Two-Stage Robust Integer Programming

Wolfram Wiesemann, Grani A. Hanasusanto, Daniel Kuhn³

¹Imperial College Business School, London, UK

²Department of Computing, Imperial College London, UK

³Risk Analytics and Optimization Chair, École Polytechnique Fédérale de Lausanne, Switzerland

Two-Stage Robust Integer Programs

Two-Stage Robust Integer Program:

Two-Stage Robust Integer Programs

Two-Stage Robust Integer Program:

Mathematical Formulation:

Two-Stage Robust Integer Programs

Two-Stage Robust Integer Program:

Mathematical Formulation:

$$\begin{array}{ll} \text{minimize} & \max_{\boldsymbol{\xi} \in \Xi} \left[\boldsymbol{\xi}^\top \boldsymbol{C} \, \boldsymbol{x} + \min_{\boldsymbol{y} \in \mathcal{Y}} \left\{ \boldsymbol{\xi}^\top \boldsymbol{Q} \, \boldsymbol{y} \, : \, \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y} \leq \boldsymbol{H} \boldsymbol{\xi} \right\} \right] \\ \text{subject to} & \boldsymbol{x} \in \mathcal{X} \end{array}$$

Applications:

operations mgmt.

investment planning

game theory

```
\begin{array}{ll} \text{minimize} & \max_{\boldsymbol{\xi} \in \Xi} \left[ \boldsymbol{\xi}^\top \boldsymbol{C} \, \boldsymbol{x} + \min_{\boldsymbol{y} \in \mathcal{Y}} \left\{ \boldsymbol{\xi}^\top \boldsymbol{Q} \, \boldsymbol{y} \, : \, \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y} \leq \boldsymbol{H} \boldsymbol{\xi} \right\} \right] \\ \text{subject to} & \boldsymbol{x} \in \mathcal{X} \end{array}
```

1 Exact Approaches: not available

- 1 Exact Approaches: not available
- 2 Sampling-Based Approximations:

- 1 Exact Approaches: not available
- 2 Sampling-Based Approximations: progressive approximation

- 1 Exact Approaches: not available
- 2 Sampling-Based Approximations: progressive approximation
- **3** Space-Partitioning Approximations:


```
\begin{array}{|c|c|c|c|c|}\hline \text{minimize} & \max_{\boldsymbol{\xi} \in \Xi} \left[ \boldsymbol{\xi}^\top \boldsymbol{C} \, \boldsymbol{x} + \min_{\boldsymbol{y} \in \mathcal{Y}} \left\{ \boldsymbol{\xi}^\top \boldsymbol{Q} \, \boldsymbol{y} \, : \, \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y} \leq \boldsymbol{H} \boldsymbol{\xi} \right\} \right] \\ \text{subject to} & \boldsymbol{x} \in \mathcal{X} \end{array}
```

- 1 Exact Approaches: not available
- 2 Sampling-Based Approximations: progressive approximation
- 3 Space-Partitioning Approximations: exponential growth

$$\max_{\xi \in [0,1]^2} \min_{y \in \{0,1\}} \left\{ y - \xi_1 - \xi_2 : y \ge \xi_1 + \xi_2 - 1 \right\}$$

K-Adaptability Problem: Bertsimas and Caramanis (2010)

K-Adaptability Problem: Bertsimas and Caramanis (2010)

K-Adaptability Problem: Bertsimas and Caramanis (2010)

K-Adaptability Problem: Bertsimas and Caramanis (2010)

How good is the approximation?

K-Adaptability Problem: Bertsimas and Caramanis (2010)

How good is the approximation, and can we solve it?

The *K*-Adaptability Problem:

Objective Uncertainty

The K-Adaptability Problem with Objective Uncertainty:

Objective Uncertainty

The K-Adaptability Problem with Objective Uncertainty:

The K-Adaptability Problem with Objective Uncertainty:

$$\begin{array}{ll} \text{minimize} & \max_{\boldsymbol{\xi} \in \Xi} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \min_{k \in \mathcal{K}} \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^{k} \right] \\ \text{subject to} & \boldsymbol{x} \in \mathcal{X}, \ \boldsymbol{y}^{k} \in \mathcal{Y}, \ \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^{k} \leq \boldsymbol{h}, \, k \in \mathcal{K} \end{array}$$

How good is the approximation?

The K-Adaptability Problem with Objective Uncertainty:

$$\begin{array}{|c|c|c|c|c|c|}\hline \text{minimize} & \max_{\boldsymbol{\xi} \in \Xi} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \min_{k \in \mathcal{K}} \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^{k} \right] \\ \text{subject to} & \boldsymbol{x} \in \mathcal{X}, \ \boldsymbol{y}^{k} \in \mathcal{Y}, \ \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^{k} \leq \boldsymbol{h}, \, k \in \mathcal{K} \end{array}$$

How good is the approximation?

Theorem (Objective Uncertainty): The K-Adaptability Problem attains the same objective value as the Two-Stage Robust Integer Program whenever $K \ge \min\{\dim \mathcal{Y}, \dim \Xi\} + 1$.

Theorem (Objective Uncertainty): The K-Adaptability Problem attains the same objective value as the Two-Stage Robust Integer Program whenever $K \ge \min\{\dim \mathcal{Y}, \dim \Xi\} + 1$.

