Modelling and System Identification – Microexam 3

Prof. Dr. Moritz Diehl, IMTEK, Universität Freiburg, and ESAT-STADIUS, KU Leuven

January 27, 2015, 8:15-9:00, HS 026, GKA 101, Freiburg

Nachna	ame: Vorna	me:		Matrikelnummer:		
Fach:	S	Studiengang: Bachelor Master Lehramt Sonstiges				
Please f	fill in your name above and tick exact	ly one box for the righ	nt answer o	of each question below	Ν.	
1. R fe	Regard the discrete time LTI system $y(k+1) = \theta y(k) + u(k) + \epsilon(k)$ with scalar input u , output y and noise ϵ . Which following shorthands describes this model best?					
	(a) ARX-IIR (b)	ARX-FIR	(c)	ARMA-IIR	(d) ARMA-FIR	
2. C	Given measurement sequences $u(k)$ and $y(k)$ we try to identify a model by solving the following optimization problem: $\min_{\theta} \sum_{k=3}^{N} y(k) - \theta_1 u(k-1) - \theta_2 u(k-2) ^4$ What model assumptions do we make?					
	(a) FIR model with Gaussian equation errors		(b) IIR model with Gaussian equation errors			
	(c) FIR model with non-Gaussian equation errors		(d) IIR model with non-Gaussian equation errors			
3. C	Given measurement sequences $u(k)$ $\min_{\theta} \sum_{k=3}^{N} y(k) - \theta_1 y(k-1) - \theta_2$	nodel by solving the ptions do we make?	following optimization problem:			
	(a) FIR model with Gaussian equation errors		(b) IIR model with Gaussian equation errors			
	(c) FIR model with non-Gaussian equation errors		(d) IIR model with non-Gaussian equation errors			
4. C	Given measurement sequences $u(k)$ and $y(k)$ we try to identify a model by solving the following optimization problem: $\overline{\min_{\theta, \tilde{y}} \frac{1}{\sigma_1^2} \sum_{k=3}^N \tilde{y}(k) - \theta_1 \tilde{y}(k-1) - \theta_2 u(k-2) ^2 + \frac{1}{\sigma_2^2} \sum_{k=1}^N (y(k) - \tilde{y}(k))^2}}.$ What model assumptions do we make?					
	(a) Gaussian input and output noise		(b) non-Gaussian input and output noise			
	(c) Gaussian output noise and equation errors		(d) Gaussian input noise and equation errors			
5. C () s	Hiven a one-step ahead prediction model $y(k) = \theta_1 y(k-1) + \theta_2 u(k-2)^2 + \epsilon(k)$ with unknown parameter vector $\theta = \theta_1, \theta_2)^{\top}$, and assuming i.i.d. Gaussian noise $\epsilon(k)$ with zero mean, and given a sequence of N scalar input and output measurements $u(1), \ldots, u(N)$ and $y(1), \ldots, y(N)$, we want to compute the maximum likelihood estimate $\hat{\theta}$ by minimizing the function $f(\theta) = \ y_N - \Phi_N \theta\ _2^2$. If $y_N = (y(3), \ldots, y(N))^T$, how do we need to choose the matrix $\Phi_N \in \mathbb{R}^{(N-2) \times 2}$?					
	(a) $\begin{bmatrix} y(1) & u(2) \\ \vdots & \vdots \\ y(N-2) & u(N-1) \end{bmatrix}$ (b) $\begin{bmatrix} & & \\ & & $	$\begin{bmatrix} y(1) & u(2)^2 \\ \vdots & \vdots \\ y(N-2) u(N-1)^2 \end{bmatrix}$	(c)	$\begin{bmatrix} y(2) & u(1)^2 \\ \vdots & \vdots \\ y(N-1) & u(N-2)^2 \end{bmatrix}$	$(\mathbf{d}) \square \begin{bmatrix} y(2) & 1 \\ \vdots & \vdots \\ y(N-1) & 1 \end{bmatrix}$	
6. V	What quantity of a continuous time transfer function $G(s)$ shows the Bode amplitude diagram in doubly logarithmic scale?					
	(a) $ G(e^{j\omega}) $ (b)] $\arg G(j\omega)$	(c)	$G(j\omega)$	(d) $ G(j\omega) $	
7. Which slope has the Bode amplitude diagram of $G(s) = \frac{1}{1+s+s^2}$ for high frequencies?						
	(a) 20 dB/decade (b)	0 dB/decade	(c)	-20 dB/decade	(d) -40 dB/decade	

