Numerical Optimization of Dynamic Systems

(Draft)

Moritz Diehl and Sébastien Gros

February 14, 2016

Contents

Preface

1 Introduction
1.1 Dynamic System Classes e
1.2 Continuous Time Systems L

1.3 Discrete Time Systems e
1.4 Optimization Problem Classes
1.5 Overview and Notation L

Numerical Optimization

Nonlinear Optimization

2.1 Important Special Classes
2.2 First Order Optimality Conditions,
2.3 Second Order Optimality Conditions
2.4 Least-Squares and Parameter Estimation Problems

Newton-Type Optimization Algorithms

3.1 Equality Constrained Optimization
3.2 Local Convergence of Newton-Type Methods
3.3 Inequality Constrained Optimization
3.4 Globalisation Strategies oL

Calculating Derivatives

4.1 Algorithmic Differentiation (AD)
4.2 The Forward Mode of AD
4.3 The Backward Mode of AD
4.4 Algorithmic Differentiation Software 0000

IT Discrete Time Optimal Control

5

Discrete Time Optimal Control Formulations
5.1 Optimal Control Problem (OCP) Formulations
5.2 Analysis of a Simplified Optimal Control Problem

Sparsity Structure of the Optimal Control Problem

6.1 Partial Separability of the Lagrangian
6.2 The Sparse QP Subproblem
6.3 Sparsity Exploitation in QP Solvers L

Dynamic Programming
7.1 Dynamic Programming in Discrete State Space
7.2 Linear Quadratic Problems

13

15
16
18
20
24

33
33
36
38
41

45
45
47
48
51

53

55
95
o7

Contents

7.3
74
7.5
7.6
7.7
7.8

Infinite Horizon Problems
The Linear Quadratic Regulator
Robust and Stochastic Dynamic Programming
Interesting Properties of the DP Operator
The Gradient of the Value Function
A Discrete Time Minimum Principle

III Continuous Time Optimal Control

8

10

11

12

Continuous Time Optimal Control Problems

8.1
8.2

Formulation of Continuous Time Optimal Control Problems
Overview of Numerical Approaches

Numerical Simulation

9.1
9.2

Sensitivity Computation in Shooting Methods
Algorithmic Differentiation of Integrators

The Hamilton-Jacobi-Bellman Equation

10.1
10.2
10.3

Dynamic Programming in Continuous Time
Linear Quadratic Control and Riccati Equation
Infinite Time Optimal Control

Pontryagin and the Indirect Approach

11.1
11.2
11.3
11.4
11.5

The HIJB Equation along the Optimal Solution.
Obtaining the Controls on Regular and on Singular Arcs
Pontryagin with Path Constraints 0L
Hamiltonian System Properties o
Numerical Solution of the Boundary Value Problem

Direct Approaches to Continuous Optimal Control

12.1
12.2
12.3
12.4

Direct Single Shooting L
Direct Multiple Shooting L
Direct Collocation
A Classification of Direct Optimal Control Methods

IV Nonlinear Model Predictive Control

13

14

15

Nonlinear Model Predictive Control

13.1
13.2
13.3
13.4

NMPC Optimization Problem
Nominal Stability of NMPC
Online Initialization via Shift oo
Outline of Real-Time Optimization Strategies

Parametric Nonlinear Optimization

14.1
14.2
14.3
14.4
14.5

Parametric Nonlinear Optimization
Predictor-Corrector Pathfollowing Methods
Interior Point Pathfollowing Methods
SQP Pathfollowing Methods L
Critical Regions and Online Active Set Strategies

Moving Horizon Estimation

15.1
15.2
15.3
15.4

State and Parameter Estimation Problem Formulation
The Trajectory Estimation Problem
Dynamic Programming for the Trajectory Estimation Problem
Linear Quadratic Trajectory Estimation

73

75
75
76

79
84
86

89
89
90
91

101
101
102
103
105

107

109
110
111
111
112

113
113
114
115
116
119

Contents iii

15.5 Recursive Bayesian Estimation of the Last State 126
15.6 Estimation of Last State for Linear Systems with Gaussian Noises 127
15.7 The Kalman Filter and the Extended Kalman Filter Equations 128

Bibliography 131

Contents

Preface

This manuscript regards the optimization of dynamic systems. Thus, it bridges two large and active
research communities of applied mathematics, each with their own journals and conferences. A scholar
of numerical optimal control has to acquire basic numerical knowledge within both fields, i.e. numerical
optimization on the one hand, and system theory and numerical simulation on the other hand. Within
this text, we start by rehearsing basic concepts from both fields. Hereby, we give numerical optimization
the larger weight, as dynamic system simulation is often covered rather well in engineering and applied
mathematics curricula, and basic optimization concepts such as convexity or optimality conditions and
Lagrange multipliers play a crucial role in numerical methods for optimal control. The course is intended
for students of engineering and the exact sciences as well as for interested PhD students and besides the
abovementioned fields requires only knowledge of linear algebra and numerical analysis. The course should
be accompanied by computer exercises, and its aim is to give an introduction into numerical methods
for solution of optimal control problems, in order to prepare the students for using and developing these
methods themselves for specific applications in science and engineering.

The course is divided into four major parts.

e Numerical Optimization [63, 22]

Discrete Time Optimal Control [10]

Continuous Time Optimal Control [25, 13]
e Nonlinear Model Predictive Control [30]

This manuscript is based on lecture notes of courses on optimal control that the authors gave
since 2011 at various universities (ETH Zurich, KU Leuven, Trento, Freiburg, Trondheim, Linkoping and
Chalmers University of Technology). It profited already from feedback by many students, but is still
work in progress and not yet error free. Special thanks go to Sebastian Sager for inspiring discussions on
how best to present optimal control, and for suggesting the quotes at the start of each chapter.

Freiburg and Gothenburg, Moritz Diehl and Sébastien Gros
February 2016

Please send feedback and ideas for improvement to moritz.diehl@imtek.uni-freiburg.de and grosse@chalmers.se.

vi

Preface

Chapter 1

Introduction

This book addresses numerical optimization of dynamic systems. We identify dynamic systems with
processes that are evolving with time and that can be characterized by states = that allow us to predict
the future behavior of the system. Often, the dynamic system can be controlled by a suitable choice of
inputs that we denote as controls u in this textbook. Typically, these controls shall be chosen optimally
in order to optimize some objective function and respect some constraints. The process of finding the
optimal control inputs requires numerical methods, and these methods are the focus of the book.

As an example of an optimal control problem, we might think of an electric train where the state x
consists of the current position and velocity, and where the control u is the engine power that the train
driver can choose at each moment. We might regard the motion of the train on a time interval [tinit, tan],
and the objective could be to minimize the consumed energy to drive from Station A to Station B, and
one of the constraints would be that the train should arrive in Station B at the fixed final time, tg,,.

A typical property of a dynamic system is that knowledge of an initial state xinix and a control
input trajectory u(t) for all t € [tinit, t6n] allows one to determine the whole state trajectory x(t) for
t € [tinit, tan]. As the motion of a train can very well be modelled by Newton’s laws of motion, the usual
description of this dynamic system is deterministic and in continuous time and with continuous states.

But dynamic systems and their mathematical models can come in many variants, and it is useful to
properly define the names given commonly to different dynamic system classes, which we do in the next
section. Afterwards, we will discuss two important classes, continuous time and discrete time systems, in
more mathematical detail, before we give an overview of optimization problem classes and finally outline
the contents of the book chapter by chapter.

1.1 Dynamic System Classes

In this section, let us go, one by one, through the many dividing lines in the field of dynamic systems.

Continuous vs Discrete Time Systems

Any dynamic system evolves over time, but time can come in two variants: while the physical time
is continuous and forms the natural setting for most technical and biological systems, other dynamic
systems can best be modelled in discrete time, such as digitally controlled sampled-data systems, or
games.

We call a system a discrete time system whenever the time in which the system evolves only takes
values on a predefined time grid, usually assumed to be integers. If we have an interval of real numbers,
like for the physical time, we call it a continuous time system. In this book, we usually denote the
continuous time by the variable t € R and write for example x(t). In case of discrete time systems, we
use an index, usually k € N, and write xj, for the state at time point k.

Continuous vs Discrete State Spaces

Another crucial element of a dynamic system is its state x, which often lives in a continuous state space,
like the position of the train, but can also be discrete, like the position of the figures on a chess game.

2 Chapter 1. Introduction

We define the state space X to be the set of all values that the state vector = may take. If X is a subset of
a real vector space such as R™ or another differentiable manifold, we speak of a continuous state space.
If X is a finite or a countable set, we speak of a discrete state space. If the state of a system is described
by a combination of discrete and continuous variables we speak of a hybrid state space.

A multi-stage system is the special case of a system with hybrid state space that develops through
a sequence of stages and where the state space on each stage is continuous. An example for a multi-stage
system is walking, where consecutive stages are characterized by the number of feet that are on the
ground at a given moment. For multi-stage systems, the time instant when one stage ends and the next
one starts can often be described by a switching function. This function is positive on one and negative
on the other stage, and assumes the value zero at the time instant that separates the stages.

Another special case are systems that develop in a continuous state space and in continuous time,
but are sometimes subject to discontinuous jumps, such as bouncing billiard balls. These can often be
modelled as multi-stage systems with switching functions, plus so called jump conditions that describe
the discontinuous state evolution at the time instant between the stages.

Finite vs Infinite Dimensional Continuous State Spaces

The class of continuous state spaces can be further subdivided into the finite dimensional ones, whose
state can be characterized by a finite set of real numbers, and the infinite dimensional ones, which have
a state that lives in function spaces. The evolution of finite dimensional systems in continuous time is
usually described by ordinary differential equations (ODE) or their generalizations, such as differential
algebraic equations (DAE).

Infinite dimensional systems are sometimes also called distributed parameter systems, and in the
continuous time case, their behaviour is typically described by partial differential equations (PDE). An
example for a controlled infinite dimensional system is the evolution of the airflow and temperature
distribution in a building that is controlled by an air-conditioning system.

Continuous vs Discrete Control Sets

We denote by U the set in which the controls w live, and exactly as for the states, we can divide the
possible control sets into continuous control sets and discrete control sets. A mixture of both is a hybrid
control set. An example for a discrete control set is the set of gear choices for a car, or any switch that
we can can choose to be either on or off, but nothing in between.

In the systems and control community, the term hybrid system denotes a dynamic system which
has either a hybrid state or hybrid control space, or both. Generally speaking, hybrid systems are more
difficult to optimize than systems with continuous control and state spaces.

However, an interesting and relevant class are hybrid systems that have continuous time and con-
tinuous states, but discrete controls. They might be called hybrid systems with external switches or
integer controls and turn out to be tremendously easier to optimize than other forms of hybrid systems,
if treated with the right numerical methods [68].

Time-Variant vs Time-Invariant Systems

A system whose dynamics depend on time is called a time-variant system, while a dynamic system is
called time-invariant if its evolution does not depend on the time and date when it is happening. As the
laws of physics are time-invariant, most technical systems belong to the latter class, but for example the
temperature evolution of a house with hot days and cold nights might best be described by a time-variant
system model. While the class of time-variant systems trivially comprises all time-invariant systems, it is
an important observation that also the other direction holds: each time-variant system can be modelled
by a nonlinear time-invariant system if the state space is augmented by an extra state that takes account
of the advancement of time, and which we might call the “clock state”.

Linear vs Nonlinear Systems

If the state trajectory of a system depends linearly on the initial value and the control inputs, it is called
a linear system. If the dependence is affine, one should ideally speak of an affine system, but often the
term linear is used here as well. In all other cases, we speak of a nonlinear system.

1.1. Dynamic System Classes 3

A particularly important class of linear systems are linear time invariant (LTI) systems. An LTI
system can be completely characterized in at least three equivalent ways: first, by two matrices that
are typically called A and B; second, by its step response function; and third, by its frequency response
function. A large part of the research in the control community is devoted to the study of LTI systems.

Controlled vs Uncontrolled Dynamic Systems

While we are in this book mostly interested in controlled dynamic systems, i.e. systems that have a
control input that we can choose, it is good to remember that there exist many systems that cannot be
influenced at all, but that only evolve according to their intrinsic laws of motion. These uncontrolled
systems have an empty control set, U =). If a dynamic system is both uncontrolled and time-invariant
it is also called an autonomous system.

Note that an autonomous system with discrete state space that also lives in discrete time is often
called an automaton.

Within the class of controlled dynamic systems, of special interest are the so called controllable
systems, which have the desirable property that their state vector x can be steered from any initial
state iy to any final state zg, in a finite time with suitably chosen control input trajectories. Many
controlled systems of interest are not completely controllable because some parts of their state space
cannot be influenced by the control inputs. If these parts are stable, the system is called stabilizable.

Stable vs Unstable Dynamic Systems

A dynamic system whose state trajectory remains bounded for bounded initial values and controls is called
a stable system, and an unstable system otherwise. For autonomous systems, stability of the system around
a fixed point can be defined rigorously: for any arbitrarily small neighborhood N around the fixed point
there exists a region so that all trajectories that start in this region remain in N. Asymptotic stability is
stronger and additionally requires that all considered trajectories eventually converge to the fixed point.
For autonomous LTI systems, stability can be computationally characterized by the eigenvalues of the
system matrix.

Deterministic vs Stochastic Systems

If the evolution of a system can be predicted when its initial state and the control inputs are known, it is
called a deterministic system. When its evolution involves some random behaviour, we call it a stochastic
system.

The movements of assets on the stockmarket are an example for a stochastic system, whereas the
motion of planets in the solar system can usually be assumed to be deterministic. An interesting special
case of deterministic systems with continuous state space are chaotic systems. These systems are so
sensitive to their initial values that even knowing these to arbitrarily high, but finite, precisions does
not allow one to predict the complete future of the system: only the near future can be predicted. The
partial differential equations used in weather forecast models have this property, and one well-known
chaotic system of ODE, the Lorenz attractor, was inspired by these.

Note that also games like chess can be interpreted as dynamic systems. Here the evolution is neither
deterministic nor stochastic, but determined by the actions of an adverse player. If we assume that the
adversary always chooses the worst possible control action against us, we enter the field of game theory,
which in continuous state spaces and engineering applications is often denoted by robust optimal control.

Open-Loop vs Closed-Loop Controlled Systems

When choosing the inputs of a controlled dynamic system, one first way is decide in advance, before the
process starts, which control action we want to apply at which time instant. This is called open-loop
control in the systems and control community, and has the important property that the control u is a
function of time only and does not depend on the current system state.

A second way to choose the controls incorporates our most recent knowledge about the system state
which we might observe with the help of measurements. This knowledge allows us to apply feedback to
the system by adapting the control action according to the measurements. In the systems and control
community, this is called closed-loop control, but also the more intuitive term feedback control is used. It

4 Chapter 1. Introduction

has the important property that the control action does depend on the current state. The map from the
state to the control action is called a feedback control policy. In case this policy optimizes our optimization
objective, it is called the optimal feedback control policy.

Open-loop control can be compared to a cooking instruction that says: cook the potatos for 25
minutes in boiling water. A closed-loop, or feedback control of the same process would for example say:
cook the potatos in boiling water until they are so soft that they do not attach anymore to a fork that
you push into them. The feedback control approach promises the better result, but requires more work
as we have to take the measurements.

This book is mainly concerned with numerical methods of how to compute optimal open-loop
controls for given objective and constraints. But the last part of the book, Part IV, is concerned with a
powerful method to approximate the optimal feedback control policy: nonlinear model predictive control,
a feedback control technique that is based on the repeated solution of open-loop optimal control problems.

Focus of This Book

In this textbook we have a strong focus on deterministic systems with continuous state and control spaces.
In Part IT we consider discrete time systems, in Part IIT we discuss continuous time systems.

The main reason for this focus on continuous state and control spaces is that the resulting optimal
control problems can efficiently be treated by derivative-based optimization methods. They are thus
tremendously easier to solve than most other classes, both in terms of the solvable system sizes and of
computational speed. Also, these continuous optimal control problems comprise the important class of
convex optimal control problems, which allow us to find a global solution reliably and fast. Convex optimal
control problems are important in their own right, but also serve as an approximation of nonconvex
optimal control problems within Newton-type optimization methods.

1.2 Continuous Time Systems

Most systems of interest in science and engineering are described in form of differential equations which
live in continuous time. On the other hand, all numerical simulation methods have to discretize the time
interval of interest in some form or the other and thus effectively generate discrete time systems. We will
thus only briefly sketch some relevant properties of continuous time systems in this section, and sketch
how they can be transformed into discrete time systems. After this section, and throughout the first
two parts of the book, we will exclusively be concerned with discrete time systems, before we will finally
come back to the continuous time case in Part III.

Ordinary Differential Equations

A controlled dynamic system in continuous time can in the simplest case be described by an ordinary
differential equation (ODE) on a time interval [tinit, t6n] by

@(t) = f(x(t), u(t),t), tE [tinit, tin] (1.1)

where t € R is the time, u(t) € R™ are the controls, and z(t) € R"= is the state. The function f is a map
from states, controls, and time to the rate of change of the state, i.e. f:R™ X R™ X [tinit, tan] — R™=.
Due to the explicit time dependence of the function f, this is a time-variant system.

We are first interested in the question if this differential equation has a solution if the initial value
x(tinit) is fixed and also the controls u(t) are fixed for all ¢ € [tinit, tan). In this context, the dependence
of f on the fixed controls u(t) is equivalent to a a further time-dependence of f, and we can redefine the
ODE as & = f(x,t) with f(z,t) := f(z,u(t),t). Thus, let us first leave away the dependence of f on the
controls, and just regard the time-dependent uncontrolled ODE:

#(t) = f(x(t),t), t € [tinit, tan)- (1.2)

Initial Value Problems

An initial value problem (IVP) is given by (1.2) and the initial value constraint @ (tinit) = Tinit With some
fixed parameter wiyi;. Existence of a solution to an IVP is guaranteed under continuity of f with respect

1.2. Continuous Time Systems 5

to to x and ¢ according to a theorem from 1886 that is due to Giuseppe Peano [?]. But existence alone
is of limited interest as the solutions might be non-unique.

Example 1.1 (Non-Unique ODE Solution) The scalar ODE with f(x) = \/|z(¢)| can stay for an
undetermined duration in the point x = 0 before leaving it at an arbitrary time ¢y. It then follows a
trajectory x(t) = (t — tg)?/4 that can be easily shown to satisfy the ODE (1.2). We note that the ODE
function f is continuous, and thus existence of the solution is guaranteed mathematically. However, at
the origin, the derivative of f approaches infinity. It turns out that this is the reason which causes the
non-uniqueness of the solution. N

As we are only interested in systems with well-defined and deterministic solutions, we Yvould like to
formulate only ODE with unique solutions. Here helps the following theorem by Charles Emile Picard
(1890) [?], and Ernst Leonard Lindelof (1894) [?].

Theorem 1.2 (Existence and Uniqueness of IVP). Regard the initial value problem (1.2) with
Z(tinit) = Tinit, and assume that f : R™ X [tinit, tan] — R is continuous with respect to x and t.
Furthermore, assume that f is Lipschitz continuous with respect to x, i.e., that there exists a constant L
such that for all x,y € R™ and all t € [tinit, tfin)

| f(z,t) = f(y, D]l < Lllz —y||. (1.3)
Then there exists a unique solution x : [tinit, tan] — R™ of the IVP.

Lipschitz continuity of f with respect to x is not easy to check. It is much easier to verify if a
function is differentiable. It is therefore a helpful fact that every function f that is differentiable with
respect to x is also locally Lipschitz continuous, and one can prove the following corollary to the Theorem
of Picard-Lindelof.

Corollary 1.3 (Local Existence and Uniqueness). Regard the same initial value problem as in
Theorem 9.1, but instead of global Lipschitz continuity, assume that f is continuously differentiable with
respect to x for all t € [tinit, tan]. Then there exists a possibly shortened, but non-empty interval [tinit, th,]
with tf € (tinit, tan] on which the IVP has a unique solution.

Note that for nonlinear continuous time systems — in contrast to discrete time systems — it is very
easily possibly even with innocently looking and smooth functions f to obtain an “explosion”, i.e., a
solution that tends to infinity for finite times.

Example 1.4 (Explosion of an ODE) Regard the scalar example f(z) = 22 with tin; = 0 and @i =
1, and let us regard the interval [tinit, tan] With tg, = 10. The IVP has the explicit solution z(t) = 1/(1—t),
which is only defined on the half open interval [0,1), because it tends to infinity for ¢ — 1. Thus, we
need to choose some t;, < 1 in order to have a unique and finite solution to the IVP on the shortened
interval [tinit, tf,]. The existence of this local solution is guaranteed by the above corollary. Note that
the explosion in finite time is due to the fact that the function f is not globally Lipschitz continuous, so
Theorem 9.1 is not applicable. W

Discontinuities with Respect to Time

It is important to note that the above theorem and corollary can be extended to the case that there are
finitely many discontinuities of f with respect to ¢. In this case the ODE solution can only be defined
on each of the continuous time intervals separately, while the derivative of x is not defined at the time
points at which the discontinuities of f occur, at least not in the strong sense. But the transition from
one interval to the next can be determined by continuity of the state trajectory, i.e. we require that the
end state of one continuous initial value problem is the starting value of the next one.

The fact that unique solutions still exist in the case of discontinuities is important because, first,
many optimal control problems have discontinuous control trajectories u(t) in their solution, and, second,
many algorithms discretize the controls as piecewise constant functions which have jumps at the interval
boundaries. Fortunately, this does not cause difficulties for existence and uniqueness of the IVPs.

6 Chapter 1. Introduction

Linear Time Invariant (LTI) Systems

A special class of tremendous importance are the linear time invariant (LTI) systems. These are described
by an ODE of the form

&= Az + Bu (1.4)

with fixed matrices A € R"*" and B € R"=*"_ LTI systems are one of the principal interests
in the field of automatic control and a vast literature exists on LTI systems. Note that the function
f(z,u) = Ax+ Bu is Lipschitz continuous with respect to x with Lipschitz constant L = || A||, so that the
global solution to any initial value problem with a piecewise continuous control input can be guaranteed.
Many important notions such as controllability or stabilizability, and computational results such as
the step response or frequency response function can be defined in terms of the matrices A and B alone.
Note that in the field of linear system analysis and control, usually also output equations y = Cz are
present, where the outputs y may be the only physically relevant quantities. Only the linear operator
from u to y - the input-output-behaviour - is of interest, while the state x is just an intermediate quantity.
In that context, the states are not even unique, because different state space realizations of the same
input-output behavior exist. In this book, however, we are not interested in input-outputs-behaviours,
but assume that the state is the principal quantity of interest. Output equations are not part of the
models in this book. If one wants to make the connection to the LTT literature, one might set C' = 1.

Zero Order Hold and Solution Map

In the age of digital control, the inputs w are often generated by a computer and implemented at the
physical system as piecewise constant between two sampling instants. This is called zero order hold. The
grid size is typically constant, say of fixed length At > 0, so that the sampling instants are given by
ty = k- At. If our original model is a differentiable ODE model, but we have piecewise constant control
inputs with fixed values u(t) = ug wtih ux € R™ on each interval ¢ € [tg, tr41], we might want to regard
the transition from the state x(t;) to the state x(¢x+1) as a discrete time system. This is indeed possible,
as the ODE solution exists and is unique on the interval [tx, tx+1] for each initial value 2(t;) = Zint.

If the original ODE system is time-invariant, it is enough to regard one initial value problem with
constant control u(t) = Uconst

(t) = f(x(t), Uconst), t € [0,At], with z(0) = Tinit- (1.5)

The unique solution x : [0, At] — R™ to this problem is a function of both, the initial value i, and
the control uconst, S0 we might denote the solution by

SC(t, Linit uconst), for te [0, At] (16)

This map from (Zinit, Uconst) t0O the state trajectory is called the solution map. The final value of this
short trajectory piece, ©(At; Tinit, Uconst), 1s of major interest, as it is the point where the next sampling
interval starts. We might define the transition function fgis : R™ x R™ — R"™ by fais(@init, Uconst) =
(A Tinit, Uconst). This function allows us to define a discrete time system that uniquely describes the
evolution of the system state at the sampling instants tx:

w(tg1) = fais(z(tr), ur)- (1.7)
Solution Map of Linear Time Invariant Systems
Let us regard a simple and important example: for linear continuous time systems
i = Az + Bu

with initial value Zinit at tiniy = 0, and constant control input teonst, the solution map x(t; Zinit, Uconst)
is explicitly given as

t
Z(t; Tinit, Uconst) = €XP(AL)Tinit + / exp(A(t — 7)) BuconstdT,
0

1.2. Continuous Time Systems 7

where exp(A) is the matrix exponential. Tt is interesting to note that this map is well defined for all
times ¢ € R, as linear systems cannot explode. The corresponding discrete time system with sampling
time At is again a linear time invariant system, and is given by

fais(Th, uk) = Adisr + Baisuk (1.8)

with A
Agis = exp(AAt) and Bgs = / exp(A(At — 7)) Bdr. (1.9)
0

Sensitivities

In the context of optimal control, derivatives of the dynamic system simulation are needed for nearly all
numerical algorithms. Following Theorem 9.1 and Corollary 1.3 we know that the solution map to the
IVP (1.5) exists on an interval [0, A¢] and is unique under mild conditions even for general nonlinear
systems. But is it also differentiable with respect to the initial value and control input?

In order to discuss the issue of derivatives, which in the dynamic system context are often called
sensitivities, let us first ask what happens if we call the solution map with different inputs. For small per-
turbations of the values (Zinit, Uconst), we still have a unique solution x(¢; Zinit, Uconst) on the whole interval
t € [0,At]. Let us restrict ourselves to a neighborhood N of fixed values (Zinit, Uconst). For each fixed
t € [0, At], we can now regard the well defined and unique solution map z(t;-) : N — R"™ | (Zinit, Uconst) —
Z(t; Tinit, Uconst). A natural question to ask is if this map is differentiable. Fortunately, it is possible to
show that if f is m-times continuously differentiable with respect to both x and u, then the solution map
x(t;-), for each t € [0, At], is also m-times continuously differentiable with respect to (Zinit, Uconst)-

find citation for this

In the general nonlinear case, the solution map (t; Zinit, Uconst) can only be generated by a numerical
simulation routine. The computation of derivatives of this numerically generated map is a delicate issue
that we discuss in detail in the third part of the book. To mention already the main difficulty, note that
most numerical integration routines are adaptive, i.e., might choose to do different numbers of integration
steps for different IVPs. This renders the numerical approximation of the map x(t; Zinit, Uconst) typically
non-differentiable in the inputs Tinit, Uconst- Lhus, multiple calls of a black-box integrator and application
of finite differences might result in very wrong derivative approximations.

Numerical Integration Methods

A numerical simulation routine that approximates the solution map is often called an integrator. A simple
but very crude way to generate an approximation for z(t; Zinit, Uconst) for t € [0, At] is to perform a linear
extrapolation based on the time derivative & = f(x,u) at the initial time point:

-i'(tQ Tinit, Uconst) = Tinit + tf(xinita Uconst)a te [0, At] (1-10)

This is called one Fuler integration step. For very small At, this approximation becomes very good. In
fact, the error Z(At; Tinit, Uconst) — T(AL; Tinit, Uconst) 1S of second order in At. This motivated Leonhard
Euler to perform several steps of smaller size, and propose what is now called the FEuler integration
method. We subdivide the interval [0, At] into M subintervals each of length h = At/M, and perform M
such linear extrapolation steps consecutively, starting at o = Tinit:

SEjJrl ::ijJrhf(:ij,uconst),]:0,,M71 (111)

It can be proven that the Euler integration method is stable, i.e. that the propagation of local errors is
bounded with a constant that is independent of the step size h. Therefore, the approximation becomes
better and better when we decrease the step size h: since the consistency error in each step is of order
h?, and the total number of steps is of order At/h, the accumulated error in the final step is of order
hAt. As this is linear in the step size h, we say that the Euler method has the order one. Taking more
steps is more accurate, but also needs more computation time. One measure for the computational effort

8 Chapter 1. Introduction

of an integration method is the number of evaluations of f, which for the Euler method grows linearly
with the desired accuracy.

In practice, the Euler integrator is rarely competitive, because other methods exist that deliver
the desired accuracy levels at much lower computational cost. We discuss several numerical simulation
methods later, but present here already one of the most widespread integrators, the Runge-Kutta Method
of Order Four, which we will often abbreviate as RK4. One step of the RK4 method needs four evaluations
of f and stores the results in four intermediate quantities k; € R™», ¢ = 1,...,4. Like the Euler integration
method, the RK4 also generates a sequence of values Z;, j = 0,..., M, with 9 = zini¢. At Z;, and using
the constant control input uconst, one step of the RK4 method proceeds as follows:

ki = f(-i‘ja uconst) (1.12&)

. h
k2 - f(:cj + 5 kl; uconst) (112b)

. h
k3 = f(:cj + 5 k2; uconst) (112C)
k4 - f(jj + hk3; uconst) (112(1)

h

jj.,_l = .i'j + g(kl + 2ko + 2ks3 + k4) (1.126)

One step of RK4 is thus as expensive as four steps of the Euler method. But it can be shown that
the accuracy of the final approximation #; is of order h*At. In practice, this means that the RK4
method usually needs tremendously fewer function evaluations than the Euler method to obtain the
same accuracy level.

From here on, and throughout the first part of the book, we will leave the field of continuous time
systems, and directly assume that we control a discrete time system xgy1 = fais(zx, ur). Let us keep in
mind, however, that the transition map fqis(zg, ux) is usually not given as an explicit expression but can
instead be a relatively involved computer code with several intermediate quantities. In the exercises of
the first part of this book, we will usually discretize the occuring ODE systems by using only one Euler or
RK4 step per control interval, i.e. use M =1 and h = At. The RK4 step often gives already a sufficient
approximation at relatively low cost.

1.3 Discrete Time Systems

Let us now discuss in more detail the discrete time systems that are at the basis of the control problems
in Part IT of this book. In the general time-variant case, these systems are characterized by the dynamics

Th+1 :fk(zk,uk), kiO,l,...,N*l (113)

on a time horizon of length N, with N control input vectors ug, ..., uny—1 € R™ and (N +1) state vectors
2oy..., N € R,

If we know the initial state x¢ and the controls ug, ..., uny_1 we could recursively call the functions
fr in order to obtain all other states, z1,...,zy. We call this a forward simulation of the system
dynamics.

Definition 1.5 (Forward simulation). The forward simulation is the map

fsim . an-i-Nnu N R<N+1)nm

1.14
(xo;uo,ul,...,uN_l) — ($0,$1,$2,...,$N) ()

that is defined by solving Equation (1.13) recursively for all k =0,1,...,N — 1.

The inputs of the forward simulation routine are the initial value xy and the controls uy for k =
0,...,N —1. In many practical problems we can only choose the controls while the initial value is fixed.
Though this is a very natural assumption, it is not the only possible one. In optimization, we might have
very different requirements: We might, for example, have a free initial value that we want to choose in
an optimal way. Or we might have both a fixed initial state and a fixed terminal state that we want
to reach. We might also look for periodic sequences with zg = zy, but do not know xy beforehand.

1.3. Discrete Time Systems 9

All these desires on the initial and the terminal state can be expressed by suitable constraints. For the
purpose of this textbook it is important to note that the fundamental equation that is characterizing a
dynamic optimization problem are the system dynamics stated in Equation (1.13), but no initial value
constraint, which is optional.

Linear Time Invariant (LTI) Systems

As discussed already for the continuous time case, linear time invariant (LTT) systems are not only one of
the simplest possible dynamic system classes, but also have a rich and beautiful history. In the discrete
time case, they are determined by the system equation

ZTgp41 = Az + Bug, k=0,1,...,N —1. (1.15)

with fixed matrices A € R"*" and B € R"*"«_ An LTI system is stable if all eigenvalues of the
matrix A are in the unit disc of the complex plane, i.e. have a modulus smaller or equal to one, and
asymptotically stable if all moduli are strictly smaller than one. It is easy to show that the forward
simulation map for an LTI system on a horizon with length N is given by

o i)
X AZL'O + BUO
2
fsim(Tos w0, ..., un—1) = | P2 | = A%zo + ABuo + Buy
- N N-1 N—-1—k
TN Ao+ o A Buy,

In order to check controllability, due to linearity, one might ask the question if after N steps any terminal
state x can be reached from z¢y = 0 by a suitable choice of control inputs. Because of

Up
U1

xN:[AN_lB AN-2p ... B}
=Cn UN_1

this is possible if and only if the matrix €y € R *N"u has the rank n,. Increasing N can only increase
the rank, but one can show that the maximum possible rank is already reached for N = n,, so it is
enough to check if the so called controllability matriz C,, has the rank n,.

Affine Systems and Linearizations along Trajectories

An important generalization of linear systems are affine time-varying systems of the form
$k+1:Ak$k+Bkuk+Ck7 k=0,1,...,N — 1. (116)

These often appear as linearizations of nonlinear dynamic systems along a given reference trajectory. To
see this, let us regard a nonlinear dynamic system and some given reference trajectory values Zg, ..., Tn—1
as well as g, ...,un—1. Then the Taylor expansion of each function fj at the reference value (T, ux) is
given by

(Tht1 — Tht1) = %(fk7@k)($k —Ty) + %(m@@(w — k) + (fe(Tr, tr) — Trg1)

thus resulting in affine time-varying dynamics of the form (1.16). Note that even for a time-invariant
nonlinear system the linearized dynamics becomes time-variant due to the different linearization points
on the reference trajectory.

It is an important fact that the forward simulation map of an affine system (1.16) is again an affine
function of the initial value and the controls. More specifically, this affine map is for any N € N given
by:

N—-1
TN = (AN,1 . ~A0)$0 4+ Z (H;V:_k:—IAJ) (Bkuk =+ Ck) .
k=0

10 Chapter 1. Introduction

1.4 Optimization Problem Classes

Mathematical optimization refers to finding the best, or optimal solution among a set of possible decisions,
where optimality is defined with the help of an objective function. Some solution candidates are feasible,
others not, and it is assumed that feasibility of a solution candidate can be checked by evaluation of
some constraint functions that need for example be equal to zero. Like the field of dynamic systems, the
field of mathematical optimization comprises many different problem classes, which we will briefly try to
classify in this section.

Historically, optimization has been identified with programming, where a program was understood
as a deterministic plan, e.g., in logistics. For this reason, many of the optimization problem classes
have been given names that contain the words program or programming. In this book we will often use
these names and their abbreviations, because they are still widely used. Thus, we use e.g. the term
linear program (LP) as a synonym for a linear optimization problem. It is interesting to note that the
major society for mathematical optimization, which had for decades the name Mathematical Programming
Society (MPS), changed its name in 2011 to Mathematical Optimization Society (MOS), while it decided
not to change the name of its major journal, that still is called Mathematical Programming. In this book
we chose a similarly pragmatic approach to the naming conventions.

Finite vs Infinite Dimensional Optimization

An important divididing line in the field of optimization regards the dimension of the space in which the
decision variable, say z, is chosen. If can be represented by finitely many numbers, e.g. z € R” with
some n € N, we speak of a finite dimensional optimization problem, otherwise, of an infinite dimensional
optimization problem. The second might also be referred to as optimization in function spaces. Discrete
time optimal control problems fall into the first, continuous time optimal control problems into the second
class.

Besides the dimension of the decision variable, also the dimension of the constraint functions can
be finite or infinite. If an infinite number of inequality constraints is present while the decision variable
is finite dimensional, one speaks of a semi-infinite optimization problem. This class naturally arises in
the context of robust optimization, where one wants to find the best choice of the decision variable that
satisfies the constraints for all possible values of an unknown but bounded disturbance.

Continuous vs Integer Optimization

A second dividing line concerns the type of decision variables. These can be either continuous, like for
example real valued vectors x € R™, or any other elements of a smooth manifold. On the other hand, the
decision variable can be discrete, or integer valued, i.e. we have z € Z™, or, when a set of binary choices
has to be made, z € {0,1}". In this case one often also speaks of combinatorial optimization. If an
optimization problem has both, continuous and integer variables, it is called a mixed-integer optimization
problem.

An important class of continuous optimization problems are the so called nonlinear programs (NLP).
They can be stated in the form

minimize f(z) (1.17a)

xr € R"”

subject to g(z) =0, (1.17b)
h(z) <0, (1.17¢)

where f : R" — R, g : R® — R" and h : R® — R™ are assumed to be at least once continuously
differentiable. Note that we use function and variable names such as f and z with a very different
meaning than before in the context of dynamic systems. In Part I we discuss algorithms to solve this
kind of optimization problems, and the discrete time optimal control problems treated in Part II can also
be regarded as a specially structured form of NLPs. Two important subclasses of NLPs are the linear
programs (LP), which have affine problem functions f, g, h, and the quadratic programs (QP), which have
affine constraint functions g, h and a more general linear quadratic objective f(z) = cT'x + %xTH x with
a symmetric matrix H € R™*"™.

1.5. Overview and Notation 11

A large class of mixed-integer optimization problems are the so called mized integer nonlinear
programs (MINLP), which can be stated as

minimize f(x, z) (1.18a)
z€R™
z€Z™
subject to g(z,z) =0, (1.18b)
h(z,z) < (1.18¢)

Among the MINLPs, an important special case arises if the problem functions f, g, h are affine in both
variables, 2 and z, which is called a mized integer linear program (MILP). If the objective is allowed
to be linear quadratic, one speaks of a mized integer quadratic program (MIQP). If in an MILP only
integer variables are present, one usually just calls it an integer program (IP). The field of (linear) integer
programming is huge and has powerful algorithms available. Most problems in logistics fall into this
class, a famous example being the travelling salesman problem, which concerns the shortest closed path
that one can travel through a given number of towns, visiting each town exactly once.

An interesting class of mixed-integer optimization problems arises in the context of optimal control
of hybrid dynamic systems, which in the discrete time case can be regarded a special case of MINLP. In
continuous time, we enter the field of infinite dimensional mixed-integer optimization, often also called
Mized-integer optimal control problems (MIOCP).

Convex vs Nonconvex Optimization

Arguably the most important dividing line in the world of optimization is between convex and nonconvex
optimization problems. Convex optimization problems are a subclass of the continuous optimization
problems and arise if the objective function is a convex function and the set of feasible points a convex
set. In this case one can show that any local solution, i.e. values for the decision variables that lead to the
best possible objective value in a neighborhood, is also a global solution, i.e. has the best possible objective
value among all feasible points. Practically very important is the fact that convexity of a function or a
set can be checked just by checking convexity of its building blocks and if they are constructed in a way
that preserves convexity.

Several important subclasses of NLPs are convex, such as LPs. Also QPs are convex if they have a
convex objective f. Another example are Quadratically Constrained Quadratic Programs (QCQP) which
have quadratic inequalities and whose feasible set is the intersection of ellipsoids. Some other optimization
problems are convex but do not form part of the NLP family. Two widely used classes are second-order
cone programs (SOCP) and semi-definite programs (SDP) which have linear objective functions but more
involved convex feasible sets: for SOCP, it is the set of vectors which have one component that is larger
than the Euclidean norm of all the other components and which it is called the second order cone, and
for SDP it is the set of symmetric matrices that are positive semi-definite, i.e. have all eigenvalues larger
than zero. SDPs are often used when designing linear feedback control laws. Also infinite dimensional
optimization problems such as optimal control problems in continuous time can be convex under fortunate
circumstances.

In this context, it is interesting to note that a sufficient condition for convexity of an optimal control
problem is that the underlying dynamic system is linear and that the objective and constraints are convex
in controls and states. On the other hand, optimal control problems with underlying nonlinear dynamic
systems, which are the focus of this book, are usually nonconvex.

Optimization problems with integer variables can never be convex due to the nonconvexity of the
set of integers. However, it is of great algorithmic advantage if mixed-integer problems have a convex
substructure in the sense that convex problems arise when the integer variables are allowed to also take
real values. These so called convez relazations are at the basis of nearly all competitive algorithms for
mixed-integer optimization. For example, linear integer programs can be solved very efficiently because
their convex relaxations are just linear programs, which are convex and can be solved very efficiently.

