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Overview

m Robust optimization problem statement

m Two conservative approximation approaches
m Linearization
m Lagrangian relaxation

m Dynamic problem statement, and solution by

m forward sensitivities
m adjoint sensitivities
m Lyapunov matrix propagation



Problem Statement

minimize  max Fp(u,w)
u€ER™u [lw]l2<1
subject to  max Fj(u,w) <0, i=1,...,np.
lwll2<1

m relevant dimensions: 1y, Ny, NE

m interested in case n,, > 1 (making sampling expensive)

B game interpretation: we choose u € R™*, then adverse player
(nature) chooses w € R™»

m unit ball can represent all ellipsoidal uncertainties (can
generalize to other sets described by inequalities)



Problem Statement: Compact Formulation

minimize  F§**(u)
ueR"u

subject to F**(u) <0, i=1,...,np.

with Fiexac(u) = IAaX||y|,<1 Fz(u, w)

m Aim 1: find computationally tractable conservative
approximations for F;7**¢(u) (i.e. tight upper bounds)

m Aim 2: solve overall problem to local optimality w.r.t. u with
structure exploiting nonlinear programming (NLP) method



Assumption throughout the talk: bounded 2nd derivatives

minimize  max Fy(u,w)
u€R"u |wl||2<1

subject to  max Fj(u,w) <0,
flwll2<1

ASSUMPTION

There exist positive smooth functions L;(u) such that for all
w € B:={w & R™|w'w < 1} holds:

Ve Fi(u,w) = Li(u) T

Bounds the non-concavity of F; w.r.t. w.



First Approach: Approximation by Linearization

Using Taylor's theorem, for each w € B there exists a ¢ € [0, 1]
such that

1
Fy(u, w) = Fy(u,0) + Vi F(u,0) w4 3 w' V2 Fi(u, tw)w .

<L;(u)

Yields upper bound (using self duality of the Euclidean norm)

1
we

/

-~

—.pli
=:F£*ac(u) =:F;"(u)

[Nagy & Braatz, JPC, 2004]



Approximation by Linearization (Conservative)

1
minimize Fy(u,0) + ||V Fo(u,0)||2 + = Lo(u)
u€R™u 2

1
subject to Fj(u,0) + ||V Fi(u,0)|2 + §Ll(u) <0,i=1,...,np.

m This is a nonlinear Second Order Cone Program (SOCP)

m Could be solved with Sequential Convex Programming (SCP)
or plain NLP

m Exact Hessian method needs third order derivatives

m For dynamic systems, different ways to obtain V,, F;(x,0):

m forward sensitivities [Nagy & Braatz, JPC, 2004]
m adjoint sensitivities [D., Bock, Kostina, Math. Prog., 2006]
m Lyapunov matrix propagation [Houska & D., CDC, 2009]



Second Approach: Lagrangian Relaxation

Lower level maximization problem:

1
PP () = e Filww) st pwTw—1) <0

Lagrangian: £(u,w,\) = F;(u,w) — 3(w w — 1)
Lagrange dual function:

di(u, \) = max (F(u w) — %(wTw _ 1)>

weB

Weak duality and relaxation gives upper bound:

F?X&C < : p ,
cow) < mindi(u, A)



Second Approach: Lagrangian Relaxation

Lower level maximization problem:

1
PP () = e Filww) st pwTw—1) <0

Lagrangian: £(u,w,\) = F;(u,w) — 3(w w — 1)
Lagrange dual function:
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weB

Weak duality and relaxation gives upper bound:

F&(y) < min di(u,\) < min di(u,\) = F*® (u)

A>0 A>L; (u)

[Houska & D., Math. Prog. Ser. A, 2013]



How much conservatism is introduced?

THEOREM

Lagrangian relaxation is always tighter than linearization:

Feoc(u) < FP(w) < Fin(u)

= 7 ]

If F;(u,w) is concave or quadratic in w, it is even exact.

[Yakubovich, Vestnik Leningrad Univ., 1971/1977]
[Houska & D., Math. Prog. Ser. A, 2013]



Lagrangian relaxation: convex lower level problems

Note that (F}(u,w) — 3(w w — 1)) is concave in w for

A > L;(u): first order optimality conditions are sufficient

A
) = i s () - 507w -1)

. A T
- Fi(w,w) — 2 (wTw -1
win ( () = ST >)
s.t. VuFi(u,w) — Aw = 0,
A > Li(u), Jw|] <1

m no complementarity condition needed

m constraint ||w|| <1 deals with non-convexities outside B

[D., Houska, Stein, Steuermann, Comp. Opt. Appl., 2013]



