The Discrete Fourier Transform

Moritz Diehl



Overview

v

The Frequeney-Respense Function (FRF)

Laplace and Fourier Transforms

v

v

Discrete Fourier Transform

v

Aliasing and Leakage Errors

v

Multisine Excitation Signals



The Frequency Response Function (FRF)

» Our aim: get transfer function G(s) of LTI system

» the magnitudes and phases of G(jw) for different positive
frequencies w form the Bode Diagram

» fundamental fact of LTI systems: sinusoidal inputs
u(t) = Re{U - ¢/“*}[lead to sinusoidal outputs y(t) with a
phase shift and a new magnitude described by G(jw) :
y(t) = Re{G(jw) - U- &} = [G(jw)| - U - Re{e/irore UL}
L - PEE——

» for this reason, G(jw) is called the "Frequency Response
Function (FRF)”

—




Comments



Sine Wave Testing (Frequency Sweep)

» One way to obtain G(jw) for a specific frequency w is to use a
sine wave u(t) = Upsin(wt) as input and record the
magnitude Yy and phase shift ¢ of y(t) = Ypsin(wt + ¢) to
form v,

. 0 ;
G(jw) = —e/?
(w) Uo

> a “frequency sweep” goes through all frequencies w, waits
until transients have died out, and records magnitude and
phase for each frequency.

> The resulting estimate of the FRF might also be called
“estimated transfer function (ETF)" (Robin) or “empirical
transfer function estimate (ETFE)" (L. Ljung)

» note that for each new frequency, we have to wait until
transients died out. Today, we want to find a more efficient
way to estimate the FRF.



Comments



Laplace and Fourier Transforms \/\\
» Remember: G(s) = % o
» Laplace transform G(s) defined for any g(t) which is zero for

t<O0:
Gls) = /0 " g(t)estdt — gg(t)e“dt

—_—
» for FRF G(jw), we only need imaginary values@
> Here, we have

3E3 Yy = G(jw) = /00 g(t)ej“’tdtj

» This expression is identical to “Fourier Transform (FT)
defined for any function f : R — R by

o0

FIf(w) = / F(t)eTtdt

— 0



Comments



Differences of Laplace and Fourier Transform

» both transformations basically contain the same information

» they transform a time signal f(t) from “time domain” into
“frequency domain”

» both transformations have inverse transformations that give
the original time signal back

> both transformations generate complex valued functions

> Laplace transform has complex input argument@e C, while
Fourier transform has real w

» for Laplace transform, all input signals are by definition zero
for t < 0, while Fourier transform deals with functions defined
for any t € R (i.e. functions with infinite support)

» Laplace transform often used by engineers, Fourier transform
more often used by mathematicians and physicists



Comments



Inverse Fourier Transform

» if F(w) = F{f}(w), then f(t) can be recoverd by inverse
Fourier transformation F~! given by:

FHFMt): %"/ w) & dw

» Note the similarity of normal and inverse FT: just the sign in
the exponent and the factor is different (some definitions even
use twice the same factor, \/% to make it symmetric)

f(t) =

» inverse FT can be used to construct inverse Laplace transform

> interesting related fact: Dirac-delta function is superposition
of all frequencies with equal weight:

A




Comments



Fourier Transform: some transformed functions

"time" domain frequency domain

~—>H —_—
(&)

Impulse, or "delta" function

IR A P

d 1/d
Boxcar

Sync Function

N AVAVAVAVA -
E T

Sin wave




Comments



Estimating the FRF with Fourier Transform

>

if we have recorded two arbitrary time signals u(t) and y(t),
we can use their Fourier transforms to estimate the frequency
response function (FRF) by

F{y(w)
Fup(w)

this fact is implicitly used in sine wave testing with frequency
wo
note: if f(t) = €~

G(w) =

F{fit(w ef<w0 “tdt = 6(w — wo)

cof “}‘ + 1SSNa, €

thus, we have for a real sine: if f(t) :then

271'\)

F{fa}(w) = 0(w — wo) — 6(w + wo)



Comments



Estimating the FRF with Fourier Transform (cont.)

> in reality, even for sine waves of frequency wq , the signals
u(t) and y(t) will have finite duration, and thus the FT finite
values F{y}(wo) and F{u}(wo). From these we can compute

G(jwo) by
G(ij) — ~F{y}(WO)
F{u}(wo)
» Note: Fourier Transform works with continuous time signals
on infinite horizons
» Two questions and answers:
1. How to compute FT in practice? Answer: by the Discrete
Fourier Transform.
2. Can we use an input with many frequencies to get many FRF

values in a single experiment? Answer: yes, we should then use
“multisines” .



Comments



The Discrete Fourier Transform (DFT)

» FT works with continuous time signals on infinite horizons

» Discrete Fourier Transform (DFT) works with discrete signals
on finite horizons

» DFT takes any vector of N numbers u(0), u(1),...,u(N —1)
and generates a new vector U(0),..., U(N — 1)) (here we
start with index zero for convenience)

» DFT also has an inverse transformation that recovers the
original vector



Comments



Fast Fourier Transform (FFT)

» one efficient algorithm to compute the DFT is called “fast
fourier transform (FFT)"

» the DFT is nearly always computed by the FFT algorithm,
therefore many people (and MATLAB) use the word FFT
synonymously with DFT

» MATLAB commands £ft and ifft work with any vector of
N complex numbers and compute another vector of N
complex numbers.

