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he goal of this exercise is to get more familiar with the time-freezing reformulation which is used to
transform systems with state jumps into Filippov systems.

1. Time-Freezing Reformulation. Consider a particle in a 2D space whose position is described
by (qx, qy) ∈ R2. There is a ground plane at qy = 0. This particle is under the influence of gravity
which acts in the negative qy direction (gravitational acceleration is g = 10). The particle’s mass
is m = 1. We assume that all impacts are inelastic, i.e., the coefficient of restitution is ϵr = 0.

(a) For now assume that there is no friction force. Write down the complemenentarty La-
grangian system describing the particle’s dynamics and derive the equivalent time-freezing
piecewise smooth system. In particular, define the expression for the switching functions c,
define the regions R1 and R2, and the dynamics f1 (free flight dynamics) and f2 (auxiliary
dynamics). Use an auxiliary dynamics constant of an = 20.
Hint : Use the formulae from Lecture 8.

(b) Given the initial conditions for the dynamics x0 = (0, 1, 3, 0) calculate the point at which
the particle will hit the ground and calculate by hand the values of θ which will occur once
the particle slides on the ground. Hint : This corresponds to the sliding mode of the Filippov
system.

(c) Now suppose that Coulomb friction acts on the particle at the contact with qy = 0 in the
horizontal direction, with a friction coefficient of µ = 0.2. Redefine the switching functions,
the regions of the PSS, the auxiliary dynamics, and the time-freezing Filippov system via
step reformulation for this case.

(d) Given the same initial conditions calculate at what point the particle will come to rest.
Hint : do not forget about the frictional losses at the impact.

2. Time-Freezing Simulation, NOSNOC’s expert mode: NOSNOC enables automatic refor-
mulation of Complementarity Lagrangian Systems into time-freezing systems. However, some
advanced options also enable to manually manipulate the quantities defining the resulting Filip-
pov system. In this task we will make use of this to verify our calculations from the first task.
Please consult the additional hints provided in the template in order to complete the following
tasks:

(a) Implement the expressions you derived in the previous section for the particle without
friction and use the provided utilities to plot the trajectory. Does the numerical solution
match the analytical computation?

(b) Do the same but use the model that includes friction. Does the numerical solution match
the analytical computation?

3. Inelastic Time-Freezing in Optimal Control Problems In this task we will solve our first
optimal control problem using time-freezing and FESD. Consider two rigid discs with masses m1,
m2, that translate in 2D space. The discs undergo aerodynamic drag, the equation for which is
provided for you in the example. The position of the discs is represented as q = (qx1 , qy1 , qx2 , qy2) ∈
R4, and the full state also includes the disc velocities v = (vx1 , vy1 , vx2 , vy2) ∈ R4. The system is
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controlled via forces applied to disc 1 in the x and y directions: u ∈ R2. There are no other exter-
nal forces that act on either disc. The inertia matrix of the system is M = diag(m1,m1,m2,m2).
The impacts between the two discs are inelastic, i.e., the coefficient of restitution is ϵr = 0. The
unconstrained (free flight) dynamics of this system are defined by

ẋ =

(
v

M−1fv(x, u),

)
with

fv(x, u) = (u, 0, 0)− cv

(
v1

∥v1∥+ ϵ
,

v2
∥v2∥+ ϵ

)
, ϵ = 0.1.

(a) As in section 1 of this exercise write down the equivalent time-freezing PSS for this system.
Hint: This should follow similar lines as the example in section 1. Also think of definition
the clock state and its dynamics correctly.

(b) Implement the model you derived and solve the OCP for which the target is to have the
discs switch places. A least squares cost function is provided in the template. Make sure
that the provided example is reasonable.

Hint : This problem should converge within a minute or two depending on your hardware. If the
solver takes longer than that to converge you may have made a mistake in your implementation.

4. Elastic Time-Freezing in Optimal Control Problems As discussed in Lecture 7, time-
freezing can also be applied to systems with elastic collisions. As such, consider a particle as in
section 1 of this exercise except the collision with ground has a constant of restitution ϵr > 0.

(a) Again write the Complemenentarity Lagrangian System describing the particle’s dynamics
and derive the equivalent time-freezing piecewise smooth system. In particular, define the
expression for the switching functions c, define the regions R1 and R2, and the dynamics f1
(free flight dynamics) and f2 (auxiliary dynamics).

(b) Next, we consider an optimal control problem of a elastic particle within in a square box.
The goal is that particle follows a fast circular reference. Now regard the implementation
provided in the template and make sure the equations of motions and the time-freezing
system are reasonable to you. Note how each collision is handled separately.

(c) Try running the example OCP of an ball in a box.

5. Bonus: Hopping robot OCP Consider a single legged rigid robot which is controlled via a
reaction wheel (for rotation) and a force controlled joint in the leg. The free space of the model
is as as follows: the configuration q = (q1, q2, ψ, l) consists of the 2D position, orientation, and
leg length, respectively. It is assumed that the inertia matrix is a constant diagonal matrix
M = diag(mb +ml,mb +ml, Ib + Il,ml). The free space dynamics of the robot are

ẋ = f(x, u) = (q,M−1fv(q, u), 1)

with
fv(q, u) = (− sin(ψ)u2, (mb+ml)g + cos(ψ)u2, u1, u2)

and for simplicity we assume that only the bottom of the foot makes contact with the ground at
q2 − l cosψ = 0.

(a) Implement the equivalent time-freezing PSS for the hopper. You can optionally also im-
plement the lifting algorithm to improve the nonlinearity of the equality constraints. Some
hints for this exercise:

i) If the solver begins to take longer than several minutes or so to converge to a solution
you may want to check your implementation for correctness.
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ii) This example can show you the difference between different linear solvers and how
influential they can be. If you have HSL1 solvers installed you can use the MA27 routine
in IPOPT to improve performance significantly.

(b) Try to provide different references, such that the optimizer finds creative solutions, e.g., the
hopper should do a back or front flip, or jump as high as possible.

1https://www.hsl.rl.ac.uk/
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