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Few words about me...

� Bachelors in Automation Technologies at Politecnico di Milano

� Masters in Robotics, Systems and Control at ETH Zurich

– Internship at ABB Corporate Research Center on Embedded
Model Predictive Control

– Master thesis at Embotech on NMPC

– Research assistant at ETH

� AWESCO fellow at ALUFR
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Challenging control problems:

� strongly nonlinear

� unstable dynamics

� presence of constraints

� ...

→ need for advanced control techniques

→ optimization-based solutions

→ several open questions and challenges

main focus: efficient numerical methods for
embedded optimization
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Sequential Quadratic Programming

Problem formulation:

min
x0,··· ,xN

u0,··· ,uN−1

1

2

N−1∑
i=0

(
xTi Qxi + uTi Rui

)
s.t. x0 − x̄0 = 0

xi+1 = f (xi , ui )

xN = 0

Iterative approximation:

min
x0,··· ,xN

u0,··· ,uN−1

1

2

N−1∑
i=0

(
xTi Qxi + uTi Rui

)
s.t. x0 − x̄0 = 0

xi+1 = f (xki , u
k
i ) + Ak

i (xi − xki ) + Bk
i (ui − uki )

xN = 0
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→ use a local quadratic approximation
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� no sensitivity generation

� offline condensing

→ only QP solve and forward simulation [Bock et al, 2007]

→ how is stability affected?
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Result: stability can be guaranteed
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→ stability preserved [Zanelli, Quirynen, Diehl - 2016 (submitted)]

→ feasibility guaranteed

→ computational burden reduced up to 70%
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Efficient Linear Algebra for Embedded Optimization

� main operations boil down
to linear algebra routines:

– matrix multiplications
– matrix factorizations
– ...

� main computational
bottleneck

� how to improve efficiency?

– reduce algorithm
complexity

– optimize code efficiency

� modern CPUs have complex
architectures:

– caching effects
– vectorized instruction
– highly pipelined

� how much do we gain? a lot!
[Frison, 2013]
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Scope and Project Plan

Objectives:

� tackle challenging control problems in AWE applications

� development of novel numerical methods

� efficiency at both algorithmic and implementation level

Secondments:

� Chalmers - 2 months

� Makani - 2 months

� ETH Zurich - 2 months
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