1.5 Overview and Notation

As said before, the book is divided into four major parts.

12 Chapter 1. Introduction

e Numerical Optimization
e Discrete Time Optimal Control
e Continuous Time Optimal Control

e Nonlinear Model Predictive Control

Notation

Within this book we use R for the set of real numbers, Ry for the non-negative ones and R, for the
positive ones, Z for the set of integers, and N for the set of natural numbers including zero, i.e. we identify
N = Z,. The set of real-valued vectors of dimension n is denoted by R™, and R™*™ denotes the set of
matrices with n rows and m columns. By default, all vectors are assumed to be column vectors, i.e. we
identify R™ = R"*!, We usually use square brackets when presenting vectors and matrices elementwise.
Because will often deal with concatenations of several vectors, say x € R™ and y € R™, yielding a vector
in R"™™ we abbreviate this concatenation sometimes as (z,%) in the text, instead of the correct but
more clumsy equivalent notations [xT, yT]—r or
)
e

Square and round brackets are also used in a very different context, namely for intervals in R, where for
two real numbers a < b the expression [a,b] C R denotes the closed interval containing both boundaries
a and b, while an open boundary is denoted by a round bracket, e.g. (a,b) denotes the open interval and
[a,b) the half open interval containing a but not b.

When dealing with norms of vectors z € R”, we denote by ||z|| an arbitrary norm, and by ||z||2
the Euclidean norm, i.e. we have ||z|2 = 2"2. We denote a weighted Euclidean norm with a positive
definite weighting matrix @ € R™*" by [lz[|q, i.e. we have ||z|3, = 2" Qz. The L, and Lo, norms are
defined by ||z|l; = >°1 ; |@;] and ||#| s = max{|z1|,...,|z,|}. Matrix norms are the induced operator
norms, if not stated otherwise, and the Frobenius norm ||Al|r of a matrix A € R"*™ is defined by
[A||% = trace(AAT) = 370, 370, AiAy.

When we deal with derivatives of functions f with several real inputs and several real outputs, i.e.
functions f : R” — R™, z — f(x), we define the Jacobian matrix %(m) as a matrix in R™*" following
standard conventions. For scalar functions with m = 1, we denote the gradient vector as V f(z) € R",
a column vector, also following standard conventions. Slightly less standard, we generalize the gradient
symbol to all functions f : R™ — R™ even with m > 1, i.e. we generally define in this book

_of

T nxm
—az(x) e R™™,

Vi(x)
Using this notation, the first order Taylor series is e.g. written as

f(2) = f(@) + V(@) (¢ - 2)) + oz - z])

The second derivative, or Hessian matrix will only be defined for scalar functions f : R™ — R and be
denoted by V2 f(z).

For square symmetric matrices of dimension n we sometimes use the symbol S, i.e. S, = {A €
R™*"|A = AT}. For any symmetric matrix A € S,, we write A%=0 if it is a positive semi-definite matrix,
i.e. all its eigenvalues are larger or equal to zero, and A>0 if it is positive definite, i.e. all its eigenvalues
are positive. This notation is also used for matriz inequalities that allow us to compare two symmetric
matrices A, B € S,,, where we define for example A=B by A — B:=0.

When using logical symbols, A = B is used when a proposition A implies a proposition B. In words
the same is expressed by “If A then B”. We write A < B for “A if and only if B”, and we sometimes
shorten this to “A iff B”, with a double “f”, following standard practice.

Part |

Numerical Optimization

13

Chapter 2

Nonlinear Optimization

The great watershed in optimization is not between linearity and nonlin-
earity, but converity and nonconvexity.

— R. Tyrrell Rockafellar

In this first part of the book we discuss several concepts from the field of mathematical optimization
that are important for optimal control. Our focus is on quickly arriving at a point where the specific
optimization methods for dynamic systems can be treated, while the same material can be found in much
greater detail in many excellent textbooks on numerical optimization such as [63].

The reason for keeping this part on optimization self-contained and without explicit reference to
optimal control is that this allows us to separate between the general concepts of optimization and
those specific to optimal control. For this reason, we use in this part the language and notation that is
customary in mathematical optimization. The optimization problem with which we are concerned in this
part is the standard Nonlinear Program (NLP) that was already stated in the introduction:

minimize f(x) (2.1a)

zeR"
subject to g(z) =0, (2.1b)
h(z) <0, (2.1c)

where f: R" - R, g: R" — R™ and h : R™ — R™ are assumed to be twice continuously differentiable.
Function f is called the objective function, function g is the vector of equality constraints, and h the
vector of inequality constraints. We start with some fundamental definitions. First, we collect all points
that satisfy the constraints in one set.

Definition 2.1 (Feasible set). The feasible set Q) is the set
Q:={xeR"|g(x) =0, h(z) <0}.

The points of interest in optimization are those feasible points that minimize the objective, and
they come in two different variants.

Definition 2.2 (Global minimum). The point z* € R™ is a global minimizer if and only if (iff)
x* €Q andVax € Q: f(x) > f(z*). The value f(x*) is the global minimum.

Unfortunately, the global minimum is usually difficult to find, and most algorithms allow us to only
find local minimizers, and to verify optimality only locally.

Definition 2.3 (Local minimum). The point z* € R™ is a local minimizer iff z* € Q and there exists
a neighborhood N of x* (e.g., an open ball around x*) so that Vo € QNN : f(x) > f(a*). The value

f(z*) is a local minimum.

15

16 Chapter 2. Nonlinear Optimization

In order to be able to state the optimality conditions that allow us to check if a candidate point z*
is a local minimizer or not, we need to describe the feasible set in the neighborhood of xz*. It turns out
that not all inequality constraints need to be considered locally, but only the active ones.

Definition 2.4 (Active Constraints and Active Set). An inequality constraint h;(z) < 0 is called
active at * € Q iff hi(x*) = 0 and otherwise inactive. The index set A(x*) C {1,...,np} of active
inequality constraint indices is called the "active set”.

Often, the name active set also comprises all equality constraint indices, as equalities could be
considered to be always active.

Problem (2.1) is very generic. In Section 2.1 we review some special cases, which still yield large
classes of optimization problems. In order to choose the right algorithm for a practical problem, we should
know how to classify it and which mathematical structures can be exploited. Replacing an inadequate
algorithm by a suitable one can reduce solution times by orders of magnitude. E.g., an important
structure is convexity. It allows us to to find global minima by searching for local minima only.

For the general case we review the first and second order conditions of optimality in Sections 2.2
and 2.3, respectively.

2.1 Important Special Classes
Linear Optimization

An obvious special case occurs when the functions f, g, and h in (2.1) are linear, resulting in a linear
optimization problem (or Linear Program, LP)

minimize ¢’ (2.2a)

r eR"
subject to Az —b =0, (2.2b)
Cz—d <0. (2.2¢)

Here, the problem data are ¢ € R", A € R"*™ b € R" C € R"*" and d € R"".

It is easy to show that one optimal solution of any LP — if the LP does have a solution and is
not unbounded — has to be a vertex of the polytope of feasible points. Vertices can be represented and
calculated by means of basis solution vectors, with a basis of active inequality constraints. Thus, there
are only finitely many vertices, giving rise to Simplex algorithms that compare all possible solutions in
a clever way. However, naturally also the optimality conditions of Section 2.2 are valid and can be used
for algorithms, in particular interior point methods.

Quadratic Optimization

If in the general NLP formulation (2.1) the constraints g, h are affine, and the objective is a linear-
quadratic function, we call the resulting problem a Quadratic Optimization Problem or Quadratic Pro-
gram (QP). A general QP can be formulated as follows.

1
minimize ¢’z + 2’ Bx (2.3a)
e R”
subject to Ax —b =0, (2.3b)
Cx—d<0. (2.3¢)

Here, the problem data are ¢ € R"; A € R™*" b € R" C € R"*" d € R" as well as the “Hessian
matrix” B € R" ", Its name stems from the fact that V2 f(z) = B for f(z) = ¢’z + 227 Bz.

The eigenvalues of B decide on convexity or non-convexity of a QP, i.e., the possibility to solve it
in polynomial time to global optimality, or not. If B=0 we speak of a convex QP, and if B0 we speak
of a strictly convex QP. The latter class has the property that it always has unique minimizers.

2.1. Important Special Classes 17

Convex Optimization

Roughly speaking, a set is convex, if all connecting lines lie inside the set:

Definition 2.5 (Convex Set). A set Q@ C R™ is convex if

Vo,y € Q,t€[0,1]: x+t(y —x) € Q. (2.4)

A function is convex, if all secants are above the graph:

Definition 2.6 (Convex Function). A function f:Q — R is convez, if Q is conver and if

Va,y € Dt € [0,1]: f(z+t(y —) < f(z) +i(f(y) — f(x)). (2.5)

Note that this definition is equivalent to saying that the Epigraph of f, i.e., the set {(z,s) €
R™ x Rlz € , s > f(x)}, is a convex set.

Definition 2.7 (Concave Function). A function f:Q — R is called “concave” if (—f) is convex.

Note that the feasible set 2 of an optimization problem (2.1) is convex if the function ¢ is affine
and the functions h; are convex, as supported by the following theorem.

Theorem 2.8 (Convexity of Sublevel Sets). The sublevel set {x € Q | h(xz) < 0} of a convex function
h:Q — R is conver.

Definition 2.9 (Convex Optimization Problem). An optimization problem with convex feasible set
Q and conver objective function f : Q — R is called a convex optimization problem.

Theorem 2.10 (Local Implies Global Optimality for Convex Problems). For a convex opti-
mization problem, every local minimum s also a global one.

We leave the proofs of Theorems 2.8 and 2.10 as an exercise.

There exists a whole algebra of operations that preserve convexity of functions and sets, which is
excellently explained in the text books on convex optimization [8, 22]. Here we only mention an important
fact that is related to the positive curvature of a function. Before we proceed, we introduce an important
definition often used in this book.

Definition 2.11 (Generalized Inequality for Symmetric Matrices). We write for a symmetric
matric B = BT, B € R™™ that “B=0" if and only if B is positive semi-definite i.e., if Vz € R" :
2T Bz >0, or, equivalently, if all (real) eigenvalues of the symmetric matriz B are non-negative:

B0 <= mineig (B) > 0.

We write for two such symmetric matrices that “A>=B” iff A — B3=0, and “A<B” iff B A. We say
B=0 iff B is positive definite, i.e., if V2 € R™\ {0} : 27 Bz > 0, or, equivalently, if all eigenvalues of B
are positive

B>0 <= mineig(B) > 0.

Theorem 2.12 (Convexity for C? Functions). Assume that f : Q — R is twice continuously
differentiable and €2 convexr and open. Then [is convex if and only if for all x € € the Hessian is
positive semi-definite, i.e.,

VreQ: V2f(x)=0. (2.6)

Again, we leave the proof as an exercise. As an example, the quadratic objective function f(z) =
Tz + 22T Bz of (2.3) is convex if and only if B30, because Vo € R" : V2 f(z) = B.

18 Chapter 2. Nonlinear Optimization

2.2 First Order Optimality Conditions

An important question in continuous optimization is if a feasible point x* €) satisfies necessary first
order optimality conditions. If it does not satisfy these conditions, * cannot be a local minimizer. If
it does satisfy these conditions, it is a hot candidate for a local minimizer. If the problem is convex,
these conditions are even sufficient to guarantee that it is a global optimizer. Thus, most algorithms
for nonlinear optimization search for such points. The first order condition can only be formulated if
a technical “constraint qualification” is satisfied, which in its simplest and numerically most attractive
variant coms in the following form.

Definition 2.13 (LICQ). The linear independence constraint qualification (LICQ) holds at x* € Q iff
all vectors Vg;(x*) fori e {1,...,ng} and Vh;(z*) for i € A(z*) are linearly independent.

To give further meaning to the LICQ condition, let us combine all active inequalities with all
equalities in a map ¢ defined by stacking all functions on top of each other in a colum vector as follows:

. (z)

LICQ is then equivalent to full row rank of the Jacobian matrix % (x*).

The Karush-Kuhn-Tucker Optimality Conditions

This condition allows us to formulate the famous KKT conditions that are due to Karush [51] and Kuhn
and Tucker [54].

Theorem 2.14 (KKT Conditions). If x* is a local minimizer of the NLP (2.1) and LICQ holds at
x* then there exist so called multiplier vectors A € R™ and p € R™ with

Vi(@*)+ Vg(x™)N\ + Vh(z*)™ = (2.8a)
gz*) =0 (2.8b)

h(z*) <0 (2.8¢)

W >0 (2.8d)

wihi(z*) =0, i=1,...,np. (2.8¢)

Regarding the notation used in the first line above, please observe that in this script we use the
gradient symbol V also for functions g, h with multiple outputs, not only for scalar functions like f. While
V f is a column vector, in Vg we collect the gradient vectors of all output components in a matrix which
is the transpose of the Jacobian, i.e., Vg(z) := %(m)T. Note: The KKT conditions are the First order
necessary conditions for optimality (FONC) for constrained optimization, and are thus the equivalent to
V f(z*) = 0 in unconstrained optimization. In the special case of convex problems, the KKT conditions
are not only necessary for a local minimizer, but even sufficient for a global minimizer. In fact, the

following extremely important statement holds.
Theorem 2.15. Regard a conver NLP and a point x* at which LICQ holds. Then:
z* is a global minimizer <= 3\, u so that the KKT conditions hold.
The Lagrangian Function
Definition 2.16 (Lagrangian Function). We define the so called “Lagrangian function” to be

L(x, A p) = f@) + A g(x) + ph(z). (2.9)

Here, we have used again the so called “Lagrange multipliers” or “dual variables” A € R™s and
1 € R™ . The Lagrangian function plays a crucial role in both convex and general nonlinear optimization,

2.2. First Order Optimality Conditions 19

not only as a practical shorthand within the KKT conditions: using the definition of the Lagrangian, we
have (2.8a) < V,L(z*, *, u*) = 0.

Remark 1: In the absence of inequalities, the KKT conditions simplify to V,£L(xz,\) =0, g(x) =0,
a formulation that is due to Lagrange and was much earlier known than the KKT conditions.

Remark 2: The KKT conditions require the inequality multipliers p to be positive, u > 0, while
the sign of the equality multipliers A is arbitrary. An interesting observation is that for a convex problem
with f and all h; convex and g affine, and for p > 0, the Lagrangian function is a convex function in z.
This often allows us to explicitly find the unconstrained minimum of the Lagrangian for any given A\ and
i > 0, which is called the Lagrange dual function, and which can be shown to be an underestimator of
the minimum. Maximizing this underestimator over all A and p > 0 leads to the concepts of weak and
strong duality.

Complementarity

The last three KKT conditions (2.8¢)-(2.8e) are called the complementarity conditions. For each index
i, they define an L-shaped set in the (h;, pt;) space. This set is not a smooth manifold but has a non-
differentiability at the origin, i.e., if h;(z*) = 0 and also pf = 0. This case is called a weakly active
constraint. Often we want to exclude this case. On the other hand, an active constraint with p; > 0 is
called strictly active.

Definition 2.17. Regard a KKT point (x*,*, u*). We say that strict complementarity holds at this
KKT point iff all active constraints are strictly active.

Strict complementarity is a favourable condition because, together with a second order condition,
it implies that the active set is stable against small perturbations. It also makes many theorems easier
to formulate and to prove, and is also required to prove convergence of some numerical methods.

2.2.1 Interpretation of the KKT conditions

It is extremely useful to equip ourselves with an interpretation of the KKT conditions (2.8). We present
here the physical interpretation, where we see the KKT conditions as a force balance between the objective
function and the constraints. It is easiest to construct this interpretation on a two-dimensional problem.
The objective function can then be seen as a landscape with hills and depressions, and the optimal
solution can be seen as a "ball” rolling towards the lowest point in that landscape. The force exerted by
the cost function on the solution corresponds to the slope of the cost function, i.e.:

=V f(z") (2.10)

In this picture, equality constraints can be seen as a "rail” (or as a surface in dimensions higher
than two) along which the ”ball” is forced to move. Inequality constraints can be seen as ”barriers” that
divide the landscape and contain the ”ball” in a restrained domain. The constraints then exert forces on
the ball, maintaining it on the rail and on the correct side of the barriers.

Equality constraints, the rail in our landscape, are described by the manifold g(z) = 0. The "ball”
is free to move along the rail but cannot leave it. The rail then exerts a force on the ”ball” only in
directions orthogonal to the rail. Such directions are readily described by Vg(x). The KKT condition
(2.8a) for pure equality constraints reads as:

V(@) +Vg@) =0 (2.11)

and prescribes that at the solution a*, *, the force exerted by the cost function —V f (z*) and the force
exerted by the rail i.e. —Vg (2*) * are in balance. The rail will exert whatever force (in the orthogonal
direction) is required to maintain the "ball” on the rail, hence the role of the Lagrange multipliers A* is
to adjust the force of the rail in order to balance out the gradient of the cost function. This interpretation
is illustrated in Figure 2.1.

Similarly, inequality constraints, the barriers in our landscape, are described by the manifold h(x) <
0, and can exert a force on the "ball” only in directions orthogonal to the barrier, i.e. Vh(x), and only
towards the interior of the feasible domain. The sign constraint (2.8b) on the Lagrange multipliers

20 Chapter 2. Nonlinear Optimization

p=—0.63446 1= 0.14645

N

X2
)

Vg (z") X \

Z1 1

Figure 2.1. [llustration of the KKT conditions for an equality-constrained NLP. The ”slope”
of the cost function —V f (x) pushes the "ball” towards its lowest point. The "ball” is maintained on the
"rail”, i.e. the equality constraints g (x) = 0, via the force =V g (x) A, but is free to move along the rail.
At the solution x*, *, the forces exerted by the rail and the cost function even out.

1 associated to the inequality constraints is then needed to ensure that the barrier can only ”push”
the "ball” into the feasible domain, but cannot force it to remain in contact with the barrier. The
complementarity slackness condition (2.8e) essentially means that the barrier can exert a force on the
"ball” if and only if the ”ball” is in contact with the barrier. This interpretation is illustrated in Figure
2.2.

Finally the LICQ condition also has a physical interpretation. In the two-dimensional case, when
the LICQ fails, some constraints exert forces that are collinear at the solution, resulting in infinite forces.
This interpretation is illustrated in Figure 2.3.

2.3 Second Order Optimality Conditions

In case of strict complementarity at a KKT point (z*, *, u*), the optimization problem can locally be
regarded to be a problem with equality constraints only, namely those within the function g defined in
Equation (2.7). Though more complex second order conditions can be formulated that are applicable
even when strict complementarity does not hold, we restrict ourselves here to this special case.

Theorem 2.18 (Second Order Optimality Conditions). Let us regard a point x* at which LICQ
holds together with multipliers *, u* so that the KKT conditions (2.8a)-(2.8¢) are satisfied and let strict
complementarity hold. Regard a basis matriz Z € R"*("="3) of the null space of %(z*) € R™*™ e,
Z has full column rank and %(x*)Z =0.

Then the following two statements hold:

(a) If * is a local minimizer, then ZTNV2L(x*, *, u*) Z3=0.
(Second Order Necessary Condition, short : SONC)

(b) If ZTNV2L(x* *, u*)Z =0, then x* is a local minimizer.
This minimizer is unique in its neighborhood, i.e., a strict local minimizer, and stable against small
differentiable perturbations of the problem data. (Second Order Sufficient Condition, short: SOSC)

The matrix V2L(x*, *, u*) plays an important role in optimization algorithms and is called the
Hessian of the Lagrangian, while its projection on the null space of the Jacobian, ZT V2L (z*, *, u*)Z,
is called the reduced Hessian.

2.3. Second Order Optimality Conditions 21

1= —0.63446

T2

T

Figure 2.2. [llustration of the KKT conditions for an inequality-constrained NLP. The "slope”
of the cost function —V f (x) pushes the solution towards its lowest point. The solution contained by the
“barrier”, i.e. the inequality constraints h(x) < 0 to remain within the feasible domain via the force
—Vh(x) pu, but is free to move along the barrier and towards the interior of the feasible domain. At
the solution x*, u*, the forces exerted by the barrier and the cost function even out. If the solution is
in contact with the barrier, then the force is mon-zero and pushes towards the interior of the feasible
domain, i.e. h(z*) =0, u > 0 (left graph). Otherwise, the barrier exerts no force on the solution, i.e.
h(z*) <0, u =20 (right graph).

)

Figure 2.3. Failure of the LICQ condition. The optimal solution is not a KKT point. In this
case, the forces exerted by the constraints hq(x) and ha(x) are collinear, and cannot balance the slope of
the cost function —V f(x), even though the constraints prevent the solution from moving further toward
the minimum of the cost function.

22 Chapter 2. Nonlinear Optimization

Quadratic Problems with Equality Constraints

To illustrate the above optimality conditions, let us regard a QP with equality constraints only.

1
minimize ¢l z + =z? Bz (2.12a)
r eR” 2
subject to Az +b=0. (2.12b)

We assume that A has full row rank i.e., LICQ holds. The Lagrangian is £(z,\) = "2 + 27 Bz +
AT(Az +b) and the KKT conditions have the explicit form

¢ + Bx+ ATX= 0 (2.13a)
b+ Ax = 0. (2.13b)

This is a linear equation system in the variable (2, \) and can be solved if the so called KKT matriz

B AT

A 0
is invertible. In order to assess if the unique solution (x*, A*) of this linear system is a minimizer, we
need first to construct a basis Z of the null space of A, e.g., by a full QR factorization of AT = QR with
Q = (Y|Z) square orthonormal and R = (RT]0)T. Then we can check if the reduced Hessian matrix
ZTBZ is positive semidefinite. If it is not, the objective function has negative curvature in at least one

of the feasible directions and z* cannot be a minimizer. If on the other hand Z7 BZ>0 then z* is a strict
local minimizer. Due to convexity this would also be the global solution of the QP.

Invertibility of the KKT Matrix and Stability under Perturbations

An important fact is the following. If the second order sufficient conditions for optimality of Theorem 2.18
(b) hold, then it can be shown that the KKT-matrix

* * g
Viﬂgﬂf A ut) gt (a)T
7 (€7)
is invertible. This implies that the solution is stable against perturbations. To see why, let us regard a
perturbed variant of the optimization problem (2.1)

minimize f(x) + 5?36 (2.14a)

reR"
subject to g(z) + d, =0, (2.14b)
h(z) + op, <0, (2.14c¢)

with small vectors d¢, d4, 05 of appropriate dimensions that we summarize as 6 = (¢, d4,95). If a solution
exists for § = 0, the question arises if a solution exists also for small § # 0, and how this solution depends
on the perturbation ¢. This is is answered by the following theorem.

Theorem 2.19 (SOSC implies Stability of Solutions). Regard the family of perturbed optimization
problems (2.14) and assume that for 6 = 0 exists a local solution (x*(0), A*(0), n*(0)) that satisfies LICQ,
the KKT condition, strict complementarity, and the second order sufficient condition of Theorem 2.18
(b). Then there exists an € > 0 so that for all ||| < € exists a unique local solution (z*(8), *(5), u*(9))
that depends differentiably on 6. This local solution has the same active set as the nominal one, i.e.,
its inactive constraint multipliers remain zero and the active constraint multipliers remain positive. The
solution does not depend on the inactive constraint perturbations. If g is the combined vector of equalities
and active inequalities, and X and 8, the corresponding vectors of multipliers and constraint perturbations,
then the deriwative of the solution (z*(8), *(8)) with respect to (81,02) is given by

.59 60

i (2.15)

_ [Viﬁ(w*, Apt) g’
0=0

(@
%)

2.3. Second Order Optimality Conditions 23

This differentiability formula follows from differentiation of the necessary optimality conditions of
the parametrized optimization problems with respect to (1, d2)

Vf@w®)+g%uwTX+51:o (2.16)

Gz*(0)) +d2=0 (2.17)

Invertibility of the KKT matrix and stability of the solution under perturbations are very useful facts for
the applicability of Newton-type optimization methods that are discussed in the next chapter.

Software: An excellent tool to formulate and solve convex optimization problems in a MATLAB envi-
ronment is CVX, which is available as open-source code and easy to install.

Software for solving a QP Problem: MATLAB: quadprog. Commercial: CPLEX, MOSEK. Open-
source: CVX, qpOASES.

For anyone not really familiar with the concepts of nonlinear optimization that are only very briefly
outlined here, it is highly recommended to have a look at the excellent Springer text book “Numerical
Optimization” by Jorge Nocedal and Steve Wright [63]. Who likes to know more about convex optimiza-
tion than the much too brief outline given in this script is recommended to have a look at the equally
excellent Cambridge University Press text book “Convex Optimization” by Stephen Boyd and Lieven
Vandenberghe [22], whose PDF is freely available.

24 Chapter 2. Nonlinear Optimization

2.4 Least-Squares and Parameter Estimation Problems

A common source of optimization problems are least-squares problems, which often arise from parameter
estimation tasks. Let us in this section discuss how these problems are formulated, starting with linear
least-squares problems and then going to nonlinear ones.

Unconstrained linear least-squares
For a start, let us first consider the following linear model

Aw =y (2.18)

that aims at explaining the set of measured data y™°* € R™ via the vector of parameters w € R™ i.e.
one aims at having

Aw = ™o, (2.19)

In this context, matrix A € R™v*"™» gerves as a set of input data, and provides the model structure.

For a redundant set of measurements y™*, i.e. for n, > n,, (2.18) is over-determined and typically
does not have a solution. In this situation, matrix A has more rows than columns, and is not invertible.
This issue is addressed via solving a fitting problem instead of solving the original problem (2.18). Fitting
provides a vector of parameters @ that minimises the fitting error or residual in system (2.18), defined
as

e=Aw — y™m™ (2.20)

The vector of parameter w is then determined by means of the following optimisation problem:
1
w= argmin—HAw—ymeaSH?Q (2.21)
w2
where the symmetric positive-definite matrix) is an ad-hoc weighting matriz.

Example 2.20 Let us consider the problem of fitting a line of equation z = wijx + wy to a set of
measured pairs of points {xy, z;} for k = 1,..., N. We formulate the estimation of wy, we as a least-
squares problem:

N
1
ngnz5 (Wi + wy —) (2.22)
k=1
which can be put in the form (2.21) using:
X1 1 Z1
_ . _ | w»n meas __ .
A= : , w—{U}Q], Y = : (2.23)
TN 1 ZN

Solution to the unconstrained least-squares problem

Problem (2.21) is solved by finding a stationary point of its cost function, i.e. a vector w that satisfies:

Vw%HAw — "G = ATQ (Aw — y™) = 0. (2.24)
The optimal vector of parameter w then reads as:
W= (ATQA) ™ AT Qyme. (2.25)
In the special case @ = I, one can recognise that w is obtained via the pseudo-inverse of matrix A, i.e.
= (ATA)TTAT ymens, (2.26)
T

Remark: The size of matrix AT A is n, X n,. For a very large number of parameters w, i.e. for
N very large, the factorisation of the possibly dense matrix AT A can be challenging.

2.4. Least-Squares and Parameter Estimation Problems 25

Moments of the parameter estimation

Let us assume here that the fitting error e of the linear model (2.18) results from a zero-mean normally
distributed additive measurement noise, i.e.

Yy = Awo +n (2.27)

where wy is the actual vector of parameters, and n ~ N (0,%,). We want to understand the impact of
the measurement noise n on the resulting estimated parameters w by computing its two first moments
(expected value and covariance). It should be observed here that since the noise n is Gaussian and
since the least-squares solution (2.25) is a linear map applied to the measurements y™°*, the resulting
parameter estimation w is also following a Gaussian distribution, i.e.:

W~ N (E {0}, Ss) (2.28)

where E {w} and ¥ are the expected value and covariance of the estimation w. The expected value
E {w} can be easily computed:

E{d} = E{(ATQA)f1 ATQyme“} =
(ATQA) ' ATQE {Awo + n} = (ATQA) ™ ATQAw, = wy (2.29)

where we have used the fact that E {n} = 0. It follows that the parameter estimation obtained via solving
the fitting problem (2.21) is unbiased, i.e. E{w} = wy. The covariance of the parameter estimation then
reads as:

Yo = E {(—wo)(w —wo) " } (2.30)

Let us define ATQ = (ATQA)f1 ATQ. We then have o = Azgy = ATQ(AwO + n) and because ATQA =1,
we have the following identity:
W — wy = ATQn

such that we get

S = ALE {nn} (AE)T , (2.31)

and defining ¥, = F {nn—r}, we finally have:
So=(ATQA) ATQR,QA(ATQA) . (2.32)
Observe that for the specific choice
Q=x," (2.33)
the covariance of the parameter estimation reduces to:
S = (ATQA) . (2.34)

We will see in the next two sections that the choice of weighting matrix (2.33) can be interpreted as
optimal in two different ways.

The least-squares problem is a maximum likelihood estimator

Let us consider an alternative view of deciding the best parameter estimation w from a set of measure-
ments y™*. Instead of the fitting problem (2.21), we will consider finding the value of w that maximises
the likelihood of obtaining the observed measurements y™<**. Since w and y™*® are continuous variables,
we frame this question in terms of probability densities. We formulate the maximum likelihood problem
as follows:

w = argmax [(y™M°*|w) (2.35)

26 Chapter 2. Nonlinear Optimization

where f (y™%|w) is the conditional probability distribution of y™s, for a given parameter w. A simple

interpretation of (2.35) is: what is the value that the parameter w should have in order to make the
probability density of observing y™¢*® maximal ?
From (2.27) and for a given w, it is clear that y™* follows a normal distribution of the form:

Y ~ N (Aw, X)), (2.36)
hence
f (™ w) = exp {— (Aw — ymeas)T Yo (Aw — ymeas)} - const (2.37)
We then reformulate the optimisation problem (2.35) as follows, using the monotonicity of the logarithm:
= argmax f (4" |w) = argmin —log {f (™)} =

arg H}},n (Aw — ymeasy T Yo (Aw — y™mes) (2.38)
It follows that problem (2.35) delivers the same solution @ as the least-squares problem (2.21) with the
choice of weight (2.33). Hence the least-squares problem with the choice of weight (2.33) is a maximum-

likelihood estimator.

The least-squares problem minimises the estimation covariance

In this section, we show that the choice of weight (2.33) is optimal in the sense that it minimises the
trace of the covariance of the parameter estimation ¥, i.e. it minimises the uncertainty of the estimated
parameter.

The trace operator, here denoted as trace (.), sums the elements of the diagonal of the matrix it is
applied to, i.e. for an arbitrary matrix M € R™*":

trace (M) = ZM” (2.39)

Taking the trace of a matrix is identical to summing up the matrix eigenvalues, i.e.

trace (M) = i Aj (M), (2.40)

j=1

and is identical to the sum of the matrix singular values if the matrix is symmetric positive-definite.
To establish the statement of this section, let us define the matrix K € R"»*™v as a generic linear
estimator providing the estimation of the parameter vector w from the measurements y™*®

, l.e.
W= Ky™* =K (Aw +n). (2.41)
In order to recover an unbiased estimator, i.e. to ensure that F {w} = w, matrix K must satisfy:
KA=1. (2.42)
It can be verified that the covariance of the parameter estimation w then reads as:

Yo =E{ww'} -E{0}E{d'} =KL,K' (2.43)

Let us then consider the following matrix optimisation problem:

o1 T
min §trace (KEnK) (2.44a)
st. KA—1=0 (2.44b)

which minimises the covariance of w under the constraint that the estimator should be ”"unbiased”, i.e.
Eq. (2.42). Even though problems of the form (2.44) have not been considered so far in this book, they

2.4. Least-Squares and Parameter Estimation Problems 27

can be solved using very similar techniques as seen previously. To that end, we define the Lagrangian
function associated to (2.44):

L(K,Z) = %trace (KE,K") +trace (27 (KA - 1)) (2.45)

where matrix Z € R™ > acts as the set of Lagrange multipliers associated to the constraint (2.44b),
and trace (Z' (KA — I)) defines a scalar product between Z and KA — I. The solution to (2.44) is then
given by:

VkL(K,Z)=0, KA-I=0 (2.46)
The trace operator is linear and has the following useful properties:
trace (ABC') = trace (BC'A) = trace (CAB), V atrace (AB) = BT (2.47)
It can then be verified that:
VkL(K,Z) = %VKtrace (KS,K ") + Vitrace (ZTKA) =
=K%, +ZA" =0 (2.48)
Hence K = —ZATY -1, and using the constraint (2.44b):
ZATSTA=T = Z=—(ATS;'A)7 (2.49)
We finally get as the optimal solution K, = (ATE,le)fl ATY L e
W= Koy™e™ = (ATS; 1 A) AT e, (2.50)

Hence, the least-squares problem (2.21) with the choice of weight (2.33) minimizes the trace of the
covariance matrix of the parameter estimation ¥;. More generally than discussed here, one can prove
that the optimal linear estimator K, minimizes not only the trace of the covariance, but any other
meaningful performance measure: for any unbiased linear estimator K with KA = I holds

K, K" - K., K]

The reasoning above was minimizing the trace.

Nonlinear least-squares
We now turn to the problem of estimating a set of parameters in the case a nonlinear measurement
function is in use. Consider the problem:
~ : 1 meas||2
W = argmin - _ly (w) —y™5, (2.51)
w 2

where y () : R™ +— R™ is an arbitrary yet sufficiently smooth function.

Solution to the unconstrained nonlinear least-squares problem

Problem (2.51) is in a form suitable for the Gauss-Newton method with the nonlinear residual function
(see Section 3.1.3), with the residual function:

R(w) = Q* (y (w) — y™™). (2.52)
The estimation w is then obtained by performing the Newton-type iterations:
wis1 = wy — By'VR (w) R(wy), VR (wg) = Vy (i) Q2, (2.53)

to convergence, where By, = VR (w;) VR (wk)T is the Gauss-Newton Hessian approximation for problem

(2.51).

28 Chapter 2. Nonlinear Optimization

Moments of the parameter estimation

Similarly to the linear least-squares case, we are interested in assessing the moments of the parameter
estimation w resulting from measurement noise, mainly its expected value and covariance. However,
compared to the linear least-squares case, using a nonlinear measurement function has some important
consequences.

The first important observation we need to make concerns the expected value of the parameter
estimation. By definition, the expected value of the estimated parameter is given by:

E{w} = /W w fr (W) dw (2.54)

where W is the domain of w and f,, the probability density function of w. We note that the solution w
to problem (2.51) satisfies the KKT conditions:

1 1
Vw§|\y (w) — Y™ |5 = 5vw (R"R) =V,RR=0. (2.55)

Because the measurement function y (w) is nonlinear, (2.55) yields an implicit nonlinear map from
the measurements y™°* to the estimated parameters w. It follows that even assuming that the measure-
ments are subject to additive, Gaussian noise, i.e.:

Yo =y (we) +n, n~N(0,%,), (2.56)
where wy is the true value of the parameter, the resulting probability density function of the estimated
parameter f,, becomes an arbitrary function, such that in general:

E{w} = /W W[(W) dw # wy. (2.57)

This result needs to be observed in contrast with (2.29), and tells us that in the case of a nonlinear
measurement function, the expected value of the parameter estimation does, in general, not match the
true value of the parameter. We then say that the nonlinear least-squares problem (2.51) provides biased
estimations.

We are interested next in estimating the covariance of the solution of problem (2.51). As detailed
previously, for a nonlinear measurement function y(w), the estimation @ will in general not have a
Gaussian distribution, even when the noise distribution has. It follows that assessing the true covariance
of the parameter estimation is in general an intricate problem. To circumvent this issue, we consider a
linearisation of the nonlinear fitting problem (2.51) at its solution, and deploy a similar approach as in
the linear least-squares case. The distribution of the parameter estimation w is then approximated as
Gaussian. We detail this approach next.

In the absence of measurement noise, i.e. with n = 0, the solution to the fitting problem (2.51)
yields the true parameter wy with R (wg) = 0. The true parameter wy is then solution of (2.55). We
carry out the analysis by taking the first-order approximation of the (nonlinear) KKT conditions (2.55)
at n =0 and wy:

Vu (VoRR) (i — w) + V, (Vo RR) 1 = 0. (2.58)

We use here a similar approach as the Gauss-Newton method, i.e. we use V,, (V,RR) ~ VRVR', and
get the following system:

W —w=(VRVR") ™ V,RQ%n. (2.59)

We can then assess the covariance of w, using E {w} = w we obtain:

So = E {(w —w) (@ — w)T} — (VRVR') ' V,RQ*%,Q*V,R" (VRVR') ™ (2.60)

Using the choice of weight (2.33) again, we finally have:

1 -1

So=(VRVRT) ™ = (vy (w) QVy (w)T) (2.61)

2.4. Least-Squares and Parameter Estimation Problems 29

b

Ofp=ssseuenanns

0.14 0.16 0.18 0.2 0.22 0.24
w

Figure 2.4.

Note that if the measurement function y (w) is linear, i.e. y(w) = Aw, then Vy (w) = AT, and (2.61)
yields (2.34).

We illustrate next the concepts developed in this subsection.

Example 2.21 consider the nonlinear least-squares problem:

N
1 -
i 3 3 s (w-20) = 0 (2.62)

meas

where y"®, ., w € R and z (w, xx) = w + xpw®. We write problem (2.62) in the form (2.51) using:

z (w, x1) yrees

y(w) = , Yo = . (2.63)

z(w,zN) YN

We use N = 10, and use an additive Gaussian noise in the measurements, i.e.

Yy =y (wo) + n, n~N(0,%,). (2.64)
We then solve problem (2.62) for 50000 randomly generated noise sequences n € R, and a true parameter
wo = 0.2. Figure 2.4 reports the resulting distribution of the parameter estimation w for various levels
of noise %,, (shaded dots). The true distribution is approximated as a Gaussian distribution of mean
E {w} and using the covariance given by (2.61), reported as the plain black curves in Figure 2.4. The
plain lines report the true value wy while the dashed lines report the true expected value of w. It
can be observed that for a small measurement noise, the estimation w is practically unbiased and the
Gaussian distribution is a good approximation of its true distribution. For a larger measurement noise,
the estimation becomes biased and the distribution becomes clearly non-Gaussian.

Constrained least-squares
We now turn to the problem of estimating a set of parameters subject to constraints. The vector of
parameter w is then determined by means of the following optimisation problem:
1 .
w=argmin =y (w)— yme“SHQQ (2.65a)
w 2
st. g(w)=0 (2.65b)

where y () : R™ +— R™ and g(.) : R™ +— R" is a sufficiently smooth function.

Remark: a possible interpretation of the equality constraint (2.65b) is that it embeds in problem
(2.65) the prior knowledge that the estimated parameter @ sits on the manifold M = {w | g(w) = 0}
with absolute certainty. Such certainty must be

30 Chapter 2. Nonlinear Optimization

Solution to the constrained nonlinear least-squaress problem

As in Section 2.4, one can recognise in (2.65) a problem in a form suitable for the Gauss-Newton method
(see Section 3.1.3). We then get the solution to problem (2.65) via iterating the linear system:

By, Vg (wr)] [Wi41 — W } _ [VR (wi) R (wr)

Vg (wg)" 0 Abs1 g (0x) (2.66)

where R (wy,) = Q2 (y (wg) — y™°*) and By = VR (wi) VR (wy,) " is the Gauss-Newton Hessian approx-
imation for problem (2.65).

2.4.1 Alternative convex penalties

Though the least-squares cost function is by far the most widespread cost used in fitting problems, there
exist other penalty functions than the Ly norm that are used at different occasions. Like the Lo norm,
all commonly used penalty functions are convex. We discuss two of the most popular ones.

