	Modelir	ng and System Iden	tification – Microe	exam 3
Prof. Dr. Moritz Diehl, IMT February 12, 2020, 8:3		e e		
	Surname:	Name:	Matriculation number:	
	Study:	Programm: Bachelor	Master	
ł	Please fill in your name above an	d tick exactly ONE box for the ri points unless otherwise stated.		ow. Each question is worth 0.5
	i.i.d. process noise w and measu	the the state of a discrete time system trement noise v with variances Σ assurements of $y(k)$ and trust C, T	Σ_w and Σ_v . What choice of entries	es in matrices Σ_w, Σ_v should we
	(a) Pos. semi-definite matr	ices, small Σ_w , small Σ_v	(b) diagonal matrices, larg	ge Σ_w , small Σ_v
	(c) diagonal matrices, larg	ge Σ_w , large Σ_v	(d) negative semi-definite	matrices, small Σ_w , large Σ_v
2.		Stated with the covariance prediction is with covariance W_k ? $P_{[k k-1]}$		n filter, if $x_{k+1} = A_k x_k + w_k$,
	(a) (a) $(A_k^\top \cdot P_{[k-1 k-1]} \cdot A_k \cdot$	$+W_k$) ⁻¹	(b) $\square A_{k-1} \cdot P_{[k k]} \cdot A_{k-1}^{\top} +$	- W _{k-1}
	(c) $\square A_{k-1}^{\top} \cdot P_{[k k-1]} \cdot A_{k-1}$	$1 + W_{k-1}$	(d) $\Box A_{k-1} \cdot P_{[k-1 k-1]} \cdot A_k$	$\mathbf{x}_{k-1}^{T} + W_{k-1}$
3.	Which of the following is NOT	TRUE about the Extended Kalm	nan Filter (EKF)?	
	(a) EKF can be applied to	nonlinear systems	(b) EKF is not optimal du	e to local linearizations
	(c) For a linear system, El	KF outperforms KF	(d) EKF tends to underest	imate the true covariance
4.	Which of the following is the $F(\theta) = \frac{1}{2} R(\theta) _2^2$.	correct expression for finding th	he next iterate θ_{k+1} using Gaus	s Newton Algorithm? Assume
	(a) $\square \theta_{k+1} = \theta_k - \left(\frac{\partial R}{\partial \theta}(\theta_k)\right)^{\frac{1}{2}}$	$\frac{\partial R}{\partial \theta}(\theta_k)^{-1})^\top \nabla F(\theta_k)$	(b) $\square \theta_{k+1} = \theta_k - (\nabla R(\theta_k))$	$\nabla R(\theta_k)^{\top})^{-1} \frac{\partial R}{\partial \theta}(\theta_k)^{\top} R(\theta_k)$
	(c) $\square \theta_{k+1} = \theta_k - (\nabla R(\theta_k))$	$(\top)^{\top})^{+}\frac{\partial R}{\partial \theta}(\theta_k)F(\theta_k)$	(d) $\Box \theta_{k+1} = \theta_k - (\nabla R(\theta_k))$	$(T)^{\top})^{+}F(\theta_k)$
5.	Which of the following is NOT	TRUE about the Gauss Newton	(GN) Algorithm when used to see	olve a non-linear problem?
	(a) Its convergence depend	ls on the initial guess	(b) Not suited for rank det	ficient Jacobian matrices
	(c) If it converges, it conver	erges to a local minimum	(d) it could move away fro	om a reached stationary point
6.	Use Euler's method with step size $h = 0.1$ to find $x(1)$ for the differential equation $\dot{x} = 2 - \exp(-4t) - 2x$ at $t = 0.1$ give $x(0) = 1$?		(-4t) - 2x at $t = 0.1$ given that	
	(a) $x(0.1) = 0.9$	(b) $\Box x(0.1) = 1.1$	(c) $\Box x(0.1) = 1.2$	(d) $\Box x(0.1) = 0.8$
7.	What is the minimum number o	f hidden layers that could approx	timate an XOR function?	
	(a) 1	(b) 2	(c) 0	(d) 4

|--|

8. While training a network, what is a good indication of an appropriate model complexity to be used?

(a) Highest training error	(b) Lowest training error
(c) Highest testing error	(d) Lowest testing error

9. We have a priori information about a parameter in form of a PDF $g(\theta)$ and know that the PDF to obtain measurements y given θ is given by $f(y, \theta)$. What is the minimization problem using Bayesián estimator?