Lagrangian relaxation based optimization problem

A
minimize (Fo(u, wp) — ?O(w(—)rwo - 1)>

U A0, W0+, An s Wi o
subject to Fi(u,w;) — E(wl w; — 1)) <0,

1= 1, oo NE.
Vij(u,wj) - )\jwj = 0,
)\j Z Lj(u), HIUJH S 1, ] = 0, 1, oo

m equivalent to previous MPCC formulation, e.g. [Stein 2003]

m can solve with standard NLP, or Sequential Convex Bilevel
Programming (SCBP) [Houska & D., Math. Prog. Ser. A, 2013]

m can show: no 3rd order derivatives needed for exact Hessian

m need (np + 1)(ny + 1) additional optimization variables



Tutorial Example (2 uncertainties, 3 constraints)

y
15 sl
1.0 subject to
0.5 0> —2r4+w
0.0 4 . . X 0>1—(x+w)?—(y+v)
0.0 1.0 2.0 0 > log(xz+w) — (y +v)

Uncertainty Set:

Ball withradius » = %, B(v,w) := v +w? —r?> <0
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Tutorial Example (2 uncertainties, 3 constraints)

y
1.0 subject to
0.5 @ 0> —=z4+w
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Tutorial Example (2 uncertainties, 3 constraints)

y
¥ o i 2 2
s min (2 —3)" +y
1.0 subject to
0.5 Q 0> —2r4+w
0.0 y X 0>1—(x+w)?—(y+v)
0.0 1.0 2.0 0 > log(z +w) — (y + v)
Iteration 1 2 3 4

= Ut

8
—log,o(KKTTOL) | 0.3 | 0.5 | 0.7 | 1.0 5| 34| 7.0 (121

Can achieve high accuracy
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Underlying Dynamic System

Ji(xp—1, ug, wy)
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Now, the F; are functions of states x; that
are generated by dynamic system:

g = fr(Tp—1,up,wi), k=1,...N
with initial value

ro = fo(uo, wo)

and inputs u = (ug,...,uy) and
w = (’wo, .. .,wN). Each FZ' = hz(l‘mz) is
evaluated at one selected time point m;.

m dimensions n,, 1, or ng often grow with horizon length N

m state dimension n, can be smaller than n,, and ng



Nominal Problem with Dynamic System

minimize  ho(zm,)
u,T

subject to  hi(xpy,) <0, i=1,...,np,
zo = fo(uo, wo),
rg = fr(Tp—1,up, wi), k=1,...N.

m for nominal problem, w = (wy, ..., wy) is fixed to zero

m robust problem easier to formulate using implicit
representation of dynamic system (next slide)



Implicit Function Representation

Collecting all states in one vector = (z9,...,Zx), one can
summarize the dynamics by an implicit function

G(z,u,w) =0, H;(x):=hi(xm,)

with ~ _
fo(ug, wo) — o
fi(zo, ur, wi) — 1

G(z,u,w) := fa(w1, ug, wa) — o

| In(zN—1,uN, wN) — TN |

Then, worst case functions are represented by

E&(y) = max Hy(z) s.t. G(z,u,w) =0, w w < 1.

w,T



Three ways to treat linearization based approximation

m forward sensitivities [Nagy & Braatz, JPC, 2004]
m adjoint sensitivities [D., Bock, Kostina, Math. Prog., 2006]
m Lyapunov matrix propagation [Houska & D. 2009, Gillis 2015]



Forward sensitivies

Represent F;j(u,w) by H;(x) where x is implicitly defined by
G(x,u,w) = 0. Get gradient by implicit function theorem,

-1
VoFi(u,0)" =V, H;(x)" (— <aa§(:v,u,0)> gg(:v,u,O)>

.

7dz*:S

—do_
Forward sensitivities use matrix variable .S defined by

oG “1oa
S=- (ax(xaua 0)) %(x,u, 0)

or equivalently by

oG oG
—w(a:,u,()) + (ax(a:,u,O)> -S=0.



Forward sensitivity problem statement

1
minimize Ho(z) + ||ST VoHo(z)|2 + = Lo(u)

u,x, 2

1
subject to H(z) + ||STV.H;(z)|2 + =Li(u) <0, i =1,...,np,

2
G(z,u,0) =0,

oG oG
a—w(x,u,O) + <(‘)x($’u’ 0)) -S=0.

Need n,, extra variables of same dimension as x.
Very expensive for n,, > 1.



