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o Exact Approaches: not available

e Sampling-Based Approximations: progressive approximation

e Space-Partitioning Approximations: exponential growth
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Constraint Uncertainty: Tractability
<

/Theorem (Constraint Uncertainty): The K-Adaptability Problem
has an equivalent MILP reformulation that scales exponentially in
the number of policies K (but polynomially in other problem data)

\_ J

Proof Outline: Uncertainty sets have become non-convex:

( Tx +Wyl < HE )
—{¢cc=. [Tx+Wy?| >[HE, V
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The K-Adaptability Problem:

Summary

~

r

IMax
EcE

minimize

{{TC’:B—l—géilrcl {éTka . T+ Wyk < H&}}

ksubject to xeX, y*e) kek

J

H/_/

H/_/

CObjective Uncertainty:) CConstraint Uncertainty:)

P
*  Sfrong approximation
guarantees

*  MILP reformulation
that scales polynomially

~

-

* Weak approximation
guarantees

* MILP reformulation

that scales
+ exponentially in K
+  polynomially in rest

~

/




Numerical Experiments
Supply Chain Design:

here-and-now: observe: wait-and-see:
build facilities customer demands product delivery
R/_/
4 )

Can be modeled as two-stage robust integer program
with objective uncertainty!




Supply Chain Design:
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Numerical Experiments

Investment Planning:

- o 4’
.

-~ o ""w
here-and-now: observe: wait-and-see:
early-stage investment risk factors late-stage investment

(first mover advantage) (no advantage)
' costs: c(f)Ta:w costs: c(&) " y(&)
profits: (¢)'x profits: 0.8.r(£)Ty(€)J

(

"
Can be modeled as two-stage robust integer program

with constraint uncertainty!




Numerical Experiments
Investment Planning:
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