L1 norm

The first common alternative penalty for fitting problems uses the Li-norm as a penalty function. Here,
we consider the fitting problem:

min ly (w) - ™ (267a)
st. g(w)=0 (2.67b)

where |ly|l1 = >, _; |yl is labelled the Ly-norm of vector y € R". Slack formulation

A cost function involving an L; penalty is non-differentiable. One must be very careful when deploy-
ing Newton algorithms on non-smooth problems in order to obtain a reasonably fast and guaranteed
convergence. To circumvent this problem, we detail next a reformulation of the L; penalty function in
problem (2.67), which allows for removing the non-smoothness from the cost function, and place it in the
inequality constraints instead. To that end, we introduce an additional set of variables s € R™ having
the same dimension as the vector subject to the L; penalty. The variables s are often labelled slack
variables in the literature, and are used in many different contexts. The L; penalty is then implemented
by ”trapping” the fitting error y (w) — y™ between s and —s, i.e.:

=5k < Y (w) =Yg < sp (2.68)

If all constraints are active, then we have

lyi (w) =y = sk (2.69)
and
[y (w) — y™[1 = Zsk =1's. (2.70)
k=0

We then rewrite problem (2.67) as:
min 1's (2.71a)
st. g(w)=0 (2.71Db)
—s<y(w) —y"* <s (2.71¢)

We leave it as an exercises the proof that (2.71) is equivalent to (2.67).

Remark: problem (2.71) has a linear cost function, and as such may require some care when using
Newton-type algorithms. E.g. the Gauss-Newton Hessian approximation for (2.71) is zero and therefore
singular. Nevertheless, the Gauss-Newton method with zero Hessian might converge in many cases when
applied to L;-fitting problems, and converge even with quadratic convergence rate, due to the fact that
the solution is in a vertex of the feasible set.

When an exact Newton method is used, one needs to observe that the exact Hessian associated to
(2.71) is likely to be indefinite and thus one might want to apply some level of regularisation.

2.4. Least-Squares and Parameter Estimation Problems 31

A} T

0.3 ‘\\ === Lo norm %xz I

0.95 — Huber penalty H fI(a:)
0.2 S ,

= !

~015 o *
0.1 1
0.05 ,
9 1 0.5 1

Figure 2.5. Huber penalty function H,(x) for p=0.3.

Huber penalty

min H, (y (w) —y™*) (2.72a)
st. g(w)=0 (2.72Dh)
where
L2 if |x| <p
b@={ 0T g i 273)

with p € R. The shape of the Huber penalty function is depicted in Figure 2.5. The Huber penalty
H, (y —y™°*) implements an Lo on the samples of the fitting error y — y™°* that are smaller than
p, and an Ly norm on the larger ones. It is very useful for rejecting outliers, while retaining the nice
behaviour least-squares fitting with respect to the data points that can be well fitted.

Remark: the Huber penalty function is not a norm, since e.g. the homogeneity condition does not
hold, i.e. in general H, (ax) # |a| H, ().

Slack formulation The Huber penalty is everywhere differentiable, but not twice differentiable.
Similarly to the L; norm problem (2.67), a reformulation using slack variables allows for having a smooth
formulation of problem (2.72), which is better suited for the Newton context. The reformulation for
problem (2.72) reads as:

1
min p1'v+ §uTu (2.74a)
st. gw)=0 (2.74b)
—p—v<yw)—y™* <v4+pu v>0. (2.74c¢)

We leave it as an exercises the proof that (2.74) is equivalent to (2.72).
[

32

Chapter 2. Nonlinear Optimization

Example 2.22

T
5*
. L2
O L] ® ° o
¢l O Huber| O g DDDQUC}@@@@@@
;) L]
5 O 0
_10 @ | | | | | | | J
- -1.5 -1 -0.5 0 0.5 1 15 2
x

Figure 2.6. Comparison of the La, L1 norms and the Huber penalty with p = 1 for a linear
regression with outliers. The crosses report the two points having a zero residual in the L1 norm problem.

Chapter 3

Newton-Type
Optimization Algorithms

Nature and nature’s laws lay hid in night;
God said “Let Newton be” and all was light.
— Alexander Pope

3.1 Equality Constrained Optimization

Let us first regard an optimization problem with only equality constraints,

minimize f() (3.1a)
r e R”
subject to g(z) =0 (3.1b)

where f : R — R and g : R — R™ are both smooth functions. The idea of the Newton-type
optimization methods is to apply a variant of Newton’s method to solve the nonlinear KKT conditions

V.L(x,A) =0 (3.2a)
g(x) =0 (3.2b)
In order to simplify notation, we define
|z | VaL(x, N)
w = {)J and F(w) := { o(x)] (3.3)

with w € R*"""s F: Rt — R""s g0 that we can compactly formulate the above nonlinear root
finding problem as

F(w) = 0. (3.4)

Starting from an initial guess wo, Newton’s method generates a sequence of iterates {wy, }7° , by linearizing
the nonlinear equation at the current iterate

F(wk)Jraa—lZc(wk)(wfwk) = (3.5)

and obtaining the next iterate as its solution, i.e.

oF
Wht1 = Wk — a—w(wk)_lF(wk) (3.6)

33

34 Chapter 3. Newton-Type Optimization Algorithms

For equality constrained optimization, the linear system (3.5) has the specific form?

Vwﬁ(xk,)\k) VQL(xk,Ak) Vg(ack) r — Xk
[g(xk) } * [V()" 0 A=Ak (37)
KKT-matrix
Using the definition
Vaol(xg, M) = Vf(2r) + V(o)A (3.8)

we see that the contributions depending on the old multiplier A\; cancel each other, so that the above
system is equivalent to

el e] - °

This formulation shows that the data of the linear system only depend on Ay via the Hessian matrix.
We need not use the exact Hessian matrix, but can approximate it with different methods. This leads
to the more general class of Newton-type optimization methods. Using any such approximation Bj =
V2L (xp, \), we finally obtain the Newton-type iteration as

-l T) o

The general Newton-type method is summarized in Algorithm 3.1. If we use By = V2L(xk, \g), we
recover the exact Newton method.

Algorithm 3.1. Equality constrained full step Newton-type method.

Choose: initial guesses xg, A9, and a tolerance €
Set: k=0

while ||VL(zg, Ap)|| > € or ||g(zx)]| > ¢ do
obtain a Hessian approximation By
get Tp41, Ak+1 from (3.10)
kE=k+1

end while

3.1.1 Quadratic Model Interpretation

It is easy to show that xj41 and Mgy from (3.10) can equivalently be obtained from the solution of a

QP:

1
minimize Vf(zx)" (x — 21) + = (x — 21)" Bp(x — x3,) (3.11a)
zeR” 2
subject to g(xx) + Vg(zr) (z — 21) =0 (3.11Db)

So we can interpret the Newton-type optimization method as a “Sequential Quadratic Programming”
(SQP) method, where we find in each iteration the solution z@F and AQF of the above QP and take it
as the next NLP solution guess and linearization point x4 and Ag41. This interpretation will turn out
to be crucial when we treat inequality constraints. But let us first discuss what methods exist for the
choice of the Hessian approximation Bjy.

IRecall that in this script we use the convention Vg(zx) := % ()T that is consistent with the definition of the gradient

V f(z) of a scalar function f being a column vector.

3.1. Equality Constrained Optimization 35

3.1.2 The Exact Newton Method

The first and obvious way to obtain By is to use the exact Newton method and just set
Bk = V?EL(:L'}C,)\k)

But how can this matrix be computed? Many different ways for computing this second derivative exist.
The most straightforward way is a finite difference approximation where we perturb the evaluation of V.0
in the direction of all unit vectors {e;}?_; by a small quantity 6 > 0. This yields each time one column
of the Hessian matrix, as

VIL(.T;C + 5€i,)\k) — Vzﬁ(xk,)\k)

Viﬁ(l’k,)\k)ei = 5

+0(5) (3.12)

Unfortunately, the evaluation of the numerator of this quotient suffers from numerical cancellation, so
that § cannot be chosen arbitrarily small, and the maximum attainable accuracy for the derivative is /e
if € is the accuracy with which the gradient V,£ can be obtained. Thus, we loose half the valid digits.
If VL was itself already approximated by finite differences, this means that we have lost three quarters
of the originally valid digits. More accurate and also faster ways to obtain derivatives of arbitrary order
will be presented in the chapter on algorithmic differentiation.

Local convergence rate: The exact Newton method has a quadratic convergence rate in a neigh-
bourhood of the optimal solution w*, i.e. ||wpy1 —w*| < 4wy — w*||* when wy, is sufficiently close to
w*. This means that the number of accurate digits doubles in each iteration. As a rule of thumb, once
a Newton method is in its area of quadratic convergence, it needs at maximum 6 iterations to reach the
highest possible precision.

3.1.3 The Constrained Gauss-Newton Method

Let us regard the special case that the objective f(x) has a nonlinear least-squares form, i.e. f(z) =
1||R(z)||3 with some function R : R" — R"®. In this case we can use a very powerful Newton-type
method which approximates the Hessian By using only first order derivatives. It is called the Gauss-
Newton method. To see how it works, let us thus regard the nonlinear least-squares problem

1
minimize = || R(z)||3 (3.13a)
zeRY 2
subject to g(x) =0 (3.13b)

The idea of the Gauss-Newton method is to linearize at a given iterate x; both problem functions R and
g, in order to obtain the following approximation of the original problem.

1
minimize 5 [[R(zx) + VR(wr)" (v — 2x)|I3 (3.14a)
zeR" 2
subject to g(z1,) + Vg(zr)T (x —21) =0 (3.14b)

This is a convex QP which can easily be seen by noting that the objective (3.14a) is equal to

%R(Jck)TR(ack) 4+ (2 — a)T VR(ax) R(zn) —l—%(m — o) VR VR(zx) (x — a4
— ————

=V f(zk) =:Bp

which is convex because Bj=0. Note that the constant term does not influence the solution and can be
dropped. Thus, the Gauss-Newton subproblem (3.14) is identical to the SQP subproblem (3.11) with a
special choice of the Hessian approximation, namely

By = VR(z)VR(z)T = ZR VR;(z1)VR;(zy)"

i=1

36 Chapter 3. Newton-Type Optimization Algorithms

Note that the multipliers Ay are not needed in order to compute the Gauss-Newton Hessian approximation
Bj. In order to assess the quality of the Gauss-Newton Hessian approximation, let us compare it with
the exact Hessian, that is given by

V2L(z,\) :ZRVRi(xk)VRi(zk)TJr ZFRi(x)VQRi(:E)nLZg)\ZV%Z—(x) (3.15)

= By, + O([RG)) + O(AD- (3.16)

One can show that in the solution of a problem holds [|A*|| = O(||R(z*)||). Thus, in the vicinity of the
solution, the difference between the exact Hessian and the the Gauss-Newton approximation Bj is of
order O(||R(z*)|).

Local convergence rate: The Gauss-Newton method converges linearly, |wi+1 — w*|| < &||wy, —
w*|| with a contracton rate k = O(||R(z*)||) in a neighbourhood of the solution w*. Thus, it converges
fast if the residuals R;(«*) are small, or equivalently, if the objective is close to zero, which is our desire
in least-squares problems. In estimation problems, a low objective corresponds to a “good fit”. Thus
the Gauss-Newton method is only attracted by local minima with a small function value, a favourable
feature in practice.

3.1.4 Hessian Approximation by Quasi-Newton BFGS Updates

Besides the exact Hessian and the Gauss-Newton Hessian approximation, there is another widely used way
to obtain a Hessian approximation By within the Newton-type framework. It is based on the observation
that the evaluation of V, L at different points can deliver curvature information that can help us to
estimate V2L, similar as it can be done by finite differences, cf. Equation (3.12), but without any
extra effort per iteration besides the evaluation of Vf(xzy) and Vg(xy) that we need anyway in order to
compute the next step. Quasi-Newton Hessian update methods use the previous Hessian approximation
By, the step sp := xp41 — xx and the gradient difference yp := VL (2k11, Aet1) — Val(ag, Aet1) In
order to obtain the next Hessian approximation Bgii. As in the finite difference formula (3.12), this
approximation shall satisfy the secant condition

BkJrlSk; = Yk (317)

but because we only have one single direction s, this condition does not uniquely determine Bj;. Thus,
among all matrices that satisfy the secant condition, we search for the ones that minimize the distance to
the old By, measured in some suitable norm. The most widely used Quasi-Newton update formula is the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) update that can be shown to minimize a weighted Frobenius
norm. It is given by the explicit formula:

Busikst Br | yryl
Biy1 = Bg — = =

. 3.18
sgBksk sgyk ()

Local convergence rate: It can be shown that B, — V2L(z*, *) in the relevant directions, so
that superlinear convergence is obtained with the BFGS method in a neighbourhood of the solution w*,
Le. |[wgt1 — w*| < killwg — w*|| with k; — 0.

3.2 Local Convergence of Newton-Type Methods

We have seen three examples for Newton-type optimization methods which have different rates of local
convergence if they are started close to a solution. They are all covered by the following theorem that
exactly states the conditions that are necessary in order to obtain local convergence.

Theorem 3.1 (Newton-Type Convergence). Regard the root finding problem
F(w)=0, F:R"—>R" (3.19)

with w* a local solution satisfying F(w*) = 0 and a Newton-type iteration wyy1 = wy — M,;lF(wk) with
My, € R™™ ™ qnvertible for all k. Let us assume a Lipschitz condition on the Jacobian J(w) := g—i(w) as

3.2. Local Convergence of Newton-Type Methods 37

follows:
1M, (T (wr) = T ()] < wllwg —w?| (3.20)
Let us also assume a bound on the distance of approximation My, from the true Jacobian J(wy):
1M, (T (wie) = M)l < r (3.21)

where ki < k with k < 1. Finally, we assume that the initial guess wq is sufficiently close to the solution

w*,

N 2
[lwo — w*|| < ;(1—&). (3.22)
Then wy, — w* with the following linear contraction in each iteration:
w
Jwers —wll < (ke Shoe—wl) - o —w']l. (3.23)

If ki, — 0, this results in a superlinear convergence rate, and if ki = 0 quadratic convergence results.

Noting that in Newton-type optimization we have

V2.0 (2 99 ()T
J(wy) = _vzg_;(;;;k) "’Z(O’“) } (3.24)

[Br ()T
M, = 9 (1) e } (3.25)
J(wy) — My, = Viﬁ(o)*B’“ 8} (3.26)

the above theorem directly implies the three convergence rates that we had already mentioned.

Corollary 3.2. Newton-type optimization methods converge
e quadratically if By = V2L (zk, A\x) (evact Newton),
o superlinearly if By — V2L(zg, \x) (BFGS),
o linearly if | By — V2L (zk, Ak)|| is small (Gauss-Newton).

Proof of Theorem 3.1

We will show that [|wi+1 — w*|| < 8gflwp — w*|| with &6 := (ki + %£[|wp — w*||) and that for all k& holds
0 < 1. For this aim let us regard

W1 — W = wp —w* — Mk_lF(wk)
= wy —w* — My (F(wy) — F(w"))

1
= M (M (wy, —w*)) — M, / J(w* 4+ t(wy, —w))(wr, — w*)dt
0
1
= M, (M, — V2 f(wg)) (wg, — w*) — Mk_l/ {VQf(w* + t(wg — w*)) — V2 f(wy) | (wi — w*)dt
0
Taking the norm of both sides:
1
e = < el — w1+ [l + e = 07) — e o |
0

1
— (e +w/ (1 — 1) o — ") —]
N

—1
2

w
= (ka+ Slleoe = w) oo — "

N

38 Chapter 3. Newton-Type Optimization Algorithms

The proof that for all £ we have that J; < 1 proceeds inductively: as dg < 1 by the assumptions of
Theorem 3.1, we can conclude that ||wy —w*|| < ||wg —w*||. This in turn implies that 6; < dyp. The same
reasoning can be made for each of the following steps, implying that all §;, < 1. Thus, the proof is nearly
complete. To obtain the specific convergence rates, we distinguish three cases depending on the value of
k respectively kg:

L [Jwpgr — w*|| < ¢|wy, — w*||?, Q-quadratic convergence if £ = 0,

2. |Jwg1 — w*|| < (ki + %}Hwk —w*|]) |lwg — w*||, Q-superlinear if k; — 0,

—0

3. w1 —w*|| < ((k _+ %Hwk — w*|])||wr — w*||], Q-linear if x5 do not converge to zero.

<1 ———
—0

3.3 Inequality Constrained Optimization

When a nonlinear optimization problem with inequality constraints shall be solved, two big families of
methods exist, first, nonlinear interior point (IP), and second, sequential quadratic programming (SQP)
methods. Both aim at solving the KKT conditions (2.8) which include the non-smooth complementarity
conditions, but have different ways to deal with this non-smoothness.

3.3.1 Interior Point Methods

The basic idea of an interior point method is to replace the non-smooth L-shaped set resulting from the
complementarity conditions with a smooth approximation, typically a hyberbola. Thus, a smoothing
constant 7 > 0 is introduced and the KKT conditions are replaced by the smooth equation system

Vf(x*)+ Vg(a*)N* + Vh(z")p* =0 (3.27a)
glx™) =0 (3.27b)
wihi(z®)+7=0, i=1,...,np,. (3.27¢)

Note that the last equation ensures that —h;(z*) and p} are both strictly positive and on a hyperbola.?
For 7 very small, the L-shaped set is very closely approximated by the hyperbola, but the nonlinearity
is increased. Within an interior point method, we usually start with a large value of 7 and solve the
resulting nonlinear equation system by a Newton method, and then iteratively decrease 7, always using
the previously obtained solution as initialization for the next one.

One way to interpret the above smoothened KKT-conditions is to use the last condition to eliminate
i = =7z and to insert this expression into the first equation, and to note that V, (log(—hi(z))) =

ﬁvm (2)). Thus, the above smooth form of the KKT conditions is nothing else than the optimality

conditions of a barrier problem

np

minimize f(x) =7 log (—hi(z)) (3.28a)
reR” =1

subject to g(z) = 0. (3.28b)

Note that the objective function of this problem tends to infinity when h;(z) — 0. Thus, even for very
small 7 > 0, the barrier term in the objective function will prevent the inequalities to be violated. The
primal barrier method just solves the above barrier problem with a Newton-type optimization method for
equality constrained optimization for each value of 7. One can observe that the barrier problem (3.28)
and the primal-dual (3.27) deliver the same solution x, for any given value of 7. It is also important
to know that the error between the solution delivered by Interior-Point methods and the exact solution
of the original problem is of the order O (7), i.e. the error introduced by the Interior-Point methods
decreases linearly with 7.

2In the numerical solution algorithms for this system, we have to ensure that the iterates do not jump to a second
hyperbola of infeasible shadow solutions, by shortening steps if necessary to keep the iterates in the correct quadrant.

f

o

3.3. Inequality Constrained Optimization 39

1.5

1
5
0.5
Ba
2
8
%".
0 h; (z) not active
-1.5 -1 -0.5 0

Figure 3.1. Relazation of the complementarity slackness condition. We display here the mani-
fold pihi (x) + 7 = 0 for various values of 7. The original non-smooth manifold p;h; (x) = 0 arising in
the KK'T conditions is displayed as the thick lines.

Though easy to implement and to interpret, Interior-Point methods are not necessarily the best
in terms of numerical treatment, among other because its KKT matrices become very ill-conditioned
for small 7. This is not the case for the primal-dual IP method that solves the full nonlinear equation
system (3.27) including the dual variables f.

For convex problems, very strong complexity results exist that are based on self-concordance of
the barrier functions and give upper bounds on the total number of Newton iterations that are needed
in order to obtain a numerical approximation of the global solution with a given precision. When an
IP method is applied to a general NLP that might be non-convex, we can of course only expect to find
a local solution, but convergence to KKT points can still be proven, and these nonlinear IP methods
perform very well in practice.

Most TP solvers treat the relaxed complementarity conditions (3.27¢) using a slack formulation,
where a set of ”artificial” or slack variables s;, i = 1, ..., ny is added to the problem in order to reformulate
it. The equivalent system:

V(™) + Vg™)N + Vh(z")" =0 (3.29a)
g(x*) =0 (3.29b)

pisi —1=0, i=1,...,m, (3.29¢)

hi(z*) +s2 =0, i=1,...,np (3.29d)

is solved instead of (3.27). Though the form (3.29) is equivalent to (3.27) and delivers the same solution,
it offers several advantages over (3.27), in particular:

e the Newton iteration on system (3.29) can be started with an initial guess x that is infeasible with
respect to the inequality constraints, i.e. h;(z) > 0 for some i, as long as the slack variables s;
are initiated and kept positive throughout the iterations. Hence one does not need to provide a
feasible initial guess. In the course of the Newton iterations, the inequality constraints are brought
to feasibility via the equality constraints (3.29d).

e when a Newton iteration is deployed on system (3.27), one must ensure that h(z) < 0 thoughout
the iterations, which requires a careful backtracking, i.e. a reduction of the size of the step provided

40 Chapter 3. Newton-Type Optimization Algorithms

0

10 :
o
[}
_ []
10™}
0 0.5 1 10° 10" 107
€T T

Figure 3.2. Illustration of the primal barrier method presented in (3.28). The left graph displays
an illustrative cost function f(x) (thick curve), and simple bounds 0 < x < 1. The various objective
functions with barrier f(x) — 73" log (—hi(x)) are displayed for various values of T, alongside their
respective minima x. The right graph displays the error between the actual solution to the problem x*,
and the solutions x, obtained from the barrier problem (3.28) for various values of T.

by the Newton iteration (see Section 3.4 for more details) until h(z) < 0 is ensured. When h(z)
is expensive to evaluate, such backtracking can be time consuming. In contrast, ensuring that
s >0, u > 0 is trivial to do when the form (3.29) is used. The step-size ensuring the positivity of
s and p then provides an inexpensive upper-bound to the actual step-size that ought to be used.

Software: A very widespread and successful implementation of the nonlinear IP method is the open-
source code IPOPT [78, 77]. Though IPOPT can be applied to convex problems and will yield the global
solution, dedicated IP methods for different classes of convex optimization problems can exploit more
problem structure and will solve these problems faster and more reliably. Most commercial LP and QP
solution packages such as CPLEX or MOSEK make use of IP methods, as well as many open-source
implementations such as the sparsity exploiting QP solver OOQP.

3.3.2 Sequential Quadratic Programming (SQP) Methods

Another approach to address NLPs with inequalities is inspired by the quadratic model interpretation
that we gave before for Newton-type methods. It is called Sequential Quadratic Programming (SQP) and
solves in each iteration an inequality constrained QP that is obtained by linearizing the objective and
constraint functions:

minimize Vf(zx)T (x —x1) + l(x — 23)T By (z — x1) (3.30a)

x € R” 2
subject to g(xx) + Vg(zr) T (x —a1) =0 (3.30b)
h(xy) + Vh(zp) T (x —2) >0 (3.30c¢)

Note that the active set is automatically discovered by the QP solver and can change from iteration to
iteration. However, under strict complementarity, it will be the same as in the true NLP solution z* once
the SQP iterates x; are in the neighborhood of z*.

As before for equality constrained problems, the Hessian By can be chosen in different ways. First,
in the exact Hessian SQP method we use By = V2L(xk, A\, i), and it can be shown that under the

3.4. Globalisation Strategies 41

second order sufficient conditions (SOSC) of Theorem 2.18 (b), this method has locally quadratic con-
vergence. Second, in the case of a least-squares objective f(z) = 3||R(x)||3, we can use the Gauss-
Newton Hessian approximation By = VR(zy)VR(xk)T, yielding linear convergence with a contraction
rate kK = O(||R(z*)]]). Third, quasi-Newton updates such as BFGS can directly be applied, using the
Lagrange gradient difference yi := VL (211, Apr1, 571 — Vo L(2k, Adpy1, pFt1) in formula (3.18).
Note that in each iteration of an SQP method, an inequality constrained QP needs to be solved, but
that we did not mention yet how this should be done. One way would be to apply an IP method tailored to
QP problems. This is indeed done, in particular within SQP methods for large sparse problems. Another
way is to use a QP solver that is based on an active set method, as sketched in the next subsection.

Software: A successful and sparsity exploiting SQP code is SNOPT [42]. Many optimal control packages
such as MUSCOD-II [56] or the open-source package ACADO [48, 1] contain at their basis structure
exploiting SQP methods. Also the MATLAB solver fmincon is based on an SQP algorithm.

3.3.3 Active Set Methods

Another class of algorithms to address optimization problems with inequalities, the active set methods,
are based on the following observation: if we would know the active set, then we could solve directly
an equality constrained optimization problem and obtain the correct solution. The main task is thus to
find the correct active set, and an active set method iteratively refines a guess for the active set that is
often called the working set, and solves in each iteration an equality constrained problem. This equality
constrained problem is particularly easy to solve in the case of linear inequality constraints, for example
in LPs and QPs. Many very successful LP solvers are based on an active set method which is called
the simplex algorithm, whose invention by Dantzig [28] was one of the great breakthroughs in the field
of optimization. Also many successful QP solvers are based on active set methods. A major advantage
of active set strategies is that they can very efficiently be warm-started under circumstances where a
series of related problems have to be solved, e.g. within an SQP method, within codes for mixed integer
programming, or in the context of model predictive control (MPC) [38].

3.4 Globalisation Strategies

In all convergence results for the Newton-type algorithms stated so far, we had to assume that the
initialization was sufficiently close to the true solution in order to make the algorithm converge, which is
not always the case. Indeed, the Newton iteration using the SQP approach is based on solving successive
quadratic problems which approximate locally the original problem. The Newton step then takes the
minima of the current quadratic problem as a guess for the minima of the original problem. However,
the Newton step can be large, and leave the region of validity of the quadratic model. In such cases, the
Newton step can be counterproductive for improving the optimality and/or feasibility of the iterate. We
illustrate this problem in the unconstrained case in Figure 3.3

An approach often used to overcome this problem is to use a homotopy between a problem we have
already solved and the problem we want to solve: in this procedure, we start with the known solution and
then proceed slowly, step by step modifying the relevant problem parameters, towards the problem we
want to solve, each time converging the Newton-type algorithm and using the obtained solution as initial
guess for the next problem. Applying a homotopy requires more user input than just the specification of
the problem, so most available Newton-type optimization algorithms have so called globalisation strategies.
Most of these strategies can be interpreted as automatically generated homotopies.

In the ideal case, a globalisation strategy ensures global convergence, i.e. the Newton-type iterations
converge to a local minimum from arbitrary initial guesses. Note that the terms global convergence and
globalisation strategies have nothing to do with global optimization, which is concerned with finding global
minima for non-convex problems.

Here, we only touch the topic of globalisation strategies very superficially, and for all details we
refer to textbooks on nonlinear optimization and recommend in particular [63].

Two ingredients characterize a globalization strategy: first, a measure of progress, and second, a
way to ensure that progress is made in each iteration.

42 Chapter 3. Newton-Type Optimization Algorithms

2.65+ 1
2.6f]
Tk Newton step Tkl
2.55 f(xhs1) |
. (k)
=
= 2.5¢ :
2.45¢ RN §
Odley TTmemeTT
0.5 0.6 0.7 0.8 0.9

Figure 3.3. Illustration of the failure of the full Newton step. The Newton iteration is based
on solving successive quadratic problems, which model locally the original optimisation problem. If the
Newton step provided by the quadratic model leaves its region of validity, and can then provide a worse
point xx11 than the previous one, i.e. x. In this example, the Newton step going from xj to Ti41
increases the cost function.

3.4.1 Measuring Progress: Merit Functions and Filters

When two consecutive iterations of a Newton-type algorithm for solution of a constrained optimization
problem shall be compared with each other it is not trivial to judge if progress is made by the step. The
objective function might be improved, while the constraints might be violated more, or conversely. A
merit function introduces a scalar measure of progress with the property that each local minimum of the
NLP is also a local minimum of the merit function. Then, during the optimization routine, it can be
monitored if the next Newton-type iteration gives a better merit function than the iterate before. If this
is not the case, the step can be rejected or modified.
A widely used merit function is the exact L1 merit function

Ti(z) = f(z) + o(llg@)ll + 27 (@)]1)

with f(z) the objective, g(x) the residual vector of the equality constraints, and h™(z) the violations
of the inequality constraints, i.e. hj (z) = max(0,h,(z)) for i = 1,...,n;. Note that the L1 penalty
function is non-smooth. If the penalty parameter o is larger than the largest modulus of any Lagrange
multiplier at a local minimum and KKT point (z*, A*, u*), i.e. if 0 > max(||]*| oo, [|1#*||oc), then the L1
penalty is exact in the sense that 2* also is a local minimum of 73 (x). Thus, in a standard procedure we
require that in each iteration a descent is achieved, i.e. Ty (xg4+1) < Th(2x), and if it is not the case, the
step is rejected or modified, e.g. by a line search or a trust region method.

A disadvantage of requiring a descent in the merit function in each iteration is that the full Newton-
type steps might be too often rejected, which can slow down the speed of convergence. Remedies to are e.g.
a “watchdog technique” that starting at some iterate xj allows up to M —1 full Newton-type steps without
merit function improvement if the Mth iterate is better, i.e. if at the end holds T (zg+ar) < Ti(xk), so
that the generosity was justified. If this is not the case, the algorithm jumps back to zj; and enforces
strict descent for a few iterations.

A different approach that avoids the arbitrary weighting of objective function and constraint vio-
lations within a merit function and often allows to accept more full Newton-steps comes in the form of
filter methods. They regard the pursuit of a low objective function and low constraint violations as two

3.4. Globalisation Strategies 43

equally important aims, and accept each step that leads to an improvement in at least one of the two,
compared to all previous iterations. To ensure this, a so called filter keeps track of the best objective
and constraint violation pairs that have been achieved so far, and the method rejects only those steps
that are dominated by the filter i.e., for which one of the previous iterates had both, a better objective
and a lower constraint violation. Otherwise the new iterate is accepted and added to the filter, possibly
dominating some other pairs in the filter that can then be removed from the filter. Filter methods are
popular because of the fact that they often allow the full Newton-step and still have a global convergence
guarantee.

3.4.2 Ensuring Progress: Line Search and Trust-Region Methods

If a full Newton-type step does not lead to progress in the chosen measure, it needs to be rejected. But
how can a step be generated that is acceptable? Two very popular ways for this exist, one called line
search, the other trust region.

A line search method takes the result of the QP subproblem as a trial step only, and shortens the
step if necessary. If (szP,)\kQP, ugp) is the solution of the QP at an SQP iterate xy, it can be shown (if
the QP multipliers are smaller than o) that the step vector or search direction (x(,gp — x) is a descent
direction for the L1 merit function 77, i.e. descent in T7 can be enforced by performing, instead of the
full SQP step zpy1 = xgp, a shorter step

Tyl = Tk + t(szP —)

with a damping factor or step length t € (0, 1]. One popular way to ensure global convergence with help of
of a merit function is to require in each step the so called Armijo condition, a tightened descent condition,
and to perform a backtracking line search procedure that starts by trying the full step (¢ = 1) first and
iteratively shortens the step by a constant factor (¢ «— ¢/ with 8 > 1) until this descent condition is
satisfied. As said, the L1 penalty function has the desirable property that the search direction is a descent
direction so that the Armijo condition will eventually be satisfied if the step is short enough. Line-search
methods can also be combined with a filter as a measure of progress, instead of the merit function.

An alternative way to ensure progress is to modify the QP subproblem by adding extra constraints
that enforce the QP solution to be in a small region around the previous iterate, the trust region. If this
region is small enough, the QP solution shall eventually lead to an improvement of the merit function, or
be acceptable by the filter. The underlying philosophy is that the linearization is only valid in a region
around the linearization point and only here we can expect our QP approximation to be a good model
of the original NLP. Similar as for line search methods with the L1 merit function, it can be shown for
suitable combinations that the measure of progress can always be improved when the trust region is made
small enough. Thus, a trust region algorithm checks in each iteration if enough progress was made to
accept the step and adapts the size of the trust region if necessary.

As said above, a more detailed description of different globalisation strategies is given in [63].

44

Chapter 3. Newton-Type Optimization Algorithms

Chapter 4

Calculating Derivatives

Progress is measured by the degree of differentiation within a society.
— Herbert Read

Derivatives of computer coded functions are needed everywhere in optimization. In order to just
check optimality of a point, we need already to compute the gradient of the Lagrangian function. Within
Newton-type optimization methods, we need the full Jacobian of the constraint functions. If we want to
use an exact Hessian method, we even need second order derivatives of the Lagrangian.

There are many ways to compute derivatives: Doing it by hand is error prone and nearly impossible
for longer evaluation codes. Computer algebra packages like Mathematica or Maple can help us, but
require that the function is formulated in their specific language. More annoyingly, the resulting derivative
code can become extremely long and slow to evaluate.

On the other hand, finite differences can always be applied, even if the functions are only available
as black-box codes. They are easy to implement and relatively fast, but they necessarily lead to a loss
of precision of half the valid digits, as they have to balance the numerical errors that originate from
Taylor series truncation and from finite precision arithmetic. Second derivatives obtained by recursive
application of finite differences are even more inaccurate. The best perturbation sizes are difficult to
find in practice. Note that the computational cost to compute the gradient V f(x) of a scalar function
f:R™ -5 Ris (n+ 1) times the cost of one function evaluation.

We will see that a more efficient way exists to evaluate the gradient of a scalar function, which is
also more accurate. The technology is called algorithmic differentiation (AD) and requires in principle
nothing more than that the function is available in the form of source code in a standard programming
language such as C, C++ or FORTRAN.

4.1 Algorithmic Differentiation (AD)

Algorithmic differentiation uses the fact that each differentiable function F' : R™ — R™F is composed
of several elementary operations, like multiplication, division, addition, subtraction, sine-functions, exp-
functions, etc. If the function is written in a programming language like e.g. C, C++ or FORTRAN,
special AD-tools can have access to all these elementary operations. They can process the code in order to
generate new code that does not only deliver the function value, but also desired derivative information.
Algorithmic differentiation was traditionally called automatic differentiation, but as this might lead to
confusion with symbolic differentiation, most AD people now prefer the term algorithmic differentiation,
which fortunately has the same abbreviation. A good and authoritative textbook on AD is [44].

In order to see how AD works, let us regard a function F' : R™ — R"™F that is composed of a sequence
of m elementary operations. While the inputs x4, ..., x, are given before, each elementary operation ¢;,
1 =0,...,m—1 generates another intermediate variable, x,,+;4+1. Some of these intermediate variables are
used as output of the code, but in principle we can regard all variables as possible outputs, which we do
here. This way to regard a function evaluation is stated in Algorithm 4.1 and illustrated in Example 4.1
below.

45

f

o

46 Chapter 4. Calculating Derivatives

Algorithm 4.1. User Function Evaluation via Elementary Operations.

Input: z1,...,2,
Output: z1,...,Tpim
fori=0tom—1do

Tptit1 < Gi(T1, ..
end for

i xn-l—i)

Note: each ¢; depends on only one or two out of {z1,...,Zn i}

Example 4.1 (Function Evaluation via Elementary Operations) Let us regard the simple scalar
function

flx1, @0, x3) = sin(x129) + exp(z1x223)

with n = 3. We can decompose this function into m = 5 elementary operations, namely

Ty = T1T2
x5 = sin(xy4)
T = Tak3

x7 = exp(ws)

T8 = T5 + X7

Thus, if the n = 3 inputs z1, 22, x3 are given, the m = 5 elementary operations ¢y, . . .
m = 5 intermediate quantities, xy, .

, 4 compute the
.., g, the last of which is our desired scalar output, z,,1,,. N

The idea of AD is to use the chain rule and differentiate each of the elementary operations ¢;
separately. There are two modes of AD, on the one hand the “forward” mode of AD, and on the
other hand the “backward”, “reverse”, or “adjoint” mode of AD. In order to present both of them in
a consistent form, we first introduce an alternative formulation of the original user function, that uses
augmented elementary functions, as follows®: we introduce new augmented states

T Z1 Z1
To=x = ., I = S ey, Iy = (41)

T Tn4+1 | LTn+m

as well as new augmented elementary functions ¢; : R" — R+ 7 s 7,1 = ¢;(&;) with

Z1

(4.2)
Tn4i
¢i(iE1, cee 7$n+i)

Thus, the whole evaluation tree of the function can be summarized as a concatenation of these augmented
functions followed by a multiplication with a “selection matrix” C that selects from z,,, the final outputs
of the computer code.

F(z)=C- (gm—l((gm—Q(' : le(ﬂgo(x))))

The full Jacobian of F', that we denote by Jp = %—5 is given by the chain rule as the product of the

1°]

Jacobians of the augmented elementary functionsJ; = 6;?’ as follows:

Jp=C 1 Jpo-J1 - Jo. (4.3)

3MD thanks Carlo Savorgnan for having outlined to him this way of presenting forward and backward AD

4.2. The Forward Mode of AD 47

Note that each elementary Jacobian is given as a unit matrix plus one extra row. Also note that the
extra row that is here marked with stars x has at maximum two non-zero entries.

1

For the generation of first order derivatives, algorithmic differentiation uses two alternative ways to
evaluate the product of these Jacobians, the forward and the backward mode as described in the next
two sections.

4.2 The Forward Mode of AD

In forward AD we first define a seed vector p € R™ and then evaluate the directional derivative Jpp in
the following way:

Jrp=C - (Jm-1 - (-2 (J1 - (Jop)))). (4.4)

In order to write down this long matrix product as an efficient algorithm where the multiplications of all
the ones and zeros do not cause computational costs, it is customary in the field of AD to use a notation
that uses “dot quantities” &; that we might think of as the velocity with which a certain variable changes,
given that the input = changes with speed © = p. We can interpret them as

In the augmented formulation, we can introduce dot quantities z; for the augmented vectors z;, for
i=0,...,m—1, and the recursion of these dot quantities is just given by the initialization with the seed
vector, Z; = p, and then the recursion

Ty = Ji(#)zs, i=0,1,...,m— 1.

Given the special structure of the Jacobian matrices, most elements of Z; are only multiplied by one and
nothing needs to be done, apart from the computation of the last component of the new vector 3;61'+1-
This last component is @,4;+1 Thus, in an efficient implementation, the forward AD algorithm works as
the algorithm below. It first sets the seed # = p and then proceeds as follows.

Algorithm 4.2. Forward Automatic Differentiation.

Input: #1,...,12, and all partial derivatives gff
J

Output: &1,...,Zptm

fori=0tom—1do
. n+i d¢; -
Tnti+1 Zj:l [n; Lj

end for

Note: each sum consist of only one or two non-zero entries.

In forward AD, the function evaluation and the derivative evaluation can be performed in parallel,
which eliminates the need to store any internal information. This is best illustrated using an example.

Example 4.2 (Forward Automatic Differentiation) We regard the same example as above, f(z1, x2, x3) =
sin(x122) + exp(x12223). First, each intermediate variable has to be computed, and then each line can

f

o

48 Chapter 4. Calculating Derivatives

be differentiated. For given x1,x2, 3 and &1, &2, 23, the algorithm proceeds as follows:

T4 = T1T2 fC4 :Sbl$2+$1i'2
x5 = sin(zy4) &5 = cos(zq)dy
Te = T4T3 L6 = T3 + Tad3
x7 = exp(xs) &7 = exp(x¢) L6
xg = x5 + X7 Tg = @5 + X7

The result is i’g = (il, ig, ig)Vf(xl, $2,l‘3). .

It can be proven that the computational cost of Algorithm 4.2 is smaller than two times the cost of
Algorithm 4.1, or short
cost(Jpp) < 2cost(F).

If we want to obtain the full Jacobian of F', we need to call Algorithm 4.2 several times, each time with
the seed vector corresponding to one of the n unit vectors in R™, i.e. we have

cost(Jp) < 2ncost(F).

AD in forward mode is slightly more expensive than numerical finite differences, but it is exact up to
machine precision.

4.2.1 The “lmaginary trick” in MATLAB

An easy way to obtain high precision derivatives in MATLAB is closely related to AD in forward mode.
It is based on the following observation: if F' : R™ — R™F is analytic and can be extended to complex
numbers as inputs and outputs, then for any ¢ > 0 holds

Jr(z)p = M +Ot). (4.5)
In contrast to finite differences, there is no subtraction in the numerator, so there is no danger of
numerical cancellation errors, and ¢ can be chosen extremely small, e.g. ¢ = 10719, which means that
we can compute the derivative up to machine precision. This “imaginary trick” can most easily be used
in a programming language like MATLAB that does not declare the type of variables beforehand, so
that real-valued variables can automatically be overloaded with complex-valued variables. This allows us
to obtain high-precision derivatives of a given black-box MATLAB code. We only need to be sure that
the code is analytic (which most codes are) and that matrix or vector transposes are not expressed by a
prime ’ (which conjugates a complex number), but by transp.