Proof Outline: for $K \ge \dim \mathcal{Y} + 1$

Consider the \overline{K} -Adaptability Problem with $\overline{K} = \{1, \dots, \overline{K} = |\mathcal{Y}|\}$:

minimize
$$\max_{\boldsymbol{\xi} \in \Xi} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \min_{k \in \overline{\mathcal{K}}} \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^{k} \right]$$
subject to $\boldsymbol{x} \in \mathcal{X}, \ \boldsymbol{y}^{k} \in \mathcal{Y}, \ \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^{k} \leq \boldsymbol{h}, \ k \in \overline{\mathcal{K}}$

Theorem (Objective Uncertainty): The K-Adaptability Problem attains the same objective value as the Two-Stage Robust Integer Program whenever $K \ge \min\{\dim \mathcal{Y}, \dim \Xi\} + 1$.

Proof Outline: for $K \ge \dim \mathcal{Y} + 1$

Consider the \overline{K} -Adaptability Problem with $\overline{K} = \{1, \dots, \overline{K} = |\mathcal{Y}|\}$:

$$\begin{array}{ll} \text{minimize} & \max_{\boldsymbol{\xi} \in \Xi} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \!\!\! \min_{k \in \overline{\mathcal{K}}} \!\!\! \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^{k} \right] \\ \text{subject to} & \boldsymbol{x} \in \mathcal{X}, \ \boldsymbol{y}^{k} \in \mathcal{Y}, \ \boldsymbol{T} \boldsymbol{x} + \!\!\!\! \boldsymbol{W} \boldsymbol{y}^{k} \leq \boldsymbol{h}, \, k \in \overline{\mathcal{K}} \\ & \underset{k \in \overline{\mathcal{K}}}{\min} \, \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^{k} \, = \, \min_{\boldsymbol{\lambda} \in \Delta_{\overline{K}}} \, \sum_{k \in \overline{\mathcal{K}}} \boldsymbol{\lambda}_{k} \cdot \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^{k} \\ & \underset{k \in \overline{\mathcal{K}}}{\min} \, \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^{k} \, = \, \min_{\boldsymbol{\lambda} \in \Delta_{\overline{K}}} \, \sum_{k \in \overline{\mathcal{K}}} \boldsymbol{\lambda}_{k} \cdot \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^{k} \end{array}$$

where $\Delta_{\overline{K}}$ denotes the unit simplex in $\mathbb{R}^{\overline{K}}$.

 \overline{K} -Adaptability Problem

Theorem (Objective Uncertainty): The K-Adaptability Problem attains the same objective value as the Two-Stage Robust Integer Program whenever $K \ge \min\{\dim \mathcal{Y}, \dim \Xi\} + 1$.

Proof Outline: for $K \ge \dim \mathcal{Y} + 1$

Consider the \overline{K} -Adaptability Problem with $\overline{K} = \{1, \dots, \overline{K} = |\mathcal{Y}|\}$:

minimize
$$\max_{\boldsymbol{\xi} \in \Xi} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \min_{\boldsymbol{\lambda} \in \Delta_{\overline{K}}} \, \sum_{k \in \overline{\mathcal{K}}} \boldsymbol{\lambda}_k \cdot \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^k \right]$$
subject to $\boldsymbol{x} \in \mathcal{X}, \ \boldsymbol{y}^k \in \mathcal{Y}, \ \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^k \leq \boldsymbol{h}, \ k \in \overline{\mathcal{K}}$

Theorem (Objective Uncertainty): The K-Adaptability Problem attains the same objective value as the Two-Stage Robust Integer Program whenever $K \ge \min\{\dim \mathcal{Y}, \dim \Xi\} + 1$.

Proof Outline: for $K \ge \dim \mathcal{Y} + 1$

Use Minimax Theorem to exchange order of max and min:

minimize
$$\min_{\boldsymbol{\lambda} \in \Delta_{\overline{K}}} \max_{\boldsymbol{\xi} \in \Xi} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \sum_{k \in \overline{\mathcal{K}}} \boldsymbol{\lambda}_{k} \cdot \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^{k} \right]$$
subject to $\boldsymbol{x} \in \mathcal{X}, \ \boldsymbol{y}^{k} \in \mathcal{Y}, \ \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^{k} \leq \boldsymbol{h}, \ k \in \overline{\mathcal{K}}$

Theorem (Objective Uncertainty): The K-Adaptability Problem attains the same objective value as the Two-Stage Robust Integer Program whenever $K \ge \min\{\dim \mathcal{Y}, \dim \Xi\} + 1$.

Proof Outline: for $K \ge \dim \mathcal{Y} + 1$

Combine minimization problems:

$$\begin{array}{ll} \text{minimize} & \max_{\boldsymbol{\xi} \in \Xi} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \sum_{k \in \overline{\mathcal{K}}} \boldsymbol{\lambda}_k \cdot \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^k \right] \\ \text{subject to} & \boldsymbol{x} \in \mathcal{X}, \ \boldsymbol{y}^k \in \mathcal{Y}, \ \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^k \leq \boldsymbol{h}, \, k \in \overline{\mathcal{K}}, \\ \boldsymbol{\lambda} \in \Delta_{\overline{\mathcal{K}}} \end{array}$$

Theorem (Objective Uncertainty): The K-Adaptability Problem attains the same objective value as the Two-Stage Robust Integer Program whenever $K \ge \min\{\dim \mathcal{Y}, \dim \Xi\} + 1$.

