
i
i

“lecture17” — 2015/1/13 — 2:51 — page 1 — #1 i
i

i
i

i
i

The Discrete Fourier Transform

Moritz Diehl

i
i

“lecture17” — 2015/1/13 — 2:51 — page 2 — #2 i
i

i
i

i
i

Overview

I The Frequency Response Function (FRF)

I Laplace and Fourier Transforms

I Discrete Fourier Transform

I Aliasing and Leakage Errors

I Multisine Excitation Signals

i
i

“lecture17” — 2015/1/13 — 2:51 — page 3 — #3 i
i

i
i

i
i

The Frequency Response Function (FRF)

I Our aim: get transfer function G (s) of LTI system

I the magnitudes and phases of G (jω) for different positive
frequencies ω form the Bode Diagram

I fundamental fact of LTI systems: sinusoidal inputs
u(t) = Re{U · e jωt} lead to sinusoidal outputs y(t) with a
phase shift and a new magnitude described by G (jω) :

y(t) = Re{G (jω) ·U · e jωt} = |G (jω)| ·U ·Re{e j[ωt+arg G(jω)]}

I for this reason, G (jω) is called the “Frequency Response
Function (FRF)”

i
i

“lecture17” — 2015/1/13 — 2:51 — page 4 — #4 i
i

i
i

i
i

Comments

i
i

“lecture17” — 2015/1/13 — 2:51 — page 5 — #5 i
i

i
i

i
i

Sine Wave Testing (Frequency Sweep)

I One way to obtain G (jω) for a specific frequency ω is to use a
sine wave u(t) = U0 sin(ωt) as input and record the
magnitude Y0 and phase shift φ of y(t) = Y0 sin(ωt + φ) to
form

G (jω) =
Y0

U0
e jφ

I a “frequency sweep” goes through all frequencies ω, waits
until transients have died out, and records magnitude and
phase for each frequency.

I The resulting estimate of the FRF might also be called
“estimated transfer function (ETF)” (Robin) or “empirical
transfer function estimate (ETFE)” (L. Ljung)

I note that for each new frequency, we have to wait until
transients died out. Today, we want to find a more efficient
way to estimate the FRF.

i
i

“lecture17” — 2015/1/13 — 2:51 — page 6 — #6 i
i

i
i

i
i

Comments

i
i

“lecture17” — 2015/1/13 — 2:51 — page 7 — #7 i
i

i
i

i
i

Laplace and Fourier Transforms

I Remember: G (s) = Y (s)
U(s)

I Laplace transform G (s) defined for any g(t) which is zero for
t < 0:

G (s) :=

∫ ∞
0

g(t)e−stdt =

∫ ∞
−∞

g(t)e−stdt

I for FRF G (jω), we only need imaginary values s = jω

I Here, we have

G (jω) =

∫ ∞
−∞

g(t)e−jωtdt

I This expression is identical to “Fourier Transform (FT)”,
defined for any function f : R→ R by

F{f }(ω) :=

∫ ∞
−∞

f (t)e−jωtdt

i
i

“lecture17” — 2015/1/13 — 2:51 — page 8 — #8 i
i

i
i

i
i

Comments

i
i

“lecture17” — 2015/1/13 — 2:51 — page 9 — #9 i
i

i
i

i
i

Differences of Laplace and Fourier Transform

I both transformations basically contain the same information

I they transform a time signal f (t) from “time domain” into
“frequency domain”

I both transformations have inverse transformations that give
the original time signal back

I both transformations generate complex valued functions

I Laplace transform has complex input argument s ∈ C, while
Fourier transform has real ω

I for Laplace transform, all input signals are by definition zero
for t < 0, while Fourier transform deals with functions defined
for any t ∈ R (i.e. functions with infinite support)

