Modelling and System Identification – Final Exam

Prof. Dr. Moritz Diehl, IMTEK, Universität Freiburg, and OPTEC/ESAT-STADIUS, KU Leuven March 13, 2014, 13:15-14:45, Freiburg, Georges-Koehler-Allee 101, SR 00-10/14

page	0	1	2	3	4	5	6	7	8	9
points on page (max)	4	11	10	5	8	5	5	11	4	0
points obtained										
intermediate sum										
Project Mark (if any)	Mark	Part A	Mark	Part B	Mark	c Part (Marl	Part D	Mark

Note:	Klausur eingesehen am:	Unterschrift des Prüfers:	
Nachname:	Vorname:	Matrikelnummer:	
Fach:	Studiengang:	Bachelor Master Lehramt Sonstiges	

Please fill in your name above. For the multiple choice questions, tick exactly one box for the right answer. For the text questions, give a short formula or text answer just below the question in the space provided, and, if necessary, write on the backpage of the **same** sheet where the question appears, and add a comment "see backpage". Do not add extra pages (for fast correction, all pages will be separated for parallelization). The exam is a closed book exam, i.e. no books or other material are allowed. The exam is divided into four parts with equal weight, and the mark of one part can be replaced by the project mark. Some legal comments are found in a footnote (in German).¹

Part A: Concepts from Probability, Statistics, and Estimators

1. Give the probability density function (PDF) f(x) for a **normally distributed** random variable with mean μ and variance σ^2 .

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \left($$
 Please add a **sketch**:

2

2. What is the PDF of a random variable with **uniform distribution** on the interval [a, b]? For $x \in [a, b]$ it has the value:

$$f(x) =$$
 . Please add a **sketch**:

2

¹PRÜFUNGSUNFÄHIGKEIT: Durch den Antritt dieser Prüfung erklaren Sie sich für prüfungsfähig. Sollten Sie sich während der Prüfung nicht prüfungsfahig fühlen, können Sie aus gesundheitlichen Gründen auch während der Prufung von dieser zurücktreten. Gemäß den Prüfungsordnungen sind Sie verpflichtet, die für den Rücktritt oder das Versäumnis geltend gemachten Gründe unverzüglich (innerhalb von 3 Tagen) dem Prüfungsamt durch ein Attest mit der Angabe der Symptome schriftlich anzuzeigen und glaubhaft zu machen. Weitere Informationen: https://www.tf.uni-freiburg.de/studium/pruefungen/pruefungsunfaehigkeit.html.

TÄUSCHUNG/STÖRUNG: Sofern Sie versuchen, während der Prüfung das Ergebnis ihrer Prüfungsleistung durch Täuschung (Abschreiben von Kommilitonen ...) oder Benutzung nicht zugelassener Hilfsmittel (Skript, Buch, Mobiltelefon, ...) zu beeinflussen, wird die betreffende Prüfungsleistung mit "nicht ausreichend" (5,0) und dem Vermerk Täuschung bewertet. Als Versuch gilt bei schriftlichen Prüfungen und Studienleistungen bereits der Besitz nicht zugelassener Hilfsmittel während und nach der Ausgabe der Prüfungsaufgaben. Sollten Sie den ordnungsgemßen Ablauf der Prüfung stören, werden Sie vom Prüfer/Aufsichtsführenden von der Fortsetzung der Prüfung ausgeschlossen. Die Prüfung wird mit "nicht ausreichend" (5,0) mit dem Vermerk Störung bewertet.