4.3 The Backward Mode of AD

In backward AD we evaluate the product in Eq. (4.3) in the reverse order compared with forward AD.
Backward AD does not evaluate forward directional derivatives. Instead, it evaluates adjoint directional
derivatives: when we define a seed vector A\ € R™F then backward AD is able to evaluate the product
AT Jr. Tt does so in the following way:

N Jp = ((ANTC) - Jme1) - Jm—2) - J1) - Jo. (4.6)

When writing this matrix product as an algorithm, we use “bar quantities” instead of the “dot quantities”
that we used in the forward mode. These quantities can be interpreted as derivatives of the final output
with respect to the respective intermediate quantity. We can interpret

dF
7=\ —.

Each intermediate variable has a bar variable and at the start, we initialize all bar variables with the
value that we obtain from CT\. Note that most of these seeds will usually be zero, depending on the

4.3. The Backward Mode of AD 49

output selection matrix C. Then, the backward AD algorithm modifies all bar variables. Backward AD
gets most transparent in the augmented formulation, where we have bar quantities z; for the augmented
states Z;. We can transpose the above Equation (4.6) in order to obtain

TEX=Jg (T d oy (CTN).

In this formulation, the initialization of the backward seed is nothing else than setting &,, = CT\ and
then going in reverse order through the recursion

T = Ji(@) i, i=m—1,m—2,...,0.

Again, the multiplication with ones does not cause any computational cost, but an interesting feature of
the reverse mode is that some of the bar quantities can get several times modified in very different stages
of the algorithm. Note that the multiplication J!'Z; 1 with the transposed Jacobian

modifies at maximum two elements of the vector Z;,1 by adding to them the partial derivative of the
elementary operation multiplied with Z,,4+;+1. In an efficient implementation, the backward AD algorithm
looks as follows.

Algorithm 4.3. Reverse Automatic Differentiation.

Input: seed vector Z1,...,Zp+m and all partial derivatives gf?
J

Output: Z1,%2,..., Ty

for i = m — 1 down to 0 do
forall j=1,...,n4+17do

— — _ 6 .
Zj Zj + Tnvit1 oo
end for
end for

Note: each inner loop will only update one or two bar quantities.

Example 4.3 (Reverse Automatic Differentiation) We regard the same example as before, and
want to compute the gradient Vf(z) = (Z1,%2,73)7 given (z1,72,23). We set A = 1. Because the
selection matrix C' selects only the last intermediate variable as output, i.e. C' = (0, --- 0, 1), we initialize
the seed vector with zeros apart from the last component, which is one. In the reverse mode, the algorithm
first has to evaluate the function with all intermediate quantities, and only then it can compute the bar
quantities, which it does in reverse order. At the end it obtains, among other, the desired quantitities
(Z1,Z2,Z3). The full algorithm is the following.

/] *** forward evaluation of the function ***

Ty = T1T2
x5 = sin(xy4)
T = TaT3
x7 = exp(zg)

xrg = T + Ty

50 Chapter 4. Calculating Derivatives

// *** initialization of the seed vector ***
F=0, i=1,...,7

ig =1

/] *** backwards sweep ***

// * differentiation of xg = x5 + x7
Ty =5+ 1 7s

Tr=o7+ 113

// * differentiation of x7 = exp(w¢)
Te = To + exp(ae)Tr

// * differentiation of xg = z4x3
T4 =Ty + T3%6

T3 = T3 + T4T¢

// * differentiation of x5 = sin(z4)
Ty = Ty + cos(x4)Ts

// differentiation of x4 = x124

T1 =T+ 2224

To = T2 + X174

The desired output of the algorithm is (%1, T2, T3), equal to the three components of the gradient V f(z).
Note that all three are returned in only one reverse sweep. N

It can be shown that the cost of Algorithm 4.3 is less than 3 times the cost of Algorithm 4.1, i.e.,
cost()\TJF) < 3cost(F).

If we want to obtain the full Jacobian of F'; we need to call Algorithm 4.3 several times with the ng seed
vectors corresponding to the unit vectors in R"#, i.e. we have

cost(Jp) < 3np cost(F).

This is a remarkable fact: it means that the backward mode of AD can compute the full Jacobian at
a cost that is independent of the state dimension n. This is particularly advantageous if np < n, e.g.
if we compute the gradient of a scalar function like the objective or the Lagrangian. The reverse mode
can be much faster than what we can obtain by finite differences, where we always need (n + 1) function
evaluations. To give an example, if we want to compute the gradient of a scalar function f : R* — R
with n =1 000 000 and each call of the function needs one second of CPU time, then the finite difference
approximation of the gradient would take 1 000 001 seconds, while the computation of the same quantity
with the backward mode of AD needs only 4 seconds (1 call of the function plus one backward sweep).
Thus, besides being more accurate, backward AD can also be much faster than finite differences.

The only disadvantage of the backward mode of AD is that we have to store all intermediate
variables and partial derivatives, in contrast to finite differences or forward AD. A partial remedy to this
problem exist in form of checkpointing that trades-off computational speed and memory requirements.
Instead of all intermediate variables, it only stores some “checkpoints” during the forward evaluation.
During the backward sweep, starting at these checkpoints, it re-evaluates parts of the function to obtain
those intermediate variables that have not been stored. The optimal number and location of checkpoints
is a science of itself. Generally speaking, checkpointing reduces the memory requirements, but comes at
the expense of runtime.

From a user perspective, the details of implementation are not too relevant, but it is most important
to just know that the reverse mode of AD exists and that it allows in many cases a much more efficient
derivative generation than any other technique.

4.4. Algorithmic Differentiation Software 51

4.3.1 Efficient Computation of the Hessian

A particularly important quantity in Newton-type optimization methods is the Hessian of the Lagrangian.
It is the second derivative of the scalar function £(x, A, ;1) with respect to z. As the multipliers are fixed for
the purpose of differentiation, we can for notational simplicity just regard a function f : R™ — R of which
we want to compute the Hessian V2 f(x). With finite differences we would at least need (n+ 2)(n+1)/2
function evaluations in order to compute the Hessian, and due to round-off and truncation errors, the
accuracy of a finite difference Hessian would be much lower than the accuracy of the function f: we loose
three quarters of the valid digits.

In contrast to this, algorithmic differentiation can without problems be applied recursively, yielding
a code that computes the Hessian matrix at the same precision as the function f itself, i.e. typically at
machine precision. Moreover, if we use the reverse mode of AD at least once, e.g. by first generating an
efficient code for V f(x) (using backward AD) and then using forward AD to obtain the Jacobian of it,
we can reduce the CPU time considerably compared to finite differences. Using the above procedure, we
would obtain the Hessian V2 f at a cost of 2n times the cost of a gradient V f, which is about four times
the cost of evaluating f alone. This means that we have the following runtime bound:

cost(V2f) < 8ncost(f).

A compromise between accuracy and ease of implementation that is equally fast in terms of CPU time is
to use backward AD only for computing the first order derivative V f(z), and then to use finite differences
for the differentiation of V f(x).

4.4 Algorithmic Differentiation Software

Most algorithmic differentiation tools implement both forward and backward AD, and most are specific
to one particular programming language. They come in two different variants: either they use operator
overloading or source-code transformation.

The first class does not modify the code but changes the type of the variables and overloads the
involved elementary operations. For the forward mode, each variable just gets an additional dot-quantity,
i.e. the new variables are the pairs (z;,4;), and elementary operations just operate on these pairs, like
e.g.

(z, %) (y,9) = (zy, 2y + y).

An interesting remark is that operator overloading is also at the basis of the imaginary trick in MATLAB
were we use the overloading of real numbers by complex numbers and used the small imaginary part as
dot quantity and exploited the fact that the extremely small higher order terms disappear by numerical
cancellation.

A prominent and widely used AD tool for generic user supplied C++ code that uses operator
overloading is ADOL-C. Though it is not the most efficient AD tool in terms of CPU time it is well
documented and stable. Another popular tool in this class is CppAD.

The other class of AD tools is based on source-code transformation. They work like a text-processing
tool that gets as input the user supplied source code and produces as output a new and very differently
looking source code that implements the derivative generation. Often, these codes can be made ex-
tremely fast. Tools that implement source code transformations are ADIC for ANSI C, and ADIFOR
and TAPENADE for FORTRAN codes.

In the context of ODE or DAE simulation, there exist good numerical integrators with forward
and backward differentiation capabilities that are more efficient and reliable than a naive procedure that
would consist of taking an integrator and processing it with an AD tool. Examples for integrators that
use the principle of forward and backward AD are the code DAESOL-II or the open-source codes from
the ACADO Integrators Collection or from the SUNDIALS Suite.

52

Chapter 4. Calculating Derivatives

Part Il

Discrete Time Optimal Control

53

Chapter 5

Discrete Time Optimal
Control Formulations

A lot of times it’s up to our discretion.
— Joe Jimenez

Throughout this part of the script we regard for notational simplicity time-invariant dynamical
systems with dynamics

Th+1 :f(xk,uk), kiO,...,N*l. (51)

Recall that ug are the controls and xj the states, with xp € R™* and uj € R™.

As discussed in the first chapter, if we know the initial state xo and the controls ug,...,un_1,
we could simulate the system to obtain all other states. But in optimization, we might have different
requirements than just a fixed initial state. We might, for example, have both a fixed initial state and a
fixed terminal state that we want to reach. Or we might just look for periodic sequences with zo = .
All these desires on the initial and the terminal state can be expressed by a boundary constraint function

r(zo,xn) = 0. (5.2)
For the case of fixed initial value, this function would just be
r(zo,zn) = o — Zo (5.3)

where T is the fixed initial value and not an optimization variable. Another example would be to have
both ends fixed, resulting in a function r of double the state dimension, namely:

r(z0, 2N) = L’”Jﬁ - ;”ﬂ . (5.4)

Finally, periodic boundary conditions can be imposed by setting
r(zo,xN) = xop — TN. (5.5)
Other constraints that are usually present are path constraint inequalities of the form
hMag,ur) <0, k=0,...,N—1. (5.6)

In the case of upper and lower bounds on the controls, umi, < ur < Umax, the function h would just be

h(z,u) = [“ _“ma"} .

Umin — U

5.1 Optimal Control Problem (OCP) Formulations

Two major approaches can be distinguished to formulate and numerically solve a discrete time opti-
mal control problem, the simultaneous and the sequential approach, which we will outline after having
formulated the optimal control problem in its standard form.

55

56 Chapter 5. Discrete Time Optimal Control Formulations

5.1.1 Original Problem Formulation

Given the system model and constraints, a quite generic discrete time optimal control problem can be
formulated as the following constrained NLP:

N-1
minimize Z Lz, up)+E(zN) (5.7a)

Lo, Uy L1y y UN—-1, TN k=0
subject to g1 — f(zp,ur) =0, for k=0,...,N—1, (5.7b)
h(zg,up) <0, for k=0,...,N—1, (5.7¢)
r(zo,zn) = 0. (5.7d)

We remark that other optimization variables could be present as well, such as a free parameter p that
can be chosen but is constant over time, like e.g. the size of a vessel in a chemical reactor or the length of
a robot arm. Such parameters could be added to the optimisation formulation above by defining dummy
states {py}i_, that satisfy the dummy dynamic model equations

Pk+1 = Pk, kZO,...,N—l. (58)

Note that the initial value of pg is not fixed by these constraints and thus we would have obtained our
aim of having a time constant parameter vector that is free for optimization.

5.1.2 The Simultaneous Approach

The nonlinear program (5.7) is large and structured and can thus in principle be solved by any NLP
solver. This is called the simultaneous approach to optimal control and requires the use of a structure
exploiting NLP solver in order to be efficient. Note that in this approach, all original variables, i.e. wug
and z, remain optimization variables of the NLP. Its name stems from the fact that the NLP solver has
to simultaneously solve both, the simulation and the optimization problem. It is interesting to remark
that the model equations (5.7b) will for most NLP solvers only be satisfied once the NLP iterations are
converged. The simultaneous approach is therefore sometimes referred to as an infeasible path approach.
The methods direct multiple shooting and direct collocation that we explain in the third part of this script
are simultaneous approaches.

5.1.3 The Reduced Formulation and the Sequential Approach

On the other hand, we know that we could eliminate nearly all states by a forward simulation, and in this

way we could reduce the variable space of the NLP. The idea is to keep only zg and U = [ul, ... u% |7
as variables. The states x1,...,xn are eleminated recursively by

Zo(z0,U) = wo (5.9a)

Ii'k+1(lL'0,U) :f(i'k(x()vU)auk)v k:()avN*l (59b)

Then the optimal control problem is equivalent to a reduced problem with much less variables, namely
the following nonlinear program:

N-1

minimize > L(xk(xo, U), ur)+E(Zx (20, U)) (5.10a)
xo, U k=0
subject to MZg(xo,U),u) <0, for k=0,...,N—1, (5.10b)

r(zo,Zn (20, U)) = 0. (5.10c¢)

Note that the model Equation (5.9b) is implicitly satisfied by definition, but is not anymore a constraint of
the optimization problem. This reduced problem can now be addressed again by Newton-type methods,
but the exploitation of sparsity in the problem is less important. This is called the sequential approach,
because the simulation problem and optimization problem are solved sequentially, one after the other.
Note that the user can observe during all iterations of the optimization procedure what is the resulting
state trajectory for the current iterate, as the model equations are satisfied by definition.

If the initial value is fixed, i.e. if r(xg,) = 2o — To, one can also eliminate x¢g = Zy, which reduces
the variables of the NLP further.

5.2. Analysis of a Simplified Optimal Control Problem 57

5.2 Analysis of a Simplified Optimal Control Problem

In order to learn more about the structure of optimal control problems and the relation between the
simultaneous and the sequential approach, we regard in this section a simplified optimal control problem
in discrete time:

N-1
minimize Z L(xy,ur)+E(xN) (5.11a)

Lo, UOyL1ye ey UN—-1, TN k=0
subject to flzg,up) — 241 =0 for k=0,...,N—1 (5.11b)
r(zo,xn) =0 (5.11c)

5.2.1 KKT Conditions of the Simplified Problem

We first summarize the variables as w = (o, ug, x1, u1,. .., un—1,2y) and summarize the multipliers as
A= (M,..., AN, Ar). Then the above optimal control problem can be summarized as
minimize F(w) (5.12a)
subject to G(w) = 0. (5.12b)

Here, the objective F'(w) is just copied from (5.11a) while G(w) collects all constraints:

f(xo,up) — 1
f($17 Ul) — 2
Glw) = : . (5.12¢)
flen—1,un—1) — N
r(xo, ZN)

The Lagrangian function has the form

L(w,\) = F(w) + \TG(w)

N—-1 N—-1
= 3 Llwg,u) + Blan) + > Mo (F(@n, un) — 2rp1)
k=0 k=0
+ M (20,), (5.13)

and the summarized KKT-conditions of the problem are

Vuwl(w,A) =0 (5.14a)
G(w) = 0. (5.14b)
But let us look at these KKT-conditions in more detail. First, we evaluate the derivative of £ with

respect to all state variables zj, one after the other. We have to treat £k = 0 and k = IV as special cases.
For k = 0 we obtain:

0 0
Vo £ (10, A) = Vi L(20, 1) + 2 (w0, 10) Mt + 2 (0, 23)T Ay = 0. (5.15a)
8360 8:p0
Then the case for k =1,..., N — 1 is treated
_ of T _
Vsz(w,)\) = mGL(l’k, uk) —A\: + —(ack, uk))\k-i—l =0. (5.15b)

a:L'k

Last, the special case k = N

Voo £(w,) = Vo E(en) — Ay + ;TT(J;O,M)TAT 0. (5.15¢)
N

58 Chapter 5. Discrete Time Optimal Control Formulations

Second, let us calculate the derivative of the Lagrangian with respect to all controls ug, for k =0,..., N —
1. Here, no special cases need to be considered, and we obtain the general formula
0
VukL(w, A) = VukL(ack, ug) + an(ack, uk)T)\kH =0. (5.15(1)
k

Until now, we have computed in detail the components of the first part of the KKT-condition (5.14a),
ie. VyL(w,A) =0. The other part of the KKT-condition, G(w) = 0, is trivially given by

f(:ck,uk)—:ckJrl :0, kiO,...,N*l (5156)
r(zo,xn) =0 (5.15f)

Thus, collecting all equations (5.15a) to (5.15f), we have stated the KKT-conditions of the OCP. They can
be treated by Newton-type methods in different ways. The simultaneous approach addresses equations
(5.15a) to (5.15f) directly by a Newton-type method in the space of all variables (w,\). In contrast
to this, the sequential approach approach eliminates all the states z1,...,2zx in (5.15¢) by a forward
simulation, and if it is implemented efficiently, it also uses Egs. (5.15¢) and (5.15b) to eliminate all
multipliers Ay, ..., A1 in a backward simulation, as discussed in the following subsection.

5.2.2 Computing Gradients in the Sequential Approach

A naive implementation of the sequential approach would start by coding routines that evaluate the
objective and constraint functions, and then passing these routines as black-box codes to a generic NLP
solver, like fmincon in MATLAB. But this would not be the most efficient way to implement the sequential
approach. The reason is the generation of derivatives, which a generic NLP solver will compute by finite
differences. On the other hand, many generic NLP solvers allow the user to deliver explicit functions for
the derivatives as well. This allows us to compute the derivatives of the reduced problem functions more
efficiently. The key technology here is algorithmic differentiation in the backward mode, as explained in
Chapter 4.

To see how this relates to the optimality conditions (5.15a) to (5.15f) of the optimal control problem,
let us simplify the setting even more by assuming a fixed initial value and no constraint on the terminal
state, i.e. r(xo,xN) = To—2o. In this case, the KKT conditions simplify to the following set of equations,
which we bring already into a specific order:

To = To (516&)
g1 = f(zp,uk), k=0,...,N—1, (5.16b)
)\N = VINE(.TN) (5.16(3)
0
M = Vg, L(xg, ur) + a—f(wk,uk)T)\kH,
T
k=N-1,...,1, (5.16d)
0
VukL(zk,uk) + —f(l'k, uk)TAkJrl =0, k=0,...,N—1. (5166)

auk

It can easily be seen that the first four equations can trivially be satisfied, by a forward sweep to obtain
all x; and a backward sweep to obtain all A;. Thus, x; and A\; can be made explicit functions of
ug,-..,uny—1. The only equation that is non-trivial to satisfy is the last one, the partial derivatives of
the Lagrangian w.r.t. the controls ug,...,uny—1. Thus we could decide to eliminate x; and Ay and only
search with a Newton-type scheme for the variables U = (ug,...,un—1) such that these last equations
are satisfied. It turns out that the left hand side residuals (5.16e) are nothing else than the derivative
of the reduced problem’s objective (5.10a), and the forward-backward sweep algorithm described above
is nothing else than the reverse mode of algorithmic differentiation. It is much more efficient than the
computation of the gradient by finite differences.

The forward-backward sweep is well known in the optimal control literature and often introduced
without reference to the reverse mode of AD. On the other hand, it is good to know the general principles
of AD in forward or backward mode, because AD can also be beneficial in other contexts, e.g. for the
evaluation of derivatives of the other problem functions in (5.10a)-(5.10c). Also, when second order
derivatives are needed, AD can be used and more structure can be exploited, but this is most easily
derived in the context of the simultaneous approach, which we do in the following chapter.

Chapter 6

Sparsity Structure of the
Optimal Control Problem

It was so sparse out there they didn’t get close enough to each other to
collide and form a planet.
— Andy Puckett

Let us in this chapter regard a very general optimal control problem in the original formulation,
i.e. the NLP that would be treated by the simultaneous approach.

N-1
minimize Z Ly (zg, ur)+E(xN) (6.1a)
o, Uy L1y, UN—-1, TN k=0
subject to fe(zk,ug) —xg41 =0, for k=0,....,N—1, (6.1b)
N-1
Z Tk, uk) + rn(zn) =0, (6.1c)
k=0
hk(xk,uk)go, for kiO,...,N*l, (Gld)

hN(:L'N) S 0. (616)

Compared to the OCP (5.7) in the previous chapter, we now allow indices on all problem functions
making the system time dependent; also, we added terminal inequality constraints (6.1e), and as boundary
conditions we now allow now very general coupled multipoint constraints (6.1c) that include the cases of
fixed initial or terminal values or periodicity, but are much more general. Note that in these boundary
constraints terms arising from different time points are only coupled by addition, because this allows us
to maintain the sparsity structure we want to exploit in this chapter.

Collecting all variables in a vector w, the objective in a function F(w), all equalities in a function
G(w) and all inequalities in a function H(w), the optimal control problem could be summarized as

min%umize F(w) (6.2a)
subject to G(w) =0, (6.2b)
H(w) <0. (6.2¢)

Its Lagrangian function is given by
L(w, \,) = F(w) + ATG(w) + p" H(w).

But this summarized form does not reveal any of the structure that is present in the problem.

6.1 Partial Separability of the Lagrangian

In fact, the above optimal control problem is a very sparse problem because each of its functions depends
only on very few of its variables. This means for example that the Jacobian matrix of the equality

59

60 Chapter 6. Sparsity Structure of the Optimal Control Problem

constraints has many zero entries. But not only first order derivatives are sparse, also the second order
derivative that we need in Newton-type optimization algorithms, namely the Hessian of the Lagrangian,
is a very sparse matrix. This is due to the fact that the Lagrangian is a partially separable function [43].

Definition 6.1 (Partial Separability). A function f : R™ — R is called partially separable if it can

be decomposed as a sum of m functions f; : R™ — R with n; <n for all j =1,...,m. This means that
for each j exists a subset I; of indices from {1,...,n} and subvectors x; of x such that
m
fl@) =" filer).
j=1

The Lagrangian function of the above optimization problem can explicitly be decomposed into
subfunctions that each depend on some of the multipliers and only on the variables (zj,uy) with the
same index k. Let us collect again all variables in a vector w but decompose it as* w = (w1,...,wy)
with wy = (zg,uy) for k = 0,...,N —1 and wy = zn. Collecting all equality multipliers in a vector
A = (A1,..., AN, Ar) and the inequality multipliers in a vector u = (po,...,un) Wwe obtain for the
Lagrangian

N
L(w, A\ p) = Li(wy, A, p1)
k=0

with the local Lagrangian subfunctions defined as follows. The first subfunction is given as
Lo(wo, A\, 1) = Lo(zo,u0) + A folxo, uo) + MOTho(aco, ug) + Aro (20, uo)
and for k=1,..., N — 1 we have the subfunctions
L (we, A, 1) = Li(zr, ui) + Mgy fro (@, ur) — N 2w + pi hi (2, ui) + A g (2r, ur)
while the last subfunction is given as
Ln(wn, A\ p) = E(zy) —)\%xN + ,u%hN(acN) +)\TTTN(JCN).

In fact, while each of the equality multipliers appears in several (A1,..., Ay) or even all problem functions
(\r), the primal variables of the problem do not have any overlap in the subfunctions. This leads to the
remarkable observation that the Hessian matrix V2 £ is block diagonal, i.e. it consists only of small
symmetric matrices that are located on its diagonal. All other second derivatives are zero, i.e.

0?L

m(w,)\, ‘U,) = 0, for any 7 7é j

This block diagonality of the Hessian leads to several very favourable facts, namely that (i) the Hessian
can be approximated by high-rank or block updates within a BFGS method [43, 19], and (ii) that the QP
subproblem in all Newton-type methods has the same decomposable objective function as the original
optimal control problem itself.

6.2 The Sparse QP Subproblem

In order to analyse the sparsity structure of the optimal control problem, let us regard the quadratic
subproblem that needs to be solved in one iteration of an exact Hessian SQP method. In order not to
get lost in too many indices, we disregard the SQP iteration index completely. We regard the QP that
is formulated at a current iterate (z, A\, u) and use the SQP step Aw = (Axzg, Aug, ..., Azy) as the QP
variable. This means that in the summarized formulation we would have the QP subproblem

1
minimize VF(w)? Aw + EAwTV?,ﬁ (w, A,) Aw (6.3a)
Aw
subject to G(w) + VG(w)T Aw = 0, (6.3b)
H(w) + VH(w)" Aw < 0. (6.3¢)

4Note that for notational beauty we omit here and in many other occasions the transpose signs that would be necessary
to make sure that the collection of column vectors is again a column vector, when this is clear from the context.

6.3. Sparsity Exploitation in QP Solvers 61

Let us now look at this QP subproblem in the detailed formulation. It is remarkably similar to the
original OCP. To reduce notational overhead, let us define a few abbreviations: first, the diagonal blocks
of the Hessian of the Lagrangian
. v —
Qk—vka(w7)‘a:u/)7 k_ov---aNa

second, the objective gradients

gk :V(LU)L(xk,uk), kiO,...,N*l, and agN :VIE(xN),
third the system discontinuities (that can be non-zero in the simultaneous approach)

ak:fk(zk,uk)fzmrl, kiO,...,N*l,

and fourth the transition matrices

A B, = — k=0,....N—1
k = (9:ck (-r]wuk) k auk (xkauk)7 5 B B
fifth the residual of the coupled constraints
N—1
Z T (T, u) + ra(zwn),
k=0
as well as its derivatives
(97% aTN
Ry = —— k=0,....N—1 d Ry =—
k 6($k,uk) (Z'k,’ll,k),))) an N ox (zN)a

and last the inequality constraint residuals and their derivatives

Ohn

hi, = hi(zi,uk), Hp = o —(zn).

Ohy,
_— — H —
(o, r) (xg,ur) and hy =hy(zN), N =

With all the above abbreviations, the detailed form of the QP subproblem is finally given as follows.

1= Az]” . [Az Az
k k N
minimize = Qk{ }—l— Azl QnAzy + {] gk + Axkgn
AZCQ,AUQ,...,A.Z‘N 2 kZ:O |:Auk:| Au Z
(6.4)
subject to ap + AxAxy + BrAugp—Axgy; =0, for k=0,...,N—1, (6.5)
N-1 A
r+ ZRk |:A$k:| + RyAxy =0,
k=0
A:L'k o
hk+Hk|:Auk:|§0’ for k=0,...,N—1,
hy + HyAxzy < 0. (66)

This is again an optimal control problem, but a linear-quadratic one. It is a convex QP if the Hessian
blocks @y, are positive definite, and can be solved by a variety of sparsity exploiting QP solvers.

6.3 Sparsity Exploitation in QP Solvers

When regarding the QP (6.4) one way would be to apply a sparse interior point QP solver like OOQP
to it, or a sparse active set method. This can be very efficient. Another way would be to first reduce,
or condense, the variable space of the QP, and then apply a standard dense QP solver to the reduced
problem. Let us treat this way first.

62 Chapter 6. Sparsity Structure of the Optimal Control Problem

6.3.1 Condensing

When we regard the linearized dynamic system equations (6.5) they correspond to an affine time variant
system in the steps Azy, namely

A.Z‘k+1 = ap + ApAzyp + BrAug. (67)

If the values for Az as well as for all {Auy}5 ;" would be known, then also the values for {Azy}N | can
be obtained by a forward simulation of this linear system. Due to its linearity, the resulting map will be
linear, i.e. we can write

A$Q
Awl AUO
A:L'N AUN—l
~
Awdep = v+ M Awing (69)

with a vector v € RV"= and a matrix M € R =) x(n=+N-7u) “and dividing the variables into a dependent
and an independent part, Aw = (Awdep, AWind)-

The vector v can be generated recursively by simulating the affine dynamic system (6.7) with all
inputs set to zero, i.e. Awinq = 0. This yields the forward recursion

v1 = ag, Vg1 =0+ Agvk, k=1,...,N—1

for the components of the vector v = (v1,...,vy). The subblocks of the matrix M can be obtained
recursively as well in a straightforward way. Note that the matrix is lower triangular because the states
Ax; do not depend on Auy if £ > j. On the other hand, if k£ < j, the corresponding matrix blocks are
Aj_1 - Apy1By. Finally, the dependence of Az, on Azg is Aj_1--- Ap. In this way, all blocks of the
matrix M are defined.

To get a notationally different, but equivalent view on condensing, note that the linear dynamic
system equations (6.5) are nothing else than the linear system

ASCO
A’LLO
Al‘l a

Aul a?

Ary | = | (6.10)

Ay By I
A, By -1

Ay-1 By -1 Ay an

Aun_
L A:L'N |

After reordering the variables into dependent and independent ones, this system can be written as

ASCO
Ay B I Ao
0 0 - . ao
Bl A1 —I : ay
Auy_ i | =—| . (6.11)
Al‘l :
Bn_1 Av-1 -1 . an
L AwN |

which we can summarize as

6.3. Sparsity Exploitation in QP Solvers 63

so that we get the explicit solution

Awdep = (—Y_la) + (7Y_1X) Awing.-
—_— Y
=v =M
Note that the submatrix Y is always invertible due the fact that it is lower triangular and has (negative)
unit matrices on its diagonal.

Once the vector v and matrix M are computed, we can formulate a condensed QP which has only
the independent variables Awi,q as degrees of freedom. This condensed QP can be solved by a dense
QP solver, and the resulting solution Aw; ; can be expanded again to yield also the QP solution for
Whe, = v+ MAw] 4. The QP multipliers Agep = (A1,...,An) for the constraints (6.5) can be obtained
from the dense QP solution in a slightly more complex way. The trick is to regard the Lagrangian of
the original QP (6.5), £9F (Awind, AWdep, Adep, Ar, 1) and note that the condensed QP yields also the
multipliers A%, p*, which turn out to be the correct multipliers also for the uncondensed QP. Thus, the
only missing quantity is Ag.,. It can be obtained by using the follwing two observations: first, for the
true QP solution must hold that the Lagrange gradient is zero, also with respect to Awgep. Second, this
Lagrange gradient depends linearly on the unknown multipliers Agep which contribute to it via the term
YT Ndep, i.e. we have

0= vAwdepLQP (Awi*ndv Aw§ep’ A:iep’ A:a .U*) = VAwdepLQP (Awi*nda szep’ 0,)‘:’ :u*) + YT)‘?iep'

It is a favourable fact that the Lagrange gradient depends on the missing multipliers via the matrix
YT, because this matrix is invertible. Thus, we obtain an explicit equation for obtaining the missing
multipliers, namely

)‘?lep = 7Y_TVAwdep'C’QP(Awi*nda Aw:iepv 0,)‘:a ,LL*>.

Note that the multipliers would not be needed within a Gauss-Newton method.

Summarizing, condensing reduces the original QP to a QP that has the size of the QP in the
sequential approach. Nearly all sparsity is lost, but the dimension of the QP is much reduced. Condensing
is favourable if the horizon length N and the control dimension n, are relatively small compared to the
state dimension n,. If the initial value is fixed, then also Az can be eliminated from the condensed QP
before passing it to a dense QP solver, further reducing the dimension.

On the other hand, if the state dimension n, is very small compared to N - n,, condensing is not
favourable due to the fact that it destroys sparsity. This is most easily seen in the Hessian. In the original
sparse QP, the block sparse Hessian has N (n, + n,)? + n2 nonzero elements. This is linear in N. In
contrast to this, the condensed Hessian is dense and has (n, + Nn,)? elements, which is quadratic in N.
Thus, if N is large, not only might the condensed Hessian need more (!) storage than the original one,
also the solution time of the QP becomes cubic in N (factorization costs of the Hessian).

6.3.2 Sparse KKT System

A different way to exploit the sparsity present in the QP (6.4) is to keep all variables in the problem and
use within the QP solver linear algebra routines that exploit sparsity of matrices. This can be realized
within both, interior point (IP) methods as well as in active set methods, but is much easier to illustrate
at the example of TP methods. For illustration, let us assume a problem without coupled constraints (6.6)
and assume that all inequalities have been transformed into primal barrier terms that are added to the
objective. Then, in each interior point iteration, an equality constrained QP of the following simple form
needs to be solved.

N-1 T
- 1 A:ckH Qi Q;ﬁ“HAu] Lo
= iy u +-AxyQnAzx
A:L'O,gl}tﬁ)lfl.lz.e,Al'N 2];O[Auk (Qk)T QF | [Aur| 2 NYNATN

N Az T
+ 3 [Aux] gDzl gy (6.12)
k=0

subject to ar + ApAxy + BpAugp—Axzg =0, for k=0,...,N —1.(6.13)

64 Chapter 6. Sparsity Structure of the Optimal Control Problem

Formulating the Lagrangian of this QP and differentiating it with respect to all its primal and dual vari-
ables y = (Axg, Aug, A1, Az, Aug, ... Ay, Azy) in this order we obtain a linear system of the following
block tridiagonal form

[QgT 0" A§ 1 " Az] L
@7 Q5 B rd B
Ao By 0 —I Alo *
—I TT QT A? Ay *
(QT") ¥ By Au *

Ay B, 0 I \ Ll =]x (6.14)

-1 2 *
. *
.- .- A *
Ay-1 By-1 0 —I A;CVN %

L - Qn] "~ -7

This linear system can be solved with a banded direct factorization routine, whose runtime is proportional
to N(ng+mn,)3. We will see in the next chapter that a particularly efficient way to solve the above linear
system can be obtained by applying the principle of dynamic programming to the equality constrained
quadratic subproblem (6.12).

Summarizing, the approach to directly solve the sparse QP without condensing is advantageous if
Nn,, is large compared to n,. It needs, however, sparse linear algebra routines within the QP solver.
This is easier to implement in the case of IP methods than for active set methods.

Chapter 7

Dynamic Programming

In view of all that we have said in the foregoing sections, the many ob-
stacles we appear to have surmounted. What casts the pall over our vic-
tory celebration? It is the curse of dimensionality, a malediction that has
plagued the scientist from earliest days.

— Richard E. Bellman

Dynamic programming (DP) is a very different approach to solve optimal control problems than the
ones presented previously. The methodology was developed in the fifties and sixties of the 19th century,
most prominently by Richard Bellman [5] who also coined the term dynamic programming. Interestingly,
dynamic programming is easiest to apply to systems with discrete state and control spaces, so that we
will introduce this case first. When DP is applied to discrete time systems with continuous state spaces,
some approximations have to be made, usually by discretization. Generally, this discretization leads to
exponential growth of computational cost with respect to the dimension n, of the state space, what
Bellman called the “curse of dimensionality”. It is the only but major drawback of DP and limits its
practical applicability to systems with n, ~ 6. In the continuous time case, DP is formulated as a partial
differential equation in the state space, the Hamilton-Jacobi-Bellman (HJB) equation, suffering from the
same limitation; but this will be treated in Chapter 10. On the positive side, DP can easily deal with all
kinds of hybrid systems or non-differentiable dynamics, and it even allows us to treat stochastic optimal
control with recourse, or minimax games, without much additional effort. An excellent textbook on
discrete time optimal control and dynamic programming is [9]. Let us now start with discrete control
and state spaces.

7.1 Dynamic Programming in Discrete State Space

Let us regard a dynamic system

Trr1 = f(a, u)
with f : X x U — X, i.e. 2 € X and u € U, where we do not have to specify the sets X and U yet.
We note, however, that we need to assume they are finite for a practical implementation of DP. Thus,
let us in this section assume they are finite with nx and ny elements, respectively. Let us also define a
stage cost L(x,u) and terminal cost F(x) that take values from R., = R U {oo}, where infinity denotes
infeasible pairs (z,u) or . The optimal control problem that we first address can be stated as

N—1
minimize Z L(zy, up)+E(zN) (7.1a)

o, U, L1y, UN—-1, TN k=0
subject to flag,ug) — xp41 =0, for k=0,...,N—1, (7.1b)
ZL'_O — Xy = 0. (71C)

Given the fact that the initial value is fixed and the controls {uk}ﬁ’;ol are the only true degrees of
freedom, and given that each uj, € U takes one of the ny elements of U, there exist exactly nf) different

65

66 Chapter 7. Dynamic Programming

trajectories, each with a specific value of the objective function, where infinity denotes an infeasible
trajectory. Assuming that the evaluation of f and of L takes one computational unit, and noting that
each trajectory needs N such evaluations, the overall complexity of simple enumeration is O(N nu]}’).
Simple enumeration of all possible trajectories thus has a complexity that grows exponentially with the
horizon length N.

Dynamic programming is just a more intelligent way to enumerate all possible trajectories. It starts
from the principle of optimality, i.e. the observation that each subtrajectory of an optimal trajectory is
an optimal trajectory as well. More specifically, in DP we define the value function or cost-to-go function
as the optimal cost that would be obtained if at time k € {0,..., N} and at state T we solve the optimal
control problem on a shortened horizon:

N-1

Je(Tk) = min > L(wi,u)+E(xy) (7.2a)
Tk, Uky-- -y UN—-1, TN i=k

subject to flziyu)) — a1 =0, for i=Fk,...,N—1, (7.2b)

T —xp = 0. 72C)

Thus, each function Ji : X — R, summarizes the cost-to-go to the end when starting at a given state.
For the case k = N we trivially have Jy(xz) = E(x). The principle of optimality states now that for any
ke {0,...,N — 1} holds

Jk(:fk) = InuinL(:Ek, U) + Jk+1(f(ii'k, u)) (7.3)

This immediately allows us to perform a recursion to compute all functions Jj, one after the other, starting
with £ = N — 1 and then reducing k in each recursion step by one, until we have obtained Jy. This
recursion is called the dynamic programming recursion. Once all the value functions Ji are computed,
the optimal feedback control for a given state xj at time k is given by

up(wx) = argmin L(zy, w) + Jit1 (f (25, u)

This allows us to reconstruct the optimal trajectory by a forward simulation that starts at o = Zo and
then proceeds as follows:

T4 = flap,up(zg)), k=0,...,N—1.

In this way, DP allows us to solve the optimal control problem up to global optimality, but with a different
complexity than simple enumeration. To assess its complexity, let us remark that the most cost intensive
step is the generation of the N cost-to-go functions Ji. Each recursion step (7.3) needs to go through
all nx states x. For each state it needs to test ny controls u by evaluating once the system f(z,u) and
stage cost L(x,u), which by definition costs one computational unit. Thus, the overall computational
complexity is O(Nnxny). Compared with simple enumeration, where we had O(Nnf)), DP is often much
better even for moderately sized horizons N. Let us for example assume an optimal control problem with
ny = 10, nx = 1000, N = 100. Then simple enumeration has a cost of 10'°2 while DP has a cost of 106.

One of the main advantages of dynamic programming, that can likewise be defined for continuous
state spaces, is that we do not need to make any assumptions (such as differentiability or convexity) on
the functions f, L, E' defining the problem, and still it solves the problem up to global optimality. On
the other hand, if it shall be applied to a continuous state space, we have to represent the functions Jj
on the computer, e.g. by tabulation on a grid in state space. If the continuous state space X;opn is a
box in dimension n,, and if we use a rectangular grid with m intervals in each dimension, then the total
number of grid points is m"™=. If we perform DP on this grid, then the above complexity estimate is still
valid, but with nx = m™. Thus, when DP is applied to systems with continuous state spaces, it has
exponential complexity in the dimension of the state space; it suffers from what Bellman called the curse
of dimensionality. There exist many ways to approximate the value function, e.g. by neural networks
or other functional representations [11], but the global optimality guarantee of dynamic programming is
lost in these cases. On the other hand, there exists one special case where DP can be performed exactly
in continuous state spaces, that we treat next.

7.2. Linear Quadratic Problems 67

7.2 Linear Quadratic Problems

Let us regard now linear quadratic optimal control problems of the form

N-lr 17 Q; ST1 [z
... ¢ g i v + xT Pyxn 7-4)
we 3 [0] [§ R[0] + A (
subject to vo—Tg = O,
ZL'Z'JrlfAZ'SCZ'*Bi’U,i = 0, ZZO,,Nfl

Let us apply dynamic programming to this case. In each recursion step, we have to solve, for a time

T T
varying stage cost Ly (z,u) = [ik] [gk 2"3 } [ik] and a dynamic system fj(x,u) = Az + Bru the
k k k k

recursion step
Ji(x) = min Ly (2, w) + Jpi1 (fr (2,),

where we start with Jy (z) = 27 Pyx. Fortunately, it can be shown that under these circumstances, each
Ji is quadratic, i.e. it again has the form Jy(z) = xT Pya. More specifically, the following theorem holds,
where we drop the index k for simplicity.

