Modelling and System Identification – Microexam 2

Prof. Dr. Moritz Diehl, IMTEK, Universität Freiburg

January 26, 2016, 8:15, Freiburg

Surna	me:	Name:	Matriculation number:	
Study	:	Studiengang: Bac	helor Master	
Please	e fill in your name above an	d tick exactly one box for the	right answer of each question belo	DW.
1.	What quantity of a continue	ous time transfer function $G(s)$) shows the Bode phase diagram i	n single logarithmic (x-axis) scale?
	(a) $ G(e^{j\omega}) $	(b) arg $G(j\omega)$	(c) $G(j\omega)$	(d) $ G(j\omega) $
2.	Which phase shows the Bo	de diagram of $G(s) = \frac{1}{1+s+s^2}$	for very low frequencies?	
	(a) -180 deg	(b)90 deg	(c) 0 deg	(d) 90 deg
3.	At which frequency f [Hz]	is the resonance peak of the I	Bode amplitude diagram of the os	cillator $G(s) = \frac{1}{k^2 + s^2}$?
	(a) $f = k$	(b) $f = \frac{k}{2\pi}$	(c) $f = \frac{\sqrt{k}}{2\pi}$	(d) $f = \sqrt{k}$
4.	Regard a periodic signal w different frequencies are co	ith period T that is sampled vontained in the discretized sign	with sampling frequency f_s (with al ?	T a multiple of $1/f_s$). How many
	(a) $\frac{Tf_s}{2}$	(b) $\frac{T}{2f_s}$	(c) $\frac{f_s}{2T}$	(d) $\frac{2}{f_s T}$
5.	Regard a periodic signal w non-zero angular frequency	ith period T that is sampled w (in rad/s) that can be present	with sampling time Δt (with T a r in the signal ?	nultiple of Δt). What is the lowest
	(a) $\frac{\pi}{T}$	(b) $\frac{\pi}{\Delta t}$	(c) $\frac{2\pi}{\Delta t}$	(d) $\frac{2\pi}{T}$
6.	In Question 5 what is the h	ighest possible frequency (in	Hz) that can be present in the sam	ne signal?
	(a) $\frac{1}{T}$	(b) $\frac{1}{\Delta t}$	(c) $\frac{1}{2\Delta t}$	(d) $1 \frac{1}{2T}$
7.	What should be in practice	a good sampling rate for a acc	quiring a periodic signal with $f =$	65Hz?
	(a) 460Hz	(b) 120Hz	(c) 65Hz	(d) 13000Hz
8.	Which of the following stat	tements about the FT and the I	DFT is NOT correct?:	
	(a) The FT works or as the DFT on discrete tir	n continuous time signals whe ne signals	re- (b) The FT works w with finite sums	ith integrals whereas the DFT
	(c) Both of them are	limited by the Nyquist theore	em (d) They transform si quency domain	gnals from time domain to fre-
9.	A continuous function in t $[u(0), \dots, u(N-1)]^{\top}$. Apple: DFT: $U(m) = \sum_{k=0}^{N-1} u(k)$	the time domain $u_{\rm c}(t)$ is samplying the DFT to u yields U $e^{i\frac{-2\pi mk}{N}}$, for $m = 0, \dots, N$	pled with a frequency f_s , resulti = $[16, 4, 0, 0, 16, 0, 0, 4]^{\top}$. Recon-	ng in a set of discrete values $u =$ nstruct the function $u_c(t)$ from U.
	IDFT: $u(n) = \frac{1}{N} \sum_{k=0}^{N-1} U$	$f(k)e^{i\frac{2\pi kn}{N}}$, for $n = 0,, N$	- 1	
	(a) $u_{c}(t) = 1 + \frac{1}{2}cc$	$\cos(\frac{\pi f_s t}{4}) + \cos(\pi f_s t)$	(b) $u_{c}(t) = 2 + \cos(2t)$	$\frac{\pi f_s t}{4}) + 2\cos(\pi f_s t)$
	(c) $u_{\rm c}(t) = \cos(\frac{\pi f_s}{4})$	$(\frac{t}{2}) + 4\cos(\pi f_s t)$	(d) $u_{c}(t) = 2 + \cos(\frac{2}{3})$	$\frac{\pi f_s t}{8}) + 2\cos(\frac{\pi f_s t}{2})$

points on page: 9

10. Rewrite now the DFT as defined above as $U = M \cdot u$, where $u = [u(0), u(1), u(2), u(3)]^{\top}$ and $M \in \mathbb{C}^{N \times N}$ is a matrix. Which of the following represents the element in the fourth row and second column of M:

(a)i(b) $-i$ (c) -1 (d)1

11. Which of the following properties holds for $M(A^H)$ being the conjugate transpose of A:

(a) $M = M^{H}$ (b) $M = M^{H}$ (c) $M = -M^{H}$ (d) $M = -M^{H}$

12. Using the variables defined in Question 9, but with $u_c(t)$ containing a single frequency f, when do leakage errors occur? Leakage errors occur if:

(a) f is higher than the Nyquist frequency	(b) f is not an harmonic of the base frequency
(c) \square N is too small	(d) \square N is not a power of 2

13. Continuing with the above: in the DFT the base frequency ω_s is defined by:

(a) $\pi f_s/N$ (b) $\pi f/N$	(c) $2\pi f/N$	(d) $2\pi f_s/N$
-------------------------------	----------------	------------------

14. You measure a signal where the signal-to-noise-ratio (SNR) at a certain frequency f_0 is given by 40 dB. How accurately can you estimate the amplitude of this frequency component (approximately)?

(a) 2 % (b)	40 % (c)	c) 20 %	(d) 1 %
-------------	----------	---------	---------

15. A system is excited with a periodic excitation signal u(t) of period T that is for $t \in [0, T/2]$ given by u(t) = -7 and for $t \in [T/2, T]$ by u(t) = 1. What is the **crest factor** of this signal?

16. You want to identify the transfer function $G(j\omega)$ of an LTI system in the frequency band $\omega \in [\omega_{\min}, \omega_{\max}]$ with periodic multisine excitations. You choose a period length T that is an integer multiple of the sampling time Δt . Which other conditions should Δt and T satisfy?

(a) $\Delta t < \frac{\pi}{\omega_{\max}}, T > \frac{2\pi}{\omega_{\min}}$	(b) $\Delta t < \frac{2\pi}{\omega_{\max}}, T > \frac{2\pi}{\omega_{\min}}$
(c) $\Delta t < \frac{2\pi}{\omega_{\max}}, T > \frac{\pi}{\omega_{\min}}$	(d) $\Delta t < \frac{\pi}{\omega_{\max}}, T > \frac{\pi}{\omega_{\min}}$

17. You identify an LTI system with periodic multisine excitations, where each window has length T and the total duration of your experiment is MT with a large integer M. Which procedure should you follow to identify the transfer function $\hat{G}(j\omega_k)$ at a given frequency $\omega_k = \frac{2\pi k}{T}$?

(a) compute the DFTs of each window, then average the DFTs and then build the quotient of the average	(b) compute the DFTs of each window, build the DFT quotients and then average the quotients
(c) average the M windows, build the quotient of the average and apply DFT	(d) \square build the quotients of the <i>M</i> windows, average the quotients and apply the DFT on the quotients

18. Which of the following steps is NOT part of the Kalman filter algorithm?

(a) initialization	(b) prediction
(c) normalization	(d) innovation update

19. Which of the following formulas is associated with the covariance prediction step of the Kalman filter?

(a) $P_{[k,k]} = A_{k-1}^{\top} \cdot P_{[k-1,k-1]} \cdot A_{k-1} + W_{k-1}$	(b) $P_{[k,k-1]} = A_{k-1} \cdot P_{[k-1,k-1]} \cdot A_{k-1}^{\top} + W_{k-1}$
(c) $P_{[k,k]} = A_{k-1} \cdot P_{[k,k]} \cdot A_{k-1}^{\top} + W_{k-1}$	(d) $P_{[k,k-1]} = A_{k-1}^{\top} \cdot P_{[k,k-1]} \cdot A_{k-1} + W_{k-1}$

20. Given the process model $x_{k+1} = x_k + b_k$ and measurement model $y_k = x_k + d_k$ with noises $b_k \simeq \mathcal{N}(0, 2)$ and $d_k \simeq \mathcal{N}(0, 4)$, which value W_{k-1} would you select for the covariance prediction step of Question 19?

|--|

points on page: 11