	What is the PDF of an n -dimensional answer is $f_z(x) = \frac{1}{\sqrt{(2\pi)^n \det(x)}}$		variable z with zero mean and	covariance matrix $P \succ 0$? The
	(a) $e^{-\frac{1}{2}x^{\top}Px}$	(b) $e^{\frac{1}{2}x^{\top}Px}$	(c) $e^{-\frac{1}{2}x^{T}P^{-1}x}$	$(\mathbf{d}) \qquad e^{\frac{1}{2}x^{T}P^{-1}x}$
4.	A scalar random variable has t	he variance v . What is its stand	lard deviation?	
	(a) v^{-1}	(b) \sqrt{v}	(c) _ v	(d) v^2
	Regard a random variable $x \in P \in \mathbb{R}^{n \times n}$ defined?	\mathbb{R}^n with mean $c = \mathbb{E}\{x\}$, where $x \in \mathbb{E}\{x\}$ is $x \in \mathbb{E}\{x\}$, where $x \in \mathbb{E}\{x\}$ is $x \in \mathbb{E}\{x\}$.	here $\mathbb E$ is the expectation opera	tor. How is the covariance matrix
	P	=		
				1
6.	Regard random $x \in \mathbb{R}^n$ with z	ero mean and covariance P . W	hat is the mean of the matrix v	valued variable $Z = xx^{\top}$?
	(a) \square $P \operatorname{trace}(P)$	(b) P	(c) P^{-1}	$(d) \square P^{-1} \det(P)$
7.	What does "i.i.d." stand for?			
	(a) infinite identically d	isturbed	(b) independent identic	eally distributed
	(c) independent identica	ally disturbed	(d) infinite identically of	dependent
8.	Given a sequence of i.i.d. scal-	ar random variables $x(1), \ldots,$	$x(N)$, each with mean μ and	variance σ^2 , what is the variance
	of the variable y_N defined by			
	(a) $\frac{\sigma^2}{N^2}$	(b) $\frac{\sigma}{N-1}$	(c) $\frac{\sigma^2}{N}$	(d) \square $\frac{\sigma}{N}$
	What is the covariance matrix Σ_x, Σ_y ?	of $z = 3x + 2y$ if random va	uriables $x,y\in\mathbb{R}^n$ are independent	lent and have covariance matrices
	(a) $\Sigma_x + \frac{2}{3}\Sigma_y$	(b) $3\Sigma_x + 2\Sigma_y$	(c) $9\Sigma_x + 4\Sigma_y$	(d) $(3\Sigma_x^{-1} + 2\Sigma_y^{-1})^{-1}$
	What is the mean μ_z and the c are fixed and $x \in \mathbb{R}^m$ and $y \in$			where $b \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times m}$ arrices Σ_x, Σ_y ?
	μ_z	=		
	Σ_z	=		
				2
11.	What is the minimizer x^* of the	the convex function $f:\mathbb{R} o \mathbb{R}$,	$f(x) = \alpha + \beta x + \frac{\gamma}{2}x^2$ with	$\gamma > 0$?
	$\frac{\partial f}{\partial x}(x) =$		$x^* =$	
	$\partial x^{(n)}$			1
12.	Given a sequence of numbers	$y(1), \ldots, y(N)$, what is the mi	nimizer θ^* of the function $f(\theta)$	$\theta = \sum_{k=1}^{N} (y(k) - \theta)^2 $?
	(a) $ \frac{\sum_{k=1}^{N} y(k)}{N} $	(b) $ \frac{1}{N} \sum_{k=1}^{N} y(k)^2 $	$ (c) \frac{1}{N^2} \sum_{k=1}^{N} y(k)^2 $	$(d) \qquad \frac{N}{\sum_{k=1}^{N} y(k)}$
				points on page: 11

