Modeling and control design for kite power systems - Airborne Wind Energy at ETH Zurich

AWESCO kick-off week Freiburg, Germany 03 March, 2016

Eva Ahbe

Tony A. Wood, Henrik Hesse, Aldo U. Zgraggen, and Roy S. Smith

Automatic Control Laboratory, ETH Zurich

Outline

Introduction

AWE projects at ETH

Control approach

Challenges

Research plan

Outline

Introduction

AWE projects at ETH

Control approach

Challenges

Research plan

Introducing myself

Background

- ▶ B.Sc. and M.Sc in Physics at Heidelberg University, Germany
- Focus in M.Sc on environmental physics
- Master thesis and predoctoral researcher at Carnegie Institution for Science, Stanford, USA

PhD at ETH Zurich

- Starting date 1. September 2015
- Research in modeling of kite dynamics and control design

Outline

Introduction

AWE projects at ETH

Control approach

Challenges

Research plan

- CCEM Project: Swiss Kite Power (2010-2013)
 - Foundation for control and modelling work

- CCEM Project: Swiss Kite Power (2010-2013)
 - Foundation for control and modelling work
- CTI Project: Together with TwingTec (2013-2015, 2016-)
 - Technology transfer between universities and industry in Switzerland

swiss

kite power

- CCEM Project: Swiss Kite Power (2010-2013)
 - Foundation for control and modelling work
- CTI Project: Together with TwingTec (2013-2015, 2016-)
 - Technology transfer between universities and industry in Switzerland
- SNF Project: A²WE (2013-2016)
 - Aerodynamic modelling of kites
 - System identification for periodic operation

- CCEM Project: Swiss Kite Power (2010-2013)
 - Foundation for control and modelling work
- CTI Project: Together with TwingTec (2013-2015, 2016-)
 - Technology transfer between universities and industry in Switzerland

swiss

kite powe

- SNF Project: A²WE (2013-2016)
 - Aerodynamic modelling of kites
 - System identification for periodic operation
- European Horizon 2020: AWESCO (2015-)
 - Modelling, control and optimisation

 Two-line kite systems (soft & rigid) for pumping cycles, ground-based steering and power generation

- Two-line kite systems (soft & rigid) for pumping cycles, ground-based steering and power generation
- Development of control algorithms for autonomous flight

- Two-line kite systems (soft & rigid) for pumping cycles, ground-based steering and power generation
- Development of control algorithms for autonomous flight
- Modelling, system identification and estimation of kite systems

- Two-line kite systems (soft & rigid) for pumping cycles, ground-based steering and power generation
- Development of control algorithms for autonomous flight
- Modelling, system identification and estimation of kite systems
- Real-world test flights

Outline

Introduction

AWE projects at ETH

Control approach

Challenges

Research plan

Control aim and strategy

► Goal: Fully autonomous periodic figure eight in power zone

Control aim and strategy

► Goal: Fully autonomous periodic figure eight in power zone

Kite system

Heading angle estimation

Control variable: Heading angle

Heading angle estimation

[Fagiano et al., TCST, 2014]

Low-level controller

Control input:

Line length difference δ

Low-level controller

Control input: Line length difference δ

Simple steering law

 $\dot{\gamma}(t)\simeq K\delta(t)$

• Linear in
$$\delta$$
, approx. constant K.

[Fagiano et al., TCST, 2014]

High-level controller

Guidance strategy: Switching points for reference heading angle

[Fagiano et al., TCST, 2014]

High-level controller

Guidance strategy: Switching points for reference heading angle

 New approach: model based path following (LQR)

[Fagiano et al., TCST, 2014], [Wood et al., CDC, 2015]

Outline

Introduction

AWE projects at ETH

Control approach

Challenges

Research plan

Estimation of kite dynamics

Better estimates of kite position, velocity, heading angle

Sensor fusion:

 Range-inertial estimation using UWB sensors and IMUs [Millane et al., CDC, 2015]

Estimation of kite dynamics

Better estimates of kite position, velocity, heading angle

Sensor fusion:

 Range-inertial estimation using UWB sensors and IMUs [Millane et al., CDC, 2015]

Visual motion tracking (VMT):

- Novel VMT algorithm to reliably locate the position of the wing
- Make it applicable in real-time (100Hz) [Polzin et al., Poster AWEC, 2015]

Including time delay in control design

 Delay t_d between steering input at ground-station and estimated heading angle caused by kite dynamics and estimation.

Observed steering law: $\dot{\gamma}(t) = K\delta(t - t_d)$

- Smith predictor design to compensate input delay
- Delay limits the signal that can be tracked

Including time delay in control design

Delay t_d between steering input at ground-station and estimated heading angle caused by kite dynamics and estimation.

Observed steering law: $\dot{\gamma}(t) = K\delta(t - t_d)$

Smith predictor design to compensate input delay

Delay limits the signal that can be tracked

Flight experiments with delay compensation

(Flight experiment with delay compensation)

Outline

Introduction

AWE projects at ETH

Control approach

Challenges

Research plan

Research projects

- Modeling of kite dynamics: find improved model formulations, more accurate but still feasible in real-time control (e.g. account for varying kite velocity)
- Control design: employing nMPC for model-based path planning and flight control, use in cascaded control strategy

Research projects

- Modeling of kite dynamics: find improved model formulations, more accurate but still feasible in real-time control (e.g. account for varying kite velocity)
- Control design: employing nMPC for model-based path planning and flight control, use in cascaded control strategy
- Explore new state estimation approach with a dynamically moving camera tracking system
 - Real-time detection of key features of the kite (heading angle, shape deformation, line angles)

Research projects

- Modeling of kite dynamics: find improved model formulations, more accurate but still feasible in real-time control (e.g. account for varying kite velocity)
- Control design: employing nMPC for model-based path planning and flight control, use in cascaded control strategy
- Explore new state estimation approach with a dynamically moving camera tracking system
 - Real-time detection of key features of the kite (heading angle, shape deformation, line angles)
- Modeling of tether dynamics for improved state estimation

First year:

- Literature review, background on kite modeling, control design
- Improve existing models, sketch new control design idea
- Secondment at EPFL (1m): Estimation of periodic orbits

First year:

- Literature review, background on kite modeling, control design
- Improve existing models, sketch new control design idea
- ▶ Secondment at EPFL (1m): Estimation of periodic orbits

Second year:

- > Test, validate model of kite dynamics and control design approach
- Finish first projects, new modeling approach, improve control design
- Secondment at FlySurfer (2m): Periodic orbits of different kite design

First year:

- Literature review, background on kite modeling, control design
- Improve existing models, sketch new control design idea
- ▶ Secondment at EPFL (1m): Estimation of periodic orbits

Second year:

- > Test, validate model of kite dynamics and control design approach
- Finish first projects, new modeling approach, improve control design
- Secondment at FlySurfer (2m): Periodic orbits of different kite design

Third year:

- Continue second year research
- ► Secondment at Skysails (1m): Gather data for uncertain periodic orbits

First year:

- Literature review, background on kite modeling, control design
- Improve existing models, sketch new control design idea
- ▶ Secondment at EPFL (1m): Estimation of periodic orbits

Second year:

- > Test, validate model of kite dynamics and control design approach
- Finish first projects, new modeling approach, improve control design
- Secondment at FlySurfer (2m): Periodic orbits of different kite design

Third year:

- Continue second year research
- ▶ Secondment at Skysails (1m): Gather data for uncertain periodic orbits

Fourth year:

- Wrap up research, final tests
- Write thesis

Thank you! Questions?