Proof Outline: for $K \ge \dim \mathcal{Y} + 1$

Reformulate objective function:

$$\begin{array}{ll} \text{minimize} & \max_{\boldsymbol{\xi} \in \Xi} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \boldsymbol{\xi}^{\top} \boldsymbol{Q} \cdot \sum_{k \in \overline{\mathcal{K}}} \boldsymbol{\lambda}_k \boldsymbol{y}^k \right] \\ \text{subject to} & \boldsymbol{x} \in \mathcal{X}, \ \boldsymbol{y}^k \in \mathcal{Y}, \ \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^k \leq \boldsymbol{h}, \ k \in \overline{\mathcal{K}}, \\ & \boldsymbol{\lambda} \in \Delta_{\overline{K}} \end{array}$$

Theorem (Objective Uncertainty): The K-Adaptability Problem attains the same objective value as the Two-Stage Robust Integer Program whenever $K \ge \min\{\dim \mathcal{Y}, \dim \Xi\} + 1$.

Proof Outline: for $K \ge \dim \mathcal{Y} + 1$

Apply Carathéodory's Theorem:

minimize
$$\max_{\boldsymbol{\xi} \in \Xi} \begin{bmatrix} \boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \boldsymbol{\xi}^{\top} \boldsymbol{Q} & \sum_{k \in \overline{\mathcal{K}}} \boldsymbol{\lambda}_k \boldsymbol{y}^k \end{bmatrix}$$
 subject to $\boldsymbol{x} \in \mathcal{X}, \ \boldsymbol{y}^k \in \mathcal{Y}, \ \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^k \leq \boldsymbol{h}, \ k \in \overline{\mathcal{K}},$ $\boldsymbol{\lambda} \in \Delta_{\overline{K}}$ \boldsymbol{y}^9 \boldsymbol{y}^1 \boldsymbol{y}^2 \boldsymbol{y}^3 \boldsymbol{y}^4 \boldsymbol{y}^6 \boldsymbol{y}^5

Theorem (Objective Uncertainty): The K-Adaptability Problem attains the same objective value as the Two-Stage Robust Integer Program whenever $K \ge \min\{\dim \mathcal{Y}, \dim \Xi\} + 1$.

Proof Outline: for $K \ge \dim \mathcal{Y} + 1$

Apply Carathéodory's Theorem:

minimize
$$\max_{\boldsymbol{\xi} \in \Xi} \begin{bmatrix} \boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \boldsymbol{\xi}^{\top} \boldsymbol{Q} & \sum_{k \in \overline{\mathcal{K}}} \boldsymbol{\lambda}_k \boldsymbol{y}^k \end{bmatrix}$$
 subject to $\boldsymbol{x} \in \mathcal{X}, \ \boldsymbol{y}^k \in \mathcal{Y}, \ \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^k \leq \boldsymbol{h}, \ k \in \overline{\mathcal{K}},$

Theorem (Objective Uncertainty): The K-Adaptability Problem attains the same objective value as the Two-Stage Robust Integer Program whenever $K \ge \min\{\dim \mathcal{Y}, \dim \Xi\} + 1$.

Proof Outline: for $K \ge \dim \mathcal{Y} + 1$

Apply Carathéodory's Theorem:

minimize
$$\max_{\boldsymbol{\xi} \in \Xi} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \boldsymbol{\xi}^{\top} \boldsymbol{Q} \cdot \sum_{k \in \mathcal{K}} \boldsymbol{\lambda}_{k} \boldsymbol{y}^{k} \right]$$
 subject to $\boldsymbol{x} \in \mathcal{X}, \ \boldsymbol{y}^{k} \in \mathcal{Y}, \ \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^{k} \leq \boldsymbol{h}, \boldsymbol{k} \in \mathcal{K},$ $\boldsymbol{\lambda} \in \Delta_{\boldsymbol{K}}$

where $\mathcal{K} = \{1, \dots, K = \dim \mathcal{Y} + 1\}$.

Theorem (Objective Uncertainty): The K-Adaptability Problem attains the same objective value as the Two-Stage Robust Integer Program whenever $K \ge \min\{\dim \mathcal{Y}, \dim \Xi\} + 1$.

Proof Outline: for $K \ge \dim \mathcal{Y} + 1$

Separate the two minimizations:

minimize
$$\min_{\boldsymbol{\lambda} \in \Delta_K} \max_{\boldsymbol{\xi} \in \Xi} \left[\boldsymbol{\xi}^\top \boldsymbol{C} \, \boldsymbol{x} + \sum_{k \in \mathcal{K}} \boldsymbol{\lambda}_k \cdot \boldsymbol{\xi}^\top \boldsymbol{Q} \, \boldsymbol{y}^k \right]$$
subject to $\boldsymbol{x} \in \mathcal{X}, \ \boldsymbol{y}^k \in \mathcal{Y}, \ \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^k \leq \boldsymbol{h}, \ k \in \mathcal{K}$

Theorem (Objective Uncertainty): The K-Adaptability Problem attains the same objective value as the Two-Stage Robust Integer Program whenever $K \ge \min\{\dim \mathcal{Y}, \dim \Xi\} + 1$.

Proof Outline: for $K \ge \dim \mathcal{Y} + 1$

Use Minimax Theorem to exchange order of min and max:

minimize
$$\max_{\boldsymbol{\xi} \in \Xi} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \min_{\boldsymbol{\lambda} \in \Delta_K} \sum_{k \in \mathcal{K}} \boldsymbol{\lambda}_k \cdot \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^k \right]$$
subject to $\boldsymbol{x} \in \mathcal{X}, \ \boldsymbol{y}^k \in \mathcal{Y}, \ \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^k \leq \boldsymbol{h}, \ k \in \mathcal{K}$

Theorem (Objective Uncertainty): The K-Adaptability Problem attains the same objective value as the Two-Stage Robust Integer Program whenever $K \ge \min\{\dim \mathcal{Y}, \dim \Xi\} + 1$.