Adjoint sensitivities

Adjoint sensitivities divide the gradient expression differently

-1
VwF-(u,O)T = *vaZ((L‘)T (aai;(x)u 0)> %(.’I},U,O)
AT
and introduce adjoint vector variables \;, i = 0,...,ng that are

implicitly defined by

oG T
V.Hi(z)+ <8$(x,u,0)> Ai=0



Adjoint sensitivity problem statement

=
1
minimize Hy(x) + (z,u,0) | Ao|| + =Lo(u)
U, T A 0 9 2
: G o
subject to H;(x) + (z,u,0)) Ni|| + iLl(u) <0,
w
2
1= 17 y N,

G(x,u,0) =0,

e T ,
vaJ($)+ %(l’,u,()) >\j:0, 7=0,1,...,np.

Note: compared to nominal problem, need nyp extra variables of
the same dimension as x. Independent of noise dimension 7.



Lyapunov Matrix Propagation

For linearization based approach
m forward sensitivities good for large ng, small n,,

m adjoint sensitivities good for small ng, large n.,

Dream:
a formulation that works well for large n,, and large ng



A Close Look at the Forward Sensitivity Approach

o 1
minimize  ho(xm,) + ||S;OVho||2 + §L0(u)

u,x,S

1
subject to  hi(2m,) + ||k, Vhil|2 + gLiw) 0, i=1,....np,

xro = fO(UO’())a
l’kak(:Ek_l,uk,O), k=1,...N,
SO - v'wf(;ra

Sk =V fe Sk1+Vufy, k=1,...N.

Have (N + 1) matrices Sy of dimension n, X n,,, where n, is the
single stage state dimension. Expect n,, = O(N), ny > n,.

Note that [|S), Vhsll2 = /1] S, S, Vhi.




Replacing Sensitivities by Lyapunov Matrices

Regard S;, = mG_lf,;rSk_l + wa,;r. Define
Ag ==V, f € R%Xne and

Vufi =(0---0]B,|0---0) € R>"w
with By, := Vwkf,;'—. Also
Sp_1=(x---%1]0[0---0) and ApSp_1 = (x---%[0[0---0).
This implies (AxSk—1)Vwfr =0, and thus

Py =SS} = (ArSk_1+ Vufy )(ArSe_1 +Vufi )"
= ASe1S] AL + Vi Vo fi
= ApS._1S, Al + B.B]
= A, P, Al +B.Bl

This is a Lyapunov matrix equation with dimension. P, € R"z*"=



Lyapunov Matrix Reformulation of Forward Sensitivities

1
minin}ljize ho (wmo) + 4/ thPmOVho + §L0 (u)
1
subject to  hi(zm;) + 1/ VhZTPmZ.Vhi + §Ll(u) <0,
1=1

N
ro = fo(uo,0),

vy = fr(Tr-1,u,0), k=1,...N,

Py = BBy ,

P, = AyP. 1Al + BB}, k=1,...N.

Only need (N + 1)% extra variables.
Independent of both n,, and np.



Infinite Time Horizons with Periodic Controls

Assuming stable periodic dynamics and zero bounds L;(u), can
compute Py resulting from infinite noise sequence w in f5 unit ball
by Periodic Lyapunov Equation (PLE):

mininlljize ho(Tmg) + A/ Vg Py Vho
subject to  hi(zm,) + \/Vh;erthi <0, i=1,...,np,

o = TN,
Tp :fk(xk_l,uk,(]), k=1,...N,
P[):PN7

P, = AP, Al + BB}, k=1,...N.

Can treat PLE with periodic Schur decomposition [Varga 1997].
CPU time savings up to factor 100 possible [Gillis 2015].



Robust Race Cars (Greg Horn and Joris Gillis)

m 6 states, i.e. n, =6

“ ;- i ' i S
m 100 time steps, i.e. N =100 LY | 5 R—
m 6 disturbances, i.e. n, = 600 \ YN ¥ )
m 2 controls and 4 feedback - 7 ' . /

gains, i.e. n, = 204

m solved in 40 seconds using
CasADi and IPOPT



Race cars with online optimal control (Robin Verschueren)




Quadcopter Flight Around Obstacle (Joris Gillis)

y position [m]

Nominal Solution

-2

-1 0 1
X position [m]

2

3

Robustified Solution

y position [m]

X position [m]



Conclusions

m Approximations by Linearization or Lagrangian relaxation lead
to computationally tractable nonlinear programming problems

m Lagrangian relaxation is tighter but more expensive (avoids
MPCC and needs only 2nd order derivatives)
m Linearization is cheaper and comes in three variants:

m forward sensitivities: good for few uncertain parameters
m adjoint sensitivities: good for few constraints
m Lyapunov matrix propagation: good for small state dimensions

m In control applications, robust nonlinear dynamic optimization

allows one to design trajectories and tune feedback controllers
simultaneously