(a) $argmin_{\theta} \log g(\theta) - \log f(y, \theta)$	(b) $\Box argmin_{\theta} - \log g(\theta) - \log f(y, \theta)$
(c) $\square argmin_{\theta} g(\theta) + f(y, \theta)$	(d) $\Box argmin_{\theta} - g(\theta) + f(y, \theta)$

10. Which of the following model equations describes a FIR system with input u and output y? y(k+1) = ...

(a) $u(k) + \sin(k \cdot \pi)$	(b) $u(k) - 5 \cdot u(k-1)$	(c) $u(k) \cdot y(k) + y(k+1)$	(d) $[] u(k+1) + y(k)$

11. Given a linear state space systems with the equations $x_{k+1} = Ax_k + Bu_k$ and $y_k = Cx_k$, if you know that the state dimensions are $x_k \in \mathbb{R}^{n_x}$, the output dimensions are $y_k \in \mathbb{R}^{n_y}$ and the control input dimensions $u_k \in \mathbb{R}^{n_u}$, what are the dimensions of A and B respectively?

(a) ($n_x \times n_x$), ($n_x \times n_u$)	(b) \square $(1 \times n_x), (n_y \times n_u)$	(c) $[(n_y \times n_x), (n_y \times n_u)]$	(d) \square $(n_x \times n_x), (n_y \times n_u)$

12. Which of the following dynamic models with inputs u(t) and outputs y(t) is **neither** linear **nor** affine.

(a) $\Box t^3 \ddot{y}(t) = u(t)$ (b) $\Box \ddot{y}(t) = t^3 u(t)$ (c) $\Box \dot{y}(t) = u(t) + \cos(t)$ (d) $\Box \dot{y}(t)^3 = u(t)$	
---	--

13. Which of the following models is time invariant?

17

(a) $[\dot{y}(t) = u(t) + u(t)^t$ (b) $[\dot{y}(t) = u(t)^3 + e^{u(t)}$	(c) $\[\dot{y}(t) = \sqrt{u(t)} + 1 \]$	(d) $\qquad \ddot{y}(t)^2 = u(t)^t + e^{5u(t)}$
---	--	---

14. Which statement is **NOT TRUE** about Moving Horizon Estimation (MHE) with horizon length N? Here KF denotes the regular Kalman Filter, EKF denotes the extended Kalman Filter.

(a) MHE can be applied to nonlinear systems.		(b) \square Computing the MHE estimate at time N is as expen-	
		sive as computing the MHE estimate at time $2N$.	
	(c) MHE is computationally cheaper than EKF.	(d) MHE is equiv. to KF in unconstrained linear case.	

15. Consider a problem where a moving horizon estimator is used for state estimation of a non-linear system. How do the covariance and the computation time change when the horizon length increases? (1 point)

16. Which one of the following statements is **NOT TRUE** for FIR models:

	(a) The output does not depend on previous outputs.	(b) Output error minimization is a convex problem.	
(c) The impulse response is constant.		(d) They are a special class of ARX models	
7. Which of the following models with input $u(k)$ and output $y(k)$		is NOT LIP with respect to $\theta \in \mathbb{R}^2$?	
	(a) $y(k) = \theta_1 \exp(\theta_2 u(k))$	(b) $y(k) = y(k-1) \cdot (\theta_1 + \theta_2 u(k))$	
	(c) $y(k) = \theta_1 \sqrt{u(k)} + \theta_2 u(k)$	(d) $y(k) = \theta_1 u(k)^2 + \theta_2 \exp(u(k))$	

18. Consider the scalar ARX model $y(k) = \theta_1 y(k-1) + \theta_2 u(k-1) + w_k$ where $w_k \sim \mathcal{N}(0, \sigma^2)$. Given measurements y(k) and controls u(k), $k = 0, \dots, N$, specify functions $f_k(\theta)$ and weighing factors c_k (that account for the noise variance) such that the parameter estimate $\theta^* = [\theta_1^*, \theta_2^*]^\top$ is given by $\theta^* = \arg \min_{\theta \in \mathbb{R}^2} \sum_{k=1}^N c_k ||f_k(\theta)||_2^2$ (2 points)