Proof Outline: for $K \ge \dim \mathcal{Y} + 1$

We recover the *K*-Adaptability Problem:

minimize
$$\max_{\boldsymbol{\xi} \in \Xi} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \min_{k \in \mathcal{K}} \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^{k} \right]$$
subject to $\boldsymbol{x} \in \mathcal{X}, \ \boldsymbol{y}^{k} \in \mathcal{Y}, \ \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^{k} \leq \boldsymbol{h}, \ k \in \mathcal{K}$

The K-Adaptability Problem with Objective Uncertainty:

$$\begin{array}{ll} \text{minimize} & \max_{\boldsymbol{\xi} \in \Xi} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \min_{k \in \mathcal{K}} \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^{k} \right] \\ \text{subject to} & \boldsymbol{x} \in \mathcal{X}, \ \boldsymbol{y}^{k} \in \mathcal{Y}, \ \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^{k} \leq \boldsymbol{h}, \, k \in \mathcal{K} \end{array}$$

Can we solve the approximation?

The K-Adaptability Problem with Objective Uncertainty:

Can we solve the approximation?

Theorem (Objective Uncertainty): The *K*-Adaptability Problem has equivalent MILP reformulation whose size scales *polynomially* in the problem data.

Theorem (Objective Uncertainty): The *K*-Adaptability Problem has equivalent MILP reformulation whose size scales *polynomially* in the problem data.

Proof Outline:

Consider the K-Adaptability Problem:

minimize
$$\max_{\boldsymbol{\xi} \in \Xi} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \min_{k \in \mathcal{K}} \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^{k} \right]$$
subject to $\boldsymbol{x} \in \mathcal{X}, \ \boldsymbol{y}^{k} \in \mathcal{Y}, \ \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^{k} \leq \boldsymbol{h}, \ k \in \mathcal{K}$

Theorem (Objective Uncertainty): The *K*-Adaptability Problem has equivalent MILP reformulation whose size scales *polynomially* in the problem data.

Proof Outline:

Epigraph reformulation of inner min:

minimize
$$\max_{\substack{\boldsymbol{\xi} \in \Xi, \\ \tau \in \mathbb{R}}} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \boldsymbol{\tau} \, : \, \boldsymbol{\tau} \leq \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^{k} \; \forall k \in \mathcal{K} \right]$$
subject to $\boldsymbol{x} \in \mathcal{X}, \; \boldsymbol{y}^{k} \in \mathcal{Y}, \; \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^{k} \leq \boldsymbol{h}, \, k \in \mathcal{K}$

Objective Uncertainty: Tractability

Theorem (Objective Uncertainty): The *K*-Adaptability Problem has equivalent MILP reformulation whose size scales *polynomially* in the problem data.

Proof Outline:

Strong LP duality:

minimize
$$\min_{\substack{\boldsymbol{\alpha} \in \mathbb{R}_+^K, \\ \boldsymbol{\beta} \in \mathbb{R}_+^K}} \left[\boldsymbol{b}^\top \boldsymbol{\alpha} : \boldsymbol{A}^\top \boldsymbol{\alpha} = \boldsymbol{C} \boldsymbol{x} + \sum_{k \in \mathcal{K}} \boldsymbol{\beta}_k \boldsymbol{Q} \boldsymbol{y}^k, \quad \mathbf{e}^\top \boldsymbol{\beta} = 1 \right]$$
 subject to $\boldsymbol{x} \in \mathcal{X}, \quad \boldsymbol{y}^k \in \mathcal{Y}, \quad \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^k \leq \boldsymbol{h}, \quad k \in \mathcal{K}$

Objective Uncertainty: Tractability

Theorem (Objective Uncertainty): The *K*-Adaptability Problem has equivalent MILP reformulation whose size scales *polynomially* in the problem data.

Proof Outline:

Strong LP duality:

minimize
$$\boldsymbol{b}^{\top}\boldsymbol{\alpha}$$

subject to $\boldsymbol{x} \in \mathcal{X}, \ \boldsymbol{y}^k \in \mathcal{Y}, \ \boldsymbol{T}\boldsymbol{x} + \boldsymbol{W}\boldsymbol{y}^k \leq \boldsymbol{h}, \ k \in \mathcal{K}$
 $\boldsymbol{\alpha} \in \mathbb{R}_+^R, \ \boldsymbol{\beta} \in \mathbb{R}_+^K, \ \boldsymbol{A}^{\top}\boldsymbol{\alpha} = \boldsymbol{C}\boldsymbol{x} + \sum_{k \in \mathcal{K}} \boldsymbol{\beta}_k \boldsymbol{Q}\boldsymbol{y}^k, \ \mathbf{e}^{\top}\boldsymbol{\beta} = 1$

Objective Uncertainty: Tractability

Theorem (Objective Uncertainty): The *K*-Adaptability Problem has equivalent MILP reformulation whose size scales *polynomially* in the problem data.