Theorem 7.1 (Quadratic Representation of Value Function). If R + BT PB is positive definite,
then the minimum Jyew(x) of one step of the DP recursion

ot =g (3] ([2 5] +earmrpiare) ;]

u u
is a quadratic function explicity given by Jnew(z) = 2T Pheyw @ with

Poow = Q+ ATPA — (ST + ATPB)(R + BT PB)~1(S + BT PA). (7.5)

The proof starts by noting that the optimization problem for a specific = is given by

Jnew () = min

21" [Q+ATPA ST + ATPB] [
uw| |S+BTPA R+ BTPB :

Then it uses the fact that for invertible R = R + BT PB this problem can be solved explicitly, yielding
the formula (7.5), by a direct application of the Schur complement lemma, that can easily be verified by
direct calculation.

Lemma 7.2 (Schur Complement Lemma). If R is positive definite then

T - —
. X Q ST X _ T(A aT 5—1&
min [u} {S R} [u} =2z (Q—S R S)x (7.6)
and the minimizer u*(z) is given by u*(z) = —R™1Sx.

The above theorem allows us to solve the optimal control problem by first computing explicitly all
matrices Py, and then performing the forward closed loop simulation. More explicitly, starting with Py,
we iterate for Kk = N —1,...,0 backwards

Py = Q + AL Pyy1 Ak — (SF + A Piy1 By)(Ri + B Pry1 Br) ™ (Sk + Bl Pey1 Ag). (7.7)

This is sometimes called the Difference Riccati Equation. Then, we obtain the optimal feedback uj (zy)
by
uj(zx) = —(Ri + Bf Pey1Br) " (Sk + B{ Prg1Ax)zi,

and finally, starting with xy = o we perform the forward recursion

Ty = Az + Brug(xy),

68 Chapter 7. Dynamic Programming

which delivers the complete optimal trajectory of the linear quadratic optimal control problem.
An important and more general case are problems with linear quadratic costs and affine linear
systems, i.e. problems of the form

N [1] [¢F sT1T1

3 . 177« pL]T1

minimize Zi ¢ Qi S T | + { } { P] [] (7.8)
Z,u =0 Uq S; SZ R1 Uq N pn N N

fix _
subject to ro —xg* = 0,
$i+1*Ai$i*BiUi*Ci = 0, ZZO,,Nfl

These optimization problems appear at many occasions, for example as linearizations of nonlinear optimal
control problems, as in Chapter 6, in reference tracking problems with L;(x;, u;) = ||@; — xief”é + ||ug]| %,
or in moving horizon estimation (MHE) with cost L(zi,u;) = [|[Cz; — y"**||3, 4 |lui[|%. They can be

treated by exactly the same recursion formulae as above, by augmenting the system states xj to

and replacing the dynamics by

with initial value

e 1
zgx = [zg"}

Then the problem (7.8) can be reformulated in the form of problem (7.4) and can be solved using exactly
the same difference Riccati equation formula as before!

7.3 Infinite Horizon Problems

Dynamic programming can easily be generalized to infinite horizon problems of the form

o0
minimize E L(w;, u;)
T, i=0
subject to B
o — Lo = 0,
Ti4+1 —f(xi,ui) = 0, 1= 0,...,00.

Interestingly, the cost-to-go function Ji(zx) defined in Equation (7.2) becomes independent of the index
k, i.e it holds that Ji = Ji41 for all k. This directly leads to the Bellman Equation:

J() = min L(z,u) + J(f(x, 1))

=J(x,u)
The optimal controls are obtained by the function
u*(z) = argmin J(z, u).
u

This feedback is called the stationary optimal feedback control. It is a static state feedback law.

7.4 The Linear Quadratic Regulator

An important special case is again the case of a linear system with quadratic cost. It is the solution to
an infinite horizon problem with a linear system f(z,u) = Az + Bu and quadratic cost

o= (2 %[

7.5. Robust and Stochastic Dynamic Programming 69

For its solution, we just require a stationary solution of the Riccati recursion (7.7), setting P, = Pp1,
which yields the so called algebraic Riccati equation in discrete time

P=Q+ATPA— (ST + ATPB)(R+ B"PB)"'(S + BTPA).

This is a nonlinear matrix equation in the symmetric matrix P, i.e. with n,(n, + 1)/2 unknowns. It can
either be solved by an iterative application of the difference Riccati recursion (7.7) starting with e.g. a
zero matrix P = 0, or by faster converging procedures such as Newton-type methods, where, however,
care has to be taken to avoid possible shadow solutions that are not positive definite. Once the solution
matrix P is found, the optimal feedback control u*(z) is given by

u*(z) = —(R+ BTPB)"'(S+ BTPA)x

=K

This feedback is called the Linear Quadratic Regulator (LQR), and K is the LQR gain.

7.5 Robust and Stochastic Dynamic Programming

One of its most interesting characteristics is that DP can easily be applied to games like chess, or to robust
optimal control problems. Here, an adverse player choses counter-actions, or disturbances, wy, against us.
They influence both the stage costs Ly as well as the system dynamics fj, and while we want to minimize,
our adversary wants to maximize. The robust DP recursion for such a minimax game is simply:

Ji(x) = minmax Ly (z, u, w) + Je1 (fx(z, u, w))

=Jy(z,u)

starting with
JIn(x) = E(x).

The solution obtained by DP takes into account that we can react to the actions by the adversary, i.e.
that we can apply feedback, and in the model predictive control (MPC) literature such a feedback law is
sometimes called Closed-Loop Robust Optimal Control [7].

Alternatively, we might have a stochastic system and the aim is to find the feedback law that gives
us the best expected value. Here, instead of the maximum, we take an expectation over the disturbances
wg. The stochastic DP recursion is simply given by

Jk(x) = HluiIle{Lk(:L', uvw) + JkJrl(fk(xvua w))}

=Jy(x,u)

where E,, {-} is the expectation operator, i.e. the integral over w weighted with the probability density
function p(w|x,u) of w given x and wu:

Eu{o(x,u,w)} = /qb(ac,u,w)p(w|x,u)dw.

In case of finitely many disturbances, this is just a weighted sum. Note that DP avoids the combinatorial
explosion of scenario trees that are often used in stochastic programming, but of course suffers from the
curse of dimensionality. It is the preferred option for long horizon problems with small state spaces.

7.6 Interesting Properties of the DP Operator

Let us define the dynamic programming operator T} acting on one value function, Jiy1, and giving
another one, Ji, by
Ti[J)(z) = muinLk(ac, w) + J(fr(z,u)).

Note that the operator T, maps from the space of functions X — R, into itself. With this operator,
the dynamic programming recursion is compactly written as Ji = Tj[Ji+1], and the stationary Bellman

70 Chapter 7. Dynamic Programming

equation would just be J = T'[J]. Let us for notational simplicity drop the index k in the following. An
interesting property of the DP operator T is its monotonicity, as follows.

Theorem 7.3 (Monotonicity of DP). Regard two value functions J and J'. If J > J' in the sense
that for all x € X holds that J(x) > J'(x) then also

T[J] > T[J").

The proof is
T[J)(z) = min L(z,u) + J(f(z,u)) > min L(z,u) + J'(f(z,u)) = T[J'|(z)
' 2J'(f(z,u))) ’

This monotonicity property holds also for robust or stochastic dynamic programming, and is for example
used in existence proofs for solutions of the stationary Bellman equation, or in stability proofs of model
predictive control (MPC) schemes [61].

Another interesting observation is that certain DP operators T preserve convexity of the value
function J.

Theorem 7.4 (Convex dynamic programming). If the system is affine in (x,u), i.e. f(z,u,w) =
A(w)x + B(w)u + c¢(w), and if the stage cost L(x,u,w) is convex in (x,u), then the DP, the robust DP,
and the stochastic DP operators T preserve convezity of J, i.e. if J is a convex function, then T[J] is
again a convexr function.

Proof. 1t is interesting to note that no restrictions are given on how the functions depend on w. The
proof of the convexity preservation starts by noting that for fixed w, L(x, u, w)+ J(f(z,u,w)) is a convex
function in (x,u). Because also the maximum over all w, or the positively weighted sum of an expectation
value computation, preserve convexity, the function J (z,u) is in all three cases convex in both x and
u. Finally, the minimization of a convex function over one of its arguments preserves convexity, i.e. the
resulting value function T[J] defined by

T[J](z) = min J(z, u)

u

is convex. 0

But why would convexity be important in the context of DP? First, convexity of J (2,u) implies
that the computation of the feedback law argmin,, J (z,u) is a convex parametric program and could
reliably be solved by local optimization methods. Second, it might be possible to represent the value
function J(x) more efficiently than by tabulation on a grid, for example as the pointwise maximum of

affine functions
J(x) = maxal [i} .

It is an interesting fact that that for piecewise linear convex costs and constraints and polyhedral un-
certainty this representation is exact and leads to an exact robust DP algorithm that might be called
polyhedral DP [7, 31]. The polyhedral convex representability of the cost-to-go for linear systems with
piecewise linear cost is indirectly exploited in some explicit MPC approaches [66, 6]. Polyhedral repre-
sentations with a limited number of facets can also be used to approximate a convex cost-to-go and still
yield some guarantees on the closed-loop system [16, 17, 50]. Finally, note that also the linear quadratic
regulator is a special case of convex dynamic programming.

7.7 The Gradient of the Value Function

The meaning of the cost-to-go, or the value function, .Ji is that it is the cost incurred on the remainder
of the horizon for the best possible strategy. In order to make an interesting connection between the
value function and the multipliers \; that we encountered in derivative based optimization methods, let
us now regard a discrete time optimal control problem as in the previous chapters, but without coupled

7.7. The Gradient of the Value Function 71

constraints, as these cannot directly be treated with dynamic programming. We assume further that
the initial value is fixed and that all inequality and terminal constraints are subsumed in the stage cost
L(x,u) and terminal cost E(xzy) by barrier functions that take infinite values outside the feasible domain
but are differentiable inside. For terminal equality constraints, e.g. a fixed terminal state, assume for the
moment that these are approximated by a terminal region of non-zero volume on which again a barrier
can be defined. Thus, we regard the following problem.

N-1
minimize Z L(zg,ur)+E(zN) (7.9a)

o, U, L1y, UN—-1, TN k=0
subject to flzp,up) — g1 =0, for k=0,...,N—1, (7.9b)

To — 29 =0. (7.9¢)
The dynamic programming recursion for this problem is given by:
JIn(x) = E(z), Jp(z) = muinL(:E,u) + Jpt1(f(z,u)), E=N-1,...,0. (7.10)
We remember that we obtained the optimal solution by the forward recursion
xo = To, Xp41 = f(zr,ug), k=0,...,N —1,

where uy, is defined by
up = argmuinL(:ck, u) + Jpr1 (f (@, w)). (7.11)

The solution of this optimization problem in u necessarily satisfies the first order necessary optimality
condition

VL, k) + 9 (o) TV s (F (o) =0 (7.12)

which defines uy locally if the problem is locally strictly convex, i.e., it objective has a positive definite
Hessian at (xp,ux). We now formulate simple conditions on z; and wy that follow necessarily from the
DP recursion. For this aim we first note that on the optimal trajectory holds zy11 = f(zk,ur) and that
we trivially obtain along the optimal trajectory

JN(.TN) ZE(.TN), Jk(l'k) :L(xk,uk)+Jk+1(xk+1), k=N-1,...,0.

This implies for example that the value function remains constant on the whole trajectory for problems
with zero stage costs. However, it is even more interesting to regard the gradient V.Jj(z) along the
optimal state trajectory. If we differentiate (7.10) at the point xj with respect to & we obtain

Vin(zx) = VE(zr), Vi(zr)! = % L(wg, uk) + Jpp1 (f(zp,ur)) k=N-—1,...,0. (7.13)

=:Jy(zp,up)

In the evaluation of the total derivative it is needed to observe that the optimal uy, is via (7.12) an implicit
function of xj. However, it turns out that the derivative does not depend on 3%2 because of

d - 9J, 0.Jx duy
—J =— — — 7.14
T e @ ur) = = (2, uk) + — = (@ uk) T (7.14)
=0
where the partial derivative with respect to w is zero because of (7.12). Thus, the gradients of the value
function at the optimal trajectory have to satisfy the recursion

0
Vi (zr) = Ve L(zg, ur) + a_i(xkauk)TVJkJrl(karl) k=N-1,...,0. (7.15)

This recursive condition on the gradients VJj(xy) is equivalent to the first order necessary condition
(FONC) for optimality that we obtained previously for differentiable optimal control problems, if we
identify the gradients with the multipliers, i.e. set

)\k = VJk(xk). (7.16)

This is a very important interpretation of the multipliers \;: they are nothing else than the gradients of
the value function along the optimal trajectory!

72 Chapter 7. Dynamic Programming

7.8 A Discrete Time Minimum Principle

Collecting all necessary conditions of optimality that we just derived, but substituting VJi(x) by A\x we
arrive indeed exactly to the same conditions (5.16) that we derived in Chapter 5 in a completely different
way.

Ty = To (717&)
Tr+1 f(:rk;uk)v k:()a"'vN*lv (7 17b)
)\N = vaE(.I}N) (717(3)
A = VmL(l’k, uk) + %(mk, Uk)T)\IH—h k=N-—-1,...,1, (7.17(1)
_ of T _
O—VuL(xk,uk)—i—a—(xk,uk) Ak+1, k=0,...,N—1. (7.176)
u

In the context of continuous time problems, we will arrive at a very similar formulation, which has the
interesting features that the recursion for A becomes a differential equation that can be integrated forward
in time if desired, and that the optimization problem in (7.11) does only depend on the gradient of J.
This will facilitate the formulation and numerical solution of the necessary optimality conditions as a
boundary value problem.

Part Il

Continuous Time Optimal Control

73

Chapter 8

Continuous Time Optimal
Control Problems

When we are confronted with a problem whose dynamic system lives in continuous time and whose control
inputs are a function, we speak of a continuous time optimal control problem. This type of problem is
the focus of this third part of this script. We will encounter variations of the same concepts as in the
discrete time setting, such as Lagrange multipliers A, the value function J, or the difference between
sequential or simultaneous methods. Some numerical methods and details, however, are only relevant in
the continuous time setting, such as the indirect methods and Pontryagin’s Maximum Principle described
in Chapter 11, or the ODE solvers with sensitivity generation described in Section 9.1.

8.1 Formulation of Continuous Time Optimal Control Problems

In an ODE setting, a continuous time optimal control problem can be stated as follows.

minimize / L(z(t),u(t)) dt + E(x(T)) (8.1)
l’(), u() 0
subject to
z(0) —zo = 0, (fixed initial value)
(t)— f(z(t),u(t)) = 0, t €10,7], (ODE model)
h(z(t),u(t)) < O, t€[0,T], (path constraints)
r(z(T)) < 0, (terminal constraints).

The problem and its variables are visualized in Figure 8.1.

A path constraints h(z,u) <0

e
0 t T
Figure 8.1. The variables and constraints of a continuous time optimal control problem.

terminal
constraint r(z(7)) <0

initial value
Zo

The integral cost contribution L(z,u) is sometimes called the Lagrange term (which should not be
confused with the Lagrange function) and the terminal cost F(z(T")) is sometimes called a Mayer term.
The combination of both, like here, is called a Bolza objective.

Note that any Lagrange objective term can be reformulated as a Mayer term, if we add an additional
“cost state” ¢ that has to satisfy the differential equation ¢ = L(z,u), and then simply take ¢(T') as
the terminal Mayer cost term. Conversely, every differentiable Mayer term can be replaced by by a

75

76 Chapter 8. Continuous Time Optimal Control Problems

Lagrange term, namely by L(z,u) = VE(x)T f(x,u), as the cost integral then satisfies the equality
fOT (z,u)dt = [; r dEqt = E(z(T))— E(zo). These two equivalences mean that it would be no restriction
of generahty to take only one of the two cost contributions, Lagrange or Mayer term, in the above
formulation; however, in this script we choose to use the full Bolza objective.

So far, we wrote all functions L, E, f, h independent of time t or of parameters p, and we will leave
both of these generalizations away in the remainder of this script. However, all the methods presented
in the following chapters can easily be adapted to these two cases, using again state augmentation, as
follows. If time dependence occurs, we just introduce a “clock state” ¢ with differential equation t=1,
and work with the augmented system & = f(Z,u):

i- M o) = [ﬂx,lu,t)]

Likewise, in the case that time constant, but free optimization parameters p occur, they can be incorpo-
rated as “parameter state” p with differential equation p = 0 and free initial value.

Another interesting case that is specific to continuous time problems is when the duration 7" of the
problem is free. As an example, we might think of a robot arm that should move an object in minimal
time from its current state to some desired terminal position. In this case, we might rescale the time
horizon to the interval [0, 1] by a time constant but free variable T that is treated like an optimization
parameter. Then we regard a scaled problem & = f (Z,u)

= {;] (@) = [T'féx’u)}

with pseudo time 7 € [0, 1], where the initial condition 7'(0) for the “state” 7" is free and T satisfies again
T=0.

We note that although all the above reformulations make it possible to transfer the methods in this
script to the respective special cases, an efficient numerical implementation should exploit the structures
inherent in these special cases.

8.2 Overview of Numerical Approaches

Generally speaking, there are three basic families of approaches to address continuous time optimal
control problems, (a) state-space, (b) indirect, and (c¢) direct approaches, cf. the top row of Fig. 8.2. We
follow here the outline given in [49].

State-space approaches use the principle of optimality that states that each subarc of an optimal
trajectory must be optimal. While this was the basis of dynamic programming in discrete time, in
the continuous time case this leads to the so-called Hamilton-Jacobi-Bellman (HJB) equation, a partial
differential equation (PDE) in the state space. Methods to numerically compute solution approximations
exist, but the approach severely suffers from Bellmans “curse of dimensionality” and is restricted to small
state dimensions. This approach is briefly sketched in Chapter 10.

Indirect Methods use the necessary conditions of optimality of the infinite problem to derive a
boundary value problem (BVP) in ordinary differential equations (ODE). This BVP must numerically
be solved, and the approach is often sketched as “first optimize, then discretize”. The class of indirect
methods encompasses also the well known calculus of variations and the Euler-Lagrange differential
equations, and the so-called Pontryagin Maximum Principle. The numerical solution of the BVP is
performed by shooting techniques or by collocation. The two major drawbacks are that the underlying
differential equations are often difficult to solve due to strong nonlinearity and instability, and that changes
in the control structure, i.e. the sequence of arcs where different constraints are active, are difficult to
handle: they usually require a completely new problem setup. Moreover, on so called singular arcs, higher
index differential-algebraic equations (DAE) arise which necessitate specialized solution techniques. This
approach is briefly sketched in Chapter 11.

Direct methods transform the original infinite optimal control problem into a finite dimensional
nonlinear programming problem (NLP) which is then solved by structure exploiting numerical optimiza-
tion methods. Roughly speaking, direct methods transform the continuous time dynamic system into a
discrete time system and then proceed as described in the first two parts of this script. The approach
is therefore often sketched as “first discretize, then optimize”. One of the most important advantages

8.2. Overview of Numerical Approaches 77

Continuous Time Optimal Control

Hamﬂton—Jaco.bl— Indirect Methods, Direct Methods:
Bellman Equation: . .
S Pontryagin: Transform into
Tabulation in .
State Space Solve Boundary Value Nonlinear Program
P Problem (NLP)

Direct Single Direct Multiple

Direct Collocation:

hooting: ing:
OnlS ZZstclfegtized Discretized confrols Cont%"};zsozlgg node
comg"ols in NLP and states in NLP start val in NLP
. (simultaneous) varues
(sequential) (simultaneous)

Figure 8.2. The optimal control family tree.

of direct compared to indirect methods is that they can easily treat inequality constraints, like the in-
equality path constraints in the formulation above. This is because structural changes in the active
constraints during the optimization procedure are treated by well developed NLP methods that can deal
with inequality constraints and active set changes. All direct methods are based on a finite dimensional
parameterization of the control trajectory, but differ in the way the state trajectory is handled, cf. the
bottom row of Fig. 8.2. For solution of constrained optimal control problems in real world applications,
direct methods are nowadays by far the most widespread and successfully used techniques, and are there-
fore the focus of this script. Brief descriptions of three of the direct methods — single shooting, multiple
shooting, and collocation — and some algorithmic details are given in Chapter 12, while we point out
that the first two parts of the script covering finite dimensional optimization and discrete time dynamic
systems have already covered most of the algorithmic ideas relevant for direct approaches to optimal
control.

78

Chapter 8. Continuous Time Optimal Control Problems

Chapter 9

Numerical Simulation

Existence of a solution to an IVP is guaranteed under continuity of f with respect to to x and t according
to a theorem from 1886 that is due to Giuseppe Peano, [?]. But existence alone is of limited interest
as the solutions might be non-unique. For example, the scalar ODE @(t) = 4/|z(t)| can stay for an
undetermined duration in the point z = 0 before leaving it at an arbitrary time ¢y and then following
a trajectory x(t) = (t — t9)?/4. This ODE is continuous at the origin, but its slope approaches infinity,
which causes the non-uniqueness.

More important is thus the following theorem by Charles Emile Picard (1890), [?], and Ernst
Leonard Lindel6f (1894), [?]:

Theorem 9.1 (Existence and Uniqueness of IVP). Regard the initial value problem (1.2) with
x(0) = x0, and assume that [is continuous with respect to x and t. Furthermore, assume that f is
Lipschitz continuous with respect to x, i.e., that there exists a constant L such that for all x,y and all
t€0,T]

1£(,t) = Fy DIl < Lz —y].

Then there exists a unique solution x(t) of the IVP in a neighbourhood of (x¢,0).

Note that this theorem can be extended to the case that there are finitely many discontinuities of
f with respect to ¢, in which case the solutions are still unique, but the ODE solution has to be defined
in the weak sense. The fact that unique solutions still exist in the case of discontinuities is important
because (a) many optimal control problems have discontinuous control trajectories u(¢) in their solution,
and (b) many algorithms, the so called direct methods, first discretize the controls, often as piecewise
constant functions which have jumps at the interval boundaries. This does not cause difficulties for
existence and uniqueness of the IVPs.

Numerical Integration: Explicit One-Step Methods

Numerical integration methods are used to approximately solve a well-posed IVP that satisfies the con-
ditions of Theorem 9.1. They come in many different variants, and can be categorized along two major
categories, on the one hand the one-step vs. the multistep methods, on the other hand the explicit vs.
the implicit methods. Let us start in this section with the explicit one-step methods which basically
approximate the continuous dynamic system by a discrete time dynamic system.

All numerical integration methods start by discretizing with respect to time t. Let us for simplicity
assume a fixed stepsize At = T/N, with N an integer. We then divide the interval [0,T] into N
subintervals [tg,tg+1], K = 0,... N — 1, each of length At, i.e., we have ¢, := kAt. Then, the solution is
approximated on the grid points ¢, by values s; that shall satisfy s, ~ x(tx), k = 0,..., N — 1, where
x(t) is the exact solution to the IVP.

Definitions of consistency, stability and convergence

Numerical integration methods differ in the ways how they approximate the solution on the grid
points and between, but they all shall have the property that if N — oo then s — a(¢x). This is called

79

80 Chapter 9. Numerical Simulation

convergence. Methods differ in the speed of convergence, and one says that a method is convergent with
order p if
max sk — z(tr)|| = O(ALP).

The simplest integrator is the explicit Euler method. It first sets sg := x¢ and then recursively
computes, for k =0,...,N — 1:
Skt1 = Sk + At f(sk,tk). (9.1)

It is a first order method, and due to this low order it is very inefficient and should not be used in practice.

However, with a few extra evaluations of f in each step, higher order one-step methods can easily
be obtained, the ezplicit Runge-Kutta (RK) methods due to Runge (1895), [?], and Kutta (1901), [?]. On
each discretization interval [tg,tx+1] these use not only one but m evaluations of f at the intermediate
states sg), i =1,...,m, that live on a grid of intermediate time points t,(;) =t + ¢; At with suitably
chosen ¢; that satisfy 0 < ¢; < 1. Then one RK step is obtained by performing the following intermediate
steps:

s,(cl) = Sk (9.2
sgf) = s + At aglf(s,(cl), t,(cl)) (9.3)
st = i+ At (ag f(s10,007) + ana f (57, 67)) (9.4)
(9.5)
. 1/71 . .

sg) = s + Atz aijf(sgj),tg)) (9.6)

j=1
(9.7)

m—1
sl(cm) = s, + At Z amjf(sl(cj),tg)) (9.8)

j=1

j=1

Each RK method is characterized by its so-called Butcher tableau,

C1
C2 a1
C3 asp as2

Cm | Am1 0 Omom—1

b, by . b

and by a smart choice of these coefficients a high order of the method can be achieved. The explicit Euler
integrator uses m =1, ¢y =0, by = 1, and a widespread method of order m = 4 uses the tableau

(9.10)

Wi ONl—
ol =

=N = O
ol O ONl=

[N

Note that practical RK methods also have stepsize control, i.e., adapt At depending on estimates of
the local error, which are obtained by comparing two RK steps of different order. Particularly efficient
methods of this adaptive type, the Runge-Kutta-Fehlberg methods, reuse as many evaluations of f as
possible between the two RK steps.

Why is the Euler method not used in practice, and a high order so important? To get an intuitive
idea let us assume that we want to simulate an ODE on the interval [0, 1] with a very low accuracy of

81

e = 1073 and that a first order method gives an accuracy € = 10At. Then it needs At = 1074, i.e.,
10000 steps. If a fourth order method gives the accuracy e = 10(At)%, it needs At = 0.1, i.e., only 10
steps for the same accuracy! Given this enourmous difference, the four times higher cost per RK step
for the higher order method is more than outweighed, and it is still 250 times faster than the first order
Euler method! In practice, RK integrators with orders up to 8 are used, but the Runge-Kutta-Fehlberg
method of fourth order (+fifth order for error estimation) is the most popular one.

Stiff Systems and Implicit Integrators

Definitions: stable system, stiff system. Super stable?!?

When an explicit integrator is applied to a very stable system, its steps very easily overshoot. For
example, when we want to simulate for a very large A > 1 the ODE

T =—-A\r

it is clear that this system is super stable and converges very quickly to zero. If we now use an explicit
Euler method with stepsize At, then the discrete time dynamic system

Sk41 = Sk — At As, = (1 — At)\)Sk

is obtained. This system gets unstable if At > %, which might be very small when A is very big. Note
that such a small stepsize is not necessary to obtain a high accuracy, but is only necessary to render the
integrator stable. It turns out that all explicit methods suffer from the fact that super stable systems
necessitate excessively short step sizes. This becomes particularly annoying if a system has both slow and
fast decaying modes, i.e., if some of the eigenvalues of the Jacobian % are only slightly negative while
others are strongly negative, i.e., represent very stable dynamics. Such systems are called stiff systems.
Instead of using explicit integrators, stiff systems can be much better treated by implicit integrators.
The simplest of them is the implicit Euler integrator, which in each integrator step solves the nonlinear
equation in the variable si41
Skt+1 = Sk + At f(Skt1, tht1)- (9.11)
If applied to the super stable test system from above, for which this equation can explicitly be solved,
the implicit Euler yields the dynamics

Skl = Sk — At ASk11 < Spp1 = Sk/(l + At \)

which is stable for any At > 0 and always converges to zero, like the true solution of the ODE. The
implicit Euler is stable for this example. It turns out that the idea can easily be generalized to RK
methods which then just obtain Butcher tableaus which are full square and not only lower triangular.
An implicit RK method has to solve in each iteration the nonlinear equation system

si) =se+ Aty ay (s, 1)) 9.12)
j=1

(9.13)
j=1

(9.15)

s](cm) = sy, +At2amjf(s§€j),t,(€j)) (9.16)
j=1

and then sets the next step to
m
Sk+1 1= Sk + At Z bjf(SECJ) , t;cj))
j=1
The nonlinear system needs typically to be solved by a Newton method. Note that the system is of size
(m x ng).

82 Chapter 9. Numerical Simulation

Orthogonal Collocation

A specific variant of implicit RK methods is called collocation and is derived as follows: the solution z(t)
on the collocation interval t € [y, t-kJrl] is approximated by a polynomial of mth order, p(t; v) = 37" v;t/,
and a grid of collocation points t,(;) =t 4 ¢; At is chosen as above, using 0 < ¢; < c¢o... < ¢ < 1. The
(m+ 1) unknown vector coefficients vy, . .., v, are then determined via the (m+ 1) vector equations that
require that the polynomial starts at s; and its derivative at each collocation point matches the function

f at the corresponding value of the polynomial.

sk = p(tesv) = Zvjti (9.17a)
j—O
Fot0),t0) = pl (80 jU (D)7 9.17b
k J
(9.17¢)
F™50),6) =/ (™50 Z] vy () (9.17d)
(9.17e)

Finally, once all v; are known, the full step is given by evaluation of the polynomial at the end point of

the interval:
m

Sk+1 — Z ’Uj (tk+1)].
j=0
It can be easily shown that the above procedure can be formulated as an implicit RK method with a
Butcher tableau that is specific to the choice of the collocation points. Very important is the observation
that a smart choice of collocation points leads to very high orders, using the principle of Gauss-quadrature.
This is achieved by first noticing that the exact trajectory x(t) satisfies the equation

2(trsn) = 2(t) + /), dt.

tr

In collocation, the trajectory x(t) is approximated by the polynomial p(¢;v) for which holds p’ (t,(j); v) =

f (p(t,(j); v),t (z)) at the collocation points t(R Using this fact, we obtain for the polynomial the identity

m
Pltiri;v) = pltrsv) + ALY wif(p(t)50), 1)

i=1
with the quadrature weights w; corresponding to the choice of collocation points. If we use Gauss-
quadrature for this integral, i.e., choose the collocation points tg) as the zeros of orthogonal Legendre
polynomials on the corresponding interval [t, txt1], then this integration is exact for polynomials up to
degree 2m — 1, implying that the collocation step spy1 — s would be exact if the exact solution would
have a derivative z(t) that is a polynomial of order 2m — 1, i.e., if the solution z(¢) would be a polynomial
of order 2m. This is called Gauss-Legendre collocation. 1t is the collocation method with the highest
possible order, 2m. Note that all its collocation points are in the interior of the collocation interval and
symmetric around the midpoint, see the table below. Another popular collocation method sacrifices one
order and chooses a set of collocation points that includes the end point of the interval. It is called
Gauss-Radau collocation and has a desirable property for stiff systems called stiff decay. The relative
collocation point locations & = (t,(;) —tg)/(tr4+1 — tx) for Gauss-Legendre and Gauss-Radau collocation
are given in the table below, citing from [13].

| m | Gauss-Legendre collocation | Gauss-Radau collocation |
1 0.500000 1.000000
2 0.211325 0.788675 0.333333 1.000000
3 0.112702 0.500000 0.887298 0.155051 0.644949 1.000000
4 1 0.069432 0.330009 0.669991 0.930568 | 0.088588 0.409467 0.787659 1.000000

83

Linear Multistep Methods and Backward Differentiation Formulae

A different approach to obtain a high order are the linear multistep methods that use a linear combination
of the past M steps Si_ar41,- .., Sk and their function values f(sg_ar+1),... in order to obtain the next
state, sg+1. They are implicit, if they also use the function value f(sg4+1). A major issue with linear
multistep methods is stability, and their analysis needs to regard a dynamic system with an enlarged
state space consisting of all M past values. A very popular and successful class of implicit multistep
methods are called the backward differentiation formulae (BDF) methods. In each step, they formulate
an implicit equation in the variable s;11 by constructing the interpolation polynomial py(t; sx+1) of order
M that interpolates the known values sg_pr41, ...,k as well the unknown sg41, and then equates the
derivative of this polynomial with the function value, i.e., solves the nonlinear equation

Pr(tests Skr1) = f(Ske1strs1)

in the unknown sx11. Note that the fact that only a nonlinear system of size n, needs to be solved
in each step of the BDF method is in contrast to m-stage implicit RK methods, which need to solve a
system of size (m x n;). Still, the convergence of the BDF method is of order M. It is, however, not
possible to construct stable BDF methods of arbitrary orders, as their stability regions shrink, i.e., they
become unstable even for stable systems and very short step lengths At. The highest possible order for
a BDF method is M = 6, while the BDF method with M = 7 is not stable anymore: if it is applied to
the testequation & = —Ax with A > 0 it diverges even if an arbitrarily small step size At is used. It is
interesting to compare linear multistep methods with the sequence of Fibonacci numbers that also use
a linear combination of the last two numbers in order to compute the next one (i.e., M = 2). While
the Fibonacci numbers do not solve a differential equation, the analysis of their growth is equivalent to
the analysis of the stability of linear multistep methods. For more details, the reader is referred to, e.g.,
(23, 24, 3].

Differential Algebraic Equations

A more general class than ODE are the Differential Algebraic Equations (DAE) which in their easiest
form are semi-explicit, i.e., can be written as

= f(x,2,t) (9.18)
0=g(z,2,t) (9.19)

with differential states x € R™ and algebraic states z € R™= and the algebraic equations with g(z, z,t) €
R™= i.e., the Jacobian % is a square matrix. A DAE is called of index one if this Jacobian is invertible
at all relevant points. The existence and unqueness results can be generalized to this case by eliminating
z as a function of (z,t) and reducing the DAE integration problem to the ODE case. Note that only
initial values for the differential states can be imposed, i.e., the initial condition is 2:(0) = xg, while z(0)
is implicitly defined by (9.19).

Some numerical methods also proceed by first eliminating z numerically and then solving an ODE,
which has the advantage that any ODE integrator, even an explicit one, can be applied. On the other
hand, this way needs nested Newton iterations and usually destroys any sparsity in the Jacobians.

Fortunately, most implicit numerical integration methods can easily be generalized to the case of
DAE systems of index one, e.g., the implicit Euler method would solve in each step the following enlarged
system in the unknowns (sf_, s,):

Sk+1 — Sk » e
+At = f(sk-i-lv Sk+1> tk+1) (920)
0= g(Sky1s Siq1: th+1) (9.21)

DAEs can more generally be of fully implicit type and the distinction between differential and
algebraic states could not be given a priori, in which case they would just be written as a set of equations
F(&,z,t) = 0. Before solving this case numerically, an analysis and possible index reduction has to be
performed, and to be decided, which initial conditions can be imposed without causing inconsistencies.
If, however, index one can be guaranteed and a division into algebraic and differential states exists, then
it is perfectly possible to generalize implicit integration methods to fully implicit equations of the form
F(i,x,2z,t) = 0.

84 Chapter 9. Numerical Simulation

Solution Map and Sensitivities

In the context of optimal control, derivatives of the dynamic system simulation are needed for the
numerical algorithms. Following Theorem 9.1 we know already that a unique ODE (or DAE) solution
exists to the IVP & = f(z,t),2(0) = xp under mild conditions, namely Lipschitz continuity of f with
respect to x and continuity with respect to ¢. This solution exists locally, i.e., if the time 7" > 0 is chosen
small enough, on the whole interval [0, T]. Note that for nonlinear continuous time systems — in contrast
to discrete time systems — it is very easily possibly even with innocently looking functions f to obtain
an “explosion”, i.e., a solution that tends to infinity for finite times. For illustration, regard the example
i = 22,2(0) = 1 which has the explicit solution x(t) = 1/(1 — t) tending to infinity for t — 1. This is
why we cannot guarantee an ODE/DAE solution on any given interval [0, 7] for arbitrary 7', but have
to possibly reduce the length of the interval.

In order to discuss the issue of derivatives, which in the dynamic system context are often called
sensitivities, let us now regard an ODE with some parameters p € R" that enter the function f and
assume that f satisfies the assumptions of Theorem 9.1. We regard some values Zo, p, T such that the
ODE

&= f(z,p,t), te€][0,T] (9.22)

with p = p and x(0) = Z¢ has a unique solution on the whole interval [0,7]. For small perturbations
of the values (p, Zp), due to continuity, we still have a unique solution on the whole interval [0, T]. Let
us restrict ourselves to a neighborhood N of (p,Zg). For each fixed t € [0,T], we can now regard the
well defined and unique solution map x(¢;-) : N — R"= | (p,x0) — «(t; p, xo). This map gives the value
x(t; p, o) of the unique solution trajectory at time ¢ for given parameter p and initial value xy. A natural
question to ask is if this map is differentiable. Fortunately, it is possible to show that if f is m-times
continuously differentiable with respect to both a and p, then the solution map x(t;-) is also m-times
continuously differentiable.
To regard a simple and important example: for linear continuous time systems

i = Ax + Bp

the map x(t; p, 2p) is explicitly given as

t
2(t; p, o) = exp(At)o + / exp(A(t — 7)) Bpdr,
0

where exp(A) is the matrix exponential. Like the function f, this map is infinitely many times differen-
tiable (and even well defined for all times ¢, as linear systems cannot explode). In the general nonlinear
case, the map x(t; p, xo) can only be generated by a numerical simulation routine. The computation of
derivatives of this numerically generated map is a delicate issue that we discuss in detail in the third part
of the course. To mention already the main difficulty, note that all practical numerical integration rou-
tines are adaptive, i.e., might choose to do different numbers of integration steps for different IVPs. This
renders the numerical approximation of the map x(¢; p, o) typically non-differentiable. Thus, multiple
calls of a black-box integrator and application of finite differences might result in very wrong derivative
approximations.

9.1 Sensitivity Computation in Shooting Methods

In all shooting methods we need to compute derivatives of the result of an ODE integration routine,
or, in the more general case, of a DAE solver, on a given time interval. Let us for notational simplicity
regard just the autonomous ODE case & = f(x) on a time interval [0,7]. The case of control or other
parameters on which this ODE depends as well as time dependence can conceptually be covered by state
augmentation. Thus, we regard a starting point s and the evolution of the ODE

= f(z), te€[0,T], z(0)=s. (9.23)

This gives a solution x(t; s), t € [0,7], and we are most interested in the terminal value (T s) and in
the sensitivity matrix

_ 0x(t;s)
- 0s

G(t) t e 0,7,

f

o

9.1. Sensitivity Computation in Shooting Methods 85

and in particular its terminal value. This matrix G(T') € R"*"= can be computed in many different
ways, five of which we briefly sketch here.

1. External Numerical Differentiation (END)
2. Solution of the Variational Differential Equations
Algorithmic Differentiation (AD) of the Integrator

Internal Algorithmic Differentiation within the Integrator

AN

Internal Numerical Differentiation (IND)

In all five methods we assume that the integrator to be differentiated is a state-of-the-art integrator with
inbuilt error control and adaptive step-size selection.

The first approach, Ezternal Numerical Differentiation (END), just treats the integrator as a black
box function and uses finite differences. We perturb s by some quantity ¢ > 0 in the direction of the
unit vectors e; and call the integrator several times in order to compute directional derivatives by finite
differences:

x(T;s + ee;) —x(T;q)

T P~
G(T)e .

(9.24)

The cost of this approach to compute G(T) is (n, + 1) times the cost of a forward simulation. The
approach is very easy to implement, but suffers from one serious problem: due to integrator adaptivity,
each call might have a different discretization grid. This error control of each trajectory does not only
create an overhead, but worse, it might result in discontinuous perturbations even for small e. It is
important to note that due to adaptivity, the output x(7T;s) is not a differentiable function in s, but
only guaranteed to be close to the true solution within the integrator accuracy TOL, e.g. TOL = 10~
Thus, we need to use, as a rule of thumb, ¢ = +/TOL in order to make large enough perturbations. As
finite differences always mean that we loose half the digits of accuracy, we might easily end e.g. with a
derivative that has only two valid digits.

A completely different approach is to formulate and solve the variational differential equations along
with the nominal trajectory. This means that we solve, together with & = f(z), the additional matrix
differential equation

_of

ox
This is much more accurate than the first approach at a similar computational cost, but we have to get
analytic expressions for % (x(t)). Also, it is interesting to note that the computed sensitivity G(T') might
not be 100% identical with the derivative of the (discretized) integrator result z(7T’; s).