Part B: Linear Least Squares and Dynamic System Models

13.	What is the minimizer of the co	onvex function $f: \mathbb{R}^n \to \mathbb{R}, \boxed{f}$	$f(x) = \ y - \Psi x\ _2^2$ (with Ψ of	rank n)? The answer is $x^* = \dots$
		(b) $ (\Psi^{\top} \Psi)^{-1} \Psi^{\top} y $	$(\mathbf{c}) \square -(\Psi \Psi^{\top})^{-1} \Psi^{\top} y$	$(d) \begin{bmatrix} & (\Psi \Psi^\top)^{-1} \Psi^\top y & \\ & & \end{bmatrix}$
14.	noise $\epsilon(k)$ with zero mean, and	given a sequence of N scalar in ar least squares (LLS) estimat	put and output measurements a by minimizing the fundamental $\hat{\theta}_N$	$=(\theta_1,\theta_2)^{ op}$, and assuming i.i.d. $c(1),\ldots,x(N)$ and $y(1),\ldots,y(N)$, etion $f(\theta)=\ y_N-\Psi_N\theta\ _2^2$. If
	(a) $ \begin{bmatrix} 1 & -x(1) \\ \vdots & \vdots \\ 1 & -x(N) \end{bmatrix} $	(b) $ \begin{bmatrix} e^{x(1)} & 1 \\ \vdots & \vdots \\ e^{x(1)} & 1 \end{bmatrix} $	$ \begin{array}{c c} (c) & \begin{bmatrix} 1 & e^{x(1)} \\ \vdots & \vdots \\ 1 & e^{x(N)} \end{bmatrix} $	$ \begin{array}{c c} (\mathbf{d}) & \begin{bmatrix} 1 & x(1) \\ \vdots & \vdots \\ 1 & x(N) \end{bmatrix} \end{array} $
15.				of measurements $x(1), \ldots, x(N)$ $f(\theta)$ do you need to minimize ?
	$\theta =$	$f(\theta) =$		
				2
16.	Given an autoregressive nonl	linear dynamic system mode	$1 y(k) = \theta_1 y(k-1)^2 + \theta_2 y(k-1)$	$(k-2) + \epsilon(k)$ with i.i.d. noise
	$\epsilon(k)$ with zero mean and unknown parameter vector $\theta=(\theta_1,\theta_2)^{\top}$, and given a sequence of N output measurements $y(1),\ldots,y(N)$, we want to compute the estimate $\hat{\theta}_N$ by minimizing the prediction error function $f(\theta)=\sum_{k=3}^N \epsilon(k)^2=\ y-\Psi\theta\ _2^2$. How do we need to choose the vector y and matrix Ψ ?			ence of N output measurements
	$y = \begin{bmatrix} & & & & & & & & & & & & & & & & & &$	$\Bigg], \qquad \Psi = \Bigg[$		
	L	J L		
17.	Which of the following dynam	ic models with inputs $u(t)$ and	outputs $y(t)$ is not linear or af	fine?
	(a) $\int t^2 \ddot{y}(t) = 2u(t)$	(b) $\dot{y}(t) = u(t) + \cos(t)$	(c) $\dot{y}(t) = y(t)u(t)+1$	$(\mathbf{d}) \qquad \ddot{y}(t) = t^2 u(t) + 1$
18.	Which of the following dynam	ic models with inputs $u(t)$ and	outputs $y(t)$ is not time varying	ng?
	(a) $\dot{y}(t)^2 = u(t)$	(b) $\ddot{y}(t) = tu(t)^2$	(c) $\dot{y}(t) = u(t) + \sin(t)$	$(\mathbf{d}) \qquad t^2 \ddot{y}(t) = u(t)$
19.	Which of the following dynam	ic models with inputs $u(t)$ and	outputs $y(t)$ is a linear time in	variant (LTI) system ?
	(a) $\ddot{y}(t) = u(t) + 4$	(b) $\ddot{y}(t) = \dot{u}(t)$	(c) $\dot{y}(t) = u(t) + \sin(t)$	$(\mathbf{d}) \qquad \dot{y}(t)^3 = u(t)$
20.	Which of the following models	s with input $u(k)$ and output $y(k)$	(k) is not linear-in-the-paramet	ters w.r.t. $\theta \in \mathbb{R}^2$?
	(a) $y(k) = \theta_1 \sin(y(k - \theta_1))$	(-1)) + $\theta_2 u(k-1)$	(b) $y(k) = \exp(\theta_1 y(k))$	$-1) + \theta_2 u(k-1))$
	$(c) y(k) = \theta_1 \exp(y(k))$	$-1)y(k-2)) + \theta_2 u(k-1)$	(d) $y(k) = \theta_1 \exp(y(k))$	$-1))+\theta_2 u(k-1)$

			2 -
21.	Which system is described by the transfer function	G(s) =	$\frac{s^2+2s}{s^2+1}$?