Proof Outline:

Strong LP duality:

minimize
$$\boldsymbol{b}^{\top}\boldsymbol{\alpha}$$

subject to $\boldsymbol{x} \in \mathcal{X}, \ \boldsymbol{y}^k \in \mathcal{Y}, \ \boldsymbol{T}\boldsymbol{x} + \boldsymbol{W}\boldsymbol{y}^k \leq \boldsymbol{h}, \ k \in \mathcal{K}$
 $\boldsymbol{\alpha} \in \mathbb{R}_+^R, \ \boldsymbol{\beta} \in \mathbb{R}_+^K, \ \boldsymbol{A}^{\top}\boldsymbol{\alpha} = \boldsymbol{C}\boldsymbol{x} + \sum_{k \in \mathcal{K}} \boldsymbol{\beta}_k \boldsymbol{Q}\boldsymbol{y}^k, \ \mathbf{e}^{\top}\boldsymbol{\beta} = 1$

Linearize bilinear terms: via auxiliary variables $z^k \in \mathbb{R}_+^M, k \in \mathcal{K}$

$$z^k = \beta_k y^k \iff z^k \le y^k, \ z^k \le \beta_k e, \ z^k \ge (\beta_k - 1)e + y^k$$

Epigraph Reformulation

Dualize Inner Problem

Exact Linearization

Summary

The *K*-Adaptability Problem:

Objective Uncertainty:

- * *strong* approximation guarantees
- MILP reformulation that scales polynomially

Constraint Uncertainty

The K-Adaptability Problem with Constraint Uncertainty:

Constraint Uncertainty: Approximation Quality

The K-Adaptability Problem with Constraint Uncertainty:

$$\left[\begin{array}{ll} \text{minimize} & \max_{\boldsymbol{\xi} \in \Xi} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \min_{k \in \mathcal{K}} \left\{ \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^{k} \, : \, \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^{k} \leq \boldsymbol{H} \boldsymbol{\xi} \right\} \right] \\ \text{subject to} & \boldsymbol{x} \in \mathcal{X}, \;\; \boldsymbol{y}^{k} \in \mathcal{Y}, \, k \in \mathcal{K} \end{array} \right]$$

How good is the approximation?

Constraint Uncertainty: Approximation Quality

The K-Adaptability Problem with Constraint Uncertainty:

$$\left[\begin{array}{ll} \text{minimize} & \max_{\boldsymbol{\xi} \in \Xi} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \min_{k \in \mathcal{K}} \left\{ \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^{k} \, : \, \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^{k} \leq \boldsymbol{H} \boldsymbol{\xi} \right\} \right] \\ \text{subject to} & \boldsymbol{x} \in \mathcal{X}, \;\; \boldsymbol{y}^{k} \in \mathcal{Y}, \, k \in \mathcal{K} \end{array} \right]$$

How good is the approximation?

Theorem (Constraint Uncertainty): The K-Adaptability Problem can attain a *strictly larger objective value* than the Two-Stage Robust Integer Program whenever $K < |\mathcal{Y}|$.

The K-Adaptability Problem with Constraint Uncertainty:

$$\left[\begin{array}{ll} \text{minimize} & \max_{\boldsymbol{\xi} \in \Xi} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \min_{k \in \mathcal{K}} \left\{ \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^{k} \, : \, \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^{k} \leq \boldsymbol{H} \boldsymbol{\xi} \right\} \right] \\ \text{subject to} & \boldsymbol{x} \in \mathcal{X}, \ \boldsymbol{y}^{k} \in \mathcal{Y}, \, k \in \mathcal{K} \end{array} \right]$$

Can we solve the approximation?

The K-Adaptability Problem with Constraint Uncertainty:

$$\left[\begin{array}{ll} \text{minimize} & \max_{\boldsymbol{\xi} \in \Xi} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \min_{k \in \mathcal{K}} \left\{ \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^{k} \, : \, \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^{k} \leq \boldsymbol{H} \boldsymbol{\xi} \right\} \right] \\ \text{subject to} & \boldsymbol{x} \in \mathcal{X}, \ \boldsymbol{y}^{k} \in \mathcal{Y}, \, k \in \mathcal{K} \end{array} \right]$$

Can we solve the approximation?

Theorem (Constraint Uncertainty): The K-Adaptability Problem has an equivalent MILP reformulation that scales *exponentially* in the number of policies K (but *polynomially* in other problem data).

Theorem (Constraint Uncertainty): The *K*-Adaptability Problem has an equivalent MILP reformulation that scales *exponentially* in the number of policies *K* (but *polynomially* in other problem data).

Proof Outline: Consider the 2-Adaptability Problem:

Theorem (Constraint Uncertainty): The K-Adaptability Problem has an equivalent MILP reformulation that scales *exponentially* in the number of policies K (but *polynomially* in other problem data).

minimize
$$\max_{\boldsymbol{\xi} \in \Xi} \left[\boldsymbol{\xi}^\top \boldsymbol{C} \, \boldsymbol{x} + \min_{k \in \{1,2\}} \left\{ \boldsymbol{\xi}^\top \boldsymbol{Q} \, \boldsymbol{y}^k : \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^k \leq \boldsymbol{H} \boldsymbol{\xi} \right\} \right]$$
 subject to $\boldsymbol{x} \in \mathcal{X}, \ \boldsymbol{y}^k \in \mathcal{Y}, \ k \in \{1,2\}$

Theorem (Constraint Uncertainty): The *K*-Adaptability Problem has an equivalent MILP reformulation that scales *exponentially* in the number of policies *K* (but *polynomially* in other problem data).

$$\Xi = \Xi(\boldsymbol{y}^1, \boldsymbol{y}^2) \cup \Xi(\boldsymbol{y}^1, \boldsymbol{y}^2) \cup \Xi(\boldsymbol{y}^1, \boldsymbol{y}^2) \cup \Xi(\boldsymbol{y}^1, \boldsymbol{y}^2)$$

Theorem (Constraint Uncertainty): The *K*-Adaptability Problem has an equivalent MILP reformulation that scales *exponentially* in the number of policies *K* (but *polynomially* in other problem data).

