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Robust Optimization

Find the solution (portfolio, control, design…),

↪→ optimization variable x

that is adequate for all possible δ in ∆,

↪→ constraints fi(x, δ) ≥ 0 , for all δ ∈ ∆ , i = 1, . . . , m

and guarantees the highest performance.

↪→maximize γ subject to f0(x, δ) ≥ γ , for all δ ∈ ∆

maximize
x,γ
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1 Beyond the original raison d’être

2 Solving robust optimization problems

3 Results in applications
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collision avoidance:
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Parametric Programming

maximize
x
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Parametric Programming

maximize
x

f0(x, δ)

subject to fi(x, δ) ≥ 0 , i = 1, . . . ,m
xopt(δ)
for δ ∈ ∆

Trade-off analysis
↪→ δ : weight on objectives

f0(x, δ) =
∑
k

δk f0,k(x)



Parametric Programming

maximize
x

f0(x, δ)

subject to fi(x, δ) ≥ 0 , i = 1, . . . ,m
xopt(δ)
for δ ∈ ∆

Linear parameter varying control
↪→ δ : measurable parameters affecting the system dynamics



Parametric Programming

maximize
x

f0(x, δ)

subject to fi(x, δ) ≥ 0 , i = 1, . . . ,m
xopt(δ)
for δ ∈ ∆

Computing approximation x̂(δ) of xopt(δ)

x̂(δ) = x0 + x1 δ + x2 δ2 . . .

↪→ solve robust optimization problem to compute coefficients

maximize
x0, x1, ...

∫
∆
f0(x̂(δ), δ) dδ

subject to fi(x̂(δ), δ) ≥ 0 , for all δ ∈ ∆ ,
i = 1, . . . ,m
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Few Cases: Tractable Reformulation

Linear separation

fx(δ) < 0 ∆

Quadratic separation
• S-procedure, Kalman-Yakubovich-Popov lemma…



Otherwise: Relaxations

f (x, δ) ≥ 0 , for all δ ∈ ∆

⇑

F∆(x) ≥ 0 relaxation



Otherwise: Relaxations

A novel scheme for constructing relaxations
• more general than existing schemes

Pólya sum-of-squares new

fx(δ)

∆
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A novel scheme for constructing relaxations
• more general than existing schemes
• computationally more efficient than existing schemes
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Otherwise: Relaxations

A novel scheme for constructing relaxations
• more general than existing schemes
• computationally more efficient than existing schemes

computation time [s]

γ
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B-spline Relaxations

Overall idea
• B-splines: piecewise polynomial basis functions Bα

– partition of unity on ∆:
∑

α ∈α Bα (δ) = 1, [δ ∈ ∆

– positive on ∆: Bα (δ) ≥ 0, [δ ∈ ∆

• relaxation: f (x, δ) =
∑
α ∈α

cα (x)Bα (δ) ≥ 0 , [δ ∈ ∆

⇑
cα (x) ≥ 0 , [α ∈ α

• refinement: higher-dimensional B-spline bases
– piecewise polynomial of higher degree
– piecewise polynomial on finer grid



B-spline Relaxations
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B-spline Relaxations

Tensor product B-splines
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Bα (δ) = Bα1(δ1)Bα2(δ2)



B-spline Relaxations

Towards non-hyperrectangular domains

tensor product
spline
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2 Solving robust optimization problems

3 Results in applications



Motion Planning
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Motion Planning

Avoiding collision
• exact reformulation using linear separation

Enforcing constraints at all times
• B-spline parametrization of motion trajectory
• novel relaxation scheme for efficient constraint satisfaction



Motion Planning

20 ms for simple kinematic models
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Motion Planning

Extension tomulti-agent motion planning
• optimization distributed over agents using ADMM
• 1 ADMM iteration per update

A

B



Motion Planning

40 ms for simple kinematic models



Motion Planning

40 ms for simple kinematic models



Interconnected Systems

Application in vibro-acoustics
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Interconnected Systems
Efficient analysis using quadratic separation

beam N = 10
interconnected N = 10
interconnected N = ∞
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Parametric Programming

A novel B-spline based framework
• B-spline parameterized x̂(δ) for high flexibility
• novel relaxation scheme for low conservatism



Parametric Programming

A novel B-spline based framework
• B-spline parameterized x̂(δ) for high flexibility
• novel relaxation scheme for low conservatism

Trade-off analysis in active bearing control
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Parametric Programming
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Conclusion

1 Robust optimization
hasmany applications in engineering

2 General and effective strategy
for solving robust optimization problems

3 Results in applications



Thank You!

The MECO research group
Wannes Van Loock, Ruben Van Parys, Tim Mercy

Claus Claeys, Elke Deckers
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