Systems and Control II (SC2) Albert-Ludwigs-Universität Freiburg – Wintersemester 2015/2016

Exercises 9: Z-transform, Discretization and Discrete-Continuous relation (Thursday 07.01.2016 at 15:00 in Room SR 00 014)

Dr. Jörg Fischer, Prof. Dr. Moritz Diehl and Jochem De Schutter

1. Consider the digital system shown in Fig. 1.

Figure 1: Diagram of a discrete time system

- (a) Determine the state space model for this system.
- (b) Derive the difference equation from the state space model.
- (c) Determine the transfer function $G_z(z)$ and calculate the system poles.
- (d) What is the steady state output $y_{ss}(k)$ of the system for an input signal $u(k) = 2\sigma_d(k) + 3\cos(\frac{\pi k}{2})$?
- 2. A process plant G(s) is controlled by a digital PI-controller $K_z(z)$. The control signal goes through a zero-order-hold element before being fed to the plant. After the plant, a sampler digitizes the plant output y(t) to a digital signal y(k) that is then fed back to the controller, as shown in Fig. 2. The plant and the controller are described by

Figure 2: Digital control loop with plant G(s)

$$G(s) = rac{A}{Ts+1}$$
 and $K_{\rm z}(z) = k_{\rm P}(1+rac{T_{\rm p}}{2T_{\rm I}}rac{z+1}{z-1})$

The plant gain A = 10 and the plant time constant $T = \frac{1}{12}$. The sampling time $T_{\rm P} = 1$ ms and the controller parameters $k_{\rm P} = 5$ and $T_{\rm I} = 0.01$ s.

- (a) Determine the transfer function $G_z(z) = \frac{Y_z(z)}{U_z(z)}$ of the discretized plant with ZOH. Use Table 1 with standard Laplace and *z*-transforms.
- (b) Compute the discrete closed-loop transfer function. Is the closed-loop system stable?
- 3. The discrete-time system $G_z(z)$ describes the transfer function $\frac{Y_z(z)}{U_z(z)}$ of the sampled-data system shown in Fig. 3 that consists of a zero order hold (ZOH), the continous-time system G(s), and a sampler with sample time T_p that is synchronized with the ZOH.

Figure 3: Digital control loop with plant G(s)

- (a) How do the poles and zeros of G(s) relate to the poles and zeros of $G_z(z)$?
- (b) Fig. 4 shows different lines in the s-plane that represent possible pole locations of G(s). Draw a diagram that shows the corresponding pole locations of $G_z(z)$ in the z-plane.

Figure 4: Lines in s-plane that symbolize different pole locations.

Nr.	function $f(t)$ with $f(t) = \text{for } t_i 0$	$F(s) = \mathcal{L}\{f(t)\}$	$\begin{split} F(z) &= \mathcal{Z}\{f(k)\} \\ \text{with } f(k) &= f(kT_{\mathrm{p}}) \end{split}$	
1	$\sigma(t)$	$\frac{1}{s}$	$\frac{z}{z-1}$	
2	t	$\frac{1}{s^2}$	$\frac{T_{\rm p}z}{(z\!-\!1)^2}$	
3	t^2	$\frac{2}{s^3}$	$\frac{T_{\rm p}^2 z(z\!+\!1)}{(z\!-\!1)^3}$	
4	e^{-at}	$\frac{1}{s+a}$	$rac{z}{z-e^{-aT_{ m p}}}$	
5	te^{-at}	$\frac{1}{(s+a)^2}$	$\frac{\alpha T_{\rm p} z}{(z\!-\!\alpha)^2}$	$\alpha = e^{-aT_{\rm p}}$
6	$1 - e^{at}$	$rac{a}{s(s+a)}$	$\frac{(1-\alpha)z}{(z-1)(z-\alpha)}$	$\alpha = e^{-aT_{\rm p}}$
7	$\frac{1}{a}\left(at - 1 - e^{-at}\right)$	$rac{a}{s^2(s+a)}$	$\frac{z[(aT_{\rm p}-1+\alpha)z+(1-\alpha-aT_{\rm p}\alpha)]}{a(z-1)^2(z-\alpha)}$	$\alpha = e^{-aT_{\rm p}}$
8	$(1-at)e^{-at}$	$rac{s}{(s+a)^2}$	$\frac{z[z\!-\!\alpha(1\!+\!aT_{\rm p})]}{(z\!-\!\alpha)^2}$	$\alpha = e^{-aT_{\rm p}}$
9	$\sin(\omega t)$	$rac{\omega}{s^2+\omega^2}$	$rac{eta z}{z^2-2\gamma z+1}$	$\beta = \sin(\omega T_{\rm p})$ $\gamma = \cos(\omega T_{\rm p})$
10	$\cos(\omega t)$	$\frac{s}{s^2+\omega^2}$	$rac{z^2-\gamma z}{z^2-2\gamma z+1}$	$\gamma = \cos(\omega T_{\rm p})$
11	$e^{-at}\sin(\omega t)$	$\frac{\omega}{(s+a)^2+\omega^2}$	$\frac{\alpha\beta z}{z^2-2\alpha\gamma z+\alpha^2}$	$\begin{aligned} \alpha &= e^{-aT_{\rm p}} \\ \beta &= \sin(\omega T_{\rm p}) \\ \gamma &= \cos(\omega T_{\rm p}) \end{aligned}$