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Overview

I LTI systems

I impulse response and Bode diagram

I step response experiments

I frequency sweep experiments



i
i

“lecture16” — 2015/3/8 — 12:01 — page 3 — #3 i
i

i
i

i
i

Recall: general identification setting

I user input u(t) and output y(t) can be measured

I noise ε(t) disturbs our experiments

I system model typically unknown

-
input u(t)

Dynamic System

?

stochastic noise ε(t)

6

initial conditions

6

parameters p

-
output y(t)

Nonparametric modelling: identify transfer function directly.
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Nonparametric Modelling

I Aim of nonparametric modelling: make model predictions
without real modelling work

I Approach: choose model class and identify “black-box” model

I In the special case of linear time invariant (LTI) models, it is
enough to identify the impulse response function (as we will
discuss in the following)
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LTI models in continuous and discrete time

I A continuous time LTI system allows us to compute, for any
horizon [0,T ] and control trajectory u(t) for t ∈ [0,T ], the
output trajectory y(t) for t ∈ [0,T ].

I Typically, we assume the initial conditions to be zero.

I The MATLAB commands (lsim, step, bode,...) can be
used for both discrete and continuous time models.

I We can convert one into the other with the MATLAB
commands d2c and c2d.
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The impulse response and transfer function

I If impulse response g(t) is known, the output for any input
signal u(t) can be computed by a convolution

y(t) =

∫ ∞
0

g(τ)u(t − τ)dτ

I In the Laplace domain, a convolution translates to a
multiplication of the Laplace transforms:

Y (s) = G (s)U(s)

I The transfer function G (s) characterizes the system
completely, and is the Laplace transform of the impulse
response:

G (s) =

∫ ∞
0

e−stg(t)dt
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Bode diagrams

I One way to visualize the transfer function G (s) is via Bode
diagrams

I They show the values of G (jω) for all positive values of ω
(here, j is the imaginary unit, and ω is measured in rad/s)

I a Bode diagram consists of two parts, a magnitude and a
phase plot, both with frequencies ω as x-axis, where the
frequencies ω are logarithmically spaced.

I the magnitude plot shows the magnitudes |G (jω)|
logarithmically

I the phase plot shows the argument argG (jω) of the complex
number G (jω), i.e. its angle in the complex plane.

I the MATLAB command bode can generate the Bode diagram
of a known system.
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Bode Diagrams from Frequency Sweeps

I x
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Discrete time LTI systems

I x
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Discrete time transfer function
I If discrete time impulse response values g(0), g(1), . . . are

known, the general output is computed by a linear
combination of past inputs (again a convolution):

y(t) =
∞∑
k=0

g(k)u(t − k)dτ

I In the so called z-domain, a convolution translates to a
multiplication of the so called z-transforms:

Y (z) = G (z)U(z)

I Here, the z-transform of any signal, like g , u, y , is defined by

G (z) :=
∞∑
t=0

z−tg(t)

I Note that we have a finite impulse response (FIR) model if
g(k) has finitely many nonzero values, otherwise it is an
infinite impulse response (IIR) model
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Discrete time Bode diagrams

I a discrete time Bode diagram plots the values of the complex
function G (z) on the unit circle, i.e. z = e jωT where T is the
sampling time.

I above ω = 2π
T , the values of z repeat themselves. In fact, one

only plots the values on the upper semi-circle, up to the
Nyquist frequency ωmax = π

T , so the Bode diagram has a
limited range of ω.

I Note that G (e jωT ) is given by

G (e jωT ) :=
∞∑
k=0

e−jkωTg(k)

This looks a bit similar to the definition of the discrete
fourier transform (DFT or FFT).




