AWESCO Workpackage 2 on System Design and Optimisation

Moritz Diehl

Systems Control and Optimization Laboratory Department of Microsystems Engineering (IMTEK) and Department of Mathematics University of Freiburg

> AWESCO Kick-Off Event Freiburg, March 2, 2016

WP2 System Design and Optimisation

11:35 "Optimal Control of Dual Kites in PumpingCycle Operation" by Rachel Leuthold (ALUFR)

12:00 "Ground Station Design and Optimization for Airborne Wind Energy" by Mahdi Salari (UL)

12:25 Lunch

13:40 "Multidisciplinary System Design, Safety and Cost Optimisation of AWE" by Ashwin Candade (Enerkite)

14:05 "Grid Integration of Airborne Wind Energy Systems" by Elena Malz (CHAL)

System Design and Optimisation - Main Ideas

Aim: Decide on Design Questions for Airborne Wind Energy

Approach of WP2:

- use dynamic simulation models of sufficient detail (not more)
- use optimal control and derivative based nonlinear programming
- simultaneously optimise design parameters and controls

Some related design studies for inspiration

- Dual Kites (Mario Zanon)
- Pumping Cycles for AmpyxPlane (Greg Horn, Gianni Licitra)
- Year Power Optimisation for Makani (Greg Horn, Thomas Van Alsenoy)
- Pumping with Electrical Generator Efficiency (Greg Horn, Jeroen Stuyts)

Dual Kite Systems

- Two airfoils circling around each other have less tether drag
- can reach 40 kW/m² already with small devices
- · centrifugal forces compensate each other
- decide on strength and length of tether and orbit

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 21, NO. 4, JULY 2013

Dual Kite Systems

- Two airfoils circling around each other have less tether drag
- can reach 40 kW/m² already with small devices
- centrifugal forces compensate each other

Optimization of Ampyx-Type Pumping Cycle

by Giovanni Licitra and Greg Horn (using CasADi, ipopt, 150 collocation intervals)

Licitra, Sieberling, Williams, Ruiterkamp, Diehl 2016 (submitted to ECC)

8

"Never landing" costs only 0.5 %

Power at specific wind speed

X

Frequency of occurrence per year

Contribution to yearly production

[study with 5.5m wing span plane] Blue: 52,27 MWh, red 0,27 MWh. Average power: 6 kW (tether drag)

00

100

Optimization of SkySails' electricity generating orbits by **Michael Erhard**, Chief Control Engineer at SkySails, partly Univ. Freiburg, using CasADi/ipopt

- Initialization with experimentally flown orbit
- Optimization improves from 15% to 25% of Loyd's limit
- large time losses due to slow retraction phase

Small–Scale Functional Model (50kW peak power)

Makani power: yearly power output optimisation by Greg Horn, Univ. Freiburg, and Thomas Van Alsenoy, Makani

Multiple Setpoint Optimization: optimise fixed parameters (tether length and thickness, generator size) together with adaptable periodic control trajectories for all wind speeds, weighted with their frequency in the wind histogram

Makani power: yearly power output optimisation by Greg Horn, Univ. Freiburg, and Thomas Van Alsenoy, Makani

0.08

0.06

0.04

0.02

Some related design studies for inspiration

- Dual Kites (Mario Zanon)
- Pumping Cycles for AmpyxPlane (Greg Horn, Gianni Licitra)
- Year Power Optimisation for Makani (Greg Horn, Thomas Van Alsenoy)
- Pumping with Electrical Generator Efficiency (Greg Horn, Jeroen Stuyts)

Electrical efficiency influences pumping cycles significantly

IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 6, NO. 1, JANUARY 2015

Effect of the Electrical Energy Conversion on Optimal Cycles for Pumping Airborne Wind Energy

Jeroen Stuyts, Student Member, IEEE, Greg Horn, Wouter Vandermeulen, Johan Driesen, Senior Member, IEEE, and Moritz Diehl, Member, IEEE

Jeroen Stuyts (S'14) was born in Belgium, in 1990. He received the B.Sc. degree in mechanical engineering and M.Sc. degree in energy engineering from KU Leuven, Leuven, Belgium, in 2011 and 2013, respectively. He is currently pursuing the Ph.D. degree at KU Leuven.

His research interests include power electronics, drives, renewable energy sources, and the grid coupling thereof. Currently, he conducts research on high-power grid-friendly converters with fault ridethrough capabilities in a distorted low-voltage grid.

Greg Horn was born in the United States, in 1985. He received the B.S. degree in physics from the University of California, Santa Cruz, CA, USA, and the M.S. degree in aeronautics and astronautics from Stanford University, Stanford, CA, USA, in 2009 and 2012, respectively. He is currently pursuing the Ph.D. degree in electrical engineering at KU Leuven.

Ph.D. degree in electrical engineering at KU Leuven, Fig. 7. Typical optimized power-generating trajectory. Leuven, Belgium.

Electrically vs. mechanically optimised orbits

(negative= good)

 optimized electrical power

 optimized mechanical power

Fig. 10. Comparison in power flows between a mechanically and electrically optimized unconstrained cycle at 10 m/s. (a) Electrically optimized. (b) Mechanically optimized.

Electrically vs. mechanically optimised

16

WP2 System Design and Optimisation

11:35 "Optimal Control of Dual Kites in Pumping Cycle Operation" by Rachel Leuthold (ALUFR)

12:00 "Ground Station Design and Optimization for Airborne Wind Energy" by Mahdi Salari (UL)

12:25 Lunch

13:40 "Multidisciplinary System Design, Safety and Cost Optimisation of AWE" by Ashwin Candade (Enerkite)

14:05 "Grid Integration of Airborne Wind Energy Systems" by Elena Malz (CHAL)