$$\max_{\boldsymbol{\xi} \in \Xi} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \min_{k \in \{1,2\}} \left\{ \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^{k} \, : \, \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^{k} \leq \boldsymbol{H} \boldsymbol{\xi} \right\} \right]$$

$$= \max \left\{ \begin{array}{l} \max_{\boldsymbol{\xi} \in \Xi(\boldsymbol{y}^{1}, \boldsymbol{y}^{2})} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \min_{k \in \{1,2\}} \left\{ \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^{k} \, : \, \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^{k} \leq \boldsymbol{H} \boldsymbol{\xi} \right\} \right], \\ \max_{\boldsymbol{\xi} \in \Xi(\boldsymbol{y}^{1}, \boldsymbol{y}^{2})} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \min_{k \in \{1,2\}} \left\{ \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^{k} \, : \, \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^{k} \leq \boldsymbol{H} \boldsymbol{\xi} \right\} \right], \\ \max_{\boldsymbol{\xi} \in \Xi(\boldsymbol{y}^{1}, \boldsymbol{y}^{2})} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \min_{k \in \{1,2\}} \left\{ \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^{k} \, : \, \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^{k} \leq \boldsymbol{H} \boldsymbol{\xi} \right\} \right], \\ \max_{\boldsymbol{\xi} \in \Xi(\boldsymbol{y}^{1}, \boldsymbol{y}^{2})} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \min_{k \in \{1,2\}} \left\{ \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^{k} \, : \, \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^{k} \leq \boldsymbol{H} \boldsymbol{\xi} \right\} \right], \end{array}$$

Theorem (Constraint Uncertainty): The K-Adaptability Problem has an equivalent MILP reformulation that scales *exponentially* in the number of policies K (but *polynomially* in other problem data).

$$\max_{\boldsymbol{\xi} \in \Xi} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \min_{k \in \{1,2\}} \left\{ \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^{k} \, : \, \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^{k} \leq \boldsymbol{H} \boldsymbol{\xi} \right\} \right]$$

$$= \max \left\{ \begin{array}{c} \max_{\boldsymbol{\xi} \in \Xi(\boldsymbol{y}^{1}, \boldsymbol{y}^{2})} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \min_{k \in \{1,2\}} \left\{ \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^{k} \right\} \right], \\ \max_{\boldsymbol{\xi} \in \Xi(\boldsymbol{y}^{1}, \boldsymbol{y}^{2})} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \min_{k \in \{1,2\}} \left\{ \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^{k} \, : \, \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^{k} \leq \boldsymbol{H} \boldsymbol{\xi} \right\} \right], \\ \max_{\boldsymbol{\xi} \in \Xi(\boldsymbol{y}^{1}, \boldsymbol{y}^{2})} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \min_{k \in \{1,2\}} \left\{ \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^{k} \, : \, \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^{k} \leq \boldsymbol{H} \boldsymbol{\xi} \right\} \right], \\ \max_{\boldsymbol{\xi} \in \Xi(\boldsymbol{y}^{1}, \boldsymbol{y}^{2})} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \min_{k \in \{1,2\}} \left\{ \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^{k} \, : \, \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^{k} \leq \boldsymbol{H} \boldsymbol{\xi} \right\} \right], \end{array}$$

Theorem (Constraint Uncertainty): The K-Adaptability Problem has an equivalent MILP reformulation that scales *exponentially* in the number of policies K (but *polynomially* in other problem data).

$$\max_{\boldsymbol{\xi} \in \Xi} \left[\boldsymbol{\xi}^{\top} C \, \boldsymbol{x} + \min_{k \in \{1,2\}} \left\{ \boldsymbol{\xi}^{\top} Q \, \boldsymbol{y}^{k} \, : \, \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^{k} \leq \boldsymbol{H} \boldsymbol{\xi} \right\} \right]$$

$$= \max \left\{ \begin{bmatrix} \max_{\boldsymbol{\xi} \in \Xi(\boldsymbol{y}^{1}, \boldsymbol{y}^{2})} \left[\boldsymbol{\xi}^{\top} C \, \boldsymbol{x} + \min_{k \in \{1,2\}} \left\{ \boldsymbol{\xi}^{\top} Q \, \boldsymbol{y}^{k} \right\} \right], \\ \max_{\boldsymbol{\xi} \in \Xi(\boldsymbol{y}^{1}, \boldsymbol{y}^{2})} \left[\boldsymbol{\xi}^{\top} C \, \boldsymbol{x} + \boldsymbol{\xi}^{\top} Q \, \boldsymbol{y}^{1} \right], \\ \max_{\boldsymbol{\xi} \in \Xi(\boldsymbol{y}^{1}, \boldsymbol{y}^{2})} \left[\boldsymbol{\xi}^{\top} C \, \boldsymbol{x} + \min_{k \in \{1,2\}} \left\{ \boldsymbol{\xi}^{\top} Q \, \boldsymbol{y}^{k} \, : \, \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^{k} \leq \boldsymbol{H} \boldsymbol{\xi} \right\} \right], \\ \max_{\boldsymbol{\xi} \in \Xi(\boldsymbol{y}^{1}, \boldsymbol{y}^{2})} \left[\boldsymbol{\xi}^{\top} C \, \boldsymbol{x} + \min_{k \in \{1,2\}} \left\{ \boldsymbol{\xi}^{\top} Q \, \boldsymbol{y}^{k} \, : \, \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^{k} \leq \boldsymbol{H} \boldsymbol{\xi} \right\} \right],$$

Theorem (Constraint Uncertainty): The *K*-Adaptability Problem has an equivalent MILP reformulation that scales *exponentially* in the number of policies *K* (but *polynomially* in other problem data).

