KU LEUVEN

Large Eddy Simulations of AWE Systems in the Atmospheric Boundary Layer

Thomas Haas, KU Leuven

1. Internal Research Review AWESCO Kick-off Week Feb. 29th – Mar. 4th, 2016 University of Freiburg

- Introduction
- Motivation
- Research problem
- Research plan
- Actual research development
- Outlook

Introduction

- Motivation
- Research problem
- Research plan
- Actual research development
- Outlook

Introduction

Personal background

Personal Background 1 Born 14.10.1989 in France

B.Sc. Mechanical Engineering 2

- Uni. Strasbourg / FH Offenburg
- CFD study of mass flow meters

M.Sc. Engineering Sciences 3

- Technische Universität Berlin
- CFD study of impinging jets

→PhD and AWESCO fellow at KU Leuven 4

Introduction

Katholieke Universiteit Leuven

KU Leuven (founded 1425)

- Science, Engineering & Technology
- Biomedical Sciences
- Humanities and Social Sciences
- →11.000 staff 57.000 students

Turbulent Flow Simulation & Optimization

Prof. Dr. Johan Meyers

1 post doc – 9 PhD students

Research: Numerical methods / Wind energy

3

- Introduction
- Motivation
- Research problem
- Research plan
- Actual research development
- Outlook

Motivation

A little thought experiment ...

Enerkite AWE system in operation [cleanthinking.de]

Motivation

Project description and background

Virtual Wind Environment and Flight Simulator for Airborne Wind Energy Systems (ESR6 – KUL)

Work package WP 1 - Modelling and Simulation

Main tasks

- CFD simulation of AWE systems in the atmospheric bounday layer
- Couple AWE controllers and test in simulation framework

- Introduction
- Motivation
- Research problem
- Research plan
- Actual research development
- Outlook

Statement of research problem (ESR6 – KUL)

Investigation of interaction between **atmospheric boundary** Iayer and AWE systems by means of CFD simulations and optimal control for increased power extraction

Keywords

- Physics of wind boundary layer
- Realistic model of AWE system
- Large Eddy Simulations
- Optimal flight trajectory

Research objective Increase AWES's Power Extraction

Motivation

Atmospheric boundary layer simulation Advantages & challenges

Advantages

Cooperation with academic partners

Simulation of realistic wind conditions
Simulation of single AWES and farms
Numerical optimization methods

Challenges

Cooperation with industrial partners

Validation against experimental data
Resource intensive computations, i.e efficient computing (HPC)

KU LEUVEN

T.Haas Internal Research Review – 02.03.16

- Introduction
- Motivation
- Research problem
- Research plan
- Actual research development
- Outlook

Research plan

Research timeline & main objectives

Research plan

Planned secondments

1. Secondment

Institution: ALU Freiburg Research: Optimal flight trajectory Duration: 3 Months – Summer/Fall 2016

2. Secondment

Institution: Delft University of Technology Research: AWES modelling Duration: 3 Months – 2017

1. Secondment: e.g. model validation

- Introduction
- Motivation
- Research problem
- Research plan
- Actual research development
- Outlook

Actual research development

Simulation methodology

CFD simulation of AWE systems in the atmospheric boundary layer

Computational Fluid Dynamics

- Governing Navier-Stokes equations
- Spatial & temporal discretization
- Boundary & initial conditions
- High performance computing

Actual research development

Large Eddy Simulation (LES)

Large Eddy Simulation of turbulent (atmospheric) flow

- → Large scale flow phenomena are **resolved**
- → Small scale flow phenomena are modelled

Wind farm velocity fields [M.Calaf]

Domain size (km) & grid resolution

 $L_x \times L_y \times H = \pi \times \pi \times 1$ $N_x \times N_y \times N_z = 128^3$

Single cell (m)

 $25 \times 25 \times 10$

Cell Surface up to 600 m²

Actual research development

Large Eddy Simulation (LES)

Large Eddy Simulation (LES) of turbulent (atmospheric) flow

- → Large scale flow phenomena are **resolved**
- → Small scale flow phenomena are modelled

Neutral flow equations [M.Calaf et al.] (continuity, momentum)

$$\partial_{i}\tilde{u}_{i} = 0,$$

$$\partial_{t}\tilde{u}_{i} + \partial_{j}(\tilde{u}_{i}\tilde{u}_{j}) = -\partial_{i}\tilde{p}^{*} - \partial_{j}\tau_{ij} - f_{i} - \delta_{i1}\partial_{1}p_{\infty}/\rho,$$

Aerodynamic forces of kite and tether are added to the flow

KU LEUV

Modelling aerodynamic forces

Aerodynamic forces of kite

- Lift force
- Drag force
- Weight

Further improvement

- Airfoil data
- Kite as multibody system
- Add tether forces

KU LEUV

- Introduction
- Motivation
- Research problem
- Research plan
- Actual research development
- Outlook

Conclusion

Main tasks

- LES simulations of AWE systems in the atmospheric boundary layer
- Coupling CFD framework and controller to create test environment

Next steps

Finish AWES model and perform first simulations

Cooperation

- Planned (ALU-FR/TUD) and additional secondments
- Ensure compatiblity between model and controllers
- Cooperation for model validation

Thank you