I Laplace transform often used by engineers, Fourier transform
more often used by mathematicians and physicists

i
i

“lecture17” — 2015/1/13 — 2:51 — page 10 — #10 i
i

i
i

i
i

Comments

i
i

“lecture17” — 2015/1/13 — 2:51 — page 11 — #11 i
i

i
i

i
i

Inverse Fourier Transform

I if F (ω) = F{f }(ω), then f (t) can be recoverd by inverse
Fourier transformation F−1 given by:

f (t) = F−1{F}(t) :=
1

2π

∫ ∞
−∞

F (ω)e jωtdω

I Note the similarity of normal and inverse FT: just the sign in
the exponent and the factor is different (some definitions even
use twice the same factor, 1√

2π
, to make it symmetric)

I inverse FT can be used to construct inverse Laplace transform

I interesting related fact: Dirac-delta function is superposition
of all frequencies with equal weight:

δ(t) =
1

2π

∫ ∞
−∞

e jωtdω

i
i

“lecture17” — 2015/1/13 — 2:51 — page 12 — #12 i
i

i
i

i
i

Comments

i
i

“lecture17” — 2015/1/13 — 2:51 — page 13 — #13 i
i

i
i

i
i

Fourier Transform: some transformed functions

i
i

“lecture17” — 2015/1/13 — 2:51 — page 14 — #14 i
i

i
i

i
i

Comments

i
i

“lecture17” — 2015/1/13 — 2:51 — page 15 — #15 i
i

i
i

i
i

Estimating the FRF with Fourier Transform

I if we have recorded two arbitrary time signals u(t) and y(t),
we can use their Fourier transforms to estimate the frequency
response function (FRF) by

G (jω) =
F{y}(ω)

F{u}(ω)

I this fact is implicitly used in sine wave testing with frequency
ω0

I note: if f1(t) = e jω0t

2π then

F{f1}(ω) =
1

2π

∫ ∞
−∞

e j(ω0−ω)tdt = δ(ω − ω0)

I thus, we have for a real sine: if f2(t) = e jω0t−e−jω0t

2π then

F{f2}(ω) = δ(ω − ω0)− δ(ω + ω0)

i
i

“lecture17” — 2015/1/13 — 2:51 — page 16 — #16 i
i

i
i

i
i

Comments

i
i

“lecture17” — 2015/1/13 — 2:51 — page 17 — #17 i
i

i
i

i
i

Estimating the FRF with Fourier Transform (cont.)

I in reality, even for sine waves of frequency ω0 , the signals
u(t) and y(t) will have finite duration, and thus the FT finite
values F{y}(ω0) and F{u}(ω0). From these we can compute
G (jω0) by

G (jω0) =
F{y}(ω0)

F{u}(ω0)

I Note: Fourier Transform works with continuous time signals
on infinite horizons

I Two questions and answers:

1. How to compute FT in practice? Answer: by the Discrete
Fourier Transform.

2. Can we use an input with many frequencies to get many FRF
values in a single experiment? Answer: yes, we should then use
“multisines”.

i
i

“lecture17” — 2015/1/13 — 2:51 — page 18 — #18 i
i

i
i

i
i

Comments

i
i

“lecture17” — 2015/1/13 — 2:51 — page 19 — #19 i
i

i
i

i
i

The Discrete Fourier Transform (DFT)

I FT works with continuous time signals on infinite horizons

I Discrete Fourier Transform (DFT) works with discrete signals
on finite horizons

I DFT takes any vector of N numbers u(0), u(1), . . . , u(N − 1)
and generates a new vector U(0), . . . ,U(N − 1)) (here we
start with index zero for convenience)

I DFT also has an inverse transformation that recovers the
original vector

i
i

“lecture17” — 2015/1/13 — 2:51 — page 20 — #20 i
i

i
i

i
i

Comments

i
i

“lecture17” — 2015/1/13 — 2:51 — page 21 — #21 i
i

i
i

i
i

Fast Fourier Transform (FFT)

I one efficient algorithm to compute the DFT is called “fast
fourier transform (FFT)”

I the DFT is nearly always computed by the FFT algorithm,
therefore many people (and MATLAB) use the word FFT
synonymously with DFT

I MATLAB commands fft and ifft work with any vector of
N complex numbers and compute another vector of N
complex numbers.

