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Systems and Control II (SC2)
Albert-Ludwigs-Universität Freiburg – Wintersemester 2015/2016

Exercises 5: Model-based Control
(Thursday 26.11.2015 at 15:00 in Room SR 00 014)

Dr. Jörg Fischer, Prof. Dr. Moritz Diehl and Jochem De Schutter

1. Design a controller for an office heating system, using the model matching technique. The heating system is described by the
transfer function (with units not in sec but in min)

G(s) =
1.432

(s+ 2.293)(s+ 0.876)
. (1)

(a) Is this plant suitable for the model matching design method?

(b) Find a model M(s) for the command response, that has no overshoot (to avoid energy losses) and that has a static gain of 1
and a settling time T5% = 1min.
Hint: The choice of M(s) is restricted by the relative degree of G(s). The settling time T5% of a second-order system with
damping ζ and poles s1 and s2 can be approximated by

ζ < 0.8 T5% ≈ 3
ζω0

= 3
|Re{s1,2}|

ζ = 1 T5% ≈ 4.8
|s1,2|

(c) Calculate the controller K(s) for the chosen model M(s) and transform it to Bode form. It is sufficient to state the DC-gain
of the controller as a rational expression.

(d) (MATLAB) Simulate the closed-loop step response and evaluate.

(e) (MATLAB) Determine and simulate the disturbance response of the control loop for an input disturbance. Discuss the
disturbance attenuation behaviour of the closed-loop.

2. Find an IMC controller for the following process model:

G(s) =
(−s+ 1)e−s

s2 + s+ 1
.

The controller must satisfy the condition

max
ω

∣∣∣∣KIMC(jω)

KIMC(0)

∣∣∣∣ ≤ 20

in order to limit noise amplification and to avoid actuator saturation.

(a) Analyze, and if necessary factorize the process modelG(s) and determine the ideal IMC controllerK∗IMC(s) that minimizes
the ISE (integral square error) for step reference inputs. The ideal IMC controller does not have to satisfy the above gain
condition and does not have to be a proper transfer function.

(b) Add a filter to obtain a realizable controller KIMC(s). Choose the time constant T so that the noise amplification limit is
respected.

(c) (MATLAB) Simulate the step response of the closed-loop system and evaluate.

(d) Check if the system is robust for a multiplicative uncertainty with an upper bound

∆̄M(s) =

∣∣∣∣0.01 ·
1

0.001s+ 1
1

0.01s+ 1

∣∣∣∣ .
3. A mixing vessel of a process plant can be modelled as first-order system

G(s) = e−93.3s
5.6

40.2s+ 1
. (2)

As is often the case for chemical processes, the dead time is more than twice as long as the time constant of the process. The
open-loop response of the process has a long settling time (250s).
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(a) In order to decrease the settling time and to compensate for disturbances, we could apply a PI-controller Kp(1 + 1
Tis

) to the
process. A good choice of control parameters would be Kp = 0.0501 and Ti = 47.35s.

• (MATLAB) Evaluate the performance of the control loop with the PI-controller. Discuss the step response.
• (MATLAB) Can the performance be improved by increasing Kp?

(b) Design a Smith Predictor for the same process. Assume that the model Ĝ(s) is perfect. The closed-loop should have a
steady state error of 0.01 for a step input.
Hint: For a perfect model, KR(s) can be designed for GR(s), as if there were no time delay. Try a proportional controller
design for KR(s).

(c) (MATLAB) Evaluate the closed-loop step response and compare with the PI-control loop.
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