points on page: 8

8. At which angular frequency ω is the resonance peak of the Bode amplitude diagram of the oscillator $G(s) = \frac{1}{c+s^2}$? $\omega = \frac{2\pi}{\sqrt{a}}$ (c) $\omega = \sqrt{c}$ (b) $\omega = \frac{2\pi}{2\pi}$ (d) (a) $\omega = \frac{c}{2}$ 9. Regard a periodic signal with period T that is sampled with sampling time Δt (with T a multiple of Δt). How many discrete time samples N are in one period of the discretized signal ? (Tip: this is easy) $\frac{T}{\Delta t}$ $\frac{2\pi T}{\Delta t}$ $\frac{T}{2\Delta t}$ $\frac{\Delta t}{T}$ (a) (b) (c) (d) 10. Regard a periodic signal with period T that is sampled with sampling time Δt (with T a multiple of Δt). How many different frequencies are contained in the discretized signal ? $\frac{\Delta t}{T}$ $\frac{T}{\Delta t}$ $\frac{2\pi T}{\Delta t}$ $\frac{T}{2\Delta t}$ (b) (c) (d) (a) 11. Regard a continuous time signal that contains a significant contribution of a given frequency f_0 . You want to sample this signal with a sampling time Δt on a window of length T (with T a multiple of Δt). Which condition helps to avoid **aliasing errors** in the frequency f_0 ? $\Delta t > \frac{2\pi}{f_0}$ (b) $\Delta t < \frac{1}{2f_0}$ (c) $T^2 f_0 = \Delta t$ (d) \Box Tf_0 integer (a) 12. Regard the same situation as in the previous question. Which condition helps to avoid leakage errors in the frequency f_0 ? $\Delta t < \frac{1}{2f_0}$ $\Delta t > \frac{2\pi}{f_0}$ (b) (c) $T^2 f_0 = \Delta t$ (a) (d) Tf_0 integer 13. A system is excited with a periodic excitation signal u(t) of period T that is for $t \in [0, T/2]$ given by u(t) = 10 and for $t \in [T/2, T]$ by u(t) = -10. What is the **crest factor** of this signal? 10^2 10^{-2} (b) (a) 1 10(d) (c) 14. When working with periodic multisine excitations, for what reason does one usually like to work with input signals that have a small crest factor? (a) leakage errors (b) aliasing errors (c) frequency limitations (d) amplitude limitations 15. You want to identify the transfer function $G(j\omega)$ of an LTI system in the frequency band $\omega \in [\omega_{\min}, \omega_{\max}]$ with periodic multisine excitations. You choose a period length T that is an integer multiple of the sampling time Δt . Which other conditions should Δt and T satisfy?
$$\begin{split} \Delta t &< \frac{2\pi}{\omega_{\max}}, \quad T < \frac{\pi}{\omega_{\min}} \\ \Delta t &< \frac{\pi}{\omega_{\max}}, \quad T > \frac{2\pi}{\omega_{\min}} \end{split}$$
 $\Delta t < \frac{\pi}{\omega_{\max}}, \quad T < \frac{2\pi}{\omega_{\min}}$ $\Delta t < \frac{2\pi}{\omega_{\max}}, \quad T > \frac{\pi}{\omega_{\min}}$ (a) (b) (d) (c) 16. Regard for some fixed large integer N the Discrete Fourier Transform (DFT) of a real-valued signal $u(0), \ldots, u(N-1)$ with $u(t) = \sin(\frac{10\pi}{N}t)$. Most values of the DFT $U(0), \ldots, U(N-1)$ are zero, but some are non-zero. Which? (b) U(5), U(N-5)(c) U(10), U(N-10)U(5), U(10)(a) (d) U(10)17. You measure a signal where the signal-to-noise-ratio (SNR) at a certain frequency f_0 is given by 20 dB. How accurately can you estimate the amplitude of this frequency component (approximately)? 0.1 % (a) (b) 1% (c) 10 % (d) 50 % 18. You identify an LTI system with periodic multisine excitations, where each window has length T and the total duration of your experiment is MT with a large integer M. Which procedure should you **not** follow to identify the transfer function $G(j\omega_k)$ at a given frequency $\omega_k = \frac{2\pi k}{T}$? (b) compute the DFTs and estimate the transfer func-(a) compute the DFTs of each window, then average the $\overline{\text{DFTs}}$, then estimate the transfer function tion on each window, then average the M estimates ensure your input signal contains sufficient power (d) average the M windows, then compute the DFT, (c) in the frequency ω_k then estimate the transfer function

points on page: 11