» example: u=randn(10,1); U=fft(u); unew = ifft(U);
plot(u,unew)



Comments



DFT definition

» Definition of the DFT U(0),..., U(N — 1) computed from a
vector u(0),...,u(N —1):

T

with

> note that ayy is an N-th complex root of 1, i.e.
a% =1

k 2T mk k mk

> also note that a)™ = e/ v and o)™ = af



Comments



DFT properties

» DFT of a real valued signal consists of N complex numbers,
but second half of vector are complex conjugates of first half:

Proof:
N—-1 N—-1 N—1
UN-m)= 3" u(t)ay "™ = 5" u(t)agk = 3~ u(t)ay™
k=0 k=0 k=0

» example: u=sin(1:0.1:10.1); U=fft(u);
subplot(2,1,1);plot(real(U)); subplot(2,1,2);
plot (imag(U));



Comments



Overview

v

The Frequency Response Function (FRF)

v

Laplace and Fourier Transforms

Discrete Fourier Transform

v

v

Aliasing and Leakage Errors

v

Multisine Excitation Signals



Comments



Comparison of FT and DFT

» FT works on continuous time signals uc(t) with infinite
support
» DFT introduces two approximations:
1. Sampling: DFT works on sampled (discrete time) signals

ug(k) = uc(k @

with At the sampling time.
2. Windowing: DFT only uses only N samples, i.e. limits the
signal to a finite window of horizon Iengthﬁ: NAt

» both approximations lead to characteristic errors.



Comments



Sampling can lead to Aliasing Errors

» Sampling can introduce so called aliasing errors if the
continuous time signal contained too high frequencies

> example: t=[0:0.1:10]’; ul=sin(6%*t); u2=sin(20%t);
u3=sin(60*t); subplot(3,1,1);plot(t,ul);
subplot(3,1,2); plot(t,u2);subplot(3,1,3);
plot(t,u3);

» if we introduce sampling rate f; = ﬁ, then any signal with
frequencies higher than half the sampling rate will suffer
from aliasing

> the limit is called the Nyquist frequency: C‘J“rwr
fNyquist = ﬁ [HZ] Or WNyquist = 227&- [rad / S]

At



Comments



Windowing can lead to “leakage”

> ‘“leakage”: DFT spectrum shows frequencies that were not
present in original signal, but are close to the true frequencies

» example (leakage): t=[0:49]1; u=sin(2*pi/50%20.5%t) ;
U=fft(u); plot(abs(U));

» example (no leakage): t=[0:49]’; u=sin(2%pi/50%*20%t) ;
U=fft(u); plot(abs(U));

» comparison of FT and DFT

N-1

/ be(t) - e dt e S wg(k) - e A Ay

k=0 21
:e—Jka

here, the FT and DFT expressions are only similar, if e
27T T
by

2m
—jw(k - At) = —j—km ie. w=m =
N AT-N



Comments



The Base Frequency and its Harmonics

v

Let us define the “base frequency”

o 2T _27r
TON-At T

Whase

» corresponds to the slowest sine that fits exactly into the
window

> a sine signal sin(wt) with w = M - Wy, is called the “m-th
harmonic”

» the DFT contains only the first N/2 harmonics of the base
signal

» the frequency resolution (difference of two frequencies that
are distinguished by the DFT) is equal to the base frequency

> the finite length of the window limits the frequency resolution:

the longer the window; the finer the frequencies can be
resolved in the signal O



Comments



Visualization of Harmonics

» example in time domain: deltat=0.1; T=10;
t=[0:deltat:T-deltat]’ ;wbase=2*pi/T;
ul=sin(wbase*t); subplot(4,1,1); plot(t,ul);
u2=sin(2*wbase*t); subplot(4,1,2); plot(t,u2);
u3=sin(3*wbasex*t); subplot(4,1,3); plot(t,u3);
u4=sin(3.5*wbasext); subplot(4,1,4); plot(t,ud);

» same example in frequency domain: Ul=fft(ul);
subplot(4,1,1); plot(abs(Ul)); U2=fft(u2);
subplot(4,1,2); plot(abs(U2)); U3=fft(u3);
subplot(4,1,3); plot(abs(U3)); U4=fft (ud);
subplot(4,1,4); plot(abs(U4));



Comments



Multisines: the perfect excitation signal?

» we can choose u(t) as a “multisine”, i.e. a superposition of
specially chosen sine waves

> we can avoid both aliasing and leakage if the following three
conditions are met:
1. we choose a DFT window length T that is an integer multiple
of the sampling time At, i.e. T =N-At
2. the multisine contains only harmonics of the base frequency
Whase = 27“ i.e. it is periodic with period T (or an integer
fraction of T)
3. the multisine does not contain any frequency higher than the
Nyquist frequency wnyquist = A:
> in order to achieve optimal excitation without too large input
amplitudes, one chooses the phases of the multisine carefully

to avoid positive interference



Comments



The Crest Factor

» The “crest factor” is the ratio between the highest peak umax
and the root mean square uyys of the input signal:

u = max_ |u(t
o = max u(t)

1 T
Urms - T /0 U(t) dt

» example for bad crest factor: N=20; U= zeros(N, 1);
U(2:N/2) = 1; U(end:-1:N/2+2) = conj(U(2:N/2));
u= ifft(U); plot([u;u;ul);

» example for better crest factor: N=20; U= zeros(N, 1);
U(2:N/2) = exp(i*2*pixrand(N/2-1,1));
U(end:-1:N/2+2) = conj(U(2:N/2)); u= ifft(U);
plot([u;u;ul);

and



Comments



