

MHE for 3D Motion Tracking Sensor Fusion for AWE Systems

Fabian Girrbach, Jeroen Hol and Moritz Diehl

Xsens Technologies B.V. & Systems Control and Optimization Lab

AWESCO Kick-off Event March 3rd, 2016

Overview

1 Institutions and locations

2 Motivation

3 State Estimation for AWE applications

4 Current research project

5 Research focus

Xsens Technologies - Basic Facts

- Founded in 2000
- Leading innovator in 3D motion tracking technology and products.
- ▶ 65 employees (7 researchers)
- Headquarter in Enschede, the Netherlands
- A Fairchild company

Xsens Technologies - Basic Facts

- Founded in 2000
- Leading innovator in 3D motion tracking technology and products.
- ▶ 65 employees (7 researchers)
- Headquarter in Enschede, the Netherlands
- A Fairchild company
 FAIRCHILD.
- Xsens offices are directly next to the campus
 - Collaborations and discussions.
 - PhD and project students

Enschede - Basic Facts

- ca. 160.000 inhabitants
- located in the eastern part of the Netherlands.
- part of the region Twente
- University of Twente
 - founded in 1961
 - ca. 10.000 students
 - faculties in electrical engineering, mathematics and computer science

Freiburg - Basic Facts

- PhD position in collaboration with Systems Control and Optimization laboratory, Imtek, University Freiburg.
- Expertise of the group of Moritz Diehl in realtime optimization.
- First secondment from January 2016 until today.

Motivation On the Edge to to the Fully Autonomous Age

Fully autonomous systems are on the rise

- Cars and robots
- Consumer electronics
- Renewable Energies

Motivation On the Edge to to the Fully Autonomous Age

Fully autonomous systems are on the rise

- Cars and robots
- Consumer electronics
- Renewable Energies

State estimation is a key technology to guarantee a robust and fail-safe operation for these **complex** systems.

Motivation On the Edge to to the Fully Autonomous Age

Fully autonomous systems are on the rise

- Cars and robots
- Consumer electronics
- Renewable Energies

State estimation is a key technology to guarantee a robust and fail-safe operation for these **complex** systems.

- State estimation
- Control algorithms

State Estimation - The Main Components

Sensor information

- Measured quantities
- Measurement error
- Network topology
- Different frequencies

Estimation algorithm

- Estimate representation
- Online vs. offline
- Underlying model
- Error and uncertainty representation

State Estimation - The Main Components

Sensor information

- Measured quantities
- Measurement error
- Network topology
- Different frequencies

Estimation algorithm

- Estimate representation
- Online vs. offline
- Underlying model
- Error and uncertainty representation

State estimation for complex systems

- Sensor network
 - Capture dynamics
 - Reduce measurement errors
- Advanced estimation algorithm
 - Complex dynamics of system
 - Estimate parameters
 - Cope with uncertainty

State Estimation - The Work Horse

Kalman-Bucy filter (KF)

- Rudolf E. Kálman
- based on the Bayes-Filter

State Estimation - The Work Horse

Kalman-Bucy filter (KF)

- Rudolf E. Kálman
- based on the Bayes-Filter

State Estimation - The Work Horse

Kalman-Bucy filter (KF)

- Rudolf E. Kálman
- based on the Bayes-Filter
 Assumptions:
 - Linear system dynamics
 - Noise sources are Gaussian distributed

Extensions:

- Extended Kalman filter
- Unscented Kalman filter
- Particle filter

State Estimation - The Work Horse

Kalman-Bucy filter (KF) ► Rudolf E. Kálman

- based on the Bayes-Filter
 Assumptions:
 - Linear system dynamics
 - Noise sources are Gaussian distributed

 \mathbf{u}_k

в

 \mathbf{w}_{k+1}

 \mathbf{w}_k

 \mathbf{u}_{k+1}

в

Entrance:

 \mathbf{w}_{k-1}

 \mathbf{u}_{k-1}

в

State Estimation The Kalman Filter vs. Moving Horizon Estimation

Moving Horizon Estimation solves a possibly constrained optimization problem in each filter iteration of the form:

minimize $\frac{1}{2} \sum_{k=1}^{N} \|\bar{y}_{t_k} - y_{t_k}(x_k, w_k)\|^2$

subject to $\dot{x} = F(x, w)$

$$g(x) = 0$$
$$h(x) \ge 0$$

linear, non-linear

convex, non-convex

State Estimation The Kalman Filter vs. Moving Horizon Estimation

Moving Horizon Estimation solves a possibly constrained optimization problem in each filter iteration of the form:

 $\underset{x,w}{\mathsf{minimize}}$

 $\frac{1}{2}\sum_{k=1}^{N} \|\bar{y}_{t_k} - y_{t_k}(x_k, w_k)\|^2$

subject to

$$k=1$$
$$\dot{x} = F(x, w)$$
$$g(x) = 0$$
$$h(x) \ge 0$$

- linear, non-linear
- convex, non-convex

- Measurements in estimation window of horizon N.
- History can be summarized by imposing an arrival cost term.

Combination of state and parameter estimation in one optimization problem.

State Estimation for AWE Applications

- Challenging autonomous systems with high degree of freedom.
- Flexible structures subject to deformation.
- Fast dynamics.
- Many important values of interest which are hard to observe:
 - Angle of attack
 - Aerodynamic forces

State Estimation for AWE Applications

- Challenging autonomous systems with high degree of freedom.
- Flexible structures subject to deformation.
- Fast dynamics.
- Many important values of interest which are hard to observe:
 - Angle of attack
 - Aerodynamic forces

Conclusion

AWE applications represent a perfect application for new state estimation approaches due to the variety of the field (soft and rigid kites) and the complexity of the motion and underlying models.

Current Research Project

Current Research Project

Estimate Orientation

Dead-reckoningSensor fusion

GPS

- Measurements in earth frame
- ▶ Low frequency 4Hz

IMU

- Measurements in body frame
- ▶ High frequency 400Hz

Current Research Project Estimate Orientation using MHE

Model: Rigid Unit Ball $x(t) = \begin{bmatrix} p^{e}(t) \\ \dot{p}^{e}(t) \\ \omega^{e}(t) \\ q^{be}(t) \\ \delta_{ACC} \\ \delta_{GYR} \end{bmatrix} , \quad w(t) = \begin{bmatrix} F^{e}(t) \\ \tau^{e}(t) \end{bmatrix}$

ODE

Current Research Project Estimate Orientation using MHE

NLP: Multiple Shooting

$$\begin{split} \min_{x_1...x_N,w_1...w_{N-1}} & \frac{1}{2} \sum_{k=1}^N \left(\|\bar{y}_{k,\text{GPS}} - y_{\text{GPS}}(x_k, w_k)\|_Q^2 \\ & + \sum_{j=1}^M \|\bar{y}_{j,\text{IMU}} - y_{j,\text{IMU}}(x_k, w_k)\|_W^2 \right) \\ \text{s.t.} & \dot{x} = F(x, w_k) \quad \forall t \in [t_k, t_{k+1}] \\ & (Z_q x_1)^\top (Z_q x_1) = 1 \\ & x_{k+1} = \phi(x_k, w_k) \qquad k = 1 \dots N - 1 \end{split}$$

Current Research Project Estimate Orientation using MHE

- Introduction to main concepts like observability, rotations in 3D, MHE and numerical optimization.
- Comparison to Kalman filter based approach for the problem.
- Formulation of arrival cost for decreasing computational burden of MHE.
- High performance solvers for realtime feasability on embedded devices.
- $\rightarrow\,$ Possible publication for MSC 2016

Research Focus About finding the niche ...

Thank you for your Attention!