(a) $\ddot{y} + y = \ddot{u} + 2\dot{u}$	(b)	$(c) \ddot{y} + 2y = \dot{u} + u$	$(\mathbf{d}) \qquad \ddot{y} + y = \dot{u} + 2u$

22. Compute the transfer function $G(s) = \frac{Y(s)}{U(s)}$ that describes the LTI-system $\ddot{x}(t) = -x(t) + u(t), \ y(t) = \dot{x}(t) + 2u(t).$

$$G(s) =$$

23. Sketch the step response h(t) of the system with transfer function $G(s) = \frac{2}{1+Ts}$

1

24. Modelling the temperature of water in a washbasin: regard a washbasin with two separate water taps, a hot and a cold one (as typical in the UK). The water temperatures of the inflowing water streams are constant and given by $T_{\rm h}$ and $T_{\rm c}$. The incoming mass flows, which we can control with the taps, are given by $u_{\rm h}(t)$ and $u_{\rm c}(t)$ and are non-negative. We neglect heat losses to the environment, assume a constant specific heat capacity for water, and assume that the plug is closed, i.e. no water flows out of the basin. We have two states, the total water mass m(t) in the washbasin, and its temperature T(t). We assume that m(t) is strictly positive from the beginning and that the warm and cold waters mix immediately in the basin. Using mass and energy conservation, derive an ordinary differential equation that describes the evolution of m(t) and T(t).

$$\dot{m}(t) =$$

$$\dot{T}(t) =$$

2

Part C: Maximum Likelihood, Bayesian Estimation, Cramer-Rao, and Nonlinear Optimization

25. Maximum Likelihood Estimator (MLE): Assume a nominal model $h_i(\theta)$ and given measurements $y_i, i=1,\ldots,N$. The PDF to obtain a measurement value y_i for a parameter value θ is known to be $\frac{1}{\sqrt{2\pi}\sigma_i}\exp(-\frac{1}{2\sigma_i^2}(y_i-h_i(\theta))^2)$ and measurement noises are uncorrelated. What function of θ does the MLE minimize in this case?

 $(a) \qquad \sum_{i=1}^{N} \frac{1}{\sigma_i^2} (y_i - h_i(\theta))^2 \qquad \qquad (b) \qquad |\sum_{i=1}^{N} \frac{y_i}{\sigma_i} - \sum_{i=1}^{N} \frac{1}{\sigma_i} h_i(\theta)|$ $(c) \qquad \frac{1}{2} ||h(\theta) - y||_2^2 \qquad \qquad (d) \qquad \sum_{i=1}^{N} \frac{1}{\sigma_i} |y_i - h_i(\theta)|$

26. Compute the (positive) minimizer x^* of the convex function $f: \mathbb{R}_{++} \to \mathbb{R}, \boxed{f(x) = \frac{V}{x^2} + \log x}$, and sketch it.

 $\frac{\partial f}{\partial x}(x) = \hspace{1cm}, x^* = \hspace{1cm}, \text{Sketch:}$

2

- 27. Maximum Likelihood Estimator (MLE): we want to measure the height h of a room and have two devices (say, a laser distance measurement tool, and a yardstick). For each device, we assume a constant Gaussian distribution for the measurement errors, with zero mean and known, but different standard deviations σ_1 and σ_2 . With each device, we have taken several measurements $y_1(1), \ldots, y_1(N_1)$ and $y_2(1), \ldots, y_2(N_2)$. We want to use all $N_1 + N_2$ measurements to get a MLE of the height h.
 - (a) Write down the likelihood function $f(y|\theta)$, i.e. the probability density function of obtaining all measurements $y = (y_1(1), \dots, y_1(N_1), y_2(1), \dots, y_2(N_2))^{\top}$ for a given value of $\theta = h$.

 $f(y|\theta) =$

1

(b) Taking the negative logarithm (and neglecting constant terms in θ , if you like), write down the function which the MLE minimizes.