I example: u=randn(10,1); U=fft(u); unew = ifft(U);

plot(u,unew)

i
i

“lecture17” — 2015/1/13 — 2:51 — page 22 — #22 i
i

i
i

i
i

Comments

i
i

“lecture17” — 2015/1/13 — 2:51 — page 23 — #23 i
i

i
i

i
i

DFT definition

I Definition of the DFT U(0), . . . ,U(N − 1) computed from a
vector u(0), . . . , u(N − 1):

U(m) :=
N−1∑
k=0

u(t)α−mk
N

with
αN := e j

2π
N

I note that αN is an N-th complex root of 1, i.e.

αN
N = 1

I also note that α−mk
N = e−j

2π
N
mk and α−mk

N = αmk
N

i
i

“lecture17” — 2015/1/13 — 2:51 — page 24 — #24 i
i

i
i

i
i

Comments

i
i

“lecture17” — 2015/1/13 — 2:51 — page 25 — #25 i
i

i
i

i
i

DFT properties

I DFT of a real valued signal consists of N complex numbers,
but second half of vector are complex conjugates of first half:

U(N −m) = U(m)

Proof:

U(N−m) =
N−1∑
k=0

u(t)α
−(N−m)k
N =

N−1∑
k=0

u(t)αmk
N =

N−1∑
k=0

u(t)α−mk
N

I example: u=sin(1:0.1:10.1); U=fft(u);

subplot(2,1,1);plot(real(U)); subplot(2,1,2);

plot(imag(U));

i
i

“lecture17” — 2015/1/13 — 2:51 — page 26 — #26 i
i

i
i

i
i

Comments

i
i

“lecture17” — 2015/1/13 — 2:51 — page 27 — #27 i
i

i
i

i
i

Overview

I The Frequency Response Function (FRF)

I Laplace and Fourier Transforms

I Discrete Fourier Transform

I Aliasing and Leakage Errors

I Multisine Excitation Signals

i
i

“lecture17” — 2015/1/13 — 2:51 — page 28 — #28 i
i

i
i

i
i

Comments

i
i

“lecture17” — 2015/1/13 — 2:51 — page 29 — #29 i
i

i
i

i
i

Comparison of FT and DFT

I FT works on continuous time signals uc(t) with infinite
support

I DFT introduces two approximations:

1. Sampling: DFT works on sampled (discrete time) signals

ud(k) := uc(k ·∆t)

with ∆t the sampling time.
2. Windowing: DFT only uses only N samples, i.e. limits the

signal to a finite window of horizon length T = N∆t

I both approximations lead to characteristic errors.

i
i

“lecture17” — 2015/1/13 — 2:51 — page 30 — #30 i
i

i
i

i
i

Comments

i
i

“lecture17” — 2015/1/13 — 2:51 — page 31 — #31 i
i

i
i

i
i

Sampling can lead to Aliasing Errors

I Sampling can introduce so called aliasing errors if the
continuous time signal contained too high frequencies

I example: t=[0:0.1:10]’; u1=sin(6*t); u2=sin(20*t);

u3=sin(60*t); subplot(3,1,1);plot(t,u1);

subplot(3,1,2); plot(t,u2);subplot(3,1,3);

plot(t,u3);

I if we introduce sampling rate fs = 1
∆t , then any signal with

frequencies higher than half the sampling rate will suffer
from aliasing

I the limit is called the Nyquist frequency:
fNyquist = 1

2∆t [Hz] or ωNyquist = 2π
2∆t [rad / s]

i
i

“lecture17” — 2015/1/13 — 2:51 — page 32 — #32 i
i

i
i

i
i

Comments

i
i

“lecture17” — 2015/1/13 — 2:51 — page 33 — #33 i
i

i
i

i
i

Windowing can lead to “leakage”

I “leakage”: DFT spectrum shows frequencies that were not
present in original signal, but are close to the true frequencies

I example (leakage): t=[0:49]’; u=sin(2*pi/50*20.5*t);

U=fft(u); plot(abs(U));

I example (no leakage): t=[0:49]’; u=sin(2*pi/50*20*t);

U=fft(u); plot(abs(U));

