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In this exercise we will implement two different integration schemes and we compare their
performance on a non-trivial example that will highlight the advantages and disadvantages of
explicit and implicit integration schemes. Consider the following Ordinary Differential Equati-
on (ODE) describing the dynamics of the so called Van der Pol oscillator:
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with € R? being the differential states of the system and ;1 € R, being a parameter that,
as we will see later, plays a role in the stability of the integration scheme used to integrate the
ODE.

3.1 Derive the linearization of the system:
&= Alzrp, p)z,

where A(zp, 1) = % and compute the eigenvalues of A. How do the eigenvalues change
as a function of x;, and 1? For which values of x; and p would you expect an integration
scheme to potentially encounter problems in integrating the dynamics?

3.2 Using the template provided with the exercise, write a function van_der_pol .m that
returns an evaluation of the dynamics (TJ).

3.3 Implement the explicit Euler method x* = x¢ + hf (o, ) and run a simulation from
t = 0tot = 10 starting from Zo = [1, 2]7, with h = 0.1 and compare the obtained
solution with the output of the MATLAB integrator for stiff equations ode15s.

3.4 Then, implement the explicit Runge-Kutta scheme of order 4 (RK4)

ki = f(wo)
b = flao+ ghh)

ky = f(zo + hks)
h
zt :x0+6(k1+2k2+21€3+k4),

where h is the discretization step-size. Run the same simulation as before, this time using
your implementation of RK4 , with ;4 = 1 and h = 0.1 and compare the obtained solution
with the one obtained with the explicit Euler scheme.
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Code now an implicit scheme instead. For simplicity we will implement the implicit
Euler method:
T =z + hf(z")

Define a CasADi function that evaluates the implicit function
rt—xo—hf(zt) =0 (3)

and its derivatives. You can use the implementation of the full-step Newton method pro-
vided with the exercise by calling the function IEU to solve equations (3). Run the same
simulation as before and compare the accuracy of the three numerical approximations
using the plot provided in the template. Which of the schemes is most accurate?

Compare now the accuracy of the three schemes running a simulation with ;o = 10 (keep
the other settings unchanged). Which of the two schemes is performing best?

In order to have a better understanding of how stability and accuracy of the two schemes
change as a function of the step-size 5, run a series of simulations varying this parame-
ter. Fix 4 = 1 and vary h from, store the results in a vector and plot the accuracy in
logarithmic scale. Which considerations can you make?

Extra: Derive on paper the stability region for the explicit and implicit Euler scheme.
Hint: we are interested in the stability of the numerical approximation of the solution to
the scalar ODE & = Az, as a function of A € C. Write the expression of the numerical
approximation =" for a single step of the integration scheme and study the stability of
the obtained discrete time system as a function of z := AA\.

Extra: Derive the stability region of the RK4 scheme. Hint: for this task you will need
to use MATLAB.



