AWESCO — Work Package 4: Control Systems

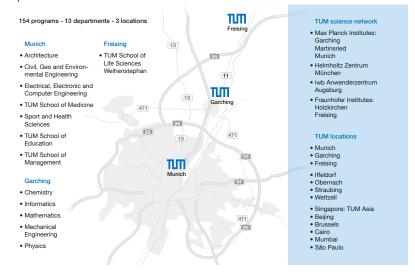
Christoph Hackl

Technische Universität München (TUM) Munich School of Engineering (MSE) Research group "Control of Renewable Energy Systems (CRES)"

www.cres.mse.tum.de

03.03.2016

AWESCO kick-off week Freiburg, Germany

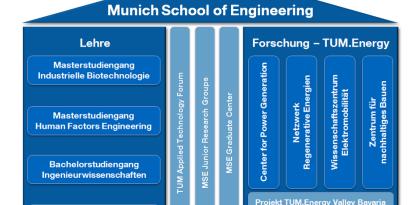

Introduction

- 2 AWESCO Workshop at TUM
- Work Package 4: Control Systems

- 1 Introduction
 - Technische Universität München (TUM)
 - Munich School of Engineering (MSE)
 - MSE Research group "Control of Renewable Energy Systems (CRES)"

Technische Universität München (TUM)

Main campuses



Projekt EEBatt

Munich School of Engineering (MSE)

Integrative research center

Orientierungsprogramm studium MINT

Group "Control of renewable energy systems (CRES)"

H. Eldeeb, M.Sc. (CRES,09/2015)

C. Dirscherl, M.Sc. (CRES,01/2014)

C. Hackl, Dr.-Ing. (CRES,01/2014)

J. Kullick, M.Sc. (CRES,10/2015)

K. Schechner, M.Sc. (CRES,01/2014)

Z. Zhang, M.Sc. (CRES/EAL,07/2015))

External PhD candidates

S. Krüner, M.Sc. (SINNPower,11/2015)

A. Birda, M.Sc. (BMW,04/2016)

... and collaborations with EAL (Prof. Kennel)

F. Bauer, M.Sc. (EAL)

M. Abdelrahem, M.Sc. (EAL)

Group "Control of renewable energy systems (CRES)"

Fields of research

Classical wind turbine systems

Focus: Efficiency and reliability

Airborne wind energy systems

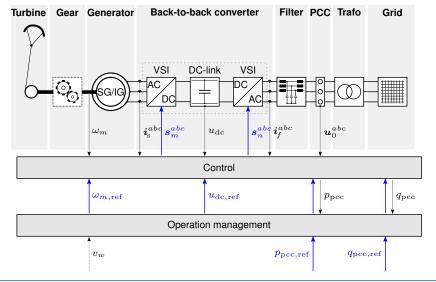
Focus: Fault-tolerant control

Small-scale wind turbines

Focus: Use of RSMs (≤ 50 kW)

Wave converters (with SINN Power GmbH)

Focus: Energy efficiency and robust control


Geothermal power systems

Focus: Fault-tolerant control

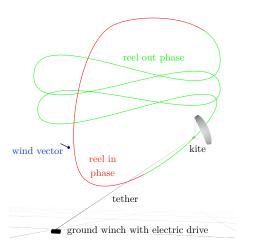
Group "Control of renewable energy systems (CRES)"

Our point of view: Electrical components of e.g. airborne wind energy systems

2 AWESCO Workshop at TUM

AWESCO Workshop at TUM

Check: https://www.cres.mse.tum.de/index.php?id=awescoworkshop


AWESCO H2020 Innovative Training Network Workshop: ACADO/CasADi Training (ALU) and **Electrical Drives Course (TUM)**

Facts

- When: 4nd 8th April 2016
- Where: Technische Universität München (TUM), Garching near München, Germany (see http://portal.mytum.de/campus/roomfinder/getBuildingMap?mapid=80&b_id=5507 for directions)
- Who:
 - Interested AWESCO ESRs and / or
 - Interested external PhD students (workshop fee: 150 € includes coffee/snacks and lunch)
 - Maximum number of participants: 30
- Registration/Application:
 - Deadline: 1st March 2016
 - Please send your application to Christoph Hackl (christoph.hackl@tum.de)
 - External PhD students: Please also attach CV & supervisor's recommendation letter

- Work Package 4: Control Systems
 - Research Objectives
 - Multidisciplinary problem
 - 8 Milestones
 - Tasks and talks

Research Objectives

- robust and fault-tolerant low-level and high-level control algorithms to achieve a reliable and safe operation of the AWE system
- computationally efficient and fast enough algorithms to handle the relevant dynamics of an AWE system
- Control methodologies will be tested on the in-house prototype and also on a large scale setup with complimentary secondments in industry and academia.

Multidisciplinary problem

Aerospace		Electrical			
	Control Engineering	(Me	echanical Engineering		
Engineering		Engineering			
	fault-tolerant,		mechanics &		
areodynamics	robust,	electrical machines			
	& optimal control		multibody physics		
computational		hybrid systems			
	system identification	1	sensor fusion		
fluid dynamics		embedded comp.			
	fault detection/		product		
materials & structures power electronics					
	condition monit.		development		

8 Milestones (as in Grant Agreement)

MS19	Electrical drive simulation models and controllers including fault handling developed	WP4	5 - TUM	24	
MS20	Controllers tested on hardware set-up	WP4	5 - TUM	36	
MS21	Modelling and simulation of AWE system completed	WP4	7 - AMPYX POWER BV	24	
MS22	Automatic launch and recovery of rigid wing	WP4	7 - AMPYX POWER BV	36	
MS23	Control strategy designed and tested on prototype	WP4	l - TU Delft	24	
MS24	Automatic launch and recovery of flexible kites	WP4	l - TU Delft	36	

Milestone number 18	Milestone title	WP number 9	Lead beneficiary	Due Date (in months) 17	Means of verification
MS25	Open-source software produced	WP4	1 - TU Delft	24	Formally responsible for this milestone is TU Delft, implementation is done by ETHZ.
MS26	Validated control strategies on experimental set-	WP4	1 - TU Delft	36	Formally responsible for this milestone is TU Delft, implementation is done by ETHZ

Tasks and corresponding talks

- Task 4.1: Robust and Fault-Tolerant Low-Level Control of the Electrical Drive System (ESR7, TUM)
 Hisham Eldeeb, "Robust Fault-tolerant Control for the Electrical Drive of Airborne Wind Energy Systems"
- Task 4.2: Control of launching and landing the PowerPlane on a launch platform (ESR9, Ampyx)
 Jonas Koenemann, "Modeling Dynamics of the Ampyx AWE System for Launching and Landing Optimization"
- Task 4.3: Robust Automatic Operation of Inflatable Tethered Wings for Power Generation (ESR2, TUD)
 - **Eva Ahbe**, "Airborne Wind Energy at ETH Zurich"
- Task 4.4: Modelling and Periodic Control of Dynamically Uncertain Airfoils (ESR13, ETHZ)
 - **Sebastian Rapp**, "Robust Automatic Operation of Inflatable Tethered Wings for Power Generation"