 $-\log f(y|\theta) =$ + const

1

(c) What is the explicit formula for the MLE solution $\hat{\theta}_{\mathrm{MLE}}$?

 $\hat{\theta}_{\mathrm{MLE}} =$

1

(d) (*) Let us now assume that we do not know the standard deviations σ_1 and σ_2 , i.e. that we have three unknown parameters $\theta = (h, \sigma_1, \sigma_2)^{\top}$. We still assume Gaussian and zero mean measurement errors. Using the formula from (a), and taking negative logarithms, what function would we have to minimize in a MLE to obtain estimates for h, σ_1, σ_2 together?

 $-\log f(y|\theta) = -\log f(y|h, \sigma_1, \sigma_2) =$

1

(e) (*) To see if the result from (d) makes sense, sketch $-\log f(y|h,\sigma_1,\sigma_2)$ as a function of σ_1 for fixed h and σ_2 (Tip: get inspiration from Question 26).

1

28.	Which condition is necessary for a point x^* to be a local minimizer of a differentiable function $f: \mathbb{R}^n \to \mathbb{R}$?
	(a)
29.	Gauss-Newton: we want to solve the nonlinear least squares problem $\boxed{\min_{\theta} \frac{1}{2} \ h(\theta) - y\ _2^2}$, and have a current parameter gues
	$\theta_{[k]}$. If the Jacobian of h at $\theta_{[k]}$ is denoted by $J_{[k]} := \frac{\partial h}{\partial \theta}(\theta_{[k]}) \in \mathbb{R}^{N \times n}$, which linear least squares problem needs to be solve to obtain the next Gauss-Newton iterate $\theta_{[k+1]}$, and what is its explicit solution ? (Tip: the first order Taylor series of h at $\theta_{[k]}$ is given by $h(\theta_{[k]}) + J_{[k]}(\theta - \theta_{[k]})$,
	$ heta_{[k+1]} = rg\min_{ heta}$
	$\theta_{[k+1]} = \theta_{[k]} +$
	(*) If $\theta_{[k]}$ was already a (local) minimum of the nonlinear least squares objective function $f(\theta) = \frac{1}{2} \ h(\theta) - y\ _2^2$, prove that the Gauss-Newton method will stay there, i.e. that $\theta_{[k+1]} = \theta_{[k]}$.
	1
30.	Bayesian estimation: we have a priori information about a parameter in form of a PDF $g(\theta)$ and know that the PDF to obtain measurements g given θ is given by $f(y,\theta)$. What function is minimized by a Bayesian estimator in this context?
	(a) $g(\theta) + f(y, \theta)$ (b) $g(\theta) - g(\theta) + f(y, \theta)$
	points on page: 5

31.	Comparing MLE and Bayes: we regard a linear model $y=C\theta+\epsilon$ with unknown θ , fixed $C\in\mathbb{R}^{N\times n}$ and i.i.d. normally distributed noise $\epsilon\in\mathbb{R}^N$ with unit variance and zero mean (both known). Its negative log likelihood $\ell(\theta,y)$ is given by $\ell(\theta,y)=\frac{1}{2}\ C\theta-y\ _2^2+\mathrm{const.}$ The unknown but true value of θ is θ_0 .
	(a) Give the Fisher Information Matrix $M = \mathbb{E}\{\nabla^2_{\theta}\ell(\theta,y)\} _{\theta=\theta_0}$:
	M =
	(b) The MLE is given by $\hat{\theta}_{\text{MLE}}(y) = (C^{\top}C)^{-1}C^{\top}y$. What is its covariance matrix P_{MLE} ?
	$P_{ m MLE} =$
	(c) Does the MLE estimator have the smallest possible covariance among all unbiased estimators? Justify your answer by citing the name and result of a theorem.
	(d) A Bayesian estimator uses in addition some prior knowledge on the parameters θ , e.g. that they are normally distributed around an a-priori guess θ_{prior} . The estimator will with some $\alpha > 0$ be given by
	$\hat{\theta}_{\text{Bayes}}(y) = \arg\min_{\theta} \frac{1}{2} \ C\theta - y\ _{2}^{2} + \frac{\alpha}{2} \ \theta - \theta_{\text{prior}}\ _{2}^{2} = (C^{\top}C + \alpha I)^{-1} (C^{\top}y + \alpha\theta_{\text{prior}})$
	What is its covariance matrix P_{Bayes} ?
	$P_{ m Bayes} =$
	(e) (*) Find out if the covariance matrix of the MLE or the Bayesian estimator is smaller (in the matrix sense). Do your observations contradict the theorem cited in (c)? Justify.
	points on page: 5