$$\max_{\boldsymbol{\xi} \in \Xi} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \min_{k \in \{1,2\}} \left\{ \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^{k} \, : \, \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^{k} \leq \boldsymbol{H} \boldsymbol{\xi} \right\} \right]$$

$$= \max \left\{ \begin{bmatrix} \max_{\boldsymbol{\xi} \in \Xi(\boldsymbol{y}^{1}, \boldsymbol{y}^{2})} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \min_{k \in \{1,2\}} \left\{ \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^{k} \right\} \right], \\ \max_{\boldsymbol{\xi} \in \Xi(\boldsymbol{y}^{1}, \boldsymbol{y}^{k})} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^{1} \right], \\ \max_{\boldsymbol{\xi} \in \Xi(\boldsymbol{y}^{1}, \boldsymbol{y}^{2})} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^{2} \right], \\ \max_{\boldsymbol{\xi} \in \Xi(\boldsymbol{y}^{1}, \boldsymbol{y}^{2})} \left[\boldsymbol{\xi}^{\top} \boldsymbol{C} \, \boldsymbol{x} + \min_{k \in \{1,2\}} \left\{ \boldsymbol{\xi}^{\top} \boldsymbol{Q} \, \boldsymbol{y}^{k} \, : \, \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^{k} \leq \boldsymbol{H} \boldsymbol{\xi} \right\} \right],$$

Theorem (Constraint Uncertainty): The K-Adaptability Problem has an equivalent MILP reformulation that scales *exponentially* in the number of policies K (but *polynomially* in other problem data).

$$\max_{\boldsymbol{\xi} \in \Xi} \left[\boldsymbol{\xi}^{\top} C \, \boldsymbol{x} + \min_{k \in \{1,2\}} \left\{ \boldsymbol{\xi}^{\top} Q \, \boldsymbol{y}^{k} \, : \, \boldsymbol{T} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y}^{k} \leq \boldsymbol{H} \boldsymbol{\xi} \right\} \right]$$

$$= \max \left\{ \begin{bmatrix} \max_{\boldsymbol{\xi} \in \Xi(\boldsymbol{y}^{1}, \boldsymbol{y}^{2})} \left[\boldsymbol{\xi}^{\top} C \, \boldsymbol{x} + \min_{k \in \{1,2\}} \left\{ \boldsymbol{\xi}^{\top} Q \, \boldsymbol{y}^{k} \right\} \right], \\ \max_{\boldsymbol{\xi} \in \Xi(\boldsymbol{y}^{1}, \boldsymbol{y}^{2})} \left[\boldsymbol{\xi}^{\top} C \, \boldsymbol{x} + \boldsymbol{\xi}^{\top} Q \, \boldsymbol{y}^{1} \right], \\ \max_{\boldsymbol{\xi} \in \Xi(\boldsymbol{y}^{1}, \boldsymbol{y}^{2})} \left[\boldsymbol{\xi}^{\top} C \, \boldsymbol{x} + \boldsymbol{\xi}^{\top} Q \, \boldsymbol{y}^{2} \right], \\ \max_{\boldsymbol{\xi} \in \Xi(\boldsymbol{y}^{1}, \boldsymbol{y}^{2})} \left[\boldsymbol{\xi}^{\top} C \, \boldsymbol{x} + \boldsymbol{\zeta}^{\top} Q \, \boldsymbol{y}^{2} \right], \\ \sum_{\boldsymbol{\xi} \in \Xi(\boldsymbol{y}^{1}, \boldsymbol{y}^{2})} \left[\boldsymbol{\xi}^{\top} C \, \boldsymbol{x} + \boldsymbol{\zeta}^{\top} Q \, \boldsymbol{y}^{2} \right], \\ \sum_{\boldsymbol{\xi} \in \Xi(\boldsymbol{y}^{1}, \boldsymbol{y}^{2})} \left[\boldsymbol{\xi}^{\top} C \, \boldsymbol{x} + \boldsymbol{\zeta}^{\top} Q \, \boldsymbol{y}^{2} \right], \\ \sum_{\boldsymbol{\xi} \in \Xi(\boldsymbol{y}^{1}, \boldsymbol{y}^{2})} \left[\boldsymbol{\xi}^{\top} C \, \boldsymbol{x} + \boldsymbol{\zeta}^{\top} Q \, \boldsymbol{y}^{2} \right], \\ \sum_{\boldsymbol{\xi} \in \Xi(\boldsymbol{y}^{1}, \boldsymbol{y}^{2})} \left[\boldsymbol{\xi}^{\top} C \, \boldsymbol{x} + \boldsymbol{\zeta}^{\top} Q \, \boldsymbol{y}^{2} \right], \\ \sum_{\boldsymbol{\xi} \in \Xi(\boldsymbol{y}^{1}, \boldsymbol{y}^{2})} \left[\boldsymbol{\xi}^{\top} C \, \boldsymbol{x} + \boldsymbol{\zeta}^{\top} Q \, \boldsymbol{y}^{2} \right],$$

Theorem (Constraint Uncertainty): The *K*-Adaptability Problem has an equivalent MILP reformulation that scales *exponentially* in the number of policies *K* (but *polynomially* in other problem data).

$$oxed{\Xi(oldsymbol{y}^1,oldsymbol{y}^2)} = egin{cases} oldsymbol{\xi} \in \Xi : & oldsymbol{T}oldsymbol{x} + oldsymbol{W}oldsymbol{y}^1 \leq oldsymbol{H}oldsymbol{\xi} \ oldsymbol{T}oldsymbol{x} + oldsymbol{W}oldsymbol{y}^2
ot \leq oldsymbol{H}oldsymbol{\xi} \end{cases}$$

Theorem (Constraint Uncertainty): The *K*-Adaptability Problem has an equivalent MILP reformulation that scales *exponentially* in the number of policies *K* (but *polynomially* in other problem data).

$$egin{aligned} egin{aligned} egi$$

Theorem (Constraint Uncertainty): The *K*-Adaptability Problem has an equivalent MILP reformulation that scales *exponentially* in the number of policies *K* (but *polynomially* in other problem data).

