values coupled to another (linear) DAE with
fixed terminal value (both with quadratures):

x = fx,z,p,t) te[o,T]

0 = fz(Xazap7t)

q = fq(X z,p, l') x(O) = X
) q(0) = 0

—X f;(()?,f,ﬁ,X7Z,p,t)

0 = fz()?,f,ﬁ,X,Z,p,t))?(T) -)?0

_a fq()?afvﬁax7zvpat) a(7—) = 0

@ An integrator in CasADi is a
mapping from {xo, p, %0, 5} to {x(T), q(T),%(0), §(0)}

@ Enables automatic forward and adjoint sensitivity analysis

Joel Andersson, joel@casadi.org Introduction to CasADi 15 February 2015 22 /26

joel@casadi.org

Outline

@ Summary

Joel Andersson, joel@casadi.org Introduction to CasADi 15 February 2015

joel@casadi.org

@ Algorithmic differentiation (AD)

e Jacobian-times-vector products cheap using forward mode AD
o Vector-times-Jacobian products cheap using reverse mode AD
e Good heauristics exist for complete sparse Jacobians and Hessians

@ CasADi

e Open-source framework for numerical optimization

o Central feature |: general-purpose implementation of AD
o Central feature Il: solve standard problems conveniently
o QPs
e NLPs
@ Rootfinding problems
@ Initial-value problems in ODE/DAE
o Currently (CasADi 3.0), relatively mature. Exception: MATLAB

Joel Andersson, joel@casadi.org Introduction to CasADi 15 February 2015

joel@casadi.org

Outline

e Demo & Exercise 1

Joel Andersson, joel@casadi.org Introduction to CasADi 15 February 2015

joel@casadi.org

Joel Andersson, joel@casadi.org oduction to CasADi 15 February 2015

joel@casadi.org

	Background: Calculating derivatives
	CasADi
	Four important standard problems handled by CasADi
	Summary
	Demo & Exercise 1