I comparison of FT and DFT∫ ∞
−∞

uc(t) · e−jωt dt ≈
N−1∑
k=0

ud(k) · e−jω(k·∆t)︸ ︷︷ ︸
=e−j 2π

N
km

·∆t

here, the FT and DFT expressions are only similar, if

−jω(k ·∆t) = −j 2π

N
km i.e. ω = m

2π

∆T · N

i
i

“lecture17” — 2015/1/13 — 2:51 — page 34 — #34 i
i

i
i

i
i

Comments

i
i

“lecture17” — 2015/1/13 — 2:51 — page 35 — #35 i
i

i
i

i
i

The Base Frequency and its Harmonics

I Let us define the “base frequency”

ωbase :=
2π

N ·∆t
=

2π

T

I corresponds to the slowest sine that fits exactly into the
window

I a sine signal sin(ωt) with ω = m · ωbase is called the “m-th
harmonic”

I the DFT contains only the first N/2 harmonics of the base
signal

I the frequency resolution (difference of two frequencies that
are distinguished by the DFT) is equal to the base frequency

I the finite length of the window limits the frequency resolution:
the longer the window, the finer the frequencies can be
resolved in the signal

i
i

“lecture17” — 2015/1/13 — 2:51 — page 36 — #36 i
i

i
i

i
i

Comments

i
i

“lecture17” — 2015/1/13 — 2:51 — page 37 — #37 i
i

i
i

i
i

Visualization of Harmonics

I example in time domain: deltat=0.1; T=10;

t=[0:deltat:T-deltat]’;wbase=2*pi/T;

u1=sin(wbase*t); subplot(4,1,1); plot(t,u1);

u2=sin(2*wbase*t); subplot(4,1,2); plot(t,u2);

u3=sin(3*wbase*t); subplot(4,1,3); plot(t,u3);

u4=sin(3.5*wbase*t); subplot(4,1,4); plot(t,u4);

I same example in frequency domain: U1=fft(u1);

subplot(4,1,1); plot(abs(U1)); U2=fft(u2);

subplot(4,1,2); plot(abs(U2)); U3=fft(u3);

subplot(4,1,3); plot(abs(U3)); U4=fft(u4);

subplot(4,1,4); plot(abs(U4));

i
i

“lecture17” — 2015/1/13 — 2:51 — page 38 — #38 i
i

i
i

i
i

Comments

i
i

“lecture17” — 2015/1/13 — 2:51 — page 39 — #39 i
i

i
i

i
i

Multisines: the perfect excitation signal?

I we can choose u(t) as a “multisine”, i.e. a superposition of
specially chosen sine waves

I we can avoid both aliasing and leakage if the following three
conditions are met:

1. we choose a DFT window length T that is an integer multiple
of the sampling time ∆t, i.e. T = N ·∆t

2. the multisine contains only harmonics of the base frequency
ωbase = 2π

T i.e. it is periodic with period T (or an integer
fraction of T)

3. the multisine does not contain any frequency higher than the
Nyquist frequency ωNyquist = π

∆t

I in order to achieve optimal excitation without too large input
amplitudes, one chooses the phases of the multisine carefully
to avoid positive interference

i
i

“lecture17” — 2015/1/13 — 2:51 — page 40 — #40 i
i

i
i

i
i

Comments

i
i

“lecture17” — 2015/1/13 — 2:51 — page 41 — #41 i
i

i
i

i
i

The Crest Factor

I The “crest factor” is the ratio between the highest peak umax

and the root mean square urms of the input signal:

umax := max
t∈[0,T]

|u(t)|

and

urms :=

√
1

T

∫ T

0
u(t)2dt

I example for bad crest factor: N=20; U= zeros(N, 1);

U(2:N/2) = 1; U(end:-1:N/2+2) = conj(U(2:N/2));

u= ifft(U); plot([u;u;u]);

I example for better crest factor: N=20; U= zeros(N, 1);

U(2:N/2) = exp(i*2*pi*rand(N/2-1,1));

U(end:-1:N/2+2) = conj(U(2:N/2)); u= ifft(U);

plot([u;u;u]);

i
i

“lecture17” — 2015/1/13 — 2:51 — page 42 — #42 i
i

i
i

i
i

Comments