Theorem (Constraint Uncertainty): The K-Adaptability Problem has an equivalent MILP reformulation that scales *exponentially* in the number of policies K (but *polynomially* in other problem data).

$$egin{aligned} egin{aligned} oldsymbol{\Xi}(oldsymbol{y}^1,oldsymbol{y}^2) &= egin{cases} oldsymbol{\xi} \in oldsymbol{\Xi}: & oldsymbol{T}oldsymbol{x} + oldsymbol{W}oldsymbol{y}^1 \leq oldsymbol{H}oldsymbol{\xi} \ &= egin{cases} oldsymbol{T}oldsymbol{x} + oldsymbol{W}oldsymbol{y}^1 \leq oldsymbol{H}oldsymbol{\xi} \ &= egin{cases} oldsymbol{T}oldsymbol{x} + oldsymbol{W}oldsymbol{y}^1 \leq oldsymbol{H}oldsymbol{\xi} \ &= egin{cases} oldsymbol{T}oldsymbol{x} + oldsymbol{W}oldsymbol{y}^1 \leq oldsymbol{H}oldsymbol{\xi} \ &= oldsymbol{T}oldsymbol{T}oldsymbol{T}oldsymbol{T}oldsymbol{x} + oldsymbol{W}oldsymbol{y}^1 \geq oldsymbol{H}oldsymbol{\xi} \ &= oldsymbol{T}oldsymbol{T}oldsymbol{T}oldsymbol{T}oldsymbol{X} + oldsymbol{W}oldsymbol{Y}oldsymbol{Y} \ &= oldsymbol{T}oldsymbol{T}oldsymbol{X} + oldsymbol{W}oldsymbol{Y}oldsymbol{T} \ &= oldsymbol{T}oldsymbol{T}oldsymbol{X} + oldsymbol{Y}oldsymbol{Y} \ &= oldsymbol{T}oldsymbol{T}oldsymbol{X} + oldsymbol{Y}oldsymbol{Y} \ &= oldsymbol{T}oldsymbol{T}oldsymbol{X} + oldsymbol{Y}oldsymbol{Y} + oldsymbol{Y}oldsymbol{Y} \ &= oldsymbol{T}oldsymbol{X} + oldsymbol{Y} +$$

Theorem (Constraint Uncertainty): The *K*-Adaptability Problem has an equivalent MILP reformulation that scales *exponentially* in the number of policies *K* (but *polynomially* in other problem data).

Theorem (Constraint Uncertainty): The *K*-Adaptability Problem has an equivalent MILP reformulation that scales *exponentially* in the number of policies *K* (but *polynomially* in other problem data).

$$egin{aligned} egin{aligned} egi$$

Summary

The *K*-Adaptability Problem:

Objective Uncertainty:

- strong approximation guarantees
- MILP reformulation that scales polynomially

Constraint Uncertainty:

- weak approximation guarantees
- MILP reformulation that scales
 - exponentially in K
 - polynomially in rest

Supply Chain Design:

Can be modeled as two-stage robust integer program with objective uncertainty!

Supply Chain Design:

Investment Planning:

observe:

risk factors

here-and-now: early-stage investment (first mover advantage)

wait-and-see: late-stage investment (no advantage)

 $\frac{\mathsf{costs:}}{\mathsf{profits:}} \ \ \boldsymbol{c(\boldsymbol{\xi})}^{\top} \boldsymbol{x}$

 $\underline{\mathsf{costs:}} \quad \boldsymbol{c}(\boldsymbol{\xi})^{\top} \boldsymbol{y}(\boldsymbol{\xi})$

profits: $0.8 \cdot \boldsymbol{r}(\boldsymbol{\xi})^{\top} \boldsymbol{y}(\boldsymbol{\xi})$

Can be modeled as two-stage robust integer program with constraint uncertainty!

Investment Planning:

References

- [1] D. Bertsimas and C. Caramanis. Adaptability via sampling. In *Proceedings of the* 46th IEEE Conference on Decision and Control (CDC), pages 4717–4722, 2007.
- [2] D. Bertsimas and C. Caramanis. Finite adaptibility in multistage linear optimization. *IEEE Transactions on Automatic Control*, 55(12):2751–2766, 2010.
- [3] D. Bertsimas and A. Georghiou. Design of near optimal decision rules in multistage adaptive mixed-integer optimization. *Optimization Online*, 2013.
- [4] B. L. Gorissen, I. Yanikoglu, and D. den Hertog. Hints for practical robust optimizations. *SSRN*, 2013.
- [5] G. A. Hanasusanto, D. Kuhn, and W. Wiesemann. Two-Stage robust integer programming. *Optimization Online*, 2014.
- [6] P. Vayanos, D. Kuhn, and B. Rustem. Decision rules for information discovery in multi-stage stochastic programming. In *Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC)*, pages 7368–7373, 2011.

Daniel Kuhn

rao.epfl.ch daniel.kuhn@epfl.ch