This last disadvantage is avoided in the third approach, Algorithmic Differentiation (AD) of the
Integrator, where we first freeze the discretization scheme at the current nominal trajectory and then apply
an AD tool to the whole integrator. This is up to machine precision 100% identical with the derivative
of the numerical solution x(T;s) for a given fixed discretization grid. In a practical implementation,
the integrator and right hand side function f(z) need to be in the same or in compatible computer
languages that are treated by the corresponding AD tool (e.g. C++ when using ADOL-C). Also, if an
implicit integrator is used, it should be noted that the underlying Newton iterations will differentiated,
which might create considerable and avoidable overhead compared to the variational differential equation
approach.

A fourth approach, Internal Algorithmic Differentiation (AD) of the Integrator can be seen as a
combination of the variational differential equation and AD. Here, AD is applied to each step of the
integrator in a custom implementation of the integrator, but care is taken that no components of the
algorithm are differentiated that need not be differentiated, such as Newton matrices. The approach is
illustrated for an Euler scheme (where it is identical to both the variational differential equation and
external AD). If the grid is given by {tx}1_, and the Euler iterates

G(t) (z(t))G(t), t €[0,T], G(0)=1L

Tht1 :xk—i—(tkﬂ —tk)f(l'k), k=0,....N—1, z9=s.

then this approach generates matrices

0
Gk+1:Gk+(tk+1_tk) a—i(l'k) Gr, k=0,....N—1, Go=

86 Chapter 9. Numerical Simulation

This approach is usually the most computationally efficient of the exact differentiation approaches but
requires a custom implementation of an ODE/DAE solver that is explicitly designed for the generation
of sensitivities. Note that as in the previous two approaches, we cannot deal with black-box right hand
side functions f(z) as we need to compute their derivatives symbolically or algorithmically, though the
matrix %(mk) could of course also be computed by finite differences.

This last idea can be generalized to the concept of Internal Numerical Differentiation (IND) [20].
At first sight it is similar to END, but needs a custom implementation and differs in several respects.
First, all trajectories are computed simultaneously; only the nominal trajectory is adaptive, while the
perturbed trajectories use the nominal, frozen grid. In implicit methods, also matrix factorizations etc.
will be frozen. At the end of the interval, we use the finite difference formula (9.24) but with a much
smaller perturbation, namely ¢ = v/PREC where PREC is the machine precision, typically 10716 The
derivatives will have the accuracy vPREC, i.e. usually 1078, which is much higher than for END.

Again, we illustrate IND at hand of the explicit Euler integration scheme, where each perturbed
trajectory with index ¢ = 1,...,n, just satisfies

$2+1 = a4+ (ter —t) f(xh), k=0,...,N—1, x}=s5+ee;

Note that due to the fact that adaptivity and possible matrix factorizations are switched off for the
perturbed trajectories, IND is not only more accurate, but also cheaper than END.

9.2 Algorithmic Differentiation of Integrators

A very important application of Algorithmic Differentiation for optimal control is the differentiation
of integrators. The differentiation of integrators can be carried out using the results previously introduced
in this section. However, for the sake of clarity, we detail some interesting or informative cases. For the
sake of simplicity, we start with the simplest case of the first-order Euler integrator, even though this
integration scheme ought to be avoided in practice, since it does not provide the best efficiency.

9.2.1 AD of first-order Euler

We consider the integration of the dynamic system @ = F (z,u) on the time interval [tg, txy1], with
At =tpy1 —t

Algorithm 9.1. First-order Euler.

Input: xg, ug
Output: fruler (Tk, Uk)

Set © = 2y,
forn=0:N do

r « T+ SF (z,uk)
end for
Set feuler (Tk,ur) =

Algorithm 9.2. First-order Euler with AD.

Input: zy, uy
OUtPUt: fEuler (IL'k, uk)) a;gkauler ($k, uk)) %fEuler ($k, uk)

Set x=x,, A=1, B=0
forn=0:N do
A (I+ %VwF(x,uk)T)A

B« (I + ALY, P (a, uk)T) B+ AV, F (z,up)"

f

o

9.2. Algorithmic Differentiation of Integrators 87

4 x4+ 2P (z,u)
end for
Set fEuler ($k, uk) =z, a;gkauler (IL‘k,Uk) - Aa a%kauler (zkyuk) =B

9.2.2 AD of Runge-Kutta 4

Algorithm 9.3.

Input: xx, ug

Output: fria (Tr,ur), a%kme (2r, ur), %fmm (wh, ur)
Set x =z, A=1, B=0

forn=0: N do

k + F(x,uy), Ax + k

ky + Vo F(x,ur), Axy + ks

ky + VoF(x,ug), Axzy < ky

k<« F(z + &Lk, u), Az + Az + 2k

ky + Vo F(2,ur) (I + QA—A’;kZ), Az, — Az, + 2k,

ku < VoF(z,ur) + Vo F (2, up) 5t ku, Azy <+ Az, + 2k,
k<« F(z + Stk up), Az + Az + 2k

ky + Vi F(x,uy) (I + QA—A’;kI), Az, — Az, + 2k,

ky < VuF(z,up) + Vo F(,ur) St ky, Az, + Azy + 2k,

k< F(z+ &tk uy), Ax +— Az +k
ky + Vi F(x,uy) (IJr %km), Az, — Az, + ky
ky < VoV F(x,ug) + VzF(x,uk)%ku, Axy < Axy + ky

xex—i—GA—At,Ax
A (I+§Ax,) A
B+ (I+ £tAz,) B+ £t A,

end for
Set frka (Tr,ur) =z, %fm@ (Tg,ur) = A, %fm@ (Tg,ur) = B

9.2.3 Implicit integrators

Integrators based on implicit methods perform the integration by solving:
fr(@e,uk) = ¢(2), with g (2,2, up) =0

where g captures implicitly the continuous dynamics of the system via an ad-hoc implicit integration
scheme. The integration is the performed by running the following Newton iteration:

Algorithm 9.4.

Input: zx, ug, 2
Output: fi (zg,ug), 2
while |g(z, zg, ux) || > tol do

-1
Zmz— [%Q(Z,ZC]C,U]C)] g(zwrkauk)

88 Chapter 9. Numerical Simulation

end while

Set f1(zg,ur) = ¢ (2)

The sensitivities are then obtained by evaluating:

0 () [0)
—awkfl(xk,uk)— 5, [azg(Z,ZEk,uk)] —aku(Z,ZEk,Uk) (9.25a)
) () [0)
—aukfl(xk,uk)— 9, [azg(Z,ZEk,uk)] —aukg(Z,ZEk,Uk) (9.25b)

at the output z of 9.2.3. It is important here to observe that the computation of the sensitivities (9.25)
can re-use the latest factorisation of %g (z, x, ux) of Algorithm 9.2.3, so that they can be computed at
a minor computational cost.

Chapter 10

The
Hamilton-Jacobi-Bellman
Equation

In this short chapter we give a very brief sketch of how the concept of dynamic programming can be
utilized in continuous time, leading to the so called Hamilton-Jacobi-Bellman (HJB) Equation. For this
aim we regard the following simplified optimal control problem:

T
minimize / L(xz(t),u(t)) dt + E(x(T)) (10.1)
(), u(:) 0
subject to
2(0)—Zy = 0, (fixed initial value)

z(t)— f(z(t),u(t)) = 0, t €10,7]. (ODE model)

Note that we might approximate all inequality constraints by differentiable barrier functions that tend
to infinity when the boundary of the feasible set is reached.

10.1 Dynamic Programming in Continuous Time

In order to motivate the HJB equation, we start by an Euler discretization of the above optimal control
problem. Though we would in numerical practice never employ an Euler discretization due to its low
order, it is helpful for theoretical purposes, like here. We introduce a timestep h = % and then address

the following discrete time OCP:

N-1
minimize Z hL(zi,wi) + E(xn)
T, u i=0
subject to
o — IZ'() = 0,
Tip1 = l’l—l—hf(l’“uz) i=0,....,N—1,

Dynamic programming applied to this optimization problem yields:

Ji(x) =min hL(x,u) + Jgpi1(z + hf(z,u)).

Replacing the index k by time points ¢, = kh and identifying Jy(z) = J(z, t), we obtain
J(x,tg) =min hL(z,u) + J(z + hf(z,u),ty + h).

Assuming differentiability of J(x,t) in (x,t) and Taylor expansion yields

J(z,t) =min hL(x,u) + J(x,t) + AV, J(z,)T f(x,u) + haa—tt](x,t) +O(h?).

u

89

90 Chapter 10. The Hamilton-Jacobi-Bellman Equation

Finally, bringing all terms independent of u to the left side and dividing by A — 0 we obtain already the
Hamilton-Jacobi-Bellman (HJB) Equation:
0J . T
—a(z, t) =min L(z,u) + Vi J(x,t)" f(x,u).
This partial differential equation (PDE) describes the evolution of the value function over time. We have
to solve it backwards for ¢ € [0, T, starting at the end of the horizon with

J(x,T) = E(x).
The optimal feedback control for the state x at time ¢ is then obtained from
u?eedback(x’ t) = arg min L(‘T’ u) + va(‘ra t)Tf(:Ea u)

It is a remarkable fact that the optimal feedback control does not depend on the absolute value, but only
on the gradient of the value function, V,J(z,t). Abbreviating this gradient with A € R"=_ one introduces
the Hamiltonian function

H(z, A\ u) := L(z,u) + \T f(z,u).

Using the new notation and regarding A as the relevant input of the Hamiltonian, the control can be
expressed as an explicit function of x and A:

*

uexplicit (:Ea)‘) = arg Hhin H(ZC,)\, u)

Then we can explicitly compute the so called true Hamiltonian

H*(xv >‘) = minH(z,)‘7 u) = H(:L',)‘7 uprlicit(za A))v

u
where the control does not appear as input anymore. Using the true Hamiltonian, we can write the
Hamilton-Jacobi-Bellman Equation compactly as:

oJ

7_(1'5 t) = H*(:L', VIJ(za t))

ot
Like dynamic programming, the solution of the HJB Equation also suffers from the “curse of dimension-
ality” and its numerical solution is very expensive in larger state dimensions. In addition, differentiability
of the value function is not always guaranteed such that even the existence of solutions is generally diffi-
cult to prove. However, some special cases exist that can analytically be solved, most prominently, again,
linear quadratic problems.

10.2 Linear Quadratic Control and Riccati Equation

Let us regard a linear quadratic optimal control problem of the following form.

s [(80 S0 [v e

subject to
2(0)—xzy = 0, (fixed initial value)
t—A(t)r — B(t)u = 0, t€10,7]. (linear ODE model)

As in discrete time, the value function is quadratic for this type of problem. In order to see this, let us
assume that J(x,t) = 27 P(t)z. Under this assumption, the HJB Equation reads as

*%(z t) = min {x]T [Q(t) ‘S;%(

o (@, o I)T} m+2zTP(t)(A(t)z+B(t)u).

t
(t)

Symmetrizing, the right hand side is given by

min
u

21" TQ+PA+ATP ST+ PB] [z
U S+ BTp R wl|’

10.3. Infinite Time Optimal Control 91

By the Schur Complement Lemma, Lemma 7.2, this yields

Jz)—‘t] =7 (Q +PA+ATP — (ST + PB)R™(S + BTP)):E,

which is again a quadratic term. Thus, if J was quadratic, as assumed, it remains quadratic during the
backwards evolution. The resulting matrix differential equation

~P=Q+PA+ATP— (ST +PB)R(S+ BTP)

with terminal condition

P(T) = Pr

is called the differential Riccati equation. Integrating it backwards allows us to compute the cost-to-
go function for the above optimal control problem. The corresponding feedback law is by the Schur
complement lemma given as:

Ufeedvack (5 1) = —R() T (S(t) + B(t)" P(t))a

10.3 Infinite Time Optimal Control

Let us now regard an infinite time optimal control problem, as follows.

minimize b L(x(t),u(t)) dt (10.2)
subject to
2(0)—z9 = 0,

z(t)—f(x(t),u(t)) = O, t €10,00].

The principle of optimality states that the value function of this problem, if it is finite and it exists, must
be stationary, i.e. independent of time. Setting %(x, t) = 0 leads to the stationary HJB equation

0=min L(z,u)+ ViJ(2)T f(z,u)
with stationary optimal feedback control law uf, 4. () = argmin, L(z,u) + V,J(z)T f(x, u).

This equation is easily solvable in the linear quadratic case, i.e., in the case of an infinite horizon
linear quadratic optimal control with time independent cost and system matrices. The solution is again
quadratic and obtained by setting .

P=0
and solving
0=Q+ PA+ATP— (ST + PB)R™ (S + B'P).

This equation is called the algebraic Riccati equation in continuous time. Its feedback law is a static
linear gain:
* 1 T
ufeedback(z) =—-R (S + B P) x.
| S
=K

92

Chapter 10. The Hamilton-Jacobi-Bellman Equation

Chapter 11

Pontryagin and the
Indirect Approach

The indirect approach is an extremely elegant and compact way to characterize and compute solutions
to optimal control problems. Its origins date back to the calculus of variations and the classical work by
Euler and Lagrange. However, its full generality was only developed in 1950s and 1960s, starting with
the seminal work of Pontryagin and coworkers [67]. One of the major achievements of their approach
compared to the previous work was the possibility to treat inequality path constraints, which appear in
most relevant applications of optimal control, notably in time optimal problems. Pontryagin’s Mazimum
Principle describes the necessary optimality conditions for optimal control in continuous time. Using
these conditions in order to eliminate the controls from the problem and then numerically solving a
boundary value problem (BVP) is called the indirect approach to optimal control. It was widely used
when the Sputnik and Apollo space missions where planned and executed, and is still very popular in
aerospace applications. The main drawbacks of the indirect approach are the facts, (a) that it must
be possible to eliminate the controls from the problem by algebraic manipulations, which is not always
straightforward or might even be impossible, (b) that the optimal controls might be a discontinuous
function of x and A, such that the BVP suffers from a non-smooth differential equation, and (c) that the
differential equation might become very nonlinear and unstable and not suitable for a forward simulation.
All these issues of the indirect approach can partially be addressed, and most important, it offers an exact
and elegant characterization of the solution of optimal control problems in continuous time.

11.1 The HJB Equation along the Optimal Solution

In order to derive the necessary optimality conditions stated in Pontryagin’s Maximum Principle, let us
again regard the simplified optimal control problem stated in Equation (10.1), and let us recall that the
Hamiltonian function was defined as H(x, \,u) = L(z,u) + AT f(z,u) and the Hamilton-Jacobi-Bellman
equation was formulated as: f% (x,t) = min, H(z, VJ(x,t),u) with terminal condition J(z,T) = E(x).
We already made the important observation that the optimal feedback controls

u?eedback(‘r7 t) = arg H}uin H(ZE, VZJ(‘I;7 t)’ ’U,)

depend only on the gradient V., J(z,t), not on J itself. Thus, we might introduce the so called adjoint
variables or costates A that we identify with this gradient. If we would know the state 2*(¢) and costate
A*(t) at a point on the optimal trajectory, then we would obtain the optimal controls u*(¢) from u*(t) =
ug, it (27 (1), A*(¢)) where the explicit control law is defined again by

u:xplicit(z5>‘) = argmuinH(x,)\,u). (111)
For historical reasons, the characterization of the optimal controls resulting from this pointwise minimum
is called Pontryagin’s Mazimum Principle, but we might also refer to it as the minimum principle when
convenient.

One major question remains, however: how can we characterize and obtain the optimal states and

costates z*(t) and A*(t) = V. J(x*(¢),t)? The idea is to assume that the trajectory is known, and to

93

94 Chapter 11. Pontryagin and the Indirect Approach

differentiate the HJB Equation along this optimal trajectory. Let us regard the HJB Equation

o
ot

x,t) = min H(z, V. J(2,t),u) = H(z, Vi (2,1), Ugpicit (T, Va (2,1)))

and differentiate it totally with respect to x. Note that the right hand side depends via V,J(z,t) and

Ugypicit indirectly on x. Fortunately, we know that %—Ij(x*, A*,u*) = 0 due to the minimum principle, so
that we obtain)
o°J oH 0H
—_— ——
=flz*us)”

where we drop for notational convenience the time dependence for x*(t), * (), u*(t). Using &* = f(z*,u*)
and reordering yields

%) .
&VJ(x*,t) + V2 (2%, t) &F = * = —V, H(z*, *, u*)

AV, J(z*,t)

This is a differential equation for the costate A*. Finally, we differentiate J(z,T) = E(x) and obtain the
terminal boundary condition

NT) = VE(z(T)).

Thus, we have derived necessary conditions that the optimal trajectory must satisfy. We combine them
with the constraints of the optimal control problem and summarize them as:

z*(0) = %o, (initial value)

i*(t) = flz*(t),u"(t)), t€1[0,7], (ODE model)

N () = =V H(z*(t),*(t),u*(t)), te€[0,T], (adjoint equations) (11.2)
u*(t) = arg IILID H(z*(t),)*(),u), t€][0,7], (minimum principle)

A(T) = VE@*(T)). (adjoint final value)

Due to the fact that boundary conditions are given both at the start and the end of the time horizon, these
necessary optimality conditions form and two-point boundary value problem (BVP). These conditions
can either be used to check if a given trajectory can possibly be a solution; alternatively, and more
interestingly, we can solve the BVB numerically in order to obtain candidate solutions to the optimal
control problem. Note that this is possible due to the fact that the number and type of the conditions
matches the number and type of the unknowns: u* is determined by the minimum principle, while z*
and A* are obtained by the ODE and the adjoint equations, i.e. an ODE in R?"+, in combination with
the corresponding number of boundary conditions, n, at the start for the initial value and n, at the
end for the adjoint final value. But before we discuss how to numerically solve such a BVP we have to
address the question of how we can eliminate the controls from the BVP.

11.2 Obtaining the Controls on Regular and on Singular Arcs

Let us in this section discuss how to derive an explicit expression for the optimal control that are formally
given by

*
uexplicit(

x,\) = argmin H (z, A, u). (11.3)

In this section we discuss two cases, first the standard case, and second the case of so called singular arcs.
In the benevolent standard case, the optimal controls are simply determined by the equation

0H

au(z)\u):().

In this case, the analytic expression of the derivative has an explicit appearance of the controls, and we
can transform the equation in order to obtain the implicit function v, x,\). Let us illustrate this
with an example.

expllClt(

11.2. Obtaining the Controls on Regular and on Singular Arcs 95

Example 11.1 (Linear Quadratic Control with Regular Cost) Regard L(z,u) = (27 Qz+u” Ru)
with positive definite R and f(x,u) = Az + Bu. Then

1
H(x, A\ u) = §(xTQx +u” Ru) + AT (Az + Bu)

and -
= u"R+ \TB.
u
Thus, %—IJ = 0 implies that
u:xplicit(xa)\) = _R_lBT)\.

Note that the explicit expression only depends on A here. For completeness, let us also compute the
derivative of the Hamiltonian with respect to x, which yields

o

i 2" Q+ AT A,
x
so that the evolution of the costate is described by the adjoint equation
. T
A= J{;— = AT\ —Qu.
x

If we would have an optimal control problem with fixed initial value Zy and quadratic terminal cost, i.e.
E(z) = %wTP.r, then the BVP that we would need to solve is given by

x*(0) = o, (initial value)
#*(t) = Az*(t)— BR™'BTX*(t), t€[0,T7], (ODE model) (11.4)
N(t) = —ATX(t) — Qx*(t) t€10,7], (adjoint equations) '
M\(T) = Pu. (adjoint final value)
|
The second and more complicated case occurs if the relation
OH
% (ZC,)\, U*) =0
is not invertible with respect to u*. We then speak of a singular arc. This e.g. occurs if L(x,u) is

independent of u and f(x,u) is linear in w, as then %—Ij does not depend explicitly on u. Roughly

speaking, singular arcs are due to the fact that singular perturbations of the controls — that go up and
down infinitely fast — would not matter in the objective and yield exactly the same optimal solution as
the well-behaved piecewise continuous control in which we are usually interested. Note that the controls
still influence the trajectory on a singular arc, but that this influence is only indirectly, via the evolution
of the states.

This last fact points out to a possible remedy: if %—Z is zero along the singular arc, then also its
total time derivative along the trajectory should be zero. Thus, we differentiate the condition totally
with respect to time

d OH
E%(x(t%)\(t),u) =0,
which yields
oon . ooH 4
0r Ou =~ TN ou =~
=f(z,u) =—V.H

We substitute the explicit expressions for @ and A into this equation and hope that now u appears
explicitly. If this is still not the case, we differentiate even further, until we have found an n > 1 such

that the relation
d\" 0H
— | = (=(t), At =0
(3) Srea0.0
explicitly depends on u. Then we can invert the relation and finally have an explicit equation for v*. Let
us illustrate this with another example.

96 Chapter 11. Pontryagin and the Indirect Approach

Example 11.2 (Linear Quadratic Control with Singular Cost) Regard L(z,u) = 27 Qz and f(x,u) =
Az 4+ Bu. Then

1
H(x, A\ u) = QxTQx + M (Az + Bu).

and 5
H
— =\"B.
ou
This does not explicitly depend on u and thus u* can not easily be obtained. Therefore, we differentiate

totally with respect to time:

0H

doH _ srp_ My —(@TQ+ A TA)B.
X

dt du d
This still does not explicitly depend on u. Once more differentiating yields:

d d OH T T T T T
- = B—)MAB=—(Axz+ B B+ Q+)\ A)AB.
T3 Bu ' Q A (Ax u)' Q (x ATA)

Setting this to zero and transposing it, we obtain the equation
—BTQAz — BTQBu + BTATQx + BTAT AT\ =0,
and inverting it with respect to u we finally obtain the desired explicit expression

u’ (z,A) = (BTQB)'B” (ATQz — QAz + ATAT)).

explicit

11.3 Pontryagin with Path Constraints

In case of path constraints of the form h(z(t),u(t)) < 0 for t € [0,7] the same formalism as developed
before is still applicable. In this case, it can be shown that for given x and A\, we need to determine the
optimizing u from

Ugsplicit (T, A) = argnbinH(ac, A u) st h(z,u) <0. (11.5)
This is easiest in the case of pure control constraints, i.e. if we have only h(u) < 0. When mixed state
control or pure state constraints occur, the formalism becomes more complicated. In the case of mixed
constraints with regular solution of the above optimization problem (11.5), we only have to adapt the
adjoint differential equation to —\ = V,H (x, \, u) + V h(z, u)p* where p* is the corresponding solution
multiplier. In the case of pure state constraints, if the corresponding state is controllable, we usually have
a singular situation and have to regard higher order derivatives in order to obtain feasible trajectories
along the active state constraint; in the case of uncontrollable state constraints, we will only have a
touching point and the adjoints will typically jump at this point. Let us leave all complications away
and illustrate in this section only the nicest case, the one of pure control constraints.

Example 11.3 (Linear Quadratic Problem with Control Constraints) Let us regard constraints
h(u) = Gu+b < 0 and the Hamiltonian H (2, A\, u) = 227 Qx + u” Ru+ AT (Az + Bu) with R invertible.
Then

*
uexplicit(

x,A\) = argmin H(x, \,u) s.t. h(u) <0
is equal to

1
Ugplicit (T, A) = argmin iuTRu +M'Bu st. Gz +b<0

which is a strictly convex parametric quadratic program (pQP) which has a piecewise affine, continuous
solution. N

A special and more specific case of the above class is the following.

11.4. Hamiltonian System Properties 97

Example 11.4 (Scalar Bounded Control) Regard scalar v and constraint |u| < 1, with Hamiltonian
1
H(z,\u) = §u2 + v(z, N)u + w(x, \)
Then, with
u(x, \) = —v(x, \)

we have
U

2, \) = max{—1, min{1, a(x, \)}}

Attention: this simple “saturation” trick is only applicable in the case of one dimensional QPs. N

explicit(
explicit

11.4 Hamiltonian System Properties

The combined forward and adjoint differential equations have a particular structure: they form a Hamil-
tonian system. In order to see this, first note for notational simplicity that we can directly use the true
Hamiltonian H*(z, \) in the differential equation, and second recall that

ViH"(z,A) = f(z,u x,\))

explicit(
explicit

sf-lwmen]

which is a Hamiltonian system. We might abbreviate the system dynamics as y = f(y) with

)= {fﬂ and f(y) = [_Vvszffﬂ)]'

The implications of this specific structure are, first, that the Hamiltonian is conserved. This can be easily
seen by differentiating H totally with respect to time.

Thus,

(11.6)

%H*(Jc, A) = Vo H* (2, \) i+ VaH* (z,)T A (11.7)
= V. H* (2,) VAH* (2,) — VaH* (2,)V, H*(z,\) (11.8)
—0 (11.9)

Second, by Liouville’s Theorem, the fact that the system ¢y = f(y) is a Hamiltonian system also means
that the volume in the phase space of y = (x, \) is preserved. The implication of this is that even if
the dynamics of x is very stable and contracting fast, which is usally not a problem for stiff integration
routines, then the dynamics of A must be expanding and is very unstable. This is an unfortunate fact
for numerical approaches to solve the BVP that are based on a forward simulation of the combined
differential equation system, like single shooting: if the system & = f(x, u) has either some very unstable
or some very stable modes, in both cases the forward simulation of the combined system is an ill-posed
problem. In this case, the indirect approach is still applicable when other numerical approaches such as
collocation are employed, but looses much of its appeal.

11.5 Numerical Solution of the Boundary Value Problem

In this section we address the question of how we can compute a solution of the boundary value problem
(BVP) in the indirect approach. The remarkable observation is that the only non-trivial unknown is the
initial value for the adjoints, A(0). Once this value has been found, the complete optimal trajectory can
in principle be recovered by a forward simulation of the combined differential equation. Let us first recall
that the BVP that we want to solve is given as

2(0) — Zo = 0, (11.10)

MT) — VE(z(T)) = 0, (11.11)

i(t) — VaAH*(z(t), \(t)) =0, te]l0,T], (11.12)
ANt) 4+ Vo H* (z(t), \t)) =0, te[0,T] (11.13)

98 Chapter 11. Pontryagin and the Indirect Approach

Yo trajectory y(t; yo) —— o y(T;y0)

Figure 11.1. Single shooting obtains the trajectory by a forward integration that starts at yg.

Using the shorthands (11.6) the equation system can be summarized as

ro(y(0)) + TTE?U(T))
y(t) = f(y(t))

This BVP has 2n, differential equations 3y = f , and 2n, boundary conditions and is therefore usually
well-defined. We explain three approaches to solve this BVP numerically, single shooting, collocation,
and multiple shooting.

Single shooting starts with the following idea: for any guess of the initial value yg, we can use a
numerical integration routine in order to obtain the trajectory y(¢;yo) for all ¢ € [0,T], as a function of
yo. This is visualized in Figure 11.1. The result is that the differential equation (11.15) is by definition
already satisfied. Thus, we only need to check the boundary condition (11.14), which we can do using
the terminal trajectory value y(T'; yo):

(11.14)

:07
=0, telo,T) (11.15)

ro(yo) + r(y(T5y0)) = 0.

=:F(yo)

This equation might or might not be satisfied for the given guess yg. If it is not satisfied, we might
iteratively refine the guess yo using Newton’s method for root finding of F(yo) = 0 which iterates

o
It is important to note that in order to evaluate g—;;(yé“) we have to compute the ODE sensitivities
9y(T3yo)
dyo_ °

In some cases, as said above, the forward simulation of the combined ODE might be an ill-
conditioned problem so that single shooting cannot be employed. In this case, as alternative approach is
to use simultaneous collocation that can be sketched as follows. First, we discretize the combined states
on a grid with node values s; & y(t;). Second, we replace the infinite ODE

Ozy(t) 7f(y(t))a te [OvT]a
by finitely many equality constraints

Ci(siasi+l):05 i:()v"'aN*la

e.g. with ¢;(s;, si41) := i;i:; —f (5”25”1) Note that one would usually use higher order collocation
schemes with several collocation points in each collocation interval. In any case, after discretization, we

obtain a large scale, but sparse nonlinear equation system:

ro(so) +rr(sy) = 0, (boundary conditions)
¢i(Siysiv1) = 0, 1=0,...,N—1. (discretized ODE model)

11.5. Numerical Solution of the Boundary Value Problem 99

We can solve this system again with Newton’s method. In this case, it is crucial that we exploit the
sparsity in the linear system setup and its solution, because of the large dimension of the system. Note
that the user has to choose the discretization grid in a way that ensures sufficient numerical accuracy.

A third numerical method that can be regarded a hybrid method between the two previous ap-
proaches is called multiple shooting, originally due to Osborne [65]. Like single shooting, it uses a forward
ODE solver; but like collocation, it divides the time horizon into N subintervals, e.g. of length At = T/N.
On each subinterval, it integrates the ODE starting at an initial value s, i.e. it solves the initial value
problem on a short horizon

y(t) = f(y(@)),t € [0,At], y(0) =
in order to generate the map ®(s) := y(At;s). Using this map, the nonlinear equation system that needs
to be solved in multiple shooting — which is equivalent to the root finding system of single shooting — is
given by
ro(so) + rr(sy) = 0, (boundary conditions)
D(s;) —siy1 = 0, i=0,...,N—1. (continuity conditions)

At first sight multiple shooting seems to combine the disadvantages of both previous methods: like
single shooting, it cannot handle strongly unstable systems as it relies on a forward integration, and like
collocation, it leads to a large scale equation system and needs sparse treatment of the linear algebra. On
the other hand, it also inherits the advantages of the other two methods: like single shooting, it can rely on
existing forward solvers with inbuilt adaptivity so that it avoids the question of numerical discretization
errors: the choice NV is much less important than in collocation and typically, one chooses an N between
5 and 50 in multiple shooting. Also, multiple shooting can be implemented in a way that allows one to
perform in each Newton iteration basically the same computational effort as in single shooting, by using
a condensing technique. Finally, like collocation, it allows one to deal better with unstable and nonlinear
systems than single shooting. These last facts, namely that a lifted Newton method can solve the large
“lifted” equation system (e.g. of multiple shooting) at the same cost per Newton iteration as the small
scale nonlinear equation system (e.g. of single shooting) to which it is equivalent, but with faster local
convergence rates, is in detail investigated in [2] where also a literature review on such lifted methods is
given.

100 Chapter 11. Pontryagin and the Indirect Approach

Chapter 12

Direct Approaches to
Continuous Optimal
Control

Direct methods to continuous optimal control finitely parameterize the infinite dimensional decision vari-
ables, notably the controls u(t), such that the original problem is approximated by a finite dimensional
nonlinear program (NLP). This NLP can then be addressed by structure exploiting numerical NLP so-
lution methods. For this reason, the approach is often characterized as “First discretize, then optimize.”
The direct approach connects easily to all optimization methods developed in the continuous optimization
community, such as the methods described in Chapter 2. Most successful direct methods even param-
eterize the problem such that the resulting NLP has the structure of a discrete time optimal control
problem, such that all the techniques and structures described in Chapters 5 and 6 are applicable. For
this reason, the current chapter is kept relatively short; its major aim is to outline the major concepts
and vocabulary in the field.

We start by describing direct single shooting, direct multiple shooting, and direct collocation and
a variant pseudospectral methods. We also discuss how sensitivities are computed in the context of
shooting methods. The optimization problem formulation we address in this chapter is the same as (8.1)
in Chapter 8. The direct methods differ in how they transcribe this problem into a finite NLP. The
problem (8.1) has a fixed initial value which simplifies in particular the single shooting method, but all
concepts can in a straightforward way be generalized to other OCP formulations with free initial values.

12.1 Direct Single Shooting

All shooting methods use an embedded ODE or DAE solver in order to eliminate the continuous time
dynamic system. They do so by first parameterizing the control function u(t), e.g. by polynomials,
by piecewise constant functions, or, more generally, by piecewise polynomials. We denote the finite
control parameters by the vector ¢, and the resulting control function by w(t;¢). The most widespread
parameterization are piecewise constant controls, for which we choose a fixed grid 0 = tp < t; < ... <
ty =T, and N parameters ¢; € R™, i =0,...,N — 1, and then we set

u(t;q) =g if € [ti,tisa).

Thus, the dimension of the vector ¢ = (qo,...,qn-1) is Nn,. In single shooting, which is a sequential
approach earliest presented in [47, 69], we then regard the states z:(¢) on [0, T] as dependent variables that
are obtained by a forward integration of the dynamic system, starting at xg and using the controls u(¢;).
We denote the resulting trajectory as x(t; ¢). In order to discretize inequality path constraints, we choose
a grid, typically the same as for the control discretization, at which we check the inequalities. Thus, in
single shooting, we transcribe the OCP (8.1) into the following NLP, that is visualized in Figure 12.1.

T
minimize / L(x(t;q),u(t;q)) dt + E(x(T;q)) (12.1)
q € RNmu 0
subject to
h(z(ti; q),u(ti;q)) < 0, i=0,...,N—1, (discretized path constraints)
r(z(T;q)) < 0. (terminal constraints)

102 Chapter 12. Direct Approaches to Continuous Optimal Control

Figure 12.1. The NLP variables in the direct single shooting method.

As the only variable of this NLP is the vector ¢ € RY™« that influences nearly all problem functions,
the above problem can usually be solved by a dense NLP solver in a black-box fashion. As the problem
functions and their derivatives are expensive to compute, while a small QP is cheap to solve, often
Sequential Quadratic Programming (SQP) is used, e.g. the codes NPSOL or SNOPT. Let us first assume
the Hessian needs not be computed but can be obtained e.g. by BFGS updates.

The computation of the derivatives can be done in different ways with a different complexity:
first, we can use forward derivatives, using finite differences or algorithmic differentiation. Taking the
computational cost of integrating one time interval as one computational unit, this means that one
complete forward integration costs IV units. Given that the vector ¢ has Nn,, components, this means that
the computation of all derivatives costs (Nn, -+ 1)N units when implemented in the most straightforward
way. This number can still be reduced by one half if we take into account that controls at the end of the
horizon do not influence the first part of the trajectory. We might call this way the reduced derivative
computation as it computes directly only the reduced quantities needed in each reduced QP.

Second, if the number of output quantities such as objective and inequality constraints is not big,
we can use the principle of reverse automatic differentiation in order to generate the derivatives. In the
extreme case that no inequality constraints are present and we only need the gradient of the objective,
this gradient can cheaply be computed by reverse AD, as done in the so called gradient methods. Note
that in this case the same adjoint differential equations of the indirect approach can be used for reverse
computation of the gradient, but that in contrast to the indirect method we do not eliminate the controls,
and we integrate the adjoint equations backwards in time. The complexity for one gradient computation is
only 4N computational units. However, each additional state constraint necessitates a further backward
sweep.

Third, in the case that we have chosen piecewise controls, as here, we might use the fact that
after the piecewise control discretization we have basically transformed the continuous time OCP into
a discrete time OCP (see next section). Then we can compute the derivatives with respect to both
s; and ¢; on each interval separately, which costs (n, + n, -+ 1) units. This means a total derivative
computation cost of N(n, + n, + 1) units. In contrast to the second (adjoint) approach, this approach
can handle an arbitrary number of path inequality constraints, like the first one. Note that it has the
same complexity that we obtain in the standard implementation of the multiple shooting approach, as
explained next. We remark here already that both shooting methods can each implement all the above
ways of derivative generation, but differ in one respect only, namely that single shooting is a sequential
and multiple shooting a simultaneous approach.

12.2 Direct Multiple Shooting

The direct multiple shooting method that was originally developed by Bock and Plitt [19] performs first
a piecewise control discretization on a grid, exacly as we did in single shooting, i.e. we set

u(t) =qi for te [ti,t“_l].

12.2. Direct Multiple Shooting 103

But then, it solves the ODE separately on each interval [t;,t;11], starting with artificial initial values s;:

i(t;si,qi) = flxi(t;si,6i),4), t€ [tistiya],
zi(ti; si, i) = Si

Thus, we obtain trajectory pieces x;(t; s;, ¢;). Likewise, we numerically compute the integrals

tit1
li(si,q:) ZZ/ L(xi(ts; 84, i), q;)dt.

ti

Finally, we choose a grid at which we check the inquality path constraints; here we choose the same as for
the controls and states, but note that a much finer sampling would be possible as well, which, however,
requires continuous output from the integrator. Thus, the NLP that is solved in multiple shooting and
that is visualized in Figure 12.2 is given by

N-1
minimize Z li(siyqi) + E(sn) (12.2)
$,q i=0
subject to

9 —89 = O, (initial value)
i(tig1; 8i,qi) — Siv1 = 0, i=0,...,N —1, (continuity)

h(si,q;) < 0, i=0,...,N, (discretized path constraints)

r(sy) < 0. (terminal constraints)

Note that by setting f;(si, ¢;) := zi(ti+1; i, ¢;) the continuity conditions can be interpreted a discrete time
dynamic system s;+1 = fi(si,¢;) and the above optimal control problem has exactly the same structure
as the discrete time optimal control problem (6.1) discussed in detail in Chapter 6. Most important, we
can and should employ a sparsity exploiting NLP solver. Regarding the derivative computation, nearly
all cost resides in the derivatives of the discrete time dynamic system, i.e. the matrices A; and B; in (6.5).
If again the simulation on one interval, i.e. one evaluation of f;, costs one unit, then the computation
of these matrices by finite differences costs (n, + n, + 1), and as we need N of them, we have a total
derivative computation cost of N(n, + n, + 1) per Newton-type iteration.

Remark on Schloder’s Reduction Trick: We point out here that the derivatives of the condensed QP
could also directly be computed, using the reduced way, as explained as first variant in the context of
single shooting. It exploits the fact that the initial value z¢ is fixed in the NMPC problem, changing
the complexity of the derivative computations. It is only advantageous for large state but small control
dimensions as it has a complexity of N?n,,. It was originally developed by Schléder [72] in the context
of Gauss-Newton methods and generalized to general SQP shooting methods by [71]. A further general-
ization of this approach to solve a “lifted” (larger, but equivalent) system with the same computational
cost per iteration is the so called lifted Newton method [2] where also an analysis of the benefits of lifting
is made.

The main advantages of lifted Newton approaches such as multiple shooting compared with single
shooting are the facts that (a) we can also initialize the state trajectory, and (b), that they show superior
local convergence properties in particular for unstable systems. An interesting remark is that if the
original system is linear, continuity is perfectly satisfied in all SQP iterations, and single and multiple
shooting would be identical. Also, it is interesting to recall that the Lagrange multipliers \; for the
continuity conditions are an approximation of the adjoint variables, and that they indicate the costs of
continuity.

Finally, it is interesting to note that a direct multiple shooting algorithm can be made a single
shooting algorithm easily: we only have to overwrite, before the derivative computation, the states s by
the result of a forward simulation using the controls ¢ obtained in the last Newton-type iteration. From
this perspective, we can regard single shooting as a variant of multiple shooting where we perturb the
result of each iteration by a “feasibility improvement” that makes all continuity conditions feasible by
the forward simulation, implicitly giving priority to the control guess over the state guess [75].

104 Chapter 12. Direct Approaches to Continuous Optimal Control

@i (tig1; Sis i) 7 Siv1

S
R
90 bememy 1T
to t1 titit1 LR S\ O tn

Figure 12.2. The NLP wvariables in the direct multiple shooting method.

12.3 Direct Collocation

A third important class of direct methods are the direct transcription methods, most notably direct
collocation. Here we discretize the infinite OCP in both controls and states on a fixed and relatively
fine grid {tk}kN:O ; recall that each collocation interval corresponds to an integrator step. We denote the
states on the grid points by si ~ x(tx). We choose a parameterization of the controls on the same grid,
e.g. piecewise constant or piecewise polynomials, with control parameters ¢, that yield on each interval
a function ug(t; q)

On each collocation interval [ty, tr+1] a set of m collocation points tg), . ,ﬁgn) is chosen and the
trajectory is approximated by a polynomial pg(t;v) with coefficient vector vg. As equalities of the
optimization problem we now require that the collocation conditions (9.17) are met at the collocation

points.

sk = pr(tr; vk) (12.3a)

Foets o), un (s a) = pi (g 0) (12.3b)

: (12.3¢)

Fou™ o), un (805 1)) = pi (0™ 0) (12.3d)

We summarize this system by the vector equation ¢y (s, vk, ¢x) = 0 that has as many components as the
vector v;. Additionally, we also require continuity accross interval boundaries, i.e. we add the constraints
Pi(th+1;vk) — Sg+1 = 0. We also approximate the integrals ftt:“ L(z,u)dt on the collocation intervals
by a quadrature formula using the same collocation points, which we denote by the a term Iy (sg, vk, g)-
Path constraints are enforced on a grid, e.g. the interval boundaries, which we do here. We point out,
that much finer sampling is possible as well, e.g. on the collocation nodes or even more often. Thus, we
obtain a large scale, but sparse NLP:

N-1
minimize > lk(sksvn,ax) + E(sw) (12.4)
U q k=0
subject to
so—xzp = 0, (fixed initial value)
ck(Sk, vk, qe) = 0, k=0,...,N—1, (collocation conditions)
Pr(tht1;0k) — Sg+1 = O, k=0,...,N—1, (continuity conditions)
h(sk,q) < 0, k=0,...,N—1, (discretized path constraints)
r(sy) < 0. (terminal constraints)

This large sparse NLP needs to be solved by structure exploiting solvers, and due to the fact that the
problem functions are typically relatively cheap to evaluate compared with the cost of the linear algebra,
nonlinear interior point methods are often the most efficient approach here. A widespread combination
is to use collocation with IPOPT using the AMPL interface. It is interesting to note that, like in direct
multiple shooting, the multipliers of the continuity conditions are again an approximation of the adjoint
variables.

12.4. A Classification of Direct Optimal Control Methods 105

An interesting variant of orthogonal collocation methods that is often called the pseudospectral
optimal control method uses only one collocation interval but on this interval it uses an extremly high
order polynomial. State constraints are then typically enforced at all collocation points.

12.4 A Classification of Direct Optimal Control Methods

It is an interesting exercise to try to classify Newton type optimal control algorithms, where we follow
the presentation given in [34]. Let us have a look at how nonlinear optimal control algorithms perform
their major algorithmic components, each of which comes in several variants:

(a) Treatment of Inequalities: Nonlinear IP vs. SQP

(b) Nonlinear Iterations: Simultaneous vs. Sequential

(c) Derivative Computations: Full vs. Reduced

(d) Linear Algebra: Banded vs. Condensing
In the last two of these categories, we observe that the first variants each exploit the specific structures
of the simultaneous approach, while the second variant reduces the variable space to the one of the
sequential approach. Note that reduced derivatives imply condensed linear algebra, so the combination
[Reduced,Banded] is excluded. In the first category, we might sometimes distinguish two variants of SQP
methods, depending on how they solve their underlying QP problems, via active set QP solvers (SQP-AS)
or via interior point methods (SQP-IP).

Based on these four categories, each with two alternatives, and one combination excluded, we obtain
12 possible combinations. In these categories, the classical single shooting method [69] could be classi-
fied as [SQP,Sequential,Reduced] or as [SQP,Sequential Full,Condensing] because some variants compute
directly the reduced derivatives R" in (14.12b), while others compute first the stagewise derivative ma-
trices A; and B; and condense then. Tenny’s feasibility perturbed SQP method [75] could be classified
as [SQP,Sequential,Full,Banded], and Bock’s multiple shooting [19] as well as the classical reduced SQP
collocation methods [76, 14, 12] as [SQP,Simultaneous,Full,Condensing]. The band structure exploiting
SQP variants from Steinbach [74] and Franke [41] are classified as [SQP-IP,Simultaneous,Full,Banded],
while the widely used interior point direct collocation method in conjunction with IPOPT by Biegler
and Wichter [?] as [IP,Simultaneous,Full,Banded]. The reduced Gauss-Newton method of Schléder [72]
would here be classified as [SQP,Simultaneous,Reduced].

106 Chapter 12. Direct Approaches to Continuous Optimal Control

Part |V

Nonlinear Model Predictive Control

107

Chapter 13

Nonlinear Model
Predictive Control

So far, we have regarded one single optimal control problem and focussed on ways to numerically solve
this problem. Once we have computed such a solution, we might try to control the corresponding real
process with the obtained control trajectory. This approach to use a precomputed control trajectory is
called open-loop control. Unfortunately, the result will most probably be very dissatisfying, as the real
process will typically not coincide completely with the model that we have used for optimization. If we
wanted for example move a robot arm to a terminal point, the robot arm might end at a very different
location than the model predicted. This is due to the difference of the model with the reality, sometimes
called model-plant-mismatch. This mismatch might be due to modelling errors or external, unforeseen
disturbances.

On the other hand, we might be able to observe the real process during its time development,
and notice, for example, that the robot arm moves differently than predicted. This will allow us to
correct the control inputs online in order to get a better performance; this procedure is called feedback
control or closed-loop control. Feedback allows us to improve the practical performance of optimal control
enormously. In its most basic form, we could use ad-hoc implementations of feedback that react to
deviations from the planned state trajectory by basic control schemes such as a proportional-integral
(PI) controller. On the other hand, we might use again optimal control techniques in order to react to
disturbances of the state, by using optimal feedback control, which we had outlined in the Chapters 7
and 10 on dynamic programming (DP) and the HJB Equation. In the case of the moving robot arm
this would result in the following behaviour: if during its motion the robot arm is strongly pushed by an
external disturbance, it will not try to come back to its planned trajectory but instead adapt to the new
situation and follow the new optimal trajectory. This is straightforward in the case of DP or HJB, where
we have the optimal feedback control precomputed for all possible states. But as said, these approaches
are impossible to use for nontrivial state dimensions, i.e. systems with more than, say, 3-8 states. Thus,
typically we cannot precompute the optimal feedback control in advance.

A possible remedy is to compute the optimal feedback control in real-time, or online, during the
runtime of the process. In the case of the robot arm this means that after the disturbance, we would
call our optimization solver again in order to quickly compute the new optimal trajectory. If we could
solve this problem exactly and infinitely fast, we would get exactly the same feedback as in optimal
feedback control. In reality, we have to work with approximations: first, we might simplify the optimal
control problem in order to allow faster computation, e.g. by predicting only a limited amount of time
into the future, and second, we might adapt our algorithms to the new task, namely that we have to
solve optimization problems again and again. This task is called real-time optimization or embedded
optimization, due to the fact that in many cases, the numerical optimization will be carried out on
embedded hardware, i.e. processors that reside not in a desktop computer but e.g. in a feedback control
system.

While this idea of optimal feedback control via real-time optimization sounds challenging or even
impossible for the fast motion of robot arms, it is since decades industrial practice in the process control
industry under the name of Model Predictive Control (MPC). There, time scales are often in the range of
minutes and allow ample time for each optimization. The main stream implementation of MPC can in
discrete time roughly be formulated as follows: (1) observe the current state of the system Zg, (2) predict

109

110 Chapter 13. Nonlinear Model Predictive Control

and optimize the future behaviour of the process on a limited time window of N steps by solving an
open-loop optimization problem starting at the state Zo, (3) implement the first control action ug at the
real process, (4) move the optimization horizon one time step forward and repeat the procedure. MPC
is sometimes also called receding horizon control due to this movement of the prediction horizon. The
name nonlinear MPC, short NMPC; is reserved for the special case of MPC with underlying nonlinear
dynamic systems, while linear MPC refers to MPC with linear system models. Note that NMPC leads
typically to non-convex optimization problems while nearly all linear MPC formulations use convex cost
and constraints.

Note that in the case of a time-invariant system and cost, the subsequent optimization problems
differ only by the initial value Zy and nothing else, and thus, the MPC feedback is time-invariant as
well. If we would be able to solve the problem with an infinite prediction horizon, we would obtain the
stationary optimal feedback control. The limitation of the horizon to a finite length N allows us to solve
the problem numerically. If we choose N large enough, it will be a good approximation to the infinite
horizon problem.

In this script, we do not focus on the different ways to formulate the MPC problem, but on its
numerical solution by suitable real-time optimization methods. This and the next chapter follows the
presentation given in [34] and [30] and focusses on the MPC optimal control problem.

13.1 NMPC Optimization Problem

Let us in this chapter regard the following simplified optimal control problem in discrete time augmented
with algebraic equations.

N-1
mgi[;r’lizn’l@itze ZZ:; L(zi, zi,u;) + E(xn) (13.1a)
subject to ro — Tg =0, (13.1b)
Tip1 — fag, ziyw;) :0, 1=0,...,N (13.1c)

g(xi, zi,u;)) =0, 1=0,...,N—1, (13.1d)

h(xi, zi,u;) <0, i=0,...,N —1, (13.1e)

r(zy) <0 (13.1f)

Here, x; € R™* is the differential state, z; € R™= the algebraic state, and u; € R™ is the control. Functions
f and g are assumed twice differentiable and map into R and R™= respectively The algebraic state z; is
uniquely determined by (13.1d) when z; and u; are fixed, as we assume that 24 57 is invertible everywhere.

We choose to regard this difference-algebraic system form because it covers several parametrization
schemes for continuous time dynamic systems in differential algebraic equation (DAE) form, in particular
direct multiple shooting with DAE relaxation [55] and direct collocation [76, 14]. Note that in the case
of collocation, all collocation equations on a collocation interval would be collected within the function g
and the collocation node values in the variables z;, see the formulation in formula (12.4).

Here, the free variables are the differential state vector z = (zf, 2% ... 2% |, 2%)7T at all considered
time points and the algebraic and control vector on all but the last time points: z = (20,27 ..., 2%)T
and u = (ud,ul .. uk)T,

The task in real-time optimization for NMPC is now the following: for a given value of Ty, we need
to approximately solve the above optimization problem as fast as possible, and of the obtained solution,
it is the optimal value ug that we need fastest in order to provide the NMPC feedback. We might call the
exact solution u(Zo) in order to express its dependence on the initial value Zy. The only reason why we
formulate and optimize the large optimization problem is because it delivers us this map ug : R™ — R"™«,
which is an approximation to the optimal feedback control.

Remark on fixed and free parameters: In most NMPC applications there are some constant parameters
p that are assumed constant for the NMPC optimization, but that change for different problems, like
Zo. We do not regard them here for notational convenience, but note that they can be treated by state
augmentation, i.e. regarded as constant system states with fixed initial value p.

13.2. Nominal Stability of NMPC 111

13.2 Nominal Stability of NMPC

Very often, one is interested in stabilizing the nonlinear dynamic system at a given set point for states
and controls, which we might without loss of generality set to zero here. This steady state, that satisfies
£(0,0,0) = 0, g(0,0,0) = 0 must be assumed to be feasible, i.e. h(0,0,0) < 0. One then often uses
as stage cost the quadratic deviation from this set point, i.e., L(z,u) = 27 Qz + u’ Ru with positive
definite matrices @, R. It is important to note that this function is positive definite, i.e., L(0,0) = 0 and
L(xz,u) > 0 other wise. In this case, one would ideally like to solve the infinite horizon problem with
N = oo in order to obtain the true stationary optimal feedback control; this would automatically ensure
stability, as the value function J(z) can be shown to decrease along the trajectory of the nominal system
in each time step by —L(zo, u*(20)) and can thus serve as a Lyapunov function. But as we have in practice
to choose a finite N, the question arises how we can ensure nominal stability of NMPC nevertheless. One
way due to [52, 60] is to impose a zero terminal constraint i.e. to require zy = 0 as terminal boundary
condition (13.1f) in the NMPC problem and to employ no terminal cost, i.e. E(xy) = 0.

In this case of a zero terminal constraint, it can be shown that the value function Jy of the finite
horizon problem is a Lyapunov function that decreases by at least —L(Zg,u*(Zp)) in each time step.
To prove this, let us assume that (af, 25, us, 7, 25, ui, ..., 2%) is the solution of the NMPC problem
(13.1a)-(13.1f) starting with initial value Zo. After application of this feedback to the nominal system,
i.e. without model-plant-mismatch, the system will evolve exactly as predicted, and for the next NMPC
problem the initial value Zf, will be given by Z{, = z7. For this problem, the shifted version of the
previous solution (7, 2}, u}, ..., 2%,0,0,0) is a feasible point, and due to the zero values at the end, no
additional cost arises at the end of the horizon. However, because the first stage cost term moved out
of the horizon, we have that the cost of this feasible point of the next NMPC problem is reduced by
exactly —L(Zo, u*(Zo)). After further optimization, the cost can only be further reduced. Thus, we have
proven that the value function Jy is reduced along the trajectory, i.e. Jo(Z() < Jo(To) — L(Zo, u*(To)).
More generally, one can relax the zero terminal constraint and construct combinations of terminal cost
E(zy) and terminal inequalities r(zx) < 0 that have the same property but are less restrictive, cf.
e.g. [27, 29, 61].

13.3 Online Initialization via Shift

For exploiting the fact that NMPC requires the solution of a whole sequence of neighboring NLPs and
not just a number of stand-alone problems, we have first the possibility to initialize subsequent problems
efficiently based on previous information.

A first and obvious way to transfer solution information from one solved NMPC problem to the
initialization of the next one is employing the shift that we used already in the proof of nominal stability
above. It is motivated by the principle of optimality of subarcs, which, in our context, states the following:
Let us assume we have computed an optimal solution (xf, 25, ug, 3, 21, ui, ..., @) of the NMPC problem
(13.1a)-(13.1f) starting with initial value Zy. If we regard a shortened NMPC problem without the first
interval, which starts with the initial value Z; chosen to be z7, then for this shortened problem the vector
(27,27, uf, ...,z) is the optimal solution.

Based on the expectation that the measured or observed true initial value for the shortened NMPC
problem differs not much from z] —i.e. we believe our prediction model and expect no disturbances — this
“shrinking” horizon initialization is canonical, and it is used in MPC of batch or finite time processes,
see e.g. [46, 32].

However, in the case of moving horizon problems, the horizon is not only shortened by removing
the first interval, but also prolonged at the end by appending a new terminal interval — i.e. the horizon
is moved forward in time. In the moving horizon case, the principle of optimality is thus not strictly
applicable, and we have to think about how to initialize the appended new variables zy, un, zn41. Often,
they are obtained by setting uy := uy—_1 or setting uy as the steady state control. The states zy and
xn41 are then obtained by forward simulation. In the case that zero is the steady state and we had
a zero terminal constraint, this would just result in zero values to be appended, as in the proof in the
previous section. In any case, this transformation of the variables from one problem to the next is called
“shift initialization”. It is not as canonical as the “shrinking horizon” case, because the shifted solution
is not optimal for the new undisturbed problem. However, in the case of long horizon lengths N we can
expect the shifted solution to be a good initial guess for the new solution. Moreover, for most NMPC

112 Chapter 13. Nonlinear Model Predictive Control

schemes with stability guarantee (for an overview see e.g. [61]) there exists a canonical choice of uy that
implies feasibility (but not optimality) of the shifted solution for the new, undisturbed problem. The
shift initialization is very often used e.g. in [58, 15, 62, 37].

A comparison of shifted vs. non-shifted initializations was performed in [21] with the result that for
autonomous NMPC problems that shall regulate a system to steady state, there is usually no advantage
of a shift initialization compared to the “primitive” warm start initialization that leaves the variables at
the previous solution. In the extreme case of short horizon lengths, it turns out to be even advantageous
NOT to shift the previous solution, as subsequent solutions are less dominated by the initial values than
by the terminal conditions. On the other hand, shift initialization are a crucial prerequisite in periodic
tracking applications [37] and whenever the system or cost function are not autonomous.

13.4 Outline of Real-Time Optimization Strategies

In NMPC we would dream to have the solution to a new optimal control problem instantly, which is
impossible due to computational delays. Several ideas help us to deal with this issue.

Offline precomputations: As consecutive NMPC problems are similar, some computations can be
done once and for all before the controller starts. In the extreme case, this leads to an explict precom-
putation of the NMPC control law that has raised much interest in the linear MPC community [6], or a
solution of the Hamilton-Jacobi-Bellman Equation, both of which are prohibitive for state and param-
eter dimensions above ten. But also when online optimization is used, code optimization for the model
routines is often essential, and it is in some cases even possible to precompute and factorize Hessians or
even Jacobians in Newton type Optimization routines, in particular in the case of neighboring feedback
control along reference trajectories [53, 26]. Also, pre-optimized compilable computer code can be auto-
generated that is specific to the family of optimization problems, which is e.g. in convex optimization
pursued in [59].

Delay compensation by prediction: When we know how long our computations for solving an NMPC
problem will take, it is a good idea not to address a problem starting at the current state but to simulate
at which state the system will be when we will have solved the problem. This can be done using the
NMPC system model and the open-loop control inputs that we will apply in the meantime [40]. This
feature is used in many practical NMPC schemes with non-negligible computation time.

Division into preparation and feedback phase: A third ingredient of several NMPC algorithms is to
divide the computations in each sampling time into a preparation phase and a feedback phase [33]. The
more CPU intensive preparation phase (a) is performed with an old predicted state Ty before the new
state estimate, say Z(), is available, while the feedback phase (b) then delivers quickly an approzimate
solution to the optimization problem for Z{,. Often, this approximation is based on one of the tangential
predictors discussed in the next chapter.

Tterating while the problem changes: A fourth important ingredient of some NMPC algorithms is
the idea to work on the optimization problem while it changes, i.e., to never iterate the Newton type
procedure to convergence for an NMPC problem getting older and older during the iterations, but to
rather work with the most current information in each new iteration. This idea is used in [58, 33, 64].

As a historical note, one of the first true online algorithms for nonlinear MPC was the Newton-Type
Controller of Li and Biegler [57]. It is based on a sequential optimal control formulation, thus it iterates
in the space of controls u = (ug, u1,...,un—1) only. It uses an SQP type procedure with Gauss-Newton
Hessian and line search, and in each sampling time, only one SQP iteration is performed. The transition
from one problem to the next uses a shift of the controls ™" = (uq,...,un—_1,u"). The result of
each SQP iterate is used to give an approximate feedback to the plant. As a sequential scheme without
tangential predictor, it seems to have had sometimes problems with nonlinear convergence, though closed-
loop stability was proven for open-loop stable processes [58].

In the next chapter, we will discuss several other real-time optimization algorithms in more detail
that are all based on ideas from the field of parametric nonlinear optimization.

Chapter 14

Parametric Nonlinear
Optimization

In the shift initialization discussed in the previous chapter we did assume that the new initial value
corresponds to the model prediction. This is of course never the case, because exactly the fact that the
initial state is subject to disturbances motivates the use of MPC. By far the most important changes
from one optimization problem to the next one are thus the unpredictable changes in the initial value
Zo. Is there anything we can do about this in the initialization of a new problem? It turns out that the
concept of parametric sensitivities helps us here. In order to understand this concept, in this chapter we
will regard the task of real-time optimization from a different perspective than before, namely from the
point of view of parametric optimization, which is a subfield of nonlinear optimization [4, 45].

14.1 Parametric Nonlinear Optimization

The NMPC problem as stated in Equations (13.1a)-(13.1f) in the previous chapter is a specially structured
case of a generic parametric nonlinear program (pNLP) with variables Y = («, z, u) that depends on the
parameter Zo. This pNLP has the form

(14.1)

=
=
IA I
o

pPNLP(Zo) : minimize F(Y) s.t. { G(20,Y)
Y

We recall that under mild assumptions, any locally optimal solution Y* of this problem has to satisfy the
Karush-Kuhn-Tucker (KKT) conditions: there exist multiplier vectors A* and p* so that the following
equations hold:

Vy LY, X 1) =0 (14.2a)
G(ZTo,Y") =0 (14.2b)
0> HY" L u >0 (14.2¢)
Here we have used the definition of the Lagrange function
LY, \p) =FY)+G@o,Y)' N+ HY) 1 (14.3)

and the symbol L between the two vector valued inequalities in Eq. (14.2¢) states that also the comple-
mentarity condition

shall hold.

Remark on Initial Value Embedding: Due to the fact that the parameter Zy enters G linearly in
our formulation, the Jacobian of G' and thus also the Lagrange gradient does not depend on zy. We can
therefore identify Vy G(Zo,Y) = VyG(Y). The fact that all derivatives are independent of the parameter
ZTo will make the description of the path-following algorithms in the coming sections easier. Note that
this particular formulation of the parameter dependence can in all parametric optimization problems be

113

114 Chapter 14. Parametric Nonlinear Optimization

achieved by introducing the parameter xo as a variable and constraining it by a constraint g — xg = 0,
as we have done in (13.1a)-(13.1f). We call this in the general case a parameter embedding. In the context
of MPC, like here, we speak of the initial value embedding [30].

The primal-dual points W = (Y, A, i) that satisfy the KKT conditions for different values of Zy form
the solution manifold; due to the non-smoothness of the complementarity condition, this manifold is in
general not differentiable. However, if we would have no inequality constraints, the solution manifold is
in general smooth, and we treat this case first.

14.2 Predictor-Corrector Pathfollowing Methods

In the equality constrained case, we have W = (Y, A), and the first two KKT conditions (14.2a)-(14.2b)
form a nonlinear equation system depending on the parameter Z, that we can summarize as R(Zo, W) = 0.
The solution W*(Zy) that satisfies these conditions for a given Zj is in general a smooth map; more
precisely, it is smooth at all points at which the Jacobian g—vls is invertible. Note that this Jacobian is
nothing else than the matrix that we called the KKT matriz in Chapter 2, and that the KKT matrix is
invertible whenever the second order sufficient optimality conditions of Theorem 2.18 hold, which we can

assume here. The derivative of the solution map W*(Z) is by the implicit function theorem given by

o (a0) = (0 W @))) 2 0, Wz, (145)

0T
In the real-time optimization context, we might have solved a problem with parameter o with solution
W = W*(Zo) and want to solve next the problem for a new parameter (. The tangential predictor W’

for this new solution W*(Z{) is given by

ow'* OR -
W' =W + 20) (T — To) =W — | =—=(Zo, W —(Zo, W) (Zy — Zo).
070 (Z0)(Zy — Zo) o (2o W) 6550(0, W)(Z(— To)
Note the similarity with one step of a Newton method. In fact, a combination of the tangential predictor
and the corrector due to a Newton method proves to be useful in the case that W was not the exact
solution of R(Zo, W) = 0, but only an approximation. In this case, linearization at (Zo, W) yields a
formula that one step of a predictor-corrector pathfollowing method needs to satisfy:

_ OR ,_ _ _ OR _
R(zo, W) + 8—%(%, W)(@g — o) + W(zo, W)W’ —W) = 0. (14.6)
Written explicitly, it delivers the solution guess W' for the next parameter Zj as
OR ' OR _ L dR o
W’ =W — (W(l'O’W)) a—:Z'O(ZCQ,W)(ZEg —.1'0)— (W(:CO,W)) R(ZCQ,W)
=AWpredictor =AW-eorrector

Structure due to Initial Value Embedding: We can use the fact that Zp enters R linearly due to
the initial value embedding in order to simplify the formulae. First, we can omit the dependence of
the derivatives on Zy and second, we can write 6—IE(W)(506 — o) = R(z(, W) — R(Zo, W). Thus, the

oz
Equation (14.6) that the predictor-corrector step needs to satisfy simplifies to
—/ OR /

It follows that the predictor-corrector step can be easily obtained by just applying one standard Newton
step to the new problem pNLP(Z;) initialized at the past solution guess W, if we employed the initial
value embedding in the problem formulation. This is convenient in particular in the context of inequality
constrained optimization.

In order to devise pathfollowing methods for the case of inequality constraints, there exist two
different approaches. The first and easier one is closely related to nonlinear interior point (IP) methods
and approximates the KKT system by a smooth equation, while the second one is related to sequential
quadratic programming (SQP) methods and treats the non-smooth complementarity conditions in a
different way.

14.3. Interior Point Pathfollowing Methods 115

14.3 Interior Point Pathfollowing Methods

Let us first recall that a nonlinear interior point method addresses the solution of the KKT system by
replacing the last nonsmooth KKT condition in Eq. (14.2¢c) by a smooth nonlinear approximation, with
T>0:

Vy L(Y*, *, 1) = 0 (14.82)
G(70,Y*) =0 (14.8b)
H,(Y"Ypui+7=0, i=1,...,nq. (14.8¢)

If we regard this system for a fixed parameter 7, it is just a nonlinear equation that determines the
unknowns W = (Y, A\,) and depends on the parameter Zo, and which we summarize again as

R(zo, W) = 0. (14.9)

This equation system implicitly defines the smooth interior point (IP) solution manifold W*(Z¢) in which
we are interested in the real-time optimization context. As it is a smooth equation, we can in principle
apply the pathfollowing predictor-corrector method of the previous section. For decreasing 7, this IP
solution manifold approximates closer and closer the true solution manifold of the parametric NLP.

Remark on IP Sensitivities at Active Set Changes: Unfortunately, for small 7, the interior point
solution manifold is strongly nonlinear at points where the active set changes, and the tangential predictor
is not a good approximation when we linearize at such points, as visualized in Fig. 14.1(b). One remedy
would be to increase the path parameter 7, which decreases the nonlinearity, but comes at the expense
of generally less accurate solutions. This is illustrated in Figs. 14.2(a) and 14.2(b) for the same two
linearization points as before. In Fig. 14.2(b) we see that the tangent is approximating the IP solution
manifold well in a larger area around the linearization point, but that the IP solution itself is more distant
to the true NLP solution. Thus, the tangential predictor is of limited use across active set changes.

W W

T To

(a) Linearizing at approximate solution (b) Linearizing at active set change

Figure 14.1. Tangential predictors for interior point method using a small T.

o - To

(a) Linearizing at approximate solution (b) Linearizing at active set change

Figure 14.2. Tangential predictors for interior point method using a larger T.

116 Chapter 14. Parametric Nonlinear Optimization

The Continuation/GMRES Method of Ohtsuka [64]: The Continuation/GMRES method performs
one predictor-corrector Newton type iteration in each sampling time, and is based on a sequential for-
mulation. It is based on an IP treatment of the inequalities with fixed path parameter 7 > 0 it uses an
exact Hessian, andmit uses the iterative GMRES method for linear system solution in each Newton step.
Most important, it makes use of the tangential predictor described in Eq. (14.7). This features seems to
allow it to follow the nonlinear IP solution manifold well — which is strongly curved at active set changes.
For a visualization, see Fig. 14.3(a). In each sampling time, only one linear system is built and solved by
the GMRES method, leading to a predictor-corrector pathfollowing method. The closed-loop stability of
the method is in principle covered by the stability analysis for the real-time iterations without shift given
in [35]. A variant of the method is given in [73], which uses a simultanous approach and condensing and
leads to improved accuracy and lower computational cost in each Newton type iteration.

1% %

(a) Ohtsuka’s C/GMRES method (b) Advanced Step Controller

Figure 14.3. Subsequent solution approximations.

Advanced Step Controller by Zavala and Biegler [81]: In order to avoid the convergence issues of
predictor-corrector pathfollowing methods, in the “advanced step controller” of Zavala and Biegler a more
conservative choice is made: in each sampling time, a complete Newton type IP procedure is iterated
to convergence (with 7 — 0). In this respect, it is just like offline optimal control — IP, simultaneous,
full derivatives with exact Hessian, structure exploiting linear algebra. However, two features qualify
it as an online algorithm: first, it takes computational delay into account by solving an “advanced”
problem with the expected state Ty as initial value — similar as in the real-time iterations with shift —
and (b), it applies the obtained solution not directly, but computes first the tangential predictor which is
correcting for the differences between expected state Zo and the actual state Z{), as described in Eq. (14.7)
with R(W,Zo) = 0. Note that in contrast to the other online algorithms, several Newton iterations are
performed in part (a) of each sampling time, the “preparation phase”. The tangential predictor (b) is
computed in the “feedback phase” by only one linear system solve based on the last Newton iteration’s
matrix factorization. As in the C/GMRES method, the IP predictor cannot “jump over” active set
changes as easily as the SQP based predictor of the real-time iteration. Roughly speaking, the advanced
step controller gives lower priority to sudden active set changes than to system nonlinearity. As the
advanced step controller solves each expected problem exactly, classical NMPC stability theory [61] can
relatively easily be extended to this scheme [81].

14.4 SQP Pathfollowing Methods

In fact, if inequalities are present, the true NLP solution is not determined by a smooth root finding
problem (14.8a)—(14.8c), but by the KKT conditions (14.2a)—(14.2¢). It is a well-known fact from para-
metric optimization, cf. [45], that the solution manifold has smooth parts when the active set does not
change (and bifurcations are excluded), but that non-differentiable points occur whenever the active set
changes. Is there anything we can do in order to “jump” over these non-smooth points in a way that
delivers better predictors than the IP predictors discussed before?

At points with weakly active constraints, we have to regard directional derivatives of the solution
manifold, or “generalized tangential predictors”. These can be computed by suitable quadratic pro-
grams [45, Thm 3.3.4] and are visualized in Fig. 14.4(b). The theoretical results can be made a practical
algorithm by the procedure proposed in [30]: first, we have to make sure that the parameter Z, enters

14.4. SQP Pathfollowing Methods 117

the NLP linearly, via the initial value embedding, cf. Eq. (13.1b). Second, we address the problem with
an exact Hessian SQP method. Third, we just take our current solution guess W* for a problem Z,, and
then solve a parametric QP subproblem

_ L Gy, YR+ VGYHT(Y —-YF) = 0
/ kN . k 0
pQP(Z5, W) : mln;mze Fop(Y) st { HY®) + VEYHT(Y V) < 0 (14.10)
with objective function
1
Fap(Y) =VF(Y")TY + 5(Y —YMIVLL(YF N) (Y —YF). (14.11)

for the new parameter value T, but initialized at W*. It can be shown [30, Thm. 3.6] that this
“initial value embedding” procedure delivers exactly the generalized tangential predictor when started
at a solution W* = W*(zg), as in Fig. 14.4(b). It is important to remark that the predictor becomes
approximately tangential when (a) we do not start on the solution manifold, see Fig. 14.4(a), or (b) we do
not use an exact Hessian or Jacobian matrix. In practical NMPC applications, very often a Gauss-Newton
Hessian provides an excellent positive definite approximation of the Hessian.

Condensing: Let us recall that the states can be eliminated from the above parametric QP, resulting
in a smaller, condensed quadratic program of the form

pQPcond(zg, wh) minimize feondQp,k(Zo,) (14.12a)
u
subject to T + R°Zo + Rjju < 0. (14.12b)
If the dimension of the vector u = (ul,ul, ... ,u%)T is not too large, this QP can be solved fast using

dense general purpose QP solvers. The importance of the condensed QP in the real-time optimization
context is that it can very quickly be solved but still contains the explicit dependence on the parameter
Zo as well as the controls, in particular the first one, ug, which we need for the next MPC feedback.

Lo Lo

(a) Linearizing at approximate solution (b) Linearizing at active set change

Figure 14.4. Generalized tangential predictors for SQP method.

The Real-Time lteration Scheme [33]: Based on the above ideas, the real-time iteration scheme pre-
sented in [30, 33] performs one SQP type iteration with Gauss-Newton Hessian per sampling time.
However, it employs a simultaneous NLP parameterization, Bock’s direct multiple shooting method,
with full derivatives and condensing. Moreover, it uses the generalized tangential predictor of the “initial
value embedding” to correct for the mismatch between the expected state Zo and the actual state Z(. In
contrast to the C/GMRES method by Ohtsuka, where the predictor is based on one linear system solve
from Eq. (14.7), here an inequality constrained QP is solved. The computations in each iteration are
divided into a long “preparation phase” (a), in which the system linearization and condensing are per-
formed, and a much shorter “feedback phase” (b), see the visualization in Fig. 14.5. The feedback phase
solves just one condensed QP (14.12a)—(14.12b). Depending on the application, the feedback phase can
be several orders of magnitude shorter than the feedback phase. The iterates of the scheme are visualized

118 Chapter 14. Parametric Nonlinear Optimization

in Fig. 14.6(a). The same iterates are obtained with a variant of the scheme that uses Schléder’s trick
for reducing the costs of the preparation phase in the case of large state dimensions [70]. Note that only
one system linearization and one QP solution are performed in each sampling time, and that the QP
corresponds to a linear MPC feedback along a time varying trajectory. In contrast to IP formulations, the
real-time iteration scheme gives priority to active set changes and works well when the active set changes
faster than the linearized system matrices. In the limiting case of a linear system model it gives the same
feedback as linear MPC. Error bounds and closed loop stability of the scheme have been established
for shrinking horizon problems in [32] and for NMPC with shifted and non-shifted initializations in [36]
and [35].

feedback feedback
i i i a

preparation preparation
zo(tk)

1 | | 1
f f f f time

(a) Real-Time Iteration scheme (b) Critical regions of a parametric NLP

Figure 14.6. Subsequent solution approximations (left), and critical regions (right).

Adjoint-Based Multi-Level Real-Time lterations [18]: A variant of real-time iterations was presented
in [18], where even cheaper calculations are performed in each sampling time than one Newton or Gauss-
Newton step usually requires. Within the Adjoint-Based Multi-Level Real-Time Iterations, at the lowest
level (A), only one condensed QP (14.12a)—(14.12b) is solved, for the most current initial value Zg.
This provides a form of linear MPC at the base level, taking at least active set changes into account
with a very high sampling frequency. On the next two intermediate levels, that are performed less
often than every sampling time, only the nonlinear constraint residuals are evaluated (B), allowing for
feasibility improvement, cf. also [26], or the Lagrange gradient is evaluated (C), allowing for optimality
improvement. This level C is based on the following QP with inexact matrices

G(z),Y*) + BF(Y —Y*)
H(Y"®) +CF(Yy —Y*)

o

minimize Fakdep(Y) s.t. { (14.13)
Y

IA
o

14.5. Critical Regions and Online Active Set Strategies 119

with the QP objective

Fliqp(Y) =Y (Vy L(Y" N 1F) — Bed" — Crpdl¥) +%(Y — YT Ay = YF). (14.14)

”modified gradient”

A crucial ingredient of this level is the fact that the Lagrange gradient can be evaluated efficiently by the
reverse mode of automatic differentiation. Note that in all three levels A, B, and C mentioned so far, no
new QP matrices are computed and that even system factorizations can be reused again and again. Level
C iterations are still considerably cheaper than one full SQP iteration [79], but also for them optimality
and NMPC closed-loop stability can be guaranteed by the results in [35] — as long as the system matrices
are accurate enough to guarantee Newton type contraction. Only when this is not the case anymore, an
iteration on the highest level, D, has to be performed, which includes a full system linearization and is
as costly as a usual Newton type iteration.

14.5 Critical Regions and Online Active Set Strategies

It is interesting to have a look at the parameter space Zo visualized in Fig.14.6(b). The picture shows the
“critical regions” on each of which the active set in the solution is stable. It also shows three consecutive
problems on a line that correspond to the scenario used in Figures 14.3(a), 14.6(a), and 14.3(b). Between
problem 1 and 2 there is one active set change, while problems 2 and 3 have the same active set, i.e., are in
the same critical region. The C/GMRES method and Advanced Step Controller exploit the smoothness
on each critical region in order to obtain the conventional Newton predictor that, however, looses validity
when a region boundary is crossed. The real-time iteration basically “linearizes” the critical regions
which then become polytopic, by using the more accurate, but also more expensive QP predictor.

As the QP cost can become non-negligible for fast MPC applications, a so-called online active set
strategy was proposed in [38]. This strategy goes on a straight line in the space of linearized regions from
the old to the new QP problem. As long as one stays within one critical region, the QP solution depends
affinely on g — exactly as the conventional Newton predictor. Only if the homotopy crosses boundaries
of critical regions, the active set is updated accordingly. The online active set strategy is available in
the open-source QP package qpOASES [39], and is particularly suitable in combination with real-time
iterations of level A, B, and C, where the QP matrices do not change, see [80].

120 Chapter 14. Parametric Nonlinear Optimization

Chapter 15

Moving Horizon
Estimation

In order to predict and optimize the future behaviour of a dynamic system, one needs to know the state
and possibly some unknown parameters of the system. Aim of this chapter is to present methods that
estimate the current state and system parameters from a series of measurements in the past. It turns
out that many estimation formulations naturally lead to optimization problems that have nearly the
same structure as the optimal control problems treated earlier in this course. One powerful method for
online state and parameter estimation uses the measurements on a moving time window in the past,
and is called moving horizon estimation. It is the main topic of this chapter, and a technology often
combined with nonlinear model predictive control (NMPC), with which its optimization problems share
many characteristics.

15.1 State and Parameter Estimation Problem Formulation

Throughout this chapter we regard a dynamic system of the following form

Ter1 = fr(Tr, wi), (15.1a)
vk = gr(xr, wr) +op, k=0,...,N -1 (15.1b)

Here, fi describes the time varying system dynamics, gr models the measurement process, xj are the
unknown system states, and wj are unknown disturbances. The measurement noise is also unknown
and given by vy, while the only quantities that we know are the measurements y;. We assume that we
have some important other piece of information, namely some knowledge - or an educated guess - on the
probability density functions (PDF) for the noises vy and disturbances wy, for k =0,..., N — 1, as well
as for the initial state xg.

For ease of notation, we sloppily denote by P(z) the PDF of a random variable X at the point z;, i.e.
we have P(z) >0, [P(z)dz = 1, and the expectation of variable X is computed as E{X} = [zP(z)dz.
Without loss of generality, we assume the following form of PDFs:

P(vg) = exp(—Px(vg)) - const, k=0,...,N—1, (15.2a)
P(wg) = exp(—Br(wg)) - const, k=0,...,N—1, and (15.2b)
P(xp) = exp(—ap(xg)) - const, (15.2¢)

where the constants are just for normalization and will later not be of further interest. Note that any
PDF can be brought into this form by taking the negative logarithm, and that a zero value of the PDF
corresponds to a value +oo for the negative logarithm.

Remark: Note that if (xg,wo, w1, ..., wy—1) would be known, they would uniquely determine all states
(x1,...,2n). The reason why we like to give a-priori PDFs for all variables (zg,wq,w1,...,wy—1) is
that this helps us to ensure that a unique optimal solution exists for the resulting estimation problems,
independent of the observability properties of the system. If additional a-priori information would be
known, e.g. for some of the states (z1,...,25), it could be added easily to the estimation problem
formulations that follow.

121

122 Chapter 15. Moving Horizon Estimation

15.1.1 Generality of the Considered Dynamic System Class

Though the dynamic system setting in Egs. (15.1) is a rather compact formulation, it comprises many
estimation settings of practical interest. We discuss a few of them.

Systems with known inputs

If we would have a system described by 541 = f(ag, ug, wx) with known inputs u, we can bring it into
the form (15.1) by defining)
fe(@r, wi) = f(zr, ug, wy),

i.e. the dependence of the system on the known controls makes the system time variant.

Systems with measured inputs

How could we deal with a system described by zx11 = f(2g, ug, Wx) with inputs ug that we do not know
exactly, but for which we have measurements u;? If the measurement noise on the input measurements
is denoted by ¥, we define a disturbance vector wy = (W, %) and bring the system into the form (15.1)
by setting B

Tr(@p,wy) == f(ag, U + O, W)

Systems with unknown parameters

Very often we do not only want to know the system states but also some parameters that are unknown,
but constant in time. If the original system state would be given by Zj and the original dynamics by
Tht1 = f(i:k,p), we can proceed as follows to bring the system into the form (15.1). First, we introduce
an individual parameter value pj for each time interval. Second, we define the augmented system state

xg = (Tk, pr). Third, we define the augmented dynamical system (15.1) as

Fulan, wy) = [f(f;;m)} 7

such that the second part of the system dynamics equation, py+1 = pk, ensures that the “parameter
state” pj remains constant over time.

15.2 The Trajectory Estimation Problem

A first question one might want to answer is the following: given the measurements y = (yo,...,yn-1),
what are the most probable state and disturbance trajectories x = (zo,...,xy) and w = (wo, ..., wy_1)?
We decide to work in a Bayesian estimation framework, and our aim is to find the maximum a-posteriori
(MAP) estimate that maximizes the conditional PDF P(x, w|y) of the trajectory, given the measurements.
Using Bayes’ formula, this PDF is given by

Pz, wly) = W (15.3a)
_ P(ylz,w) - P(x,w)
= Zm (15.3b)
= P(y|z,w) - P(xz,w) - const. (15.3¢)

Instead of maximizing the conditional PDF, one can equivalently minimize the negative logarithm of the
PDF. Thus, the MAP estimate is given by

arg min — log P(x, w) — log P(y|z, w).
T, w
Fortunately, we can find explicit expressions for both terms. First, we note that

P(J:,w):P(xo,...,xN,wO,...,wN_l)
[0, ifnot wmpy1 = fe(vg,wr) forall k=0,...,N—1,
- P($0)P(U}0) s P(’wal), else.

15.2. The Trajectory Estimation Problem 123

This means that

0o, ifnot xpi1 = fr(wg,wg) forall k=0,...,N—1,

—log P = -
o8 Pl) { ao(xo) + opsy Br(wy) + const, else,

For the other term, we use the fact that the conditional probability P(yx|x,w) to obtain a measurement
yr only depends on the state xj and disturbance wy at the same time time point. Because of y, =
9k (z, wi) + vy, 1t is given by P(yg|rk, wr) = P(vk), with vy = yr — g (xk, wg). Thus, the following
identities hold:

P(y|x,w) :P(yOa"'7yN—1|:L'O;'"a:ENawOa"'awN—l)
N-1
= 11 Plyklze, wr)
k=0
N—-1

P(vg), with v, =y — gx(ag,wr) for k=0,...,N—1,
k=

0
-1
exp — P (yr — gk (zk,wy))) - const.

Therefore, we obtain the compact expression

N—-1
—log P(y|x, w) Z P (yr — gr(r, wk)).
k=0

Taking both expressions together, we obtain the MAP estimate as solution of the following minimization
problem, where we exclude the infinite objective values by the corresponding constraints:

N-1
minimize @0(zo) + Z [Pk (Y — gr(Tk, wi)) + Br(wi)] (15.4a)
z,w k=0
subject to xy1 — fr(ap,wr) =0, for k=0,...,N—1. (15.4b)

We will often call the term ag(xo) the “arrival cost”, as it measures the “cost” for arriving at xo. For
notational convenience, we also define the shorthand

r(Tr, wr) = Pr(yr — gr(wr, wr)) + Br(wy)

and call this term, as in the previous chapters, the “stage cost”. Note that the optimization problem (15.4)
is of exactly the same form as the optimal control problems discussed previously in this lecture.

15.2.1 Examples for the stage and arrival costs

Very often the cost terms ag(zo), Br(wr) and @ (vy) are chosen as quadratic penalties. For notational
convenience we define ||z||% := T Pz for positive definite matrices P = 0. Note that quadratic penalties
correspond to weighted fy-norms, as ||z||% = ||Pzz|2, where P2 is the unique symmetric matrix square
root such that P2 - Pz = P. A typical choice for the arrival cost is ag(zo) = ||zo — Zo||%, where Zg is an
a-priori guess for the initial state, and P an inverse covariance matrix expressing the confidence we have
for this guess. For the disturbances, a penalty (i (wy) = ||wy||% expresses how unlikely we expect them
to be. For the measurement errors, the quadratic penalty ®y(vi) = ||vk||§2 is often used, where Q! is
the covariance matrix we expect for the measurement errors.

Instead of quadratic penalties, that correspond to the assumption of Gaussian distributions, other
choices are possible as well. Mostly, one uses convex functions, because of their beneficial properties
for optimization. Two other popular convex penalty functions are the (possibly weighted) ¢;-norm
lolli = >-1, |vil, which corresponds to a Laplace distribution, and the Huber penalty, that is for a scalar
input v € R defined as
v? if |v| <o,
20|v] — o? else.

(I)Huber,a (U) — {

124 Chapter 15. Moving Horizon Estimation

The Huber penalty corresponds to a distribution that looks like a Gaussian in the neighborhood of
zero, but which has “fatter tails” than a Gaussian. These fat tails can express our expectation that
outliers might appear, i.e. that we expect that large residuals have a higher probability than a normal
distribution would suggest. From the penalty function perspective, both the ¢1- and the Huber-penalty
have the property that they penalize large error residuals less than a quadratic penalty would do. Thus,
using ¢1- or Huber-penalties for the measurement error functions ®(vy) allows one to design estimators
that are more robust against outliers than the usual ¢-norm based estimators.

Remark on parameter jumps: An interesting other application of the ¢;-norm arises in the case when
we want to detect jumps in some parameter p, but we expect these jumps to occur only rarely. In addition
to the usual system dynamics and measurement equation, one can then model the parameter dynamics
by pr+1 = pr +wy and penalize the parameter jumps with an /1-norm, i.e. choose Sy (wy) := ||wg||1. This
discourages changes in py, and nonzero values for wy, i.e. changes in pg, will only occur in the optimal
solution if there is a significant benefit in terms of the other optimization objective terms.

15.3 Dynamic Programming for the Trajectory Estimation Problem

Because the trajectory estimation problem is an optimal control problem, it can also be solved by dynamic
programming. In this context, it is interesting to observe that dynamic programming can in principle be
performed in forward as well as in backwards direction. In estimation problems, in contrast to standard
optimal control problems, one usually chooses to go in forward direction. The reason is that dynamic
programming then allows us to “forget the past” and to just summarize the contribution of the past in
one function, which we call the “arrival cost”. The arrival cost is the equivalent to the “cost-to-go” in
the usual backwards dynamic programming recursion. We define the arrival cost o, (x,,) for any n < N
as the cost to arrive after n steps at state x,,:

n—1
ap(zy,) = min ao(z0)+z or(TK, wy) st e = fr(zr, wy), for k=0,...,n—1. (15.5)
Lo, WOy Tn—1,Wn—1
k=0

Note that x,, is not a variable, but a fixed parameter for the optimization problem. By the dynamic pro-
gramming principle, one can compute the arrival cost recursively, using the fact that the only connection
between time n and n+1 is via the state x,, 1. The dynamic programming recursion proceeds as follows,
forn=0,...,N —1:

Opt1(Tpy1) = min ap(zn) + on(Tn, wn) St Tpi1 = fu(zn, wy). (15.6)

Tn,Wn

Again, note that x,, 1 is a fixed parameter to the optimization problem. To use dynamic programming
to solve the trajectory estimation problem, one proceeds as follows:

1. Start with the given arrival cost ag(+).
2. Compute aq(-) up to ay(+), using the dynamic programming recursion (15.6)

3. Compute z%; = argmin an (zn).
TN

4. Forn=N-1,...,0, compute (z%,w}) = argzmgl an(Tn) + on(@n,wn) st x5 = fo(@n, wn).
Note that very often one is only interested in the estimate for the last state, 27, which is already obtained
after Step 3. Thus, Step 4 is optional, and only needed if one wants to know an estimate of the complete
trajectory. However, if one is really only interested in the last state xxn, why should one first try to
maximize the MAP P(x,w|y) of the complete trajectory? In this case, one should rather maximize
directly the PDF P(zn]y) of the last state, as we will do in Section 15.5. It will later turn out that both
estimation formulations, the trajectory estimation and the direct estimation of the last state, lead to the
same results for linear quadratic estimation problems.

15.4. Linear Quadratic Trajectory Estimation 125

15.4 Linear Quadratic Trajectory Estimation

Let us specialize the trajectory estimation problem to the special case of linear dynamic systems with
quadratic costs, i.e. with underlying Gaussian PDFs for disturbances and measurement errors. In this
case we deal with the following quantities.

fre(r, we) = Agxr + b + wi, (15.7a)
gk (T, wi) = Crk, (15.7b)
Bewi) = gl k. (15.70)
By (vg) = %Hvkué, for k=0,...,N—1, and (15.7d)
ao(z0) = 5 lleo — Zol%, (15.70)

Note that we have chosen a formulation for the system dynamics in which the disturbances affect every
state directly. This will allow us to simplify some later expressions. The optimal control problem resulting
from this linear quadratic estimation setup is the following.

N-1

1 _ 1 1
g gl sl 3 |3l Curly + el (15.80)
subject to Th+1 — Akxk — bk — W = 0, for k= 0, ey N-—1. (158b)

One can easily eliminate all wy using the equality constraints, and then one obtains the following uncon-
strained quadratic optimization problem.
1 =1 1
minimize 5170 = Zol}, + D |5k — Cranldy + s lerss — Arzr — bellR (15.92)
pize o |2 2

To solve it, one might just differentiate the objective function with respect to x and set the gradient to
zero, which results in a sparse linear equation system for the optimal state trajectory x*. On the other
hand, one could also use dynamic programming to solve it. To formulate the dynamic programming
recursion, we first state a useful lemma and corollary.

Lemma 15.1 (Schur Complement Lemma). If R > 0, the following identity holds

;
m [g 5;] m =2 (Q-S"R7'S)z + |R™' Sz + ull%. (15.10)

In particular,

u u

mm[“”r {g 5;} m —2T(Q—-STR™'S) x.
.

) iy Q
If in addition {S’ R

} =0, then also Q — STR™1S = 0.

The proof of the lemma uses the matrix decomposition

Q S'] [Q-STR7'S 0 STR-1s ST
S R| 0 0 S R

and the fact that the second term can be expressed as

V]T [STRls ST

T _ TgTp-1 T Tp, _p-1 2
u g R] [u}z S'R™Sx+2u Sx+u Ru=|R Sz +ul%.

From this we also obtain the following corollary.

f

o

126 Chapter 15. Moving Horizon Estimation

Corollary 15.2 (Summarizing Linear Quadratic Costs). If R - 0 then

171 Te q" sT 1
x ¢ Q@ ST||z|=c—s"Rs+22"(¢—S'R7's)+2"(Q—STR™'S)x+||R™ (s + Sx)+ul/%.
U s S R U

_ _ T
The proof of the corollary uses the previous lemma with S = [s]S], Q = [; qQ } and T = [i],
T Tp-1 Tp-1
N aTp-la_|¢ ¢ | |s R's s RS
Q-5 5= [q Q] {STRls STRls]'
1

To formulate the dynamic programming recursion, we assume that oy (1) = 3|z — Zx[|3, and eliminate
wy, which results in the following formula.

and the fact that

1 _ 1 1
gy 1(Zp41) = min §H$k —Zi|p, + §||yk: — Crarllg + §||$k:+1 — Apay — bi||% (15.11)
k
Using the above corollary, we know that the solution is a quadratic function. We use the identity

|lzx — ka%‘k + lyx — Ckkaé + ||eg+1 — Agxg — bk”%{

1 T const (7Rbk)T (Pkii'k - C];Fka + Aszk)T 1
= const + | Tga1 (—Rbg) R (—AQR)T Tkl
Ty (PeZp — CF Qui + AL Rb,) (—AlR) (Py +C] QCy + Al RAy) T,

Based on the corollary, with o = xy, R:=P.+ C,;'—QC;C + A,;'—RA;C and § := (PpZy — C;ka + A;Rbk) ,
the quadratic function is explicitly given by

1 - .
Qi (ar41) = const + a4 (R - (AZR)TR*A,IR) Tri1 + 204 (bek + (A;R)TR*%) .

We define the matrix Pyyq 1= (R — (A;R)Té_lAzR), which is positive definite due to the fact that the
original quadratic function was positive definite in (2, 2x+1). To bring aj41(2k4+1) into a more compact
form, we define Tp,11 = fP,;_ll <7Rbk + (AZR)TR*E). We can then show that

1 2
1 (Thy1) = §||$k+1—ik+1|\m+1 + const
as an immediate consequence of the following basic lemma.
Lemma 15.3. If P~ 0 and £ = —P~'g then 32" Pz + gz = ||z — Z||% + const.

Disregarding the constants, we have described an algorithm to generate the data Py41 and T that
are necessary to represent the negative logarithm of the PDF P(z,|y), i.e. agt1(2g+1). The only inputs
to the algorithm are the data describing the negative logarithm of the PDF of the prior information, Py
and 7Ty, as well as the measurement yy.

15.5 Recursive Bayesian Estimation of the Last State

Very often, one is only interested in estimating the last state xz , not in the whole trajectory. For
this aim, a technique that is very similar to dynamic programming can be used that is called Recursive
Bayesian Estimation. The idea is to recursively compute the conditional PDF of the state z,41 given
all measurements vy, ..., y,. We note that the only memory of the system is the state x,,, and that the
latest measurement ¥,, helps us to learn more about the PDF of x,,. For these reasons, one can derive the
following identity. Remark: 1) do we really need (15.12a) ? 2) in a classical estimation framework, one

f

o

15.6. Estimation of Last State for Linear Systems with Gaussian Noises 127

would rather want to know P (2, |yo, ..., yn), i.e. estimate the state x,, knowing the latest measurement
Yn-.. why is it different here ?

P(znt1lyo, - - YnF /P($n+1|$n)P($n|yo, ey Yn) Aoy (15.12a)
= /P(zn+1|zn, wp) P (20, wn|yo, - - -, yn) de,dw, (15.12b)
= / P(zn, wnlyo, - -, Yn) dzndw, (15.12¢)

frn(Tn,wn)=Tn41
P ny n yr s IN— P n "y n
_ / (@n, WnlYo, s Yn 1) PnTns) g g (15.12d)
frn(@Tn,wn)=Tpn41 P(yN|yOa e ;yn—l)
= const - / P(xp, wnlyo, - - s Yn—1)P(yn|Tn, wy) dz,dw, (15.12e)
frn(Tn,Wn)=Tni1
= const - / P(wn)P(znlyo, - s Yn—1)P(Yn|n, wy) dz,dw, (15.12f)
Jrn(@n,wn)=Tn41
= const - / e P P(x,lyo, ..., yn_1)e” EWn 9 (@nwn)) g duw, (15.12¢g)
frn(Tn,Wn)=Tni41

The result is a recursive formula to compute P(z,+1|yo,--.,yn) from the last measurement y, and
from P(x,|yo,-..,Yn—1). There are many ways to represent the probability density P(zn|yo, ..., Yn—1)-
One way would be to use a fine grid in state space which creates many rectangular volumes, each of
which represents a constant probability density. Another way would be to use “Gaussian-Mixtures”, i.e.
to represent P(zy|yo,...,Yn—1) by a sum of Gaussian PDFs. Yet another way would be to sample the
PDFs of z,, and w,, by using “particles” each possibly with some weight, and then propagate the particles
through the system dynamics and to modify their weights according to the factor e~ ®Wn—9n(@n,wn)) that
depends on how compatible each particle is to the actual measurement. Particle resampling allows one
to let very unprobable particles “die” and save computation speed.

The problem of all approaches mentioned above is that they suffer, like dynamic programming, from
the “curse of dimensionality”, i.e. they are difficult to apply for state spaces of nontrivial dimensions (not
higher than e.g. n, = 6). For this reason, very often one chooses to approximate the conditional PDF
with a single Gaussian, and to use some form of linearization to propagate the PDF through the system
dynamics. This approach leads to the Extended Kalman Filter (EKF), that is a generalization of the
Kalman Filter equations to nonlinear systems. An approach that is very closely related to the EKF, but
which uses a very specific form of sampling instead of the system linearization, is called the Unscented
Kalman Filter (UKF).

15.6 Estimation of Last State for Linear Systems with Gaussian
Noises

One interesting special case is, again, the linear system with Gaussian measurement and state noises. We
regard the same setup as before in Eqs. (15.7), but instead of solving the trajectory estimation problem
given all measurements y, which was equivalent to the QP (15.8), we now want to propagate the PDFs
P(zn|yo,-.-,yn—1) for the current state given only the previous measurements. For this we use the
Bayesian estimation framework (15.12), and apply it to the special case where we start with a Gaussian
distribution, i.e. we assume that

1 _
P(zn|y07 o 7yn71) = const - exp (5”1'71 - zn”?%)

where the two data items Z,, and P, describe the Gaussian PDF completely, up to a constant. We
deliberately use the same names for these two quantities like before in the dynamic programming solution
of the linear quadratic trajectory estimation problem, because they will turn out to obey the same
propagation rule, i.e. they are identical. The recursion formula

P(zp+1lY0,- -+, yn) = const - / P(wn)P(znlyo, - s Yn—1)P(Yn|n, wy) dz,dw,
f

n(Tn,Wn)=Tni1

f

o

128 Chapter 15. Moving Horizon Estimation

becomes in this special case the following expression:

1 2 1 —z 12 -1 — 2
P(zpi1lyo, .- ynkF const-/ e zlwnlme=zllzn=Znlle, o= 3llun—Canly qu. duw, (15.13a)
Anxp+bntwn=xn 41
_ Const./e—%HAn$n+bn,_fEn+lIl?{e_%llmn—finH%—’ne_%Hyn_C‘TnHZQ dz,, (15.13Db)
_ Const./67%(\\Anzn+bnfﬂcn+1||?a+||znfin\ﬁ:>n+“ynfc'mnHé) dz., (15_130)

The exponent in the last line is the same expression as we had before in Eq. (15.11), and can therefore,
following Corollary 15.2, be written as

||Anxn+bn - xn-H”%% + Hxn - i‘ﬂ”%‘,ﬁ" Hyn - an”%g = const + Hxn+1 - jn-HH%DnH"" ||m+M$n+1 + wn”%
using the same definitions of P,,+1 and Z,,+1 and R as before, and where m and M are a constant vector
and matrix of suitable dimensions that we could, but do not want to write down in detail here, as their

values are not relevant. Using this identity and the fact that a sum of exponentials translates into a
product, we can further simplify the integral above to obtain the following expressions.

_1 —z 2 1 / 2
P(zpi1lyo, ..., yn¥E const - e llenti=2nialle, o [o= llmtMen atan |} dz,, 15.14a
+11Y0, Y

=const

oo (15.14b)

— const - ¢~ 2IEnr1 7T
Here, we have used the fact that the integral is constant because it is the integral over a Gaussian
distribution with variable mean value but constant covariance matrix. The value of such an integral is
indeed independent of the location of the mean, and therefore independent of x,;. This simple fact is
the reason why the recursive Bayesian estimation of the last state gives exactly the same result — up to
a constant — as the arrival-cost computation via dynamic programming. We remark that this identity
is only true for linear systems with Gaussian measurement noise and state disturbances. An interesting
subject for future research is to investigate the general nonlinear or non-Gaussian case and to compare
the PDF that is implied by the dynamic programming computation of the arrival cost with the PDF
resulting from the recursive Bayesian estimation of the last state.

15.7 The Kalman Filter and the Extended Kalman Filter Equations

Let us summarize again, from a user perspective, the recursive algorithm to compute the arrival cost —
or, equivalently, the negative logarithm of the conditional PDF — for linear systems with Gaussian noises.
This algorithm was first derived by Rudolf E. Kalman and is therefore called the Kalman filter.

Input data: An initial mean Z,, and inverse covariance P,, a measurement ¥, with inverse measurement
noise covariance @) of noise v, and matrix C,, in the measurement model y,, = C,x, + v,, the matrix
A, and drift term b,, in the propagation model z,,+1 = A, 2, + b, + w,, and an inverse covariance R of
the state noise wy. We note that we might have chosen) and R to depend on n without changing the
algorithm. The following set of real valued vectors and matrices forms thus the input of the algorithm:

(fn; an Q) Cnv Anv bn7 R)

Computational steps: Compute the intermediate quantities
R:=P,+C!QC,+ A RA, and 5:=(P,z, —C, Qun+ Al Rb,),
as well as the result

Poyr = (R - (AIR)TR*AIR) and 7,1 = —Prl (ben + (AIR)TR*%) .

15.7. The Kalman Filter and the Extended Kalman Filter Equations 129

Output data: A mean Z,;; and inverse covariance P,y; that represent the conditional PDF
P(xn+1lyo, - - -, Yn), or, alternatively, the arrival-cost o, 4+1(Zn41).

The Extended Kalman Filter
The Extended Kalman Filter (EKF) applies the same algorithm to nonlinear systems of the form

Tn+1 = f(xn) +w, and y;l = g(zn) + Un

by linearizing the nonlinear functions f and g at the currently most probable value, namely at z,,. This
means that we use the following linear models:

of

Tng1 = f(Tn) + %(fn)(ﬂﬂn = Tp) + wy
and P
I - o9 - =
Yp = 9(Tn) + D (Zn)(Tn — Tn) + Un.

To bring the data into exactly the same format as the above Kalman filter equations require, we define
the corresponding Kalman filter input data as follows:

_of () A n
A, = Qx(xn) and b, := f(Z,) — ATy,

as well as 9
C, = a_gg[;(f") and yp, =y, — 9(Tn) + CpnZn.

After the Kalman filter computations, the new mean value 7,41 is obtained, and can be used as the
linearization point for the next step of the EKF.

130 Chapter 15. Moving Horizon Estimation

[1]
2]

3]

[12]

[13]

[14]

[15]

Bibliography

ACADO Toolkit, 2009-2013. [Online; accessed 23-February-2009].

J. Albersmeyer and M. Diehl. The lifted Newton method and its application in optimization. STAM
Journal on Optimization, 20(3):1655-1684, 2010.

U.M. Ascher and L.R. Petzold. Computer Methods for Ordinary Differential Equations and
Differential-Algebraic Fquations. STAM, Philadelphia, 1998.

B. Bank, J. Guddat, D. Klatte, B. Kummer, and K. Tammer. Non-Linear Parametric Optimization.
Birkhauser Verlag, 1983.

R. Bellman. Dynamic programming. Princeton University Press, 1957.

A. Bemporad, F. Borrelli, and M. Morari. Model Predictive Control Based on Linear Programming
- The Explicit Solution. IEEE Transactions on Automatic Control, 47(12):1974-1985, 2002.

A. Bemporad, F. Borrelli, and M. Morari. Min-max Control of Constrained Uncertain Discrete-Time
Linear Systems. IEEE Transactions on Automatic Control, 2003. in press.

A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization: Analysis, Algorithms,
and Engineering Applications, volume 3 of MPS/SIAM Series on Optimization. STAM, 2001.

D. Bertsekas. Dynamic Programming and Optimal Control, volume 1. Athena Scientific, 3rd edition,
2005.

D.P. Bertsekas. Dynamic Programming and Optimal Control, volume 1 and 2. Athena Scientific,
Belmont, MA, 1995.

D.P. Bertsekas and J.N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, Belmont, MA,
1996.

J.T. Betts. Practical Methods for Optimal Control Using Nonlinear Programming. STAM, Philadel-
phia, 2001.

Lorenz T. Biegler. Nonlinear Programming. MOS-SIAM Series on Optimization. STAM, 2010.

L.T. Biegler. Solution of dynamic optimization problems by successive quadratic programming and
orthogonal collocation. Computers and Chemical Engineering, 8:243-248, 1984.

L.T. Biegler and J.B Rawlings. Optimization approaches to nonlinear model predictive control. In
W.H. Ray and Y. Arkun, editors, Proc. 4th International Conference on Chemical Process Control
- CPC IV, pages 543-571. AIChE, CACHE, 1991.

J. Bjornberg and M. Diehl. Approximate robust dynamic programming and robustly stable MPC.
Automatica, 42(5):777-782, May 2006.

J. Bjornberg and M. Diehl. Approximate dynamic programming for generation of robustly stable
feedback controllers. In Modeling, Simulation and Optimization of Complex Processes. International
Conference on High Performance Scientific Computing, pages 69—86, Heidelberg, 2008. Springer.

131

132

Bibliography

[18]

[19]

[20]

21]

22]

23]

32]

33]

[34]

H. G. Bock, M. Diehl, E. A. Kostina, and J. P. Schléder. Constrained optimal feedback control of sys-
tems governed by large differential algebraic equations. In Real-Time and Online PDE-Constrained
Optimization, pages 3—22. STAM, 2007.

H. G. Bock and K. J. Plitt. A multiple shooting algorithm for direct solution of optimal control
problems. In Proceedings of the IFAC World Congress, pages 242—247. Pergamon Press, 1984.

H.G. Bock. Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer Dif-
ferentialgleichungen, volume 183 of Bonner Mathematische Schriften. Universitat Bonn, Bonn, 1987.

H.G. Bock, M. Diehl, D.B. Leineweber, and J.P. Schloder. Efficient direct multiple shooting in
nonlinear model predictive control. In F. Keil, W. Mackens, H. Vof}, and J. Werther, editors,
Scientific Computing in Chemical Engineering II, volume 2, pages 218-227, Berlin, 1999. Springer.

S. Boyd and L. Vandenberghe. Convex Optimization. University Press, Cambridge, 2004.

K.E. Brenan, S.L.. Campbell, and L.R. Petzold. The Numerical Solution of Initial Value Problems
in Ordinary Differential-Algebraic Fquations. North Holland Publishing Co., Amsterdam, 1989.

K.E. Brenan, S.L.. Campbell, and L.R. Petzold. Numerical solution of initial-value problems in
differential-algebraic equations. STAM, Philadelphia, 1996. Classics in Applied Mathematics 14.

A.E. Bryson and Y.-C. Ho. Applied Optimal Control. Wiley, New York, 1975.

C. Biiskens and H. Maurer. SQP-methods for solving optimal control problems with control and state
constraints: adjoint variables, sensitivity analysis and real-time control. Journal of Computational
and Applied Mathematics, 120:85-108, 2000.

H. Chen and F. Allgéwer. A quasi-infinite horizon nonlinear model predictive control scheme with
guaranteed stability. Automatica, 34(10):1205-1218, 1998.

G. B. Dantzig. Linear Programming and Eztensions. Princeton University Press, 1963.

G. De Nicolao, L. Magni, and R. Scattolini. Stability and Robustness of Nonlinear Receding Horizon
Control. In F. Allgéwer and A. Zheng, editors, Nonlinear Predictive Control, volume 26 of Progress
in Systems Theory, pages 3—23, Basel Boston Berlin, 2000. Birkhauser.

M. Diehl. Real-Time Optimization for Large Scale Nonlinear Processes, volume 920 of Fortschr.-Ber.
VDI Reihe 8, Mef3-, Steuerungs- und Regelungstechnik. VDI Verlag, Diisseldorf, 2002. Download
also at: http://www.ub.uni-heidelberg.de/archiv/1659/.

M. Diehl and J. Bjornberg. Robust dynamic programming for min-max model predictive control
of constrained uncertain systems. IEEE Transactions on Automatic Control, 49(12):2253-2257,
December 2004.

M. Diehl, H. G. Bock, and J. P. Schloder. A real-time iteration scheme for nonlinear optimization
in optimal feedback control. STAM Journal on Control and Optimization, 43(5):1714-1736, 2005.

M. Diehl, H.G. Bock, J.P. Schloder, R. Findeisen, Z. Nagy, and F. Allgéwer. Real-time optimization
and nonlinear model predictive control of processes governed by differential-algebraic equations.
Journal of Process Control, 12(4):577-585, 2002.

M. Diehl, H. J. Ferreau, and N. Haverbeke. Nonlinear model predictive control, volume 384 of Lecture
Notes in Control and Information Sciences, chapter Efficient Numerical Methods for Nonlinear MPC
and Moving Horizon Estimation, pages 391-417. Springer, 2009.

M. Diehl, R. Findeisen, and F. Allgéwer. A stabilizing real-time implementation of nonlinear model
predictive control. In L. Biegler, O. Ghattas, M. Heinkenschloss, D. Keyes, and B. van Bloe-
men Waanders, editors, Real-Time and Online PDE-Constrained Optimization, pages 23-52. STAM,
2007.

Bibliography 133

[36]

[53]

[54]

M. Diehl, R. Findeisen, F. Allgéwer, H. G. Bock, and J. P. Schléder. Nominal stability of the
real-time iteration scheme for nonlinear model predictive control. IEE Proc.-Control Theory Appl.,
152(3):296-308, 2005.

NOW NAMED TO Diehl2004f.

H. J. Ferreau, H. G. Bock, and M. Diehl. An online active set strategy to overcome the limitations
of explicit MPC. International Journal of Robust and Nonlinear Control, 18(8):816-830, 2008.

H.J. Ferreau. qpOASES User’s Manual, 2007-2011. http://www.qpOASES.org/.

R. Findeisen and F. Allgéwer. Computational Delay in Nonlinear Model Predictive Control. Proc.
Int. Symp. Adv. Control of Chemical Processes, ADCHEM, 2003.

R. Franke. Integrierte dynamische Modellierung und Optimierung von Systemen mit saisonaler
Wirmespeicherung. PhD thesis, Technische Universitat Ilmenau, Germany, 1998.

P.E. Gill, W. Murray, and M.A. Saunders. SNOPT: An SQP algorithm for large-scale constrained
optimization. Technical report, Numerical Analysis Report 97-2, Department of Mathematics, Uni-
versity of California, San Diego, La Jolla, CA, 1997.

A. Griewank and Ph.L. Toint. Partitioned variable metric updates for large structured optimization
problems. Numerische Mathematik, 39:119-137, 1982.

A. Griewank and A. Walther. Fvaluating Derivatives. STAM, 2 edition, 2008.

J. Guddat, F. Guerra Vasquez, and H.T. Jongen. Parametric Optimization: Singularities, Pathfol-
lowing and Jumps. Teubner, Stuttgart, 1990.

A. Helbig, O. Abel, and W. Marquardt. Model predictive control for on-line optimization of
semi-batch reactors. In Proceedings of the American Control Conference (ACC), pages 1695-1699,
Philadelphia, 1998.

G.A. Hicks and W.H. Ray. Approximation methods for optimal control systems. Can. J. Chem.
Engng., 49:522-528, 1971.

B. Houska, H. J. Ferreau, and M. Diehl. ACADO toolkit — an open source framework for automatic
control and dynamic optimization. Optimal Control Applications and Methods, 32(3):298-312, 2011.

NOW RENAMED TO @inbookDiehl2006i.

C.N. Jones and M. Morari. Polytopic approximation of explicit model predictive controllers. IEEE
Transactions on Automatic Control, 55(11):2542-2553, 2010.

W. Karush. Minima of Functions of Several Variables with Inequalities as Side Conditions. Master’s
thesis, Department of Mathematics, University of Chicago, 1939.

S.S. Keerthi and E.G. Gilbert. Optimal infinite-horizon feedback laws for a general class of con-
strained discrete-time systems: Stability and moving-horizon approximations. Journal of Optimiza-
tion Theory and Applications, 57(2):265-293, 1988.

P. Krdamer-Eis and H.G. Bock. Numerical Treatment of State and Control Constraints in the Com-
putation of Feedback Laws for Nonlinear Control Problems. In P. Deuflhard et al., editor, Large
Scale Scientific Computing, pages 287-306. Birkhauser, Basel Boston Berlin, 1987.

H.W. Kuhn and A.W. Tucker. Nonlinear programming. In J. Neyman, editor, Proceedings of the
Second Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, 1951. University
of California Press.

D.B. Leineweber, I. Bauer, A.A.S. Schéifer, H.G. Bock, and J.P. Schléder. An Efficient Multiple
Shooting Based Reduced SQP Strategy for Large-Scale Dynamic Process Optimization (Parts I and
IT). Computers and Chemical Engineering, 27:157-174, 2003.

134

Bibliography

[56]

[57]

[58]

[59]

[60]

(61]

[72]

73]

[74]

D.B. Leineweber, A.A.S. Schifer, H.G. Bock, and J.P. Schléder. An Efficient Multiple Shooting
Based Reduced SQP Strategy for Large-Scale Dynamic Process Optimization. Part II: Software
Aspects and Applications. Computers and Chemical Engineering, 27:167-174, 2003.

W.C. Li and L.T. Biegler. Multistep, Newton-Type Control Strategies for Constrained Nonlinear
Processes. Chem. Eng. Res. Des., 67:562-577, 1989.

W.C. Li and L.T. Biegler. Newton-Type Controllers for Constrained Nonlinear Processes with
Uncertainty. Industrial and Engineering Chemistry Research, 29:1647-1657, 1990.

J. Mattingley, Y. Wang, and Stephen Boyd. Code generation for receding horizon control. In Proceed-
ings of the IEEE International Symposium on Computer-Aided Control System Design, Yokohama,
Japan, 2010.

D. Q. Mayne and H. Michalska. Receding horizon control of nonlinear systems. IEEE Transactions
on Automatic Control, 35(7):814-824, 1990.

D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M. Scokaert. Constrained model predictive control:
stability and optimality. Automatica, 26(6):789-814, 2000.

A. M’hamdi, A. Helbig, O. Abel, and W. Marquardt. Newton-type Receding Horizon Control and
State Estimation. In Proc. 18rd IFAC World Congress, pages 121-126, San Francisco, 1996.

J. Nocedal and S.J. Wright. Numerical Optimization. Springer Series in Operations Research and
Financial Engineering. Springer, 2 edition, 2006.

T. Ohtsuka. A Continuation/GMRES Method for Fast Computation of Nonlinear Receding Horizon
Control. Automatica, 40(4):563-574, 2004.

M.R. Osborne. On shooting methods for boundary value problems. Journal of Mathematical Analysis
and Applications, 27:417-433, 1969.

E. N. Pistikopoulos, V. Dua, N. A. Bozinis, A. Bemporad, and M. Morari. On-line optimization via
off-line parametric optimization tools. Computers and Chemical Engineering, 24:183-188, 2000.

L.S. Pontryagin, V.G. Boltyanski, R.V. Gamkrelidze, and E.F. Miscenko. The Mathematical Theory
of Optimal Processes. Wiley, Chichester, 1962.

S. Sager, H.G. Bock, and M. Diehl. The integer approximation error in mixed-integer optimal
control. Mathematical Programming, 2011.

R.W.H. Sargent and G.R. Sullivan. The development of an efficient optimal control package. In
J. Stoer, editor, Proceedings of the 8th IFIP Conference on Optimization Techniques (1977), Part
2, Heidelberg, 1978. Springer.

A. Schifer, P. Kiihl, M. Diehl, J.P. Schléder, and H.G. Bock. Fast reduced multiple shooting methods
for nonlinear model predictive control. Chemical Engineering and Processing, 46(11):1200-1214,
2007.

A.A.S. Schéifer. Efficient reduced Newton-type methods for solution of large-scale structured opti-
mization problems with application to biological and chemical processes. PhD thesis, Universitét

Heidelberg, 2005.

J.P. Schléder. Numerische Methoden zur Behandlung hochdimensionaler Aufgaben der Parameteri-
dentifizierung, volume 187 of Bonner Mathematische Schriften. Universitat Bonn, Bonn, 1988.

Y. Shimizu, T. Ohtsuka, and M. Diehl. A real-time algorithm for nonlinear receding horizon control
using multiple shooting and continuation/Krylov method. International Journal of Robust and
Nonlinear Control, 19:919-936, 2009.

M.C. Steinbach. A structured interior point SQP method for nonlinear optimal control problems.
In R. Bulirsch and D. Kraft, editors, Computation Optimal Control, pages 213-222, Basel Boston
Berlin, 1994. Birkhauser.

Bibliography 135

[75]

M.J. Tenny, S.J. Wright, and J.B. Rawlings. Nonlinear model predictive control via feasibility-
perturbed sequential quadratic programming. Computational Optimization and Applications,
28(1):87-121, April 2004.

T.H. Tsang, D.M. Himmelblau, and T.F. Edgar. Optimal control via collocation and non-linear
programming. International Journal on Control, 21:763-768, 1975.

A. Wichter and L. Biegler. IPOPT - an Interior Point OPTimizer. https://projects.coin-
or.org/Ipopt, 2009.

A. Wichter and L.T. Biegler. On the Implementation of a Primal-Dual Interior Point Filter Line
Search Algorithm for Large-Scale Nonlinear Programming. Mathematical Programming, 106(1):25—
57, 2006.

L. Wirsching. An SQP Algorithm with Inexact Derivatives for a Direct Multiple Shooting Method
for Optimal Control Problems. Master’s thesis, University of Heidelberg, 2006.

L. Wirsching, H.J. Ferreau, H.G. Bock, and M. Diehl. An online active set strategy for fast adjoint
based nonlinear model predictive control. In Preprints of the 7th Symposium on Nonlinear Control
Systems (NOLCOS), Pretoria, 2007.

V. M. Zavala and L.T. Biegler. The Advanced Step NMPC Controller: Optimality, Stability and
Robustness. Automatica, 45:86-93, 2009.

136 Bibliography

2.1

2.2

2.3

2.4
2.5
2.6

3.1

3.2

3.3

8.1
8.2

12.1

List of Figures

Tlustration of the KKT conditions for an equality-constrained NLP. The ”slope” of
the cost function —V f (z) pushes the "ball” towards its lowest point. The ”ball” is
maintained on the "rail”, i.e. the equality constraints g (z) = 0, via the force —Vg (z) A,
but is free to move along the rail. At the solution x*, A*, the forces exerted by the rail
and the cost function evenout. Lo oL
Tllustration of the KKT conditions for an inequality-constrained NLP. The ”slope” of
the cost function —V f (z) pushes the solution towards its lowest point. The solution
contained by the ”barrier”, i.e. the inequality constraints h(x) < 0 to remain within
the feasible domain via the force —Vh (x) u, but is free to move along the barrier and
towards the interior of the feasible domain. At the solution z*, u*, the forces exerted by
the barrier and the cost function even out. If the solution is in contact with the barrier,
then the force is non-zero and pushes towards the interior of the feasible domain, i.e.
h(z*) = 0, p > 0 (left graph). Otherwise, the barrier exerts no force on the solution,
ie. h(z*) <0, p=0 (right graph).
Failure of the LICQ condition. The optimal solution is not a KKT point. In this case,
the forces exerted by the constraints hy(z) and ho(z) are collinear, and cannot balance
the slope of the cost function —V f(z), even though the constraints prevent the solution
from moving further toward the minimum of the cost function.
Huber penalty function H,(x) for p=10.3..
Comparison of the Ly, L1 norms and the Huber penalty with p = 1 for a linear regression
with outliers. The crosses report the two points having a zero residual in the L; norm
problem. . ..o L e

Relaxation of the complementarity slackness condition. We display here the manifold
wih; (x) + 7 = 0 for various values of 7. The original non-smooth manifold y;h; (z) =0
arising in the KKT conditions is displayed as the thick lines.
Nlustration of the primal barrier method presented in (3.28). The left graph displays an
illustrative cost function f(x) (thick curve), and simple bounds 0 < 2 < 1. The various
objective functions with barrier f(z) — 7> " log (—h;(z)) are displayed for various
values of 7, alongside their respective minima xz,. The right graph displays the error
between the actual solution to the problem z*, and the solutions x, obtained from the
barrier problem (3.28) for various valuesof 7.o
Illustration of the failure of the full Newton step. The Newton iteration is based on
solving successive quadratic problems, which model locally the original optimisation
problem. If the Newton step provided by the quadratic model leaves its region of validity,
and can then provide a worse point x4 than the previous one, i.e. zj. In this example,
the Newton step going from zj to x4 increases the cost function..

The variables and constraints of a continuous time optimal control problem.
The optimal control family tree.

Single shooting obtains the trajectory by a forward integration that starts at yg.

The NLP variables in the direct single shooting method.

137

21
29
31

98

138 List of Figures
12.2 The NLP variables in the direct multiple shooting method. 104
14.1 Tangential predictors for interior point method using a small 7.. 115
14.2 Tangential predictors for interior point method using a larger 7. 115
14.3 Subsequent solution approximations.o 116
14.4 Generalized tangential predictors for SQP method. 117
14.5 Division of one real-time iteration into preparation and feedback phase. 118
14.6 Subsequent solution approximations (left), and critical regions (right). 118

List of Tables

139

140 List of Tables

Algorithm 3.1
Algorithm 4.1
Algorithm 4.2
Algorithm 4.3
Algorithm 9.1
Algorithm 9.2
Algorithm 9.3
Algorithm 9.4

List of Algorithms

Equality constrained full step Newton-type method 34
User Function Evaluation via Elementary Operations 45
Forward Automatic Differentiation 47
Reverse Automatic Differentiation 49
First-order Euler 86
First-order Euler with AD 86

... 87

... 87

141