Part D: Frequency Domain Identification, Recursive Identification, and the Kalman Filter

) shows the Bode amplitude dia	gram in doubly logarithmic scale
(a) $G(e^{j\omega})$	(b)	(c) $G(j\omega)$	
Sketch (very roughly and w	ithout numbers) the Bode amp	olitude diagram of $G(s) = \frac{1}{1+s}$	
Which phase shows the Boo	le diagram of $G(s) = \frac{1}{1+T^2s^2}$	for high frequencies?	1
(a) 90 deg	(b) 0 deg	(c) -90 deg	(d) -180 deg
	de diagram of $G(s) = \frac{1}{1+T^2s^2}$		
(a) 90 deg	(b) 0 deg	(c)90 deg	(d) -180 deg
Which slope has the Bode a	mplitude diagram of $G(s) =$	$\frac{1}{1+T^2e^2}$ for high frequencies?	
(a) 20 dB/decade	(b) 0 dB/decade	(c) -20 dB/decade	(d) -40 dB/decade
requency, and how many d	ifferent frequencies can it com	iain?	
			3
Describe in words the proce	dure that one uses when ident	ifying an LTI-SISO system with	n multi-sine excitation.
			3
			points on page: 11

39.	Regard a recursive algorithm to compute $\hat{\theta}_n = \arg\min_{\theta} \sum_{k=1}^n (y(k) - \theta)^2$ for a sequence of incoming measurements $y(k) \in$
	\mathbb{R} , starting with $\hat{\theta}_1 = y(1)$. Which recursion formula describes its solution for $n > 1$?

(a) $\hat{\theta}_n = \hat{\theta}_{n-1} + \frac{1}{n}(y(n) - \hat{\theta}_{n-1})$	(b) $\hat{\theta}_n = \hat{\theta}_{n-1} - \frac{1}{n+1} (y(n) - \hat{\theta}_{n-1})$
(c) $\hat{\theta}_n = \hat{\theta}_{n-1} - \frac{1}{n}(y(n) - \hat{\theta}_{n-1})$	(d) $\hat{\theta}_n = \hat{\theta}_{n-1} + \frac{1}{n+1}(y(n) - \hat{\theta}_{n-1})$

40. Regard a recursive algorithm to compute $\hat{\theta}_n = \arg\min_{\theta} \epsilon \|\theta\|_2^2 + \sum_{k=1}^n \|y(k) - C\theta\|^2$ for a sequence of incoming measurements $y(k) \in \mathbb{R}^m$, starting with $\hat{\theta}_0 = 0$ and $Q_0 = \epsilon \mathbb{I}$. If the recursion for Q_n is given by $Q_n = Q_{n-1} + C^\top C$ for n > 1, which recursion formula holds for $\hat{\theta}_n$?

$$\hat{\theta}_n = \hat{\theta}_{n-1} +$$

2

41. Regard a Kalman filter to estimate the state of a discrete time linear time invariant system x(k+1) = Ax(k) + w(k) and y(k) = Cx(k) + v(k), where we assume i.i.d. white noises w and v with variances Σ_w and Σ_v . These two matrices are tuning parameters, and we often choose them as diagonal matrices with larger or smaller entries. What choice of entries in matrices Σ_w , Σ_v should we use if we have not very accurate measurements of y(k), but trust our linear model very well?

(a) \square large Σ_w , small Σ_v	(b) large Σ_w , large Σ_v
(c) \square small Σ_w , small Σ_v	(d) small Σ_w , large Σ_v