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Exercises for Lecture Course on Numerical Optimization (NUMOPT)
Albert-Ludwigs-Universität Freiburg – Winter Term 2019-2020

Exercise 5: Exam Type Questions,
Inequality Constrained Optimization

Prof. Dr. Moritz Diehl, Dimitris Kouzoupis, Andrea Zanelli and Florian Messerer

Goal of this sheet is to offer some exposure to exam-type questions. Further you will get more familiar
with inequality constrained optimization and get to know more of CasADi’s functionalities.

Exercise Tasks

1. A sample exam question. (your score in this question will be divided by 3)

Regard the following minimization problem.

min
x∈R2

x4
2+(x1+2)4 subject to

{
x2

1 + x2
2 ≤ 8

x1 − x2 = 0

(a) How many scalar decision variables, how many equality, and how many inequality constraints
does this problem have?

2

(b) Sketch the feasible set Ω ∈ R2 of this problem.

3

(c) Bring this problem into the NLP standard form:

min
x∈Rn

f(x) subject to
{
g(x) = 0
h(x) ≥ 0

by defining the functions f, g, h appropriately.

3

FROM NOW ON UNTIL THE END TREAT THE PROBLEM IN THIS STANDARD FORM.
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(d) Is this optimization problem convex? Justify.

2

(e) Write down the Lagrangian function of this optimization problem.

2

(f) A feasible solution of the problem is x̄ = (2, 2)T . What is the active set A(x̄) at this point?

2

(g) Is the linear independence constraint qualification (LICQ) satisfied at x̄ ? Justify.

3

(h) An optimal solution of the problem is x∗ = (−1,−1)T . What is the active set A(x∗) at this
point?

1

(i) Is the linear independence constraint qualification (LICQ) satisfied at x∗ ? Justify.

2

(j) Describe the tangent cone TΩ(x∗) (the set of feasible directions) to the feasible set at this point
x∗, by a set definition formula with explicitly computed numbers.

2
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(k) Compute the Lagrange gradient and find the multiplier vectors λ∗, µ∗ so that the above point
x∗ satisfies the KKT conditions.

4

(l) Describe the critical cone C(x∗, µ∗) at the point (x∗, λ∗, µ∗) in a set definition using explicitly
computed numbers

3

(m) Formulate the second order necessary conditions for optimality (SONC) for this problem and
test if they are satisfied at (x∗, λ∗, µ∗). Can you prove that x∗ is a local or global minimizer?

4

2. Hanging chain, the last episode. Recall the optimization problem of the hanging chain with non-
convex inequality constraints and without considering a rest length:

minimize
y,z

1

2

N−1∑
i=1

D
(
(yi − yi+1)2 + (zi − zi+1)2

)
+ g

N∑
i=1

mzi (1a)

subject to (y1, z1) = (−2, 1) (1b)
(yN , zN) = (2, 1) (1c)
zi + y2

i ≥ 0, for i = 1, . . . , N. (1d)

with parameters N = 40, D = 70, g = 9.81 and m = 0.1.

If you define this problem with opti = casadi.Opti(), and add decision variables and cons-
traints with opti.variable() and opti.subject to() respectively, CasADi will automa-
tically bring it into the CasADi standard form:

minimize
x

f(x) (2a)

subject to glb ≤g(x)≤ gub (2b)

where for equality constraints the upper and lower bounds are identical. x is a collection of all deci-
sion variables, in order of their definition in the script. You can access these (symbolic) expressions
and variables via opti.x, opti.f, opti.g, opti.lbg and opti.ubg. After solving the pro-
blem with sol = opti.solve(), you can access the value of any expression at the solution via
e.g. fmin = sol.value(opti.f). Values obtained like this are still CasADi matrices. There-
fore it might be necessary to first change them to a normal Matlab matrix using full() (e.g. fmin
= full(fmin)) before further processing them.
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(a) Solve problem (1) with Opti() and IPOPT as you did on the first exercise sheet. Find out the
standard form into which CasADi has transformed the problem and write it down on paper, i.e.
the relation between x and the yi and zi as well as the functions f(x), g(x) and the values of
glb and gub.

(2 bonus points)

(b) With opti.callback() you can pass a function handle @(i) DOSOMETHING with ite-
ration index i as input. CasADi will call it every iteration. Create a function that makes a plot
of the current chain position and pass it to CasADi via a function handle.
Hint: You can access the non-converged solution via opti.debug.value(). To be able to
see something, use pause() after plotting.

(2 bonus points)

(c) Identify the active set at the solution. Does LICQ hold? Are there any weakly active cons-
traints?
Note: You can consider a constraint hi(x) ≥ 0 as active if hi(x) ≤ 10−6

(2 bonus points)

(d) Evaluate the Hessian of the Lagrangian at the solution. You may first build a CasADi expression
for the Lagrangian. You can then obtain its Hessian via hessian(). You can access the
Lagrange multipliers as opti.lam g. Note that as opposed to the lecture, the Lagrangian is
defined as L(x, λ) = f(x) + λ>g(x) in CasADi. This also changes the sign of the multipliers.

(2 bonus points)

(e) Calculate the null-space of the Jacobian of the active constraints at the solution using QR
decomposition. Use the result to calculate the reduced Hessian. Is the reduced Hessian positive
definite? What does this mean?
Hints: Use qr(). If you do not succeed obtaining the null-space via QR decomposition, you
can simply proceed by obtaining the null-space from null().

(2 bonus points)

This sheet gives in total 11 points and 10 bonus points.
NOTE: your score in the exam-type